1 //===-- ArchSpec.h ----------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLDB_UTILITY_ARCHSPEC_H 10 #define LLDB_UTILITY_ARCHSPEC_H 11 12 #include "lldb/Utility/CompletionRequest.h" 13 #include "lldb/lldb-enumerations.h" 14 #include "lldb/lldb-forward.h" 15 #include "lldb/lldb-private-enumerations.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/TargetParser/Triple.h" 18 #include <cstddef> 19 #include <cstdint> 20 #include <string> 21 22 namespace lldb_private { 23 24 /// \class ArchSpec ArchSpec.h "lldb/Utility/ArchSpec.h" An architecture 25 /// specification class. 26 /// 27 /// A class designed to be created from a cpu type and subtype, a 28 /// string representation, or an llvm::Triple. Keeping all of the conversions 29 /// of strings to architecture enumeration values confined to this class 30 /// allows new architecture support to be added easily. 31 class ArchSpec { 32 public: 33 enum MIPSSubType { 34 eMIPSSubType_unknown, 35 eMIPSSubType_mips32, 36 eMIPSSubType_mips32r2, 37 eMIPSSubType_mips32r6, 38 eMIPSSubType_mips32el, 39 eMIPSSubType_mips32r2el, 40 eMIPSSubType_mips32r6el, 41 eMIPSSubType_mips64, 42 eMIPSSubType_mips64r2, 43 eMIPSSubType_mips64r6, 44 eMIPSSubType_mips64el, 45 eMIPSSubType_mips64r2el, 46 eMIPSSubType_mips64r6el, 47 }; 48 49 // Masks for the ases word of an ABI flags structure. 50 enum MIPSASE { 51 eMIPSAse_dsp = 0x00000001, // DSP ASE 52 eMIPSAse_dspr2 = 0x00000002, // DSP R2 ASE 53 eMIPSAse_eva = 0x00000004, // Enhanced VA Scheme 54 eMIPSAse_mcu = 0x00000008, // MCU (MicroController) ASE 55 eMIPSAse_mdmx = 0x00000010, // MDMX ASE 56 eMIPSAse_mips3d = 0x00000020, // MIPS-3D ASE 57 eMIPSAse_mt = 0x00000040, // MT ASE 58 eMIPSAse_smartmips = 0x00000080, // SmartMIPS ASE 59 eMIPSAse_virt = 0x00000100, // VZ ASE 60 eMIPSAse_msa = 0x00000200, // MSA ASE 61 eMIPSAse_mips16 = 0x00000400, // MIPS16 ASE 62 eMIPSAse_micromips = 0x00000800, // MICROMIPS ASE 63 eMIPSAse_xpa = 0x00001000, // XPA ASE 64 eMIPSAse_mask = 0x00001fff, 65 eMIPSABI_O32 = 0x00002000, 66 eMIPSABI_N32 = 0x00004000, 67 eMIPSABI_N64 = 0x00008000, 68 eMIPSABI_O64 = 0x00020000, 69 eMIPSABI_EABI32 = 0x00040000, 70 eMIPSABI_EABI64 = 0x00080000, 71 eMIPSABI_mask = 0x000ff000 72 }; 73 74 // MIPS Floating point ABI Values 75 enum MIPS_ABI_FP { 76 eMIPS_ABI_FP_ANY = 0x00000000, 77 eMIPS_ABI_FP_DOUBLE = 0x00100000, // hard float / -mdouble-float 78 eMIPS_ABI_FP_SINGLE = 0x00200000, // hard float / -msingle-float 79 eMIPS_ABI_FP_SOFT = 0x00300000, // soft float 80 eMIPS_ABI_FP_OLD_64 = 0x00400000, // -mips32r2 -mfp64 81 eMIPS_ABI_FP_XX = 0x00500000, // -mfpxx 82 eMIPS_ABI_FP_64 = 0x00600000, // -mips32r2 -mfp64 83 eMIPS_ABI_FP_64A = 0x00700000, // -mips32r2 -mfp64 -mno-odd-spreg 84 eMIPS_ABI_FP_mask = 0x00700000 85 }; 86 87 // ARM specific e_flags 88 enum ARMeflags { 89 eARM_abi_soft_float = 0x00000200, 90 eARM_abi_hard_float = 0x00000400 91 }; 92 93 enum RISCVeflags { 94 eRISCV_rvc = 0x00000001, /// RVC, +c 95 eRISCV_float_abi_soft = 0x00000000, /// soft float 96 eRISCV_float_abi_single = 0x00000002, /// single precision floating point, +f 97 eRISCV_float_abi_double = 0x00000004, /// double precision floating point, +d 98 eRISCV_float_abi_quad = 0x00000006, /// quad precision floating point, +q 99 eRISCV_float_abi_mask = 0x00000006, 100 eRISCV_rve = 0x00000008, /// RVE, +e 101 eRISCV_tso = 0x00000010, /// RVTSO (total store ordering) 102 }; 103 104 enum RISCVSubType { 105 eRISCVSubType_unknown, 106 eRISCVSubType_riscv32, 107 eRISCVSubType_riscv64, 108 }; 109 110 enum LoongArchSubType { 111 eLoongArchSubType_unknown, 112 eLoongArchSubType_loongarch32, 113 eLoongArchSubType_loongarch64, 114 }; 115 116 enum Core { 117 eCore_arm_generic, 118 eCore_arm_armv4, 119 eCore_arm_armv4t, 120 eCore_arm_armv5, 121 eCore_arm_armv5e, 122 eCore_arm_armv5t, 123 eCore_arm_armv6, 124 eCore_arm_armv6m, 125 eCore_arm_armv7, 126 eCore_arm_armv7l, 127 eCore_arm_armv7f, 128 eCore_arm_armv7s, 129 eCore_arm_armv7k, 130 eCore_arm_armv7m, 131 eCore_arm_armv7em, 132 eCore_arm_xscale, 133 134 eCore_thumb, 135 eCore_thumbv4t, 136 eCore_thumbv5, 137 eCore_thumbv5e, 138 eCore_thumbv6, 139 eCore_thumbv6m, 140 eCore_thumbv7, 141 eCore_thumbv7s, 142 eCore_thumbv7k, 143 eCore_thumbv7f, 144 eCore_thumbv7m, 145 eCore_thumbv7em, 146 eCore_arm_arm64, 147 eCore_arm_armv8, 148 eCore_arm_armv8l, 149 eCore_arm_arm64e, 150 eCore_arm_arm64_32, 151 eCore_arm_aarch64, 152 153 eCore_mips32, 154 eCore_mips32r2, 155 eCore_mips32r3, 156 eCore_mips32r5, 157 eCore_mips32r6, 158 eCore_mips32el, 159 eCore_mips32r2el, 160 eCore_mips32r3el, 161 eCore_mips32r5el, 162 eCore_mips32r6el, 163 eCore_mips64, 164 eCore_mips64r2, 165 eCore_mips64r3, 166 eCore_mips64r5, 167 eCore_mips64r6, 168 eCore_mips64el, 169 eCore_mips64r2el, 170 eCore_mips64r3el, 171 eCore_mips64r5el, 172 eCore_mips64r6el, 173 174 eCore_msp430, 175 176 eCore_ppc_generic, 177 eCore_ppc_ppc601, 178 eCore_ppc_ppc602, 179 eCore_ppc_ppc603, 180 eCore_ppc_ppc603e, 181 eCore_ppc_ppc603ev, 182 eCore_ppc_ppc604, 183 eCore_ppc_ppc604e, 184 eCore_ppc_ppc620, 185 eCore_ppc_ppc750, 186 eCore_ppc_ppc7400, 187 eCore_ppc_ppc7450, 188 eCore_ppc_ppc970, 189 190 eCore_ppc64le_generic, 191 eCore_ppc64_generic, 192 eCore_ppc64_ppc970_64, 193 194 eCore_s390x_generic, 195 196 eCore_sparc_generic, 197 198 eCore_sparc9_generic, 199 200 eCore_x86_32_i386, 201 eCore_x86_32_i486, 202 eCore_x86_32_i486sx, 203 eCore_x86_32_i686, 204 205 eCore_x86_64_x86_64, 206 eCore_x86_64_x86_64h, // Haswell enabled x86_64 207 eCore_hexagon_generic, 208 eCore_hexagon_hexagonv4, 209 eCore_hexagon_hexagonv5, 210 211 eCore_riscv32, 212 eCore_riscv64, 213 214 eCore_loongarch32, 215 eCore_loongarch64, 216 217 eCore_uknownMach32, 218 eCore_uknownMach64, 219 220 eCore_arc, // little endian ARC 221 222 eCore_avr, 223 224 eCore_wasm32, 225 226 kNumCores, 227 228 kCore_invalid, 229 // The following constants are used for wildcard matching only 230 kCore_any, 231 kCore_arm_any, 232 kCore_ppc_any, 233 kCore_ppc64_any, 234 kCore_x86_32_any, 235 kCore_x86_64_any, 236 kCore_hexagon_any, 237 238 kCore_arm_first = eCore_arm_generic, 239 kCore_arm_last = eCore_arm_xscale, 240 241 kCore_thumb_first = eCore_thumb, 242 kCore_thumb_last = eCore_thumbv7em, 243 244 kCore_ppc_first = eCore_ppc_generic, 245 kCore_ppc_last = eCore_ppc_ppc970, 246 247 kCore_ppc64_first = eCore_ppc64_generic, 248 kCore_ppc64_last = eCore_ppc64_ppc970_64, 249 250 kCore_x86_32_first = eCore_x86_32_i386, 251 kCore_x86_32_last = eCore_x86_32_i686, 252 253 kCore_x86_64_first = eCore_x86_64_x86_64, 254 kCore_x86_64_last = eCore_x86_64_x86_64h, 255 256 kCore_hexagon_first = eCore_hexagon_generic, 257 kCore_hexagon_last = eCore_hexagon_hexagonv5, 258 259 kCore_mips32_first = eCore_mips32, 260 kCore_mips32_last = eCore_mips32r6, 261 262 kCore_mips32el_first = eCore_mips32el, 263 kCore_mips32el_last = eCore_mips32r6el, 264 265 kCore_mips64_first = eCore_mips64, 266 kCore_mips64_last = eCore_mips64r6, 267 268 kCore_mips64el_first = eCore_mips64el, 269 kCore_mips64el_last = eCore_mips64r6el, 270 271 kCore_mips_first = eCore_mips32, 272 kCore_mips_last = eCore_mips64r6el 273 274 }; 275 276 /// Default constructor. 277 /// 278 /// Default constructor that initializes the object with invalid cpu type 279 /// and subtype values. 280 ArchSpec(); 281 282 /// Constructor over triple. 283 /// 284 /// Constructs an ArchSpec with properties consistent with the given Triple. 285 explicit ArchSpec(const llvm::Triple &triple); 286 explicit ArchSpec(const char *triple_cstr); 287 explicit ArchSpec(llvm::StringRef triple_str); 288 /// Constructor over architecture name. 289 /// 290 /// Constructs an ArchSpec with properties consistent with the given object 291 /// type and architecture name. 292 explicit ArchSpec(ArchitectureType arch_type, uint32_t cpu_type, 293 uint32_t cpu_subtype); 294 295 /// Destructor. 296 ~ArchSpec(); 297 298 /// Returns true if the OS, vendor and environment fields of the triple are 299 /// unset. The triple is expected to be normalized 300 /// (llvm::Triple::normalize). 301 static bool ContainsOnlyArch(const llvm::Triple &normalized_triple); 302 303 static void ListSupportedArchNames(StringList &list); 304 static void AutoComplete(CompletionRequest &request); 305 306 /// Returns a static string representing the current architecture. 307 /// 308 /// \return A static string corresponding to the current 309 /// architecture. 310 const char *GetArchitectureName() const; 311 312 /// if MIPS architecture return true. 313 /// 314 /// \return a boolean value. 315 bool IsMIPS() const; 316 317 /// Returns a string representing current architecture as a target CPU for 318 /// tools like compiler, disassembler etc. 319 /// 320 /// \return A string representing target CPU for the current 321 /// architecture. 322 std::string GetClangTargetCPU() const; 323 324 /// Return a string representing target application ABI. 325 /// 326 /// \return A string representing target application ABI. 327 std::string GetTargetABI() const; 328 329 /// Clears the object state. 330 /// 331 /// Clears the object state back to a default invalid state. 332 void Clear(); 333 334 /// Returns the size in bytes of an address of the current architecture. 335 /// 336 /// \return The byte size of an address of the current architecture. 337 uint32_t GetAddressByteSize() const; 338 339 /// Returns a machine family for the current architecture. 340 /// 341 /// \return An LLVM arch type. 342 llvm::Triple::ArchType GetMachine() const; 343 344 /// Tests if this ArchSpec is valid. 345 /// 346 /// \return True if the current architecture is valid, false 347 /// otherwise. 348 bool IsValid() const { 349 return m_core >= eCore_arm_generic && m_core < kNumCores; 350 } 351 explicit operator bool() const { return IsValid(); } 352 353 bool TripleVendorWasSpecified() const { 354 return !m_triple.getVendorName().empty(); 355 } 356 357 bool TripleOSWasSpecified() const { return !m_triple.getOSName().empty(); } 358 359 bool TripleEnvironmentWasSpecified() const { 360 return m_triple.hasEnvironment(); 361 } 362 363 /// Merges fields from another ArchSpec into this ArchSpec. 364 /// 365 /// This will use the supplied ArchSpec to fill in any fields of the triple 366 /// in this ArchSpec which were unspecified. This can be used to refine a 367 /// generic ArchSpec with a more specific one. For example, if this 368 /// ArchSpec's triple is something like i386-unknown-unknown-unknown, and we 369 /// have a triple which is x64-pc-windows-msvc, then merging that triple 370 /// into this one will result in the triple i386-pc-windows-msvc. 371 /// 372 void MergeFrom(const ArchSpec &other); 373 374 /// Change the architecture object type, CPU type and OS type. 375 /// 376 /// \param[in] arch_type The object type of this ArchSpec. 377 /// 378 /// \param[in] cpu The required CPU type. 379 /// 380 /// \param[in] os The optional OS type 381 /// The default value of 0 was chosen to from the ELF spec value 382 /// ELFOSABI_NONE. ELF is the only one using this parameter. If another 383 /// format uses this parameter and 0 does not work, use a value over 384 /// 255 because in the ELF header this is value is only a byte. 385 /// 386 /// \return True if the object, and CPU were successfully set. 387 /// 388 /// As a side effect, the vendor value is usually set to unknown. The 389 /// exceptions are 390 /// aarch64-apple-ios 391 /// arm-apple-ios 392 /// thumb-apple-ios 393 /// x86-apple- 394 /// x86_64-apple- 395 /// 396 /// As a side effect, the os value is usually set to unknown The exceptions 397 /// are 398 /// *-*-aix 399 /// aarch64-apple-ios 400 /// arm-apple-ios 401 /// thumb-apple-ios 402 /// powerpc-apple-darwin 403 /// *-*-freebsd 404 /// *-*-linux 405 /// *-*-netbsd 406 /// *-*-openbsd 407 /// *-*-solaris 408 bool SetArchitecture(ArchitectureType arch_type, uint32_t cpu, uint32_t sub, 409 uint32_t os = 0); 410 411 /// Returns the byte order for the architecture specification. 412 /// 413 /// \return The endian enumeration for the current endianness of 414 /// the architecture specification 415 lldb::ByteOrder GetByteOrder() const; 416 417 /// Sets this ArchSpec's byte order. 418 /// 419 /// In the common case there is no need to call this method as the byte 420 /// order can almost always be determined by the architecture. However, many 421 /// CPU's are bi-endian (ARM, Alpha, PowerPC, etc) and the default/assumed 422 /// byte order may be incorrect. 423 void SetByteOrder(lldb::ByteOrder byte_order) { m_byte_order = byte_order; } 424 425 uint32_t GetMinimumOpcodeByteSize() const; 426 427 uint32_t GetMaximumOpcodeByteSize() const; 428 429 Core GetCore() const { return m_core; } 430 431 uint32_t GetMachOCPUType() const; 432 433 uint32_t GetMachOCPUSubType() const; 434 435 /// Architecture data byte width accessor 436 /// 437 /// \return the size in 8-bit (host) bytes of a minimum addressable unit 438 /// from the Architecture's data bus 439 uint32_t GetDataByteSize() const; 440 441 /// Architecture code byte width accessor 442 /// 443 /// \return the size in 8-bit (host) bytes of a minimum addressable unit 444 /// from the Architecture's code bus 445 uint32_t GetCodeByteSize() const; 446 447 /// Architecture triple accessor. 448 /// 449 /// \return A triple describing this ArchSpec. 450 llvm::Triple &GetTriple() { return m_triple; } 451 452 /// Architecture triple accessor. 453 /// 454 /// \return A triple describing this ArchSpec. 455 const llvm::Triple &GetTriple() const { return m_triple; } 456 457 void DumpTriple(llvm::raw_ostream &s) const; 458 459 /// Architecture triple setter. 460 /// 461 /// Configures this ArchSpec according to the given triple. If the triple 462 /// has unknown components in all of the vendor, OS, and the optional 463 /// environment field (i.e. "i386-unknown-unknown") then default values are 464 /// taken from the host. Architecture and environment components are used 465 /// to further resolve the CPU type and subtype, endian characteristics, 466 /// etc. 467 /// 468 /// \return A triple describing this ArchSpec. 469 bool SetTriple(const llvm::Triple &triple); 470 471 bool SetTriple(llvm::StringRef triple_str); 472 473 /// Returns the default endianness of the architecture. 474 /// 475 /// \return The endian enumeration for the default endianness of 476 /// the architecture. 477 lldb::ByteOrder GetDefaultEndian() const; 478 479 /// Returns true if 'char' is a signed type by default in the architecture 480 /// false otherwise 481 /// 482 /// \return True if 'char' is a signed type by default on the 483 /// architecture and false otherwise. 484 bool CharIsSignedByDefault() const; 485 486 enum MatchType : bool { CompatibleMatch, ExactMatch }; 487 488 /// Compare this ArchSpec to another ArchSpec. \a match specifies the kind of 489 /// matching that is to be done. CompatibleMatch requires only a compatible 490 /// cpu type (e.g., armv7s is compatible with armv7). ExactMatch requires an 491 /// exact match (armv7s is not an exact match with armv7). 492 /// 493 /// \return true if the two ArchSpecs match. 494 bool IsMatch(const ArchSpec &rhs, MatchType match) const; 495 496 /// Shorthand for IsMatch(rhs, ExactMatch). 497 bool IsExactMatch(const ArchSpec &rhs) const { 498 return IsMatch(rhs, ExactMatch); 499 } 500 501 /// Shorthand for IsMatch(rhs, CompatibleMatch). 502 bool IsCompatibleMatch(const ArchSpec &rhs) const { 503 return IsMatch(rhs, CompatibleMatch); 504 } 505 506 bool IsFullySpecifiedTriple() const; 507 508 void PiecewiseTripleCompare(const ArchSpec &other, bool &arch_different, 509 bool &vendor_different, bool &os_different, 510 bool &os_version_different, 511 bool &env_different) const; 512 513 /// Detect whether this architecture uses thumb code exclusively 514 /// 515 /// Some embedded ARM chips (e.g. the ARM Cortex M0-7 line) can only execute 516 /// the Thumb instructions, never Arm. We should normally pick up 517 /// arm/thumbness from their the processor status bits (cpsr/xpsr) or hints 518 /// on each function - but when doing bare-boards low level debugging 519 /// (especially common with these embedded processors), we may not have 520 /// those things easily accessible. 521 /// 522 /// \return true if this is an arm ArchSpec which can only execute Thumb 523 /// instructions 524 bool IsAlwaysThumbInstructions() const; 525 526 uint32_t GetFlags() const { return m_flags; } 527 528 void SetFlags(uint32_t flags) { m_flags = flags; } 529 530 void SetFlags(const std::string &elf_abi); 531 532 protected: 533 void UpdateCore(); 534 535 llvm::Triple m_triple; 536 Core m_core = kCore_invalid; 537 lldb::ByteOrder m_byte_order = lldb::eByteOrderInvalid; 538 539 // Additional arch flags which we cannot get from triple and core For MIPS 540 // these are application specific extensions like micromips, mips16 etc. 541 uint32_t m_flags = 0; 542 543 // Called when m_def or m_entry are changed. Fills in all remaining members 544 // with default values. 545 void CoreUpdated(bool update_triple); 546 }; 547 548 /// \fn bool operator< (const ArchSpec& lhs, const ArchSpec& rhs) Less than 549 /// operator. 550 /// 551 /// Tests two ArchSpec objects to see if \a lhs is less than \a rhs. 552 /// 553 /// \param[in] lhs The Left Hand Side ArchSpec object to compare. \param[in] 554 /// rhs The Left Hand Side ArchSpec object to compare. 555 /// 556 /// \return true if \a lhs is less than \a rhs 557 bool operator<(const ArchSpec &lhs, const ArchSpec &rhs); 558 bool operator==(const ArchSpec &lhs, const ArchSpec &rhs); 559 560 bool ParseMachCPUDashSubtypeTriple(llvm::StringRef triple_str, ArchSpec &arch); 561 562 } // namespace lldb_private 563 564 #endif // LLDB_UTILITY_ARCHSPEC_H 565