1 //===- SyntheticSections.h -------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H 10 #define LLD_MACHO_SYNTHETIC_SECTIONS_H 11 12 #include "Config.h" 13 #include "ExportTrie.h" 14 #include "InputSection.h" 15 #include "OutputSection.h" 16 #include "OutputSegment.h" 17 #include "Target.h" 18 #include "Writer.h" 19 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/Hashing.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/BinaryFormat/MachO.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #include <unordered_map> 28 29 namespace llvm { 30 class DWARFUnit; 31 } // namespace llvm 32 33 namespace lld::macho { 34 35 class Defined; 36 class DylibSymbol; 37 class LoadCommand; 38 class ObjFile; 39 class UnwindInfoSection; 40 41 class SyntheticSection : public OutputSection { 42 public: 43 SyntheticSection(const char *segname, const char *name); 44 virtual ~SyntheticSection() = default; 45 46 static bool classof(const OutputSection *sec) { 47 return sec->kind() == SyntheticKind; 48 } 49 50 StringRef segname; 51 // This fake InputSection makes it easier for us to write code that applies 52 // generically to both user inputs and synthetics. 53 InputSection *isec; 54 }; 55 56 // All sections in __LINKEDIT should inherit from this. 57 class LinkEditSection : public SyntheticSection { 58 public: 59 LinkEditSection(const char *segname, const char *name) 60 : SyntheticSection(segname, name) { 61 align = target->wordSize; 62 } 63 64 // Implementations of this method can assume that the regular (non-__LINKEDIT) 65 // sections already have their addresses assigned. 66 virtual void finalizeContents() {} 67 68 // Sections in __LINKEDIT are special: their offsets are recorded in the 69 // load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section 70 // headers. 71 bool isHidden() const final { return true; } 72 73 virtual uint64_t getRawSize() const = 0; 74 75 // codesign (or more specifically libstuff) checks that each section in 76 // __LINKEDIT ends where the next one starts -- no gaps are permitted. We 77 // therefore align every section's start and end points to WordSize. 78 // 79 // NOTE: This assumes that the extra bytes required for alignment can be 80 // zero-valued bytes. 81 uint64_t getSize() const final { return llvm::alignTo(getRawSize(), align); } 82 }; 83 84 // The header of the Mach-O file, which must have a file offset of zero. 85 class MachHeaderSection final : public SyntheticSection { 86 public: 87 MachHeaderSection(); 88 bool isHidden() const override { return true; } 89 uint64_t getSize() const override; 90 void writeTo(uint8_t *buf) const override; 91 92 void addLoadCommand(LoadCommand *); 93 94 protected: 95 std::vector<LoadCommand *> loadCommands; 96 uint32_t sizeOfCmds = 0; 97 }; 98 99 // A hidden section that exists solely for the purpose of creating the 100 // __PAGEZERO segment, which is used to catch null pointer dereferences. 101 class PageZeroSection final : public SyntheticSection { 102 public: 103 PageZeroSection(); 104 bool isHidden() const override { return true; } 105 bool isNeeded() const override { return target->pageZeroSize != 0; } 106 uint64_t getSize() const override { return target->pageZeroSize; } 107 uint64_t getFileSize() const override { return 0; } 108 void writeTo(uint8_t *buf) const override {} 109 }; 110 111 // This is the base class for the GOT and TLVPointer sections, which are nearly 112 // functionally identical -- they will both be populated by dyld with addresses 113 // to non-lazily-loaded dylib symbols. The main difference is that the 114 // TLVPointerSection stores references to thread-local variables. 115 class NonLazyPointerSectionBase : public SyntheticSection { 116 public: 117 NonLazyPointerSectionBase(const char *segname, const char *name); 118 const llvm::SetVector<const Symbol *> &getEntries() const { return entries; } 119 bool isNeeded() const override { return !entries.empty(); } 120 uint64_t getSize() const override { 121 return entries.size() * target->wordSize; 122 } 123 void writeTo(uint8_t *buf) const override; 124 void addEntry(Symbol *sym); 125 uint64_t getVA(uint32_t gotIndex) const { 126 return addr + gotIndex * target->wordSize; 127 } 128 129 private: 130 llvm::SetVector<const Symbol *> entries; 131 }; 132 133 class GotSection final : public NonLazyPointerSectionBase { 134 public: 135 GotSection(); 136 }; 137 138 class TlvPointerSection final : public NonLazyPointerSectionBase { 139 public: 140 TlvPointerSection(); 141 }; 142 143 struct Location { 144 const InputSection *isec; 145 uint64_t offset; 146 147 Location(const InputSection *isec, uint64_t offset) 148 : isec(isec), offset(offset) {} 149 uint64_t getVA() const { return isec->getVA(offset); } 150 }; 151 152 // Stores rebase opcodes, which tell dyld where absolute addresses have been 153 // encoded in the binary. If the binary is not loaded at its preferred address, 154 // dyld has to rebase these addresses by adding an offset to them. 155 class RebaseSection final : public LinkEditSection { 156 public: 157 RebaseSection(); 158 void finalizeContents() override; 159 uint64_t getRawSize() const override { return contents.size(); } 160 bool isNeeded() const override { return !locations.empty(); } 161 void writeTo(uint8_t *buf) const override; 162 163 void addEntry(const InputSection *isec, uint64_t offset) { 164 if (config->isPic) 165 locations.push_back({isec, offset}); 166 } 167 168 private: 169 std::vector<Location> locations; 170 SmallVector<char, 128> contents; 171 }; 172 173 struct BindingEntry { 174 int64_t addend; 175 Location target; 176 BindingEntry(int64_t addend, Location target) 177 : addend(addend), target(std::move(target)) {} 178 }; 179 180 template <class Sym> 181 using BindingsMap = llvm::DenseMap<Sym, std::vector<BindingEntry>>; 182 183 // Stores bind opcodes for telling dyld which symbols to load non-lazily. 184 class BindingSection final : public LinkEditSection { 185 public: 186 BindingSection(); 187 void finalizeContents() override; 188 uint64_t getRawSize() const override { return contents.size(); } 189 bool isNeeded() const override { return !bindingsMap.empty(); } 190 void writeTo(uint8_t *buf) const override; 191 192 void addEntry(const Symbol *dysym, const InputSection *isec, uint64_t offset, 193 int64_t addend = 0) { 194 bindingsMap[dysym].emplace_back(addend, Location(isec, offset)); 195 } 196 197 private: 198 BindingsMap<const Symbol *> bindingsMap; 199 SmallVector<char, 128> contents; 200 }; 201 202 // Stores bind opcodes for telling dyld which weak symbols need coalescing. 203 // There are two types of entries in this section: 204 // 205 // 1) Non-weak definitions: This is a symbol definition that weak symbols in 206 // other dylibs should coalesce to. 207 // 208 // 2) Weak bindings: These tell dyld that a given symbol reference should 209 // coalesce to a non-weak definition if one is found. Note that unlike the 210 // entries in the BindingSection, the bindings here only refer to these 211 // symbols by name, but do not specify which dylib to load them from. 212 class WeakBindingSection final : public LinkEditSection { 213 public: 214 WeakBindingSection(); 215 void finalizeContents() override; 216 uint64_t getRawSize() const override { return contents.size(); } 217 bool isNeeded() const override { 218 return !bindingsMap.empty() || !definitions.empty(); 219 } 220 221 void writeTo(uint8_t *buf) const override; 222 223 void addEntry(const Symbol *symbol, const InputSection *isec, uint64_t offset, 224 int64_t addend = 0) { 225 bindingsMap[symbol].emplace_back(addend, Location(isec, offset)); 226 } 227 228 bool hasEntry() const { return !bindingsMap.empty(); } 229 230 void addNonWeakDefinition(const Defined *defined) { 231 definitions.emplace_back(defined); 232 } 233 234 bool hasNonWeakDefinition() const { return !definitions.empty(); } 235 236 private: 237 BindingsMap<const Symbol *> bindingsMap; 238 std::vector<const Defined *> definitions; 239 SmallVector<char, 128> contents; 240 }; 241 242 // The following sections implement lazy symbol binding -- very similar to the 243 // PLT mechanism in ELF. 244 // 245 // ELF's .plt section is broken up into two sections in Mach-O: StubsSection 246 // and StubHelperSection. Calls to functions in dylibs will end up calling into 247 // StubsSection, which contains indirect jumps to addresses stored in the 248 // LazyPointerSection (the counterpart to ELF's .plt.got). 249 // 250 // We will first describe how non-weak symbols are handled. 251 // 252 // At program start, the LazyPointerSection contains addresses that point into 253 // one of the entry points in the middle of the StubHelperSection. The code in 254 // StubHelperSection will push on the stack an offset into the 255 // LazyBindingSection. The push is followed by a jump to the beginning of the 256 // StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder. 257 // dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in 258 // the GOT. 259 // 260 // The stub binder will look up the bind opcodes in the LazyBindingSection at 261 // the given offset. The bind opcodes will tell the binder to update the 262 // address in the LazyPointerSection to point to the symbol, so that subsequent 263 // calls don't have to redo the symbol resolution. The binder will then jump to 264 // the resolved symbol. 265 // 266 // With weak symbols, the situation is slightly different. Since there is no 267 // "weak lazy" lookup, function calls to weak symbols are always non-lazily 268 // bound. We emit both regular non-lazy bindings as well as weak bindings, in 269 // order that the weak bindings may overwrite the non-lazy bindings if an 270 // appropriate symbol is found at runtime. However, the bound addresses will 271 // still be written (non-lazily) into the LazyPointerSection. 272 // 273 // Symbols are always bound eagerly when chained fixups are used. In that case, 274 // StubsSection contains indirect jumps to addresses stored in the GotSection. 275 // The GOT directly contains the fixup entries, which will be replaced by the 276 // address of the target symbols on load. LazyPointerSection and 277 // StubHelperSection are not used. 278 279 class StubsSection final : public SyntheticSection { 280 public: 281 StubsSection(); 282 uint64_t getSize() const override; 283 bool isNeeded() const override { return !entries.empty(); } 284 void finalize() override; 285 void writeTo(uint8_t *buf) const override; 286 const llvm::SetVector<Symbol *> &getEntries() const { return entries; } 287 // Creates a stub for the symbol and the corresponding entry in the 288 // LazyPointerSection. 289 void addEntry(Symbol *); 290 uint64_t getVA(uint32_t stubsIndex) const { 291 assert(isFinal || target->usesThunks()); 292 // ConcatOutputSection::finalize() can seek the address of a 293 // stub before its address is assigned. Before __stubs is 294 // finalized, return a contrived out-of-range address. 295 return isFinal ? addr + stubsIndex * target->stubSize 296 : TargetInfo::outOfRangeVA; 297 } 298 299 bool isFinal = false; // is address assigned? 300 301 private: 302 llvm::SetVector<Symbol *> entries; 303 }; 304 305 class StubHelperSection final : public SyntheticSection { 306 public: 307 StubHelperSection(); 308 uint64_t getSize() const override; 309 bool isNeeded() const override; 310 void writeTo(uint8_t *buf) const override; 311 312 void setUp(); 313 314 DylibSymbol *stubBinder = nullptr; 315 Defined *dyldPrivate = nullptr; 316 }; 317 318 // Objective-C stubs are hoisted objc_msgSend calls per selector called in the 319 // program. Apple Clang produces undefined symbols to each stub, such as 320 // '_objc_msgSend$foo', which are then synthesized by the linker. The stubs 321 // load the particular selector 'foo' from __objc_selrefs, setting it to the 322 // first argument of the objc_msgSend call, and then jumps to objc_msgSend. The 323 // actual stub contents are mirrored from ld64. 324 class ObjCStubsSection final : public SyntheticSection { 325 public: 326 ObjCStubsSection(); 327 void addEntry(Symbol *sym); 328 uint64_t getSize() const override; 329 bool isNeeded() const override { return !symbols.empty(); } 330 void finalize() override { isec->isFinal = true; } 331 void writeTo(uint8_t *buf) const override; 332 void setUp(); 333 334 static constexpr llvm::StringLiteral symbolPrefix = "_objc_msgSend$"; 335 336 private: 337 std::vector<Defined *> symbols; 338 std::vector<uint32_t> offsets; 339 int objcMsgSendGotIndex = 0; 340 }; 341 342 // Note that this section may also be targeted by non-lazy bindings. In 343 // particular, this happens when branch relocations target weak symbols. 344 class LazyPointerSection final : public SyntheticSection { 345 public: 346 LazyPointerSection(); 347 uint64_t getSize() const override; 348 bool isNeeded() const override; 349 void writeTo(uint8_t *buf) const override; 350 uint64_t getVA(uint32_t index) const { 351 return addr + (index << target->p2WordSize); 352 } 353 }; 354 355 class LazyBindingSection final : public LinkEditSection { 356 public: 357 LazyBindingSection(); 358 void finalizeContents() override; 359 uint64_t getRawSize() const override { return contents.size(); } 360 bool isNeeded() const override { return !entries.empty(); } 361 void writeTo(uint8_t *buf) const override; 362 // Note that every entry here will by referenced by a corresponding entry in 363 // the StubHelperSection. 364 void addEntry(Symbol *dysym); 365 const llvm::SetVector<Symbol *> &getEntries() const { return entries; } 366 367 private: 368 uint32_t encode(const Symbol &); 369 370 llvm::SetVector<Symbol *> entries; 371 SmallVector<char, 128> contents; 372 llvm::raw_svector_ostream os{contents}; 373 }; 374 375 // Stores a trie that describes the set of exported symbols. 376 class ExportSection final : public LinkEditSection { 377 public: 378 ExportSection(); 379 void finalizeContents() override; 380 uint64_t getRawSize() const override { return size; } 381 bool isNeeded() const override { return size; } 382 void writeTo(uint8_t *buf) const override; 383 384 bool hasWeakSymbol = false; 385 386 private: 387 TrieBuilder trieBuilder; 388 size_t size = 0; 389 }; 390 391 // Stores 'data in code' entries that describe the locations of data regions 392 // inside code sections. This is used by llvm-objdump to distinguish jump tables 393 // and stop them from being disassembled as instructions. 394 class DataInCodeSection final : public LinkEditSection { 395 public: 396 DataInCodeSection(); 397 void finalizeContents() override; 398 uint64_t getRawSize() const override { 399 return sizeof(llvm::MachO::data_in_code_entry) * entries.size(); 400 } 401 void writeTo(uint8_t *buf) const override; 402 403 private: 404 std::vector<llvm::MachO::data_in_code_entry> entries; 405 }; 406 407 // Stores ULEB128 delta encoded addresses of functions. 408 class FunctionStartsSection final : public LinkEditSection { 409 public: 410 FunctionStartsSection(); 411 void finalizeContents() override; 412 uint64_t getRawSize() const override { return contents.size(); } 413 void writeTo(uint8_t *buf) const override; 414 415 private: 416 SmallVector<char, 128> contents; 417 }; 418 419 // Stores the strings referenced by the symbol table. 420 class StringTableSection final : public LinkEditSection { 421 public: 422 StringTableSection(); 423 // Returns the start offset of the added string. 424 uint32_t addString(StringRef); 425 uint64_t getRawSize() const override { return size; } 426 void writeTo(uint8_t *buf) const override; 427 428 static constexpr size_t emptyStringIndex = 1; 429 430 private: 431 // ld64 emits string tables which start with a space and a zero byte. We 432 // match its behavior here since some tools depend on it. 433 // Consequently, the empty string will be at index 1, not zero. 434 std::vector<StringRef> strings{" "}; 435 size_t size = 2; 436 }; 437 438 struct SymtabEntry { 439 Symbol *sym; 440 size_t strx; 441 }; 442 443 struct StabsEntry { 444 uint8_t type = 0; 445 uint32_t strx = StringTableSection::emptyStringIndex; 446 uint8_t sect = 0; 447 uint16_t desc = 0; 448 uint64_t value = 0; 449 450 StabsEntry() = default; 451 explicit StabsEntry(uint8_t type) : type(type) {} 452 }; 453 454 // Symbols of the same type must be laid out contiguously: we choose to emit 455 // all local symbols first, then external symbols, and finally undefined 456 // symbols. For each symbol type, the LC_DYSYMTAB load command will record the 457 // range (start index and total number) of those symbols in the symbol table. 458 class SymtabSection : public LinkEditSection { 459 public: 460 void finalizeContents() override; 461 uint32_t getNumSymbols() const; 462 uint32_t getNumLocalSymbols() const { 463 return stabs.size() + localSymbols.size(); 464 } 465 uint32_t getNumExternalSymbols() const { return externalSymbols.size(); } 466 uint32_t getNumUndefinedSymbols() const { return undefinedSymbols.size(); } 467 468 private: 469 void emitBeginSourceStab(StringRef); 470 void emitEndSourceStab(); 471 void emitObjectFileStab(ObjFile *); 472 void emitEndFunStab(Defined *); 473 void emitStabs(); 474 475 protected: 476 SymtabSection(StringTableSection &); 477 478 StringTableSection &stringTableSection; 479 // STABS symbols are always local symbols, but we represent them with special 480 // entries because they may use fields like n_sect and n_desc differently. 481 std::vector<StabsEntry> stabs; 482 std::vector<SymtabEntry> localSymbols; 483 std::vector<SymtabEntry> externalSymbols; 484 std::vector<SymtabEntry> undefinedSymbols; 485 }; 486 487 template <class LP> SymtabSection *makeSymtabSection(StringTableSection &); 488 489 // The indirect symbol table is a list of 32-bit integers that serve as indices 490 // into the (actual) symbol table. The indirect symbol table is a 491 // concatenation of several sub-arrays of indices, each sub-array belonging to 492 // a separate section. The starting offset of each sub-array is stored in the 493 // reserved1 header field of the respective section. 494 // 495 // These sub-arrays provide symbol information for sections that store 496 // contiguous sequences of symbol references. These references can be pointers 497 // (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g. 498 // function stubs). 499 class IndirectSymtabSection final : public LinkEditSection { 500 public: 501 IndirectSymtabSection(); 502 void finalizeContents() override; 503 uint32_t getNumSymbols() const; 504 uint64_t getRawSize() const override { 505 return getNumSymbols() * sizeof(uint32_t); 506 } 507 bool isNeeded() const override; 508 void writeTo(uint8_t *buf) const override; 509 }; 510 511 // The code signature comes at the very end of the linked output file. 512 class CodeSignatureSection final : public LinkEditSection { 513 public: 514 // NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file 515 // and any changes here, should be repeated there. 516 static constexpr uint8_t blockSizeShift = 12; 517 static constexpr size_t blockSize = (1 << blockSizeShift); // 4 KiB 518 static constexpr size_t hashSize = 256 / 8; 519 static constexpr size_t blobHeadersSize = llvm::alignTo<8>( 520 sizeof(llvm::MachO::CS_SuperBlob) + sizeof(llvm::MachO::CS_BlobIndex)); 521 static constexpr uint32_t fixedHeadersSize = 522 blobHeadersSize + sizeof(llvm::MachO::CS_CodeDirectory); 523 524 uint32_t fileNamePad = 0; 525 uint32_t allHeadersSize = 0; 526 StringRef fileName; 527 528 CodeSignatureSection(); 529 uint64_t getRawSize() const override; 530 bool isNeeded() const override { return true; } 531 void writeTo(uint8_t *buf) const override; 532 uint32_t getBlockCount() const; 533 void writeHashes(uint8_t *buf) const; 534 }; 535 536 class BitcodeBundleSection final : public SyntheticSection { 537 public: 538 BitcodeBundleSection(); 539 uint64_t getSize() const override { return xarSize; } 540 void finalize() override; 541 void writeTo(uint8_t *buf) const override; 542 543 private: 544 llvm::SmallString<261> xarPath; 545 uint64_t xarSize; 546 }; 547 548 class CStringSection : public SyntheticSection { 549 public: 550 CStringSection(const char *name); 551 void addInput(CStringInputSection *); 552 uint64_t getSize() const override { return size; } 553 virtual void finalizeContents(); 554 bool isNeeded() const override { return !inputs.empty(); } 555 void writeTo(uint8_t *buf) const override; 556 557 std::vector<CStringInputSection *> inputs; 558 559 private: 560 uint64_t size; 561 }; 562 563 class DeduplicatedCStringSection final : public CStringSection { 564 public: 565 DeduplicatedCStringSection(const char *name) : CStringSection(name){}; 566 uint64_t getSize() const override { return size; } 567 void finalizeContents() override; 568 void writeTo(uint8_t *buf) const override; 569 570 struct StringOffset { 571 uint8_t trailingZeros; 572 uint64_t outSecOff = UINT64_MAX; 573 574 explicit StringOffset(uint8_t zeros) : trailingZeros(zeros) {} 575 }; 576 577 StringOffset getStringOffset(StringRef str) const; 578 579 private: 580 llvm::DenseMap<llvm::CachedHashStringRef, StringOffset> stringOffsetMap; 581 size_t size = 0; 582 }; 583 584 /* 585 * This section contains deduplicated literal values. The 16-byte values are 586 * laid out first, followed by the 8- and then the 4-byte ones. 587 */ 588 class WordLiteralSection final : public SyntheticSection { 589 public: 590 using UInt128 = std::pair<uint64_t, uint64_t>; 591 // I don't think the standard guarantees the size of a pair, so let's make 592 // sure it's exact -- that way we can construct it via `mmap`. 593 static_assert(sizeof(UInt128) == 16); 594 595 WordLiteralSection(); 596 void addInput(WordLiteralInputSection *); 597 void finalizeContents(); 598 void writeTo(uint8_t *buf) const override; 599 600 uint64_t getSize() const override { 601 return literal16Map.size() * 16 + literal8Map.size() * 8 + 602 literal4Map.size() * 4; 603 } 604 605 bool isNeeded() const override { 606 return !literal16Map.empty() || !literal4Map.empty() || 607 !literal8Map.empty(); 608 } 609 610 uint64_t getLiteral16Offset(uintptr_t buf) const { 611 return literal16Map.at(*reinterpret_cast<const UInt128 *>(buf)) * 16; 612 } 613 614 uint64_t getLiteral8Offset(uintptr_t buf) const { 615 return literal16Map.size() * 16 + 616 literal8Map.at(*reinterpret_cast<const uint64_t *>(buf)) * 8; 617 } 618 619 uint64_t getLiteral4Offset(uintptr_t buf) const { 620 return literal16Map.size() * 16 + literal8Map.size() * 8 + 621 literal4Map.at(*reinterpret_cast<const uint32_t *>(buf)) * 4; 622 } 623 624 private: 625 std::vector<WordLiteralInputSection *> inputs; 626 627 template <class T> struct Hasher { 628 llvm::hash_code operator()(T v) const { return llvm::hash_value(v); } 629 }; 630 // We're using unordered_map instead of DenseMap here because we need to 631 // support all possible integer values -- there are no suitable tombstone 632 // values for DenseMap. 633 std::unordered_map<UInt128, uint64_t, Hasher<UInt128>> literal16Map; 634 std::unordered_map<uint64_t, uint64_t> literal8Map; 635 std::unordered_map<uint32_t, uint64_t> literal4Map; 636 }; 637 638 class ObjCImageInfoSection final : public SyntheticSection { 639 public: 640 ObjCImageInfoSection(); 641 bool isNeeded() const override { return !files.empty(); } 642 uint64_t getSize() const override { return 8; } 643 void addFile(const InputFile *file) { 644 assert(!file->objCImageInfo.empty()); 645 files.push_back(file); 646 } 647 void finalizeContents(); 648 void writeTo(uint8_t *buf) const override; 649 650 private: 651 struct ImageInfo { 652 uint8_t swiftVersion = 0; 653 bool hasCategoryClassProperties = false; 654 } info; 655 static ImageInfo parseImageInfo(const InputFile *); 656 std::vector<const InputFile *> files; // files with image info 657 }; 658 659 // This section stores 32-bit __TEXT segment offsets of initializer functions. 660 // 661 // The compiler stores pointers to initializers in __mod_init_func. These need 662 // to be fixed up at load time, which takes time and dirties memory. By 663 // synthesizing InitOffsetsSection from them, this data can live in the 664 // read-only __TEXT segment instead. This section is used by default when 665 // chained fixups are enabled. 666 // 667 // There is no similar counterpart to __mod_term_func, as that section is 668 // deprecated, and static destructors are instead handled by registering them 669 // via __cxa_atexit from an autogenerated initializer function (see D121736). 670 class InitOffsetsSection final : public SyntheticSection { 671 public: 672 InitOffsetsSection(); 673 bool isNeeded() const override { return !sections.empty(); } 674 uint64_t getSize() const override; 675 void writeTo(uint8_t *buf) const override; 676 void setUp(); 677 678 void addInput(ConcatInputSection *isec) { sections.push_back(isec); } 679 const std::vector<ConcatInputSection *> &inputs() const { return sections; } 680 681 private: 682 std::vector<ConcatInputSection *> sections; 683 }; 684 685 // Chained fixups are a replacement for classic dyld opcodes. In this format, 686 // most of the metadata necessary for binding symbols and rebasing addresses is 687 // stored directly in the memory location that will have the fixup applied. 688 // 689 // The fixups form singly linked lists; each one covering a single page in 690 // memory. The __LINKEDIT,__chainfixups section stores the page offset of the 691 // first fixup of each page; the rest can be found by walking the chain using 692 // the offset that is embedded in each entry. 693 // 694 // This setup allows pages to be relocated lazily at page-in time and without 695 // being dirtied. The kernel can discard and load them again as needed. This 696 // technique, called page-in linking, was introduced in macOS 13. 697 // 698 // The benefits of this format are: 699 // - smaller __LINKEDIT segment, as most of the fixup information is stored in 700 // the data segment 701 // - faster startup, since not all relocations need to be done upfront 702 // - slightly lower memory usage, as fewer pages are dirtied 703 // 704 // Userspace x86_64 and arm64 binaries have two types of fixup entries: 705 // - Rebase entries contain an absolute address, to which the object's load 706 // address will be added to get the final value. This is used for loading 707 // the address of a symbol defined in the same binary. 708 // - Binding entries are mostly used for symbols imported from other dylibs, 709 // but for weakly bound and interposable symbols as well. They are looked up 710 // by a (symbol name, library) pair stored in __chainfixups. This import 711 // entry also encodes whether the import is weak (i.e. if the symbol is 712 // missing, it should be set to null instead of producing a load error). 713 // The fixup encodes an ordinal associated with the import, and an optional 714 // addend. 715 // 716 // The entries are tightly packed 64-bit bitfields. One of the bits specifies 717 // which kind of fixup to interpret them as. 718 // 719 // LLD generates the fixup data in 5 stages: 720 // 1. While scanning relocations, we make a note of each location that needs 721 // a fixup by calling addRebase() or addBinding(). During this, we assign 722 // a unique ordinal for each (symbol name, library, addend) import tuple. 723 // 2. After addresses have been assigned to all sections, and thus the memory 724 // layout of the linked image is final; finalizeContents() is called. Here, 725 // the page offsets of the chain start entries are calculated. 726 // 3. ChainedFixupsSection::writeTo() writes the page start offsets and the 727 // imports table to the output file. 728 // 4. Each section's fixup entries are encoded and written to disk in 729 // ConcatInputSection::writeTo(), but without writing the offsets that form 730 // the chain. 731 // 5. Finally, each page's (which might correspond to multiple sections) 732 // fixups are linked together in Writer::buildFixupChains(). 733 class ChainedFixupsSection final : public LinkEditSection { 734 public: 735 ChainedFixupsSection(); 736 void finalizeContents() override; 737 uint64_t getRawSize() const override { return size; } 738 bool isNeeded() const override; 739 void writeTo(uint8_t *buf) const override; 740 741 void addRebase(const InputSection *isec, uint64_t offset) { 742 locations.emplace_back(isec, offset); 743 } 744 void addBinding(const Symbol *dysym, const InputSection *isec, 745 uint64_t offset, int64_t addend = 0); 746 747 void setHasNonWeakDefinition() { hasNonWeakDef = true; } 748 749 // Returns an (ordinal, inline addend) tuple used by dyld_chained_ptr_64_bind. 750 std::pair<uint32_t, uint8_t> getBinding(const Symbol *sym, 751 int64_t addend) const; 752 753 const std::vector<Location> &getLocations() const { return locations; } 754 755 bool hasWeakBinding() const { return hasWeakBind; } 756 bool hasNonWeakDefinition() const { return hasNonWeakDef; } 757 758 private: 759 // Location::offset initially stores the offset within an InputSection, but 760 // contains output segment offsets after finalizeContents(). 761 std::vector<Location> locations; 762 // (target symbol, addend) => import ordinal 763 llvm::MapVector<std::pair<const Symbol *, int64_t>, uint32_t> bindings; 764 765 struct SegmentInfo { 766 SegmentInfo(const OutputSegment *oseg) : oseg(oseg) {} 767 768 const OutputSegment *oseg; 769 // (page index, fixup starts offset) 770 llvm::SmallVector<std::pair<uint16_t, uint16_t>> pageStarts; 771 772 size_t getSize() const; 773 size_t writeTo(uint8_t *buf) const; 774 }; 775 llvm::SmallVector<SegmentInfo, 4> fixupSegments; 776 777 size_t symtabSize = 0; 778 size_t size = 0; 779 780 bool needsAddend = false; 781 bool needsLargeAddend = false; 782 bool hasWeakBind = false; 783 bool hasNonWeakDef = false; 784 llvm::MachO::ChainedImportFormat importFormat; 785 }; 786 787 void writeChainedRebase(uint8_t *buf, uint64_t targetVA); 788 void writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend); 789 790 struct InStruct { 791 const uint8_t *bufferStart = nullptr; 792 MachHeaderSection *header = nullptr; 793 CStringSection *cStringSection = nullptr; 794 DeduplicatedCStringSection *objcMethnameSection = nullptr; 795 WordLiteralSection *wordLiteralSection = nullptr; 796 RebaseSection *rebase = nullptr; 797 BindingSection *binding = nullptr; 798 WeakBindingSection *weakBinding = nullptr; 799 LazyBindingSection *lazyBinding = nullptr; 800 ExportSection *exports = nullptr; 801 GotSection *got = nullptr; 802 TlvPointerSection *tlvPointers = nullptr; 803 LazyPointerSection *lazyPointers = nullptr; 804 StubsSection *stubs = nullptr; 805 StubHelperSection *stubHelper = nullptr; 806 ObjCStubsSection *objcStubs = nullptr; 807 ConcatInputSection *objcSelrefs = nullptr; 808 UnwindInfoSection *unwindInfo = nullptr; 809 ObjCImageInfoSection *objCImageInfo = nullptr; 810 ConcatInputSection *imageLoaderCache = nullptr; 811 InitOffsetsSection *initOffsets = nullptr; 812 ChainedFixupsSection *chainedFixups = nullptr; 813 }; 814 815 extern InStruct in; 816 extern std::vector<SyntheticSection *> syntheticSections; 817 818 void createSyntheticSymbols(); 819 820 } // namespace lld::macho 821 822 #endif 823