xref: /freebsd/contrib/llvm-project/lld/MachO/UnwindInfoSection.cpp (revision af23369a6deaaeb612ab266eb88b8bb8d560c322)
1 //===- UnwindInfoSection.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "UnwindInfoSection.h"
10 #include "ConcatOutputSection.h"
11 #include "Config.h"
12 #include "InputSection.h"
13 #include "OutputSection.h"
14 #include "OutputSegment.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "Target.h"
19 
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/BinaryFormat/MachO.h"
25 #include "llvm/Support/Parallel.h"
26 
27 #include <numeric>
28 
29 using namespace llvm;
30 using namespace llvm::MachO;
31 using namespace llvm::support::endian;
32 using namespace lld;
33 using namespace lld::macho;
34 
35 #define COMMON_ENCODINGS_MAX 127
36 #define COMPACT_ENCODINGS_MAX 256
37 
38 #define SECOND_LEVEL_PAGE_BYTES 4096
39 #define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
40 #define REGULAR_SECOND_LEVEL_ENTRIES_MAX                                       \
41   ((SECOND_LEVEL_PAGE_BYTES -                                                  \
42     sizeof(unwind_info_regular_second_level_page_header)) /                    \
43    sizeof(unwind_info_regular_second_level_entry))
44 #define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX                                    \
45   ((SECOND_LEVEL_PAGE_BYTES -                                                  \
46     sizeof(unwind_info_compressed_second_level_page_header)) /                 \
47    sizeof(uint32_t))
48 
49 #define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
50 #define COMPRESSED_ENTRY_FUNC_OFFSET_MASK                                      \
51   UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
52 
53 // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
54 // optimizes space and exception-time lookup.  Most DWARF unwind
55 // entries can be replaced with Compact Unwind entries, but the ones
56 // that cannot are retained in DWARF form.
57 //
58 // This comment will address macro-level organization of the pre-link
59 // and post-link compact unwind tables. For micro-level organization
60 // pertaining to the bitfield layout of the 32-bit compact unwind
61 // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
62 //
63 // Important clarifying factoids:
64 //
65 // * __LD,__compact_unwind is the compact unwind format for compiler
66 // output and linker input. It is never a final output. It could be
67 // an intermediate output with the `-r` option which retains relocs.
68 //
69 // * __TEXT,__unwind_info is the compact unwind format for final
70 // linker output. It is never an input.
71 //
72 // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
73 //
74 // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
75 // level) by ascending address, and the pages are referenced by an
76 // index (1st level) in the section header.
77 //
78 // * Following the headers in __TEXT,__unwind_info, the bulk of the
79 // section contains a vector of compact unwind entries
80 // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
81 // Adjacent entries with the same encoding can be folded to great
82 // advantage, achieving a 3-order-of-magnitude reduction in the
83 // number of entries.
84 //
85 // * The __TEXT,__unwind_info format can accommodate up to 127 unique
86 // encodings for the space-efficient compressed format. In practice,
87 // fewer than a dozen unique encodings are used by C++ programs of
88 // all sizes. Therefore, we don't even bother implementing the regular
89 // non-compressed format. Time will tell if anyone in the field ever
90 // overflows the 127-encodings limit.
91 //
92 // Refer to the definition of unwind_info_section_header in
93 // compact_unwind_encoding.h for an overview of the format we are encoding
94 // here.
95 
96 // TODO(gkm): prune __eh_frame entries superseded by __unwind_info, PR50410
97 // TODO(gkm): how do we align the 2nd-level pages?
98 
99 // The offsets of various fields in the on-disk representation of each compact
100 // unwind entry.
101 struct CompactUnwindOffsets {
102   uint32_t functionAddress;
103   uint32_t functionLength;
104   uint32_t encoding;
105   uint32_t personality;
106   uint32_t lsda;
107 
108   CompactUnwindOffsets(size_t wordSize) {
109     if (wordSize == 8)
110       init<uint64_t>();
111     else {
112       assert(wordSize == 4);
113       init<uint32_t>();
114     }
115   }
116 
117 private:
118   template <class Ptr> void init() {
119     functionAddress = offsetof(Layout<Ptr>, functionAddress);
120     functionLength = offsetof(Layout<Ptr>, functionLength);
121     encoding = offsetof(Layout<Ptr>, encoding);
122     personality = offsetof(Layout<Ptr>, personality);
123     lsda = offsetof(Layout<Ptr>, lsda);
124   }
125 
126   template <class Ptr> struct Layout {
127     Ptr functionAddress;
128     uint32_t functionLength;
129     compact_unwind_encoding_t encoding;
130     Ptr personality;
131     Ptr lsda;
132   };
133 };
134 
135 // LLD's internal representation of a compact unwind entry.
136 struct CompactUnwindEntry {
137   uint64_t functionAddress;
138   uint32_t functionLength;
139   compact_unwind_encoding_t encoding;
140   Symbol *personality;
141   InputSection *lsda;
142 };
143 
144 using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
145 
146 struct SecondLevelPage {
147   uint32_t kind;
148   size_t entryIndex;
149   size_t entryCount;
150   size_t byteCount;
151   std::vector<compact_unwind_encoding_t> localEncodings;
152   EncodingMap localEncodingIndexes;
153 };
154 
155 // UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
156 // lengthy definition of UnwindInfoSection.
157 class UnwindInfoSectionImpl final : public UnwindInfoSection {
158 public:
159   UnwindInfoSectionImpl() : cuOffsets(target->wordSize) {}
160   uint64_t getSize() const override { return unwindInfoSize; }
161   void prepare() override;
162   void finalize() override;
163   void writeTo(uint8_t *buf) const override;
164 
165 private:
166   void prepareRelocations(ConcatInputSection *);
167   void relocateCompactUnwind(std::vector<CompactUnwindEntry> &);
168   void encodePersonalities();
169   Symbol *canonicalizePersonality(Symbol *);
170 
171   uint64_t unwindInfoSize = 0;
172   std::vector<decltype(symbols)::value_type> symbolsVec;
173   CompactUnwindOffsets cuOffsets;
174   std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
175   EncodingMap commonEncodingIndexes;
176   // The entries here will be in the same order as their originating symbols
177   // in symbolsVec.
178   std::vector<CompactUnwindEntry> cuEntries;
179   // Indices into the cuEntries vector.
180   std::vector<size_t> cuIndices;
181   std::vector<Symbol *> personalities;
182   SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
183       personalityTable;
184   // Indices into cuEntries for CUEs with a non-null LSDA.
185   std::vector<size_t> entriesWithLsda;
186   // Map of cuEntries index to an index within the LSDA array.
187   DenseMap<size_t, uint32_t> lsdaIndex;
188   std::vector<SecondLevelPage> secondLevelPages;
189   uint64_t level2PagesOffset = 0;
190 };
191 
192 UnwindInfoSection::UnwindInfoSection()
193     : SyntheticSection(segment_names::text, section_names::unwindInfo) {
194   align = 4;
195 }
196 
197 // Record function symbols that may need entries emitted in __unwind_info, which
198 // stores unwind data for address ranges.
199 //
200 // Note that if several adjacent functions have the same unwind encoding and
201 // personality function and no LSDA, they share one unwind entry. For this to
202 // work, functions without unwind info need explicit "no unwind info" unwind
203 // entries -- else the unwinder would think they have the unwind info of the
204 // closest function with unwind info right before in the image. Thus, we add
205 // function symbols for each unique address regardless of whether they have
206 // associated unwind info.
207 void UnwindInfoSection::addSymbol(const Defined *d) {
208   if (d->unwindEntry)
209     allEntriesAreOmitted = false;
210   // We don't yet know the final output address of this symbol, but we know that
211   // they are uniquely determined by a combination of the isec and value, so
212   // we use that as the key here.
213   auto p = symbols.insert({{d->isec, d->value}, d});
214   // If we have multiple symbols at the same address, only one of them can have
215   // an associated unwind entry.
216   if (!p.second && d->unwindEntry) {
217     assert(!p.first->second->unwindEntry);
218     p.first->second = d;
219   }
220 }
221 
222 void UnwindInfoSectionImpl::prepare() {
223   // This iteration needs to be deterministic, since prepareRelocations may add
224   // entries to the GOT. Hence the use of a MapVector for
225   // UnwindInfoSection::symbols.
226   for (const Defined *d : make_second_range(symbols))
227     if (d->unwindEntry) {
228       if (d->unwindEntry->getName() == section_names::compactUnwind) {
229         prepareRelocations(d->unwindEntry);
230       } else {
231         // We don't have to add entries to the GOT here because FDEs have
232         // explicit GOT relocations, so Writer::scanRelocations() will add those
233         // GOT entries. However, we still need to canonicalize the personality
234         // pointers (like prepareRelocations() does for CU entries) in order
235         // to avoid overflowing the 3-personality limit.
236         FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
237         fde.personality = canonicalizePersonality(fde.personality);
238       }
239     }
240 }
241 
242 // Compact unwind relocations have different semantics, so we handle them in a
243 // separate code path from regular relocations. First, we do not wish to add
244 // rebase opcodes for __LD,__compact_unwind, because that section doesn't
245 // actually end up in the final binary. Second, personality pointers always
246 // reside in the GOT and must be treated specially.
247 void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection *isec) {
248   assert(!isec->shouldOmitFromOutput() &&
249          "__compact_unwind section should not be omitted");
250 
251   // FIXME: Make this skip relocations for CompactUnwindEntries that
252   // point to dead-stripped functions. That might save some amount of
253   // work. But since there are usually just few personality functions
254   // that are referenced from many places, at least some of them likely
255   // live, it wouldn't reduce number of got entries.
256   for (size_t i = 0; i < isec->relocs.size(); ++i) {
257     Reloc &r = isec->relocs[i];
258     assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
259 
260     // Functions and LSDA entries always reside in the same object file as the
261     // compact unwind entries that references them, and thus appear as section
262     // relocs. There is no need to prepare them. We only prepare relocs for
263     // personality functions.
264     if (r.offset != cuOffsets.personality)
265       continue;
266 
267     if (auto *s = r.referent.dyn_cast<Symbol *>()) {
268       // Personality functions are nearly always system-defined (e.g.,
269       // ___gxx_personality_v0 for C++) and relocated as dylib symbols.  When an
270       // application provides its own personality function, it might be
271       // referenced by an extern Defined symbol reloc, or a local section reloc.
272       if (auto *defined = dyn_cast<Defined>(s)) {
273         // XXX(vyng) This is a a special case for handling duplicate personality
274         // symbols. Note that LD64's behavior is a bit different and it is
275         // inconsistent with how symbol resolution usually work
276         //
277         // So we've decided not to follow it. Instead, simply pick the symbol
278         // with the same name from the symbol table to replace the local one.
279         //
280         // (See discussions/alternatives already considered on D107533)
281         if (!defined->isExternal())
282           if (Symbol *sym = symtab->find(defined->getName()))
283             if (!sym->isLazy())
284               r.referent = s = sym;
285       }
286       if (auto *undefined = dyn_cast<Undefined>(s)) {
287         treatUndefinedSymbol(*undefined, isec, r.offset);
288         // treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
289         if (isa<Undefined>(s))
290           continue;
291       }
292 
293       // Similar to canonicalizePersonality(), but we also register a GOT entry.
294       if (auto *defined = dyn_cast<Defined>(s)) {
295         // Check if we have created a synthetic symbol at the same address.
296         Symbol *&personality =
297             personalityTable[{defined->isec, defined->value}];
298         if (personality == nullptr) {
299           personality = defined;
300           in.got->addEntry(defined);
301         } else if (personality != defined) {
302           r.referent = personality;
303         }
304         continue;
305       }
306 
307       assert(isa<DylibSymbol>(s));
308       in.got->addEntry(s);
309       continue;
310     }
311 
312     if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
313       assert(!isCoalescedWeak(referentIsec));
314       // Personality functions can be referenced via section relocations
315       // if they live in the same object file. Create placeholder synthetic
316       // symbols for them in the GOT.
317       Symbol *&s = personalityTable[{referentIsec, r.addend}];
318       if (s == nullptr) {
319         // This runs after dead stripping, so the noDeadStrip argument does not
320         // matter.
321         s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
322                           r.addend, /*size=*/0, /*isWeakDef=*/false,
323                           /*isExternal=*/false, /*isPrivateExtern=*/false,
324                           /*includeInSymtab=*/true,
325                           /*isThumb=*/false, /*isReferencedDynamically=*/false,
326                           /*noDeadStrip=*/false);
327         s->used = true;
328         in.got->addEntry(s);
329       }
330       r.referent = s;
331       r.addend = 0;
332     }
333   }
334 }
335 
336 Symbol *UnwindInfoSectionImpl::canonicalizePersonality(Symbol *personality) {
337   if (auto *defined = dyn_cast_or_null<Defined>(personality)) {
338     // Check if we have created a synthetic symbol at the same address.
339     Symbol *&synth = personalityTable[{defined->isec, defined->value}];
340     if (synth == nullptr)
341       synth = defined;
342     else if (synth != defined)
343       return synth;
344   }
345   return personality;
346 }
347 
348 // We need to apply the relocations to the pre-link compact unwind section
349 // before converting it to post-link form. There should only be absolute
350 // relocations here: since we are not emitting the pre-link CU section, there
351 // is no source address to make a relative location meaningful.
352 void UnwindInfoSectionImpl::relocateCompactUnwind(
353     std::vector<CompactUnwindEntry> &cuEntries) {
354   parallelFor(0, symbolsVec.size(), [&](size_t i) {
355     CompactUnwindEntry &cu = cuEntries[i];
356     const Defined *d = symbolsVec[i].second;
357     cu.functionAddress = d->getVA();
358     if (!d->unwindEntry)
359       return;
360 
361     // If we have DWARF unwind info, create a CU entry that points to it.
362     if (d->unwindEntry->getName() == section_names::ehFrame) {
363       cu.encoding = target->modeDwarfEncoding | d->unwindEntry->outSecOff;
364       const FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
365       cu.functionLength = fde.funcLength;
366       cu.personality = fde.personality;
367       cu.lsda = fde.lsda;
368       return;
369     }
370 
371     assert(d->unwindEntry->getName() == section_names::compactUnwind);
372 
373     auto buf = reinterpret_cast<const uint8_t *>(d->unwindEntry->data.data()) -
374                target->wordSize;
375     cu.functionLength =
376         support::endian::read32le(buf + cuOffsets.functionLength);
377     cu.encoding = support::endian::read32le(buf + cuOffsets.encoding);
378     for (const Reloc &r : d->unwindEntry->relocs) {
379       if (r.offset == cuOffsets.personality) {
380         cu.personality = r.referent.get<Symbol *>();
381       } else if (r.offset == cuOffsets.lsda) {
382         if (auto *referentSym = r.referent.dyn_cast<Symbol *>())
383           cu.lsda = cast<Defined>(referentSym)->isec;
384         else
385           cu.lsda = r.referent.get<InputSection *>();
386       }
387     }
388   });
389 }
390 
391 // There should only be a handful of unique personality pointers, so we can
392 // encode them as 2-bit indices into a small array.
393 void UnwindInfoSectionImpl::encodePersonalities() {
394   for (size_t idx : cuIndices) {
395     CompactUnwindEntry &cu = cuEntries[idx];
396     if (cu.personality == nullptr)
397       continue;
398     // Linear search is fast enough for a small array.
399     auto it = find(personalities, cu.personality);
400     uint32_t personalityIndex; // 1-based index
401     if (it != personalities.end()) {
402       personalityIndex = std::distance(personalities.begin(), it) + 1;
403     } else {
404       personalities.push_back(cu.personality);
405       personalityIndex = personalities.size();
406     }
407     cu.encoding |=
408         personalityIndex << countTrailingZeros(
409             static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
410   }
411   if (personalities.size() > 3)
412     error("too many personalities (" + Twine(personalities.size()) +
413           ") for compact unwind to encode");
414 }
415 
416 static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
417   // From compact_unwind_encoding.h:
418   //  UNWIND_X86_64_MODE_STACK_IND:
419   //  A "frameless" (RBP not used as frame pointer) function large constant
420   //  stack size.  This case is like the previous, except the stack size is too
421   //  large to encode in the compact unwind encoding.  Instead it requires that
422   //  the function contains "subq $nnnnnnnn,RSP" in its prolog.  The compact
423   //  encoding contains the offset to the nnnnnnnn value in the function in
424   //  UNWIND_X86_64_FRAMELESS_STACK_SIZE.
425   // Since this means the unwinder has to look at the `subq` in the function
426   // of the unwind info's unwind address, two functions that have identical
427   // unwind info can't be folded if it's using this encoding since both
428   // entries need unique addresses.
429   static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_MASK) ==
430                     static_cast<uint32_t>(UNWIND_X86_MODE_MASK),
431                 "");
432   static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND) ==
433                     static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND),
434                 "");
435   if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
436       (encoding & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
437     // FIXME: Consider passing in the two function addresses and getting
438     // their two stack sizes off the `subq` and only returning false if they're
439     // actually different.
440     return false;
441   }
442   return true;
443 }
444 
445 // Scan the __LD,__compact_unwind entries and compute the space needs of
446 // __TEXT,__unwind_info and __TEXT,__eh_frame.
447 void UnwindInfoSectionImpl::finalize() {
448   if (symbols.empty())
449     return;
450 
451   // At this point, the address space for __TEXT,__text has been
452   // assigned, so we can relocate the __LD,__compact_unwind entries
453   // into a temporary buffer. Relocation is necessary in order to sort
454   // the CU entries by function address. Sorting is necessary so that
455   // we can fold adjacent CU entries with identical encoding+personality
456   // and without any LSDA. Folding is necessary because it reduces the
457   // number of CU entries by as much as 3 orders of magnitude!
458   cuEntries.resize(symbols.size());
459   // The "map" part of the symbols MapVector was only needed for deduplication
460   // in addSymbol(). Now that we are done adding, move the contents to a plain
461   // std::vector for indexed access.
462   symbolsVec = symbols.takeVector();
463   relocateCompactUnwind(cuEntries);
464 
465   // Rather than sort & fold the 32-byte entries directly, we create a
466   // vector of indices to entries and sort & fold that instead.
467   cuIndices.resize(cuEntries.size());
468   std::iota(cuIndices.begin(), cuIndices.end(), 0);
469   llvm::sort(cuIndices, [&](size_t a, size_t b) {
470     return cuEntries[a].functionAddress < cuEntries[b].functionAddress;
471   });
472 
473   // Fold adjacent entries with matching encoding+personality and without LSDA
474   // We use three iterators on the same cuIndices to fold in-situ:
475   // (1) `foldBegin` is the first of a potential sequence of matching entries
476   // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
477   // The semi-open interval [ foldBegin .. foldEnd ) contains a range
478   // entries that can be folded into a single entry and written to ...
479   // (3) `foldWrite`
480   auto foldWrite = cuIndices.begin();
481   for (auto foldBegin = cuIndices.begin(); foldBegin < cuIndices.end();) {
482     auto foldEnd = foldBegin;
483     // Common LSDA encodings (e.g. for C++ and Objective-C) contain offsets from
484     // a base address. The base address is normally not contained directly in
485     // the LSDA, and in that case, the personality function treats the starting
486     // address of the function (which is computed by the unwinder) as the base
487     // address and interprets the LSDA accordingly. The unwinder computes the
488     // starting address of a function as the address associated with its CU
489     // entry. For this reason, we cannot fold adjacent entries if they have an
490     // LSDA, because folding would make the unwinder compute the wrong starting
491     // address for the functions with the folded entries, which in turn would
492     // cause the personality function to misinterpret the LSDA for those
493     // functions. In the very rare case where the base address is encoded
494     // directly in the LSDA, two functions at different addresses would
495     // necessarily have different LSDAs, so their CU entries would not have been
496     // folded anyway.
497     while (++foldEnd < cuIndices.end() &&
498            cuEntries[*foldBegin].encoding == cuEntries[*foldEnd].encoding &&
499            !cuEntries[*foldBegin].lsda && !cuEntries[*foldEnd].lsda &&
500            // If we've gotten to this point, we don't have an LSDA, which should
501            // also imply that we don't have a personality function, since in all
502            // likelihood a personality function needs the LSDA to do anything
503            // useful. It can be technically valid to have a personality function
504            // and no LSDA though (e.g. the C++ personality __gxx_personality_v0
505            // is just a no-op without LSDA), so we still check for personality
506            // function equivalence to handle that case.
507            cuEntries[*foldBegin].personality ==
508                cuEntries[*foldEnd].personality &&
509            canFoldEncoding(cuEntries[*foldEnd].encoding))
510       ;
511     *foldWrite++ = *foldBegin;
512     foldBegin = foldEnd;
513   }
514   cuIndices.erase(foldWrite, cuIndices.end());
515 
516   encodePersonalities();
517 
518   // Count frequencies of the folded encodings
519   EncodingMap encodingFrequencies;
520   for (size_t idx : cuIndices)
521     encodingFrequencies[cuEntries[idx].encoding]++;
522 
523   // Make a vector of encodings, sorted by descending frequency
524   for (const auto &frequency : encodingFrequencies)
525     commonEncodings.emplace_back(frequency);
526   llvm::sort(commonEncodings,
527              [](const std::pair<compact_unwind_encoding_t, size_t> &a,
528                 const std::pair<compact_unwind_encoding_t, size_t> &b) {
529                if (a.second == b.second)
530                  // When frequencies match, secondarily sort on encoding
531                  // to maintain parity with validate-unwind-info.py
532                  return a.first > b.first;
533                return a.second > b.second;
534              });
535 
536   // Truncate the vector to 127 elements.
537   // Common encoding indexes are limited to 0..126, while encoding
538   // indexes 127..255 are local to each second-level page
539   if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
540     commonEncodings.resize(COMMON_ENCODINGS_MAX);
541 
542   // Create a map from encoding to common-encoding-table index
543   for (size_t i = 0; i < commonEncodings.size(); i++)
544     commonEncodingIndexes[commonEncodings[i].first] = i;
545 
546   // Split folded encodings into pages, where each page is limited by ...
547   // (a) 4 KiB capacity
548   // (b) 24-bit difference between first & final function address
549   // (c) 8-bit compact-encoding-table index,
550   //     for which 0..126 references the global common-encodings table,
551   //     and 127..255 references a local per-second-level-page table.
552   // First we try the compact format and determine how many entries fit.
553   // If more entries fit in the regular format, we use that.
554   for (size_t i = 0; i < cuIndices.size();) {
555     size_t idx = cuIndices[i];
556     secondLevelPages.emplace_back();
557     SecondLevelPage &page = secondLevelPages.back();
558     page.entryIndex = i;
559     uint64_t functionAddressMax =
560         cuEntries[idx].functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
561     size_t n = commonEncodings.size();
562     size_t wordsRemaining =
563         SECOND_LEVEL_PAGE_WORDS -
564         sizeof(unwind_info_compressed_second_level_page_header) /
565             sizeof(uint32_t);
566     while (wordsRemaining >= 1 && i < cuIndices.size()) {
567       idx = cuIndices[i];
568       const CompactUnwindEntry *cuPtr = &cuEntries[idx];
569       if (cuPtr->functionAddress >= functionAddressMax) {
570         break;
571       } else if (commonEncodingIndexes.count(cuPtr->encoding) ||
572                  page.localEncodingIndexes.count(cuPtr->encoding)) {
573         i++;
574         wordsRemaining--;
575       } else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
576         page.localEncodings.emplace_back(cuPtr->encoding);
577         page.localEncodingIndexes[cuPtr->encoding] = n++;
578         i++;
579         wordsRemaining -= 2;
580       } else {
581         break;
582       }
583     }
584     page.entryCount = i - page.entryIndex;
585 
586     // If this is not the final page, see if it's possible to fit more
587     // entries by using the regular format. This can happen when there
588     // are many unique encodings, and we we saturated the local
589     // encoding table early.
590     if (i < cuIndices.size() &&
591         page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
592       page.kind = UNWIND_SECOND_LEVEL_REGULAR;
593       page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
594                                  cuIndices.size() - page.entryIndex);
595       i = page.entryIndex + page.entryCount;
596     } else {
597       page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
598     }
599   }
600 
601   for (size_t idx : cuIndices) {
602     lsdaIndex[idx] = entriesWithLsda.size();
603     if (cuEntries[idx].lsda)
604       entriesWithLsda.push_back(idx);
605   }
606 
607   // compute size of __TEXT,__unwind_info section
608   level2PagesOffset = sizeof(unwind_info_section_header) +
609                       commonEncodings.size() * sizeof(uint32_t) +
610                       personalities.size() * sizeof(uint32_t) +
611                       // The extra second-level-page entry is for the sentinel
612                       (secondLevelPages.size() + 1) *
613                           sizeof(unwind_info_section_header_index_entry) +
614                       entriesWithLsda.size() *
615                           sizeof(unwind_info_section_header_lsda_index_entry);
616   unwindInfoSize =
617       level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
618 }
619 
620 // All inputs are relocated and output addresses are known, so write!
621 
622 void UnwindInfoSectionImpl::writeTo(uint8_t *buf) const {
623   assert(!cuIndices.empty() && "call only if there is unwind info");
624 
625   // section header
626   auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
627   uip->version = 1;
628   uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
629   uip->commonEncodingsArrayCount = commonEncodings.size();
630   uip->personalityArraySectionOffset =
631       uip->commonEncodingsArraySectionOffset +
632       (uip->commonEncodingsArrayCount * sizeof(uint32_t));
633   uip->personalityArrayCount = personalities.size();
634   uip->indexSectionOffset = uip->personalityArraySectionOffset +
635                             (uip->personalityArrayCount * sizeof(uint32_t));
636   uip->indexCount = secondLevelPages.size() + 1;
637 
638   // Common encodings
639   auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
640   for (const auto &encoding : commonEncodings)
641     *i32p++ = encoding.first;
642 
643   // Personalities
644   for (const Symbol *personality : personalities)
645     *i32p++ = personality->getGotVA() - in.header->addr;
646 
647   // Level-1 index
648   uint32_t lsdaOffset =
649       uip->indexSectionOffset +
650       uip->indexCount * sizeof(unwind_info_section_header_index_entry);
651   uint64_t l2PagesOffset = level2PagesOffset;
652   auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
653   for (const SecondLevelPage &page : secondLevelPages) {
654     size_t idx = cuIndices[page.entryIndex];
655     iep->functionOffset = cuEntries[idx].functionAddress - in.header->addr;
656     iep->secondLevelPagesSectionOffset = l2PagesOffset;
657     iep->lsdaIndexArraySectionOffset =
658         lsdaOffset + lsdaIndex.lookup(idx) *
659                          sizeof(unwind_info_section_header_lsda_index_entry);
660     iep++;
661     l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
662   }
663   // Level-1 sentinel
664   const CompactUnwindEntry &cuEnd = cuEntries[cuIndices.back()];
665   iep->functionOffset =
666       cuEnd.functionAddress - in.header->addr + cuEnd.functionLength;
667   iep->secondLevelPagesSectionOffset = 0;
668   iep->lsdaIndexArraySectionOffset =
669       lsdaOffset + entriesWithLsda.size() *
670                        sizeof(unwind_info_section_header_lsda_index_entry);
671   iep++;
672 
673   // LSDAs
674   auto *lep =
675       reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
676   for (size_t idx : entriesWithLsda) {
677     const CompactUnwindEntry &cu = cuEntries[idx];
678     lep->lsdaOffset = cu.lsda->getVA(/*off=*/0) - in.header->addr;
679     lep->functionOffset = cu.functionAddress - in.header->addr;
680     lep++;
681   }
682 
683   // Level-2 pages
684   auto *pp = reinterpret_cast<uint32_t *>(lep);
685   for (const SecondLevelPage &page : secondLevelPages) {
686     if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
687       uintptr_t functionAddressBase =
688           cuEntries[cuIndices[page.entryIndex]].functionAddress;
689       auto *p2p =
690           reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
691               pp);
692       p2p->kind = page.kind;
693       p2p->entryPageOffset =
694           sizeof(unwind_info_compressed_second_level_page_header);
695       p2p->entryCount = page.entryCount;
696       p2p->encodingsPageOffset =
697           p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
698       p2p->encodingsCount = page.localEncodings.size();
699       auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
700       for (size_t i = 0; i < page.entryCount; i++) {
701         const CompactUnwindEntry &cue =
702             cuEntries[cuIndices[page.entryIndex + i]];
703         auto it = commonEncodingIndexes.find(cue.encoding);
704         if (it == commonEncodingIndexes.end())
705           it = page.localEncodingIndexes.find(cue.encoding);
706         *ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
707                 (cue.functionAddress - functionAddressBase);
708       }
709       if (!page.localEncodings.empty())
710         memcpy(ep, page.localEncodings.data(),
711                page.localEncodings.size() * sizeof(uint32_t));
712     } else {
713       auto *p2p =
714           reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
715       p2p->kind = page.kind;
716       p2p->entryPageOffset =
717           sizeof(unwind_info_regular_second_level_page_header);
718       p2p->entryCount = page.entryCount;
719       auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
720       for (size_t i = 0; i < page.entryCount; i++) {
721         const CompactUnwindEntry &cue =
722             cuEntries[cuIndices[page.entryIndex + i]];
723         *ep++ = cue.functionAddress;
724         *ep++ = cue.encoding;
725       }
726     }
727     pp += SECOND_LEVEL_PAGE_WORDS;
728   }
729 }
730 
731 UnwindInfoSection *macho::makeUnwindInfoSection() {
732   return make<UnwindInfoSectionImpl>();
733 }
734