1 //===- SyntheticSections.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SyntheticSections.h" 10 #include "ConcatOutputSection.h" 11 #include "Config.h" 12 #include "ExportTrie.h" 13 #include "InputFiles.h" 14 #include "MachOStructs.h" 15 #include "OutputSegment.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 19 #include "lld/Common/CommonLinkerContext.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Config/llvm-config.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/FileSystem.h" 24 #include "llvm/Support/LEB128.h" 25 #include "llvm/Support/Parallel.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/xxhash.h" 28 29 #if defined(__APPLE__) 30 #include <sys/mman.h> 31 32 #define COMMON_DIGEST_FOR_OPENSSL 33 #include <CommonCrypto/CommonDigest.h> 34 #else 35 #include "llvm/Support/SHA256.h" 36 #endif 37 38 #ifdef LLVM_HAVE_LIBXAR 39 #include <fcntl.h> 40 extern "C" { 41 #include <xar/xar.h> 42 } 43 #endif 44 45 using namespace llvm; 46 using namespace llvm::MachO; 47 using namespace llvm::support; 48 using namespace llvm::support::endian; 49 using namespace lld; 50 using namespace lld::macho; 51 52 // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`. 53 static void sha256(const uint8_t *data, size_t len, uint8_t *output) { 54 #if defined(__APPLE__) 55 // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121 56 // for some notes on this. 57 CC_SHA256(data, len, output); 58 #else 59 ArrayRef<uint8_t> block(data, len); 60 std::array<uint8_t, 32> hash = SHA256::hash(block); 61 static_assert(hash.size() == CodeSignatureSection::hashSize); 62 memcpy(output, hash.data(), hash.size()); 63 #endif 64 } 65 66 InStruct macho::in; 67 std::vector<SyntheticSection *> macho::syntheticSections; 68 69 SyntheticSection::SyntheticSection(const char *segname, const char *name) 70 : OutputSection(SyntheticKind, name) { 71 std::tie(this->segname, this->name) = maybeRenameSection({segname, name}); 72 isec = makeSyntheticInputSection(segname, name); 73 isec->parent = this; 74 syntheticSections.push_back(this); 75 } 76 77 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts 78 // from the beginning of the file (i.e. the header). 79 MachHeaderSection::MachHeaderSection() 80 : SyntheticSection(segment_names::text, section_names::header) { 81 // XXX: This is a hack. (See D97007) 82 // Setting the index to 1 to pretend that this section is the text 83 // section. 84 index = 1; 85 isec->isFinal = true; 86 } 87 88 void MachHeaderSection::addLoadCommand(LoadCommand *lc) { 89 loadCommands.push_back(lc); 90 sizeOfCmds += lc->getSize(); 91 } 92 93 uint64_t MachHeaderSection::getSize() const { 94 uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; 95 // If we are emitting an encryptable binary, our load commands must have a 96 // separate (non-encrypted) page to themselves. 97 if (config->emitEncryptionInfo) 98 size = alignTo(size, target->getPageSize()); 99 return size; 100 } 101 102 static uint32_t cpuSubtype() { 103 uint32_t subtype = target->cpuSubtype; 104 105 if (config->outputType == MH_EXECUTE && !config->staticLink && 106 target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && 107 config->platform() == PLATFORM_MACOS && 108 config->platformInfo.minimum >= VersionTuple(10, 5)) 109 subtype |= CPU_SUBTYPE_LIB64; 110 111 return subtype; 112 } 113 114 static bool hasWeakBinding() { 115 return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding() 116 : in.weakBinding->hasEntry(); 117 } 118 119 static bool hasNonWeakDefinition() { 120 return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition() 121 : in.weakBinding->hasNonWeakDefinition(); 122 } 123 124 void MachHeaderSection::writeTo(uint8_t *buf) const { 125 auto *hdr = reinterpret_cast<mach_header *>(buf); 126 hdr->magic = target->magic; 127 hdr->cputype = target->cpuType; 128 hdr->cpusubtype = cpuSubtype(); 129 hdr->filetype = config->outputType; 130 hdr->ncmds = loadCommands.size(); 131 hdr->sizeofcmds = sizeOfCmds; 132 hdr->flags = MH_DYLDLINK; 133 134 if (config->namespaceKind == NamespaceKind::twolevel) 135 hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; 136 137 if (config->outputType == MH_DYLIB && !config->hasReexports) 138 hdr->flags |= MH_NO_REEXPORTED_DYLIBS; 139 140 if (config->markDeadStrippableDylib) 141 hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; 142 143 if (config->outputType == MH_EXECUTE && config->isPic) 144 hdr->flags |= MH_PIE; 145 146 if (config->outputType == MH_DYLIB && config->applicationExtension) 147 hdr->flags |= MH_APP_EXTENSION_SAFE; 148 149 if (in.exports->hasWeakSymbol || hasNonWeakDefinition()) 150 hdr->flags |= MH_WEAK_DEFINES; 151 152 if (in.exports->hasWeakSymbol || hasWeakBinding()) 153 hdr->flags |= MH_BINDS_TO_WEAK; 154 155 for (const OutputSegment *seg : outputSegments) { 156 for (const OutputSection *osec : seg->getSections()) { 157 if (isThreadLocalVariables(osec->flags)) { 158 hdr->flags |= MH_HAS_TLV_DESCRIPTORS; 159 break; 160 } 161 } 162 } 163 164 uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; 165 for (const LoadCommand *lc : loadCommands) { 166 lc->writeTo(p); 167 p += lc->getSize(); 168 } 169 } 170 171 PageZeroSection::PageZeroSection() 172 : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} 173 174 RebaseSection::RebaseSection() 175 : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} 176 177 namespace { 178 struct RebaseState { 179 uint64_t sequenceLength; 180 uint64_t skipLength; 181 }; 182 } // namespace 183 184 static void emitIncrement(uint64_t incr, raw_svector_ostream &os) { 185 assert(incr != 0); 186 187 if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK && 188 (incr % target->wordSize) == 0) { 189 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED | 190 (incr >> target->p2WordSize)); 191 } else { 192 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); 193 encodeULEB128(incr, os); 194 } 195 } 196 197 static void flushRebase(const RebaseState &state, raw_svector_ostream &os) { 198 assert(state.sequenceLength > 0); 199 200 if (state.skipLength == target->wordSize) { 201 if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) { 202 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | 203 state.sequenceLength); 204 } else { 205 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); 206 encodeULEB128(state.sequenceLength, os); 207 } 208 } else if (state.sequenceLength == 1) { 209 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB); 210 encodeULEB128(state.skipLength - target->wordSize, os); 211 } else { 212 os << static_cast<uint8_t>( 213 REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB); 214 encodeULEB128(state.sequenceLength, os); 215 encodeULEB128(state.skipLength - target->wordSize, os); 216 } 217 } 218 219 // Rebases are communicated to dyld using a bytecode, whose opcodes cause the 220 // memory location at a specific address to be rebased and/or the address to be 221 // incremented. 222 // 223 // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic 224 // one, encoding a series of evenly spaced addresses. This algorithm works by 225 // splitting up the sorted list of addresses into such chunks. If the locations 226 // are consecutive or the sequence consists of a single location, flushRebase 227 // will use a smaller, more specialized encoding. 228 static void encodeRebases(const OutputSegment *seg, 229 MutableArrayRef<Location> locations, 230 raw_svector_ostream &os) { 231 // dyld operates on segments. Translate section offsets into segment offsets. 232 for (Location &loc : locations) 233 loc.offset = 234 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset); 235 // The algorithm assumes that locations are unique. 236 Location *end = 237 llvm::unique(locations, [](const Location &a, const Location &b) { 238 return a.offset == b.offset; 239 }); 240 size_t count = end - locations.begin(); 241 242 os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 243 seg->index); 244 assert(!locations.empty()); 245 uint64_t offset = locations[0].offset; 246 encodeULEB128(offset, os); 247 248 RebaseState state{1, target->wordSize}; 249 250 for (size_t i = 1; i < count; ++i) { 251 offset = locations[i].offset; 252 253 uint64_t skip = offset - locations[i - 1].offset; 254 assert(skip != 0 && "duplicate locations should have been weeded out"); 255 256 if (skip == state.skipLength) { 257 ++state.sequenceLength; 258 } else if (state.sequenceLength == 1) { 259 ++state.sequenceLength; 260 state.skipLength = skip; 261 } else if (skip < state.skipLength) { 262 // The address is lower than what the rebase pointer would be if the last 263 // location would be part of a sequence. We start a new sequence from the 264 // previous location. 265 --state.sequenceLength; 266 flushRebase(state, os); 267 268 state.sequenceLength = 2; 269 state.skipLength = skip; 270 } else { 271 // The address is at some positive offset from the rebase pointer. We 272 // start a new sequence which begins with the current location. 273 flushRebase(state, os); 274 emitIncrement(skip - state.skipLength, os); 275 state.sequenceLength = 1; 276 state.skipLength = target->wordSize; 277 } 278 } 279 flushRebase(state, os); 280 } 281 282 void RebaseSection::finalizeContents() { 283 if (locations.empty()) 284 return; 285 286 raw_svector_ostream os{contents}; 287 os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); 288 289 llvm::sort(locations, [](const Location &a, const Location &b) { 290 return a.isec->getVA(a.offset) < b.isec->getVA(b.offset); 291 }); 292 293 for (size_t i = 0, count = locations.size(); i < count;) { 294 const OutputSegment *seg = locations[i].isec->parent->parent; 295 size_t j = i + 1; 296 while (j < count && locations[j].isec->parent->parent == seg) 297 ++j; 298 encodeRebases(seg, {locations.data() + i, locations.data() + j}, os); 299 i = j; 300 } 301 os << static_cast<uint8_t>(REBASE_OPCODE_DONE); 302 } 303 304 void RebaseSection::writeTo(uint8_t *buf) const { 305 memcpy(buf, contents.data(), contents.size()); 306 } 307 308 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, 309 const char *name) 310 : SyntheticSection(segname, name) { 311 align = target->wordSize; 312 } 313 314 void macho::addNonLazyBindingEntries(const Symbol *sym, 315 const InputSection *isec, uint64_t offset, 316 int64_t addend) { 317 if (config->emitChainedFixups) { 318 if (needsBinding(sym)) 319 in.chainedFixups->addBinding(sym, isec, offset, addend); 320 else if (isa<Defined>(sym)) 321 in.chainedFixups->addRebase(isec, offset); 322 else 323 llvm_unreachable("cannot bind to an undefined symbol"); 324 return; 325 } 326 327 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 328 in.binding->addEntry(dysym, isec, offset, addend); 329 if (dysym->isWeakDef()) 330 in.weakBinding->addEntry(sym, isec, offset, addend); 331 } else if (const auto *defined = dyn_cast<Defined>(sym)) { 332 in.rebase->addEntry(isec, offset); 333 if (defined->isExternalWeakDef()) 334 in.weakBinding->addEntry(sym, isec, offset, addend); 335 else if (defined->interposable) 336 in.binding->addEntry(sym, isec, offset, addend); 337 } else { 338 // Undefined symbols are filtered out in scanRelocations(); we should never 339 // get here 340 llvm_unreachable("cannot bind to an undefined symbol"); 341 } 342 } 343 344 void NonLazyPointerSectionBase::addEntry(Symbol *sym) { 345 if (entries.insert(sym)) { 346 assert(!sym->isInGot()); 347 sym->gotIndex = entries.size() - 1; 348 349 addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize); 350 } 351 } 352 353 void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) { 354 assert(config->emitChainedFixups); 355 assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); 356 auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf); 357 rebase->target = targetVA & 0xf'ffff'ffff; 358 rebase->high8 = (targetVA >> 56); 359 rebase->reserved = 0; 360 rebase->next = 0; 361 rebase->bind = 0; 362 363 // The fixup format places a 64 GiB limit on the output's size. 364 // Should we handle this gracefully? 365 uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56); 366 if (encodedVA != targetVA) 367 error("rebase target address 0x" + Twine::utohexstr(targetVA) + 368 " does not fit into chained fixup. Re-link with -no_fixup_chains"); 369 } 370 371 static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) { 372 assert(config->emitChainedFixups); 373 assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); 374 auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf); 375 auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend); 376 bind->ordinal = ordinal; 377 bind->addend = inlineAddend; 378 bind->reserved = 0; 379 bind->next = 0; 380 bind->bind = 1; 381 } 382 383 void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) { 384 if (needsBinding(sym)) 385 writeChainedBind(buf, sym, addend); 386 else 387 writeChainedRebase(buf, sym->getVA() + addend); 388 } 389 390 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { 391 if (config->emitChainedFixups) { 392 for (const auto &[i, entry] : llvm::enumerate(entries)) 393 writeChainedFixup(&buf[i * target->wordSize], entry, 0); 394 } else { 395 for (const auto &[i, entry] : llvm::enumerate(entries)) 396 if (auto *defined = dyn_cast<Defined>(entry)) 397 write64le(&buf[i * target->wordSize], defined->getVA()); 398 } 399 } 400 401 GotSection::GotSection() 402 : NonLazyPointerSectionBase(segment_names::data, section_names::got) { 403 flags = S_NON_LAZY_SYMBOL_POINTERS; 404 } 405 406 TlvPointerSection::TlvPointerSection() 407 : NonLazyPointerSectionBase(segment_names::data, 408 section_names::threadPtrs) { 409 flags = S_THREAD_LOCAL_VARIABLE_POINTERS; 410 } 411 412 BindingSection::BindingSection() 413 : LinkEditSection(segment_names::linkEdit, section_names::binding) {} 414 415 namespace { 416 struct Binding { 417 OutputSegment *segment = nullptr; 418 uint64_t offset = 0; 419 int64_t addend = 0; 420 }; 421 struct BindIR { 422 // Default value of 0xF0 is not valid opcode and should make the program 423 // scream instead of accidentally writing "valid" values. 424 uint8_t opcode = 0xF0; 425 uint64_t data = 0; 426 uint64_t consecutiveCount = 0; 427 }; 428 } // namespace 429 430 // Encode a sequence of opcodes that tell dyld to write the address of symbol + 431 // addend at osec->addr + outSecOff. 432 // 433 // The bind opcode "interpreter" remembers the values of each binding field, so 434 // we only need to encode the differences between bindings. Hence the use of 435 // lastBinding. 436 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, 437 int64_t addend, Binding &lastBinding, 438 std::vector<BindIR> &opcodes) { 439 OutputSegment *seg = osec->parent; 440 uint64_t offset = osec->getSegmentOffset() + outSecOff; 441 if (lastBinding.segment != seg) { 442 opcodes.push_back( 443 {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 444 seg->index), 445 offset}); 446 lastBinding.segment = seg; 447 lastBinding.offset = offset; 448 } else if (lastBinding.offset != offset) { 449 opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset}); 450 lastBinding.offset = offset; 451 } 452 453 if (lastBinding.addend != addend) { 454 opcodes.push_back( 455 {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)}); 456 lastBinding.addend = addend; 457 } 458 459 opcodes.push_back({BIND_OPCODE_DO_BIND, 0}); 460 // DO_BIND causes dyld to both perform the binding and increment the offset 461 lastBinding.offset += target->wordSize; 462 } 463 464 static void optimizeOpcodes(std::vector<BindIR> &opcodes) { 465 // Pass 1: Combine bind/add pairs 466 size_t i; 467 int pWrite = 0; 468 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 469 if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && 470 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { 471 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; 472 opcodes[pWrite].data = opcodes[i].data; 473 ++i; 474 } else { 475 opcodes[pWrite] = opcodes[i - 1]; 476 } 477 } 478 if (i == opcodes.size()) 479 opcodes[pWrite] = opcodes[i - 1]; 480 opcodes.resize(pWrite + 1); 481 482 // Pass 2: Compress two or more bind_add opcodes 483 pWrite = 0; 484 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 485 if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 486 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 487 (opcodes[i].data == opcodes[i - 1].data)) { 488 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; 489 opcodes[pWrite].consecutiveCount = 2; 490 opcodes[pWrite].data = opcodes[i].data; 491 ++i; 492 while (i < opcodes.size() && 493 (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 494 (opcodes[i].data == opcodes[i - 1].data)) { 495 opcodes[pWrite].consecutiveCount++; 496 ++i; 497 } 498 } else { 499 opcodes[pWrite] = opcodes[i - 1]; 500 } 501 } 502 if (i == opcodes.size()) 503 opcodes[pWrite] = opcodes[i - 1]; 504 opcodes.resize(pWrite + 1); 505 506 // Pass 3: Use immediate encodings 507 // Every binding is the size of one pointer. If the next binding is a 508 // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the 509 // opcode can be scaled by wordSize into a single byte and dyld will 510 // expand it to the correct address. 511 for (auto &p : opcodes) { 512 // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, 513 // but ld64 currently does this. This could be a potential bug, but 514 // for now, perform the same behavior to prevent mysterious bugs. 515 if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 516 ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && 517 ((p.data % target->wordSize) == 0)) { 518 p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; 519 p.data /= target->wordSize; 520 } 521 } 522 } 523 524 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { 525 uint8_t opcode = op.opcode & BIND_OPCODE_MASK; 526 switch (opcode) { 527 case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: 528 case BIND_OPCODE_ADD_ADDR_ULEB: 529 case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: 530 os << op.opcode; 531 encodeULEB128(op.data, os); 532 break; 533 case BIND_OPCODE_SET_ADDEND_SLEB: 534 os << op.opcode; 535 encodeSLEB128(static_cast<int64_t>(op.data), os); 536 break; 537 case BIND_OPCODE_DO_BIND: 538 os << op.opcode; 539 break; 540 case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: 541 os << op.opcode; 542 encodeULEB128(op.consecutiveCount, os); 543 encodeULEB128(op.data, os); 544 break; 545 case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: 546 os << static_cast<uint8_t>(op.opcode | op.data); 547 break; 548 default: 549 llvm_unreachable("cannot bind to an unrecognized symbol"); 550 } 551 } 552 553 // Non-weak bindings need to have their dylib ordinal encoded as well. 554 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { 555 if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) 556 return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); 557 assert(dysym.getFile()->isReferenced()); 558 return dysym.getFile()->ordinal; 559 } 560 561 static int16_t ordinalForSymbol(const Symbol &sym) { 562 if (const auto *dysym = dyn_cast<DylibSymbol>(&sym)) 563 return ordinalForDylibSymbol(*dysym); 564 assert(cast<Defined>(&sym)->interposable); 565 return BIND_SPECIAL_DYLIB_FLAT_LOOKUP; 566 } 567 568 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { 569 if (ordinal <= 0) { 570 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | 571 (ordinal & BIND_IMMEDIATE_MASK)); 572 } else if (ordinal <= BIND_IMMEDIATE_MASK) { 573 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); 574 } else { 575 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); 576 encodeULEB128(ordinal, os); 577 } 578 } 579 580 static void encodeWeakOverride(const Defined *defined, 581 raw_svector_ostream &os) { 582 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | 583 BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) 584 << defined->getName() << '\0'; 585 } 586 587 // Organize the bindings so we can encoded them with fewer opcodes. 588 // 589 // First, all bindings for a given symbol should be grouped together. 590 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it 591 // has an associated symbol string), so we only want to emit it once per symbol. 592 // 593 // Within each group, we sort the bindings by address. Since bindings are 594 // delta-encoded, sorting them allows for a more compact result. Note that 595 // sorting by address alone ensures that bindings for the same segment / section 596 // are located together, minimizing the number of times we have to emit 597 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. 598 // 599 // Finally, we sort the symbols by the address of their first binding, again 600 // to facilitate the delta-encoding process. 601 template <class Sym> 602 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> 603 sortBindings(const BindingsMap<const Sym *> &bindingsMap) { 604 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( 605 bindingsMap.begin(), bindingsMap.end()); 606 for (auto &p : bindingsVec) { 607 std::vector<BindingEntry> &bindings = p.second; 608 llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { 609 return a.target.getVA() < b.target.getVA(); 610 }); 611 } 612 llvm::sort(bindingsVec, [](const auto &a, const auto &b) { 613 return a.second[0].target.getVA() < b.second[0].target.getVA(); 614 }); 615 return bindingsVec; 616 } 617 618 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld 619 // interprets to update a record with the following fields: 620 // * segment index (of the segment to write the symbol addresses to, typically 621 // the __DATA_CONST segment which contains the GOT) 622 // * offset within the segment, indicating the next location to write a binding 623 // * symbol type 624 // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) 625 // * symbol name 626 // * addend 627 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind 628 // a symbol in the GOT, and increments the segment offset to point to the next 629 // entry. It does *not* clear the record state after doing the bind, so 630 // subsequent opcodes only need to encode the differences between bindings. 631 void BindingSection::finalizeContents() { 632 raw_svector_ostream os{contents}; 633 Binding lastBinding; 634 int16_t lastOrdinal = 0; 635 636 for (auto &p : sortBindings(bindingsMap)) { 637 const Symbol *sym = p.first; 638 std::vector<BindingEntry> &bindings = p.second; 639 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 640 if (sym->isWeakRef()) 641 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 642 os << flags << sym->getName() << '\0' 643 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 644 int16_t ordinal = ordinalForSymbol(*sym); 645 if (ordinal != lastOrdinal) { 646 encodeDylibOrdinal(ordinal, os); 647 lastOrdinal = ordinal; 648 } 649 std::vector<BindIR> opcodes; 650 for (const BindingEntry &b : bindings) 651 encodeBinding(b.target.isec->parent, 652 b.target.isec->getOffset(b.target.offset), b.addend, 653 lastBinding, opcodes); 654 if (config->optimize > 1) 655 optimizeOpcodes(opcodes); 656 for (const auto &op : opcodes) 657 flushOpcodes(op, os); 658 } 659 if (!bindingsMap.empty()) 660 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 661 } 662 663 void BindingSection::writeTo(uint8_t *buf) const { 664 memcpy(buf, contents.data(), contents.size()); 665 } 666 667 WeakBindingSection::WeakBindingSection() 668 : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} 669 670 void WeakBindingSection::finalizeContents() { 671 raw_svector_ostream os{contents}; 672 Binding lastBinding; 673 674 for (const Defined *defined : definitions) 675 encodeWeakOverride(defined, os); 676 677 for (auto &p : sortBindings(bindingsMap)) { 678 const Symbol *sym = p.first; 679 std::vector<BindingEntry> &bindings = p.second; 680 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) 681 << sym->getName() << '\0' 682 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 683 std::vector<BindIR> opcodes; 684 for (const BindingEntry &b : bindings) 685 encodeBinding(b.target.isec->parent, 686 b.target.isec->getOffset(b.target.offset), b.addend, 687 lastBinding, opcodes); 688 if (config->optimize > 1) 689 optimizeOpcodes(opcodes); 690 for (const auto &op : opcodes) 691 flushOpcodes(op, os); 692 } 693 if (!bindingsMap.empty() || !definitions.empty()) 694 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 695 } 696 697 void WeakBindingSection::writeTo(uint8_t *buf) const { 698 memcpy(buf, contents.data(), contents.size()); 699 } 700 701 StubsSection::StubsSection() 702 : SyntheticSection(segment_names::text, section_names::stubs) { 703 flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 704 // The stubs section comprises machine instructions, which are aligned to 705 // 4 bytes on the archs we care about. 706 align = 4; 707 reserved2 = target->stubSize; 708 } 709 710 uint64_t StubsSection::getSize() const { 711 return entries.size() * target->stubSize; 712 } 713 714 void StubsSection::writeTo(uint8_t *buf) const { 715 size_t off = 0; 716 for (const Symbol *sym : entries) { 717 uint64_t pointerVA = 718 config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA(); 719 target->writeStub(buf + off, *sym, pointerVA); 720 off += target->stubSize; 721 } 722 } 723 724 void StubsSection::finalize() { isFinal = true; } 725 726 static void addBindingsForStub(Symbol *sym) { 727 assert(!config->emitChainedFixups); 728 if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 729 if (sym->isWeakDef()) { 730 in.binding->addEntry(dysym, in.lazyPointers->isec, 731 sym->stubsIndex * target->wordSize); 732 in.weakBinding->addEntry(sym, in.lazyPointers->isec, 733 sym->stubsIndex * target->wordSize); 734 } else { 735 in.lazyBinding->addEntry(dysym); 736 } 737 } else if (auto *defined = dyn_cast<Defined>(sym)) { 738 if (defined->isExternalWeakDef()) { 739 in.rebase->addEntry(in.lazyPointers->isec, 740 sym->stubsIndex * target->wordSize); 741 in.weakBinding->addEntry(sym, in.lazyPointers->isec, 742 sym->stubsIndex * target->wordSize); 743 } else if (defined->interposable) { 744 in.lazyBinding->addEntry(sym); 745 } else { 746 llvm_unreachable("invalid stub target"); 747 } 748 } else { 749 llvm_unreachable("invalid stub target symbol type"); 750 } 751 } 752 753 void StubsSection::addEntry(Symbol *sym) { 754 bool inserted = entries.insert(sym); 755 if (inserted) { 756 sym->stubsIndex = entries.size() - 1; 757 758 if (config->emitChainedFixups) 759 in.got->addEntry(sym); 760 else 761 addBindingsForStub(sym); 762 } 763 } 764 765 StubHelperSection::StubHelperSection() 766 : SyntheticSection(segment_names::text, section_names::stubHelper) { 767 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 768 align = 4; // This section comprises machine instructions 769 } 770 771 uint64_t StubHelperSection::getSize() const { 772 return target->stubHelperHeaderSize + 773 in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; 774 } 775 776 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } 777 778 void StubHelperSection::writeTo(uint8_t *buf) const { 779 target->writeStubHelperHeader(buf); 780 size_t off = target->stubHelperHeaderSize; 781 for (const Symbol *sym : in.lazyBinding->getEntries()) { 782 target->writeStubHelperEntry(buf + off, *sym, addr + off); 783 off += target->stubHelperEntrySize; 784 } 785 } 786 787 void StubHelperSection::setUp() { 788 Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr, 789 /*isWeakRef=*/false); 790 if (auto *undefined = dyn_cast<Undefined>(binder)) 791 treatUndefinedSymbol(*undefined, 792 "lazy binding (normally in libSystem.dylib)"); 793 794 // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. 795 stubBinder = dyn_cast_or_null<DylibSymbol>(binder); 796 if (stubBinder == nullptr) 797 return; 798 799 in.got->addEntry(stubBinder); 800 801 in.imageLoaderCache->parent = 802 ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); 803 inputSections.push_back(in.imageLoaderCache); 804 // Since this isn't in the symbol table or in any input file, the noDeadStrip 805 // argument doesn't matter. 806 dyldPrivate = 807 make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0, 808 /*isWeakDef=*/false, 809 /*isExternal=*/false, /*isPrivateExtern=*/false, 810 /*includeInSymtab=*/true, 811 /*isThumb=*/false, /*isReferencedDynamically=*/false, 812 /*noDeadStrip=*/false); 813 dyldPrivate->used = true; 814 } 815 816 ObjCStubsSection::ObjCStubsSection() 817 : SyntheticSection(segment_names::text, section_names::objcStubs) { 818 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 819 align = target->objcStubsAlignment; 820 } 821 822 void ObjCStubsSection::addEntry(Symbol *sym) { 823 assert(sym->getName().startswith(symbolPrefix) && "not an objc stub"); 824 StringRef methname = sym->getName().drop_front(symbolPrefix.size()); 825 offsets.push_back( 826 in.objcMethnameSection->getStringOffset(methname).outSecOff); 827 Defined *newSym = replaceSymbol<Defined>( 828 sym, sym->getName(), nullptr, isec, 829 /*value=*/symbols.size() * target->objcStubsFastSize, 830 /*size=*/target->objcStubsFastSize, 831 /*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true, 832 /*includeInSymtab=*/true, /*isThumb=*/false, 833 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false); 834 symbols.push_back(newSym); 835 } 836 837 void ObjCStubsSection::setUp() { 838 Symbol *objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr, 839 /*isWeakRef=*/false); 840 objcMsgSend->used = true; 841 in.got->addEntry(objcMsgSend); 842 assert(objcMsgSend->isInGot()); 843 objcMsgSendGotIndex = objcMsgSend->gotIndex; 844 845 size_t size = offsets.size() * target->wordSize; 846 uint8_t *selrefsData = bAlloc().Allocate<uint8_t>(size); 847 for (size_t i = 0, n = offsets.size(); i < n; ++i) 848 write64le(&selrefsData[i * target->wordSize], offsets[i]); 849 850 in.objcSelrefs = 851 makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs, 852 S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP, 853 ArrayRef<uint8_t>{selrefsData, size}, 854 /*align=*/target->wordSize); 855 in.objcSelrefs->live = true; 856 857 for (size_t i = 0, n = offsets.size(); i < n; ++i) { 858 in.objcSelrefs->relocs.push_back( 859 {/*type=*/target->unsignedRelocType, 860 /*pcrel=*/false, /*length=*/3, 861 /*offset=*/static_cast<uint32_t>(i * target->wordSize), 862 /*addend=*/offsets[i] * in.objcMethnameSection->align, 863 /*referent=*/in.objcMethnameSection->isec}); 864 } 865 866 in.objcSelrefs->parent = 867 ConcatOutputSection::getOrCreateForInput(in.objcSelrefs); 868 inputSections.push_back(in.objcSelrefs); 869 in.objcSelrefs->isFinal = true; 870 } 871 872 uint64_t ObjCStubsSection::getSize() const { 873 return target->objcStubsFastSize * symbols.size(); 874 } 875 876 void ObjCStubsSection::writeTo(uint8_t *buf) const { 877 assert(in.objcSelrefs->live); 878 assert(in.objcSelrefs->isFinal); 879 880 uint64_t stubOffset = 0; 881 for (size_t i = 0, n = symbols.size(); i < n; ++i) { 882 Defined *sym = symbols[i]; 883 target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr, 884 stubOffset, in.objcSelrefs->getVA(), i, 885 in.got->addr, objcMsgSendGotIndex); 886 stubOffset += target->objcStubsFastSize; 887 } 888 } 889 890 LazyPointerSection::LazyPointerSection() 891 : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { 892 align = target->wordSize; 893 flags = S_LAZY_SYMBOL_POINTERS; 894 } 895 896 uint64_t LazyPointerSection::getSize() const { 897 return in.stubs->getEntries().size() * target->wordSize; 898 } 899 900 bool LazyPointerSection::isNeeded() const { 901 return !in.stubs->getEntries().empty(); 902 } 903 904 void LazyPointerSection::writeTo(uint8_t *buf) const { 905 size_t off = 0; 906 for (const Symbol *sym : in.stubs->getEntries()) { 907 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 908 if (dysym->hasStubsHelper()) { 909 uint64_t stubHelperOffset = 910 target->stubHelperHeaderSize + 911 dysym->stubsHelperIndex * target->stubHelperEntrySize; 912 write64le(buf + off, in.stubHelper->addr + stubHelperOffset); 913 } 914 } else { 915 write64le(buf + off, sym->getVA()); 916 } 917 off += target->wordSize; 918 } 919 } 920 921 LazyBindingSection::LazyBindingSection() 922 : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} 923 924 void LazyBindingSection::finalizeContents() { 925 // TODO: Just precompute output size here instead of writing to a temporary 926 // buffer 927 for (Symbol *sym : entries) 928 sym->lazyBindOffset = encode(*sym); 929 } 930 931 void LazyBindingSection::writeTo(uint8_t *buf) const { 932 memcpy(buf, contents.data(), contents.size()); 933 } 934 935 void LazyBindingSection::addEntry(Symbol *sym) { 936 assert(!config->emitChainedFixups && "Chained fixups always bind eagerly"); 937 if (entries.insert(sym)) { 938 sym->stubsHelperIndex = entries.size() - 1; 939 in.rebase->addEntry(in.lazyPointers->isec, 940 sym->stubsIndex * target->wordSize); 941 } 942 } 943 944 // Unlike the non-lazy binding section, the bind opcodes in this section aren't 945 // interpreted all at once. Rather, dyld will start interpreting opcodes at a 946 // given offset, typically only binding a single symbol before it finds a 947 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, 948 // we cannot encode just the differences between symbols; we have to emit the 949 // complete bind information for each symbol. 950 uint32_t LazyBindingSection::encode(const Symbol &sym) { 951 uint32_t opstreamOffset = contents.size(); 952 OutputSegment *dataSeg = in.lazyPointers->parent; 953 os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 954 dataSeg->index); 955 uint64_t offset = 956 in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize; 957 encodeULEB128(offset, os); 958 encodeDylibOrdinal(ordinalForSymbol(sym), os); 959 960 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 961 if (sym.isWeakRef()) 962 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 963 964 os << flags << sym.getName() << '\0' 965 << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) 966 << static_cast<uint8_t>(BIND_OPCODE_DONE); 967 return opstreamOffset; 968 } 969 970 ExportSection::ExportSection() 971 : LinkEditSection(segment_names::linkEdit, section_names::export_) {} 972 973 void ExportSection::finalizeContents() { 974 trieBuilder.setImageBase(in.header->addr); 975 for (const Symbol *sym : symtab->getSymbols()) { 976 if (const auto *defined = dyn_cast<Defined>(sym)) { 977 if (defined->privateExtern || !defined->isLive()) 978 continue; 979 trieBuilder.addSymbol(*defined); 980 hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); 981 } 982 } 983 size = trieBuilder.build(); 984 } 985 986 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } 987 988 DataInCodeSection::DataInCodeSection() 989 : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} 990 991 template <class LP> 992 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { 993 std::vector<MachO::data_in_code_entry> dataInCodeEntries; 994 for (const InputFile *inputFile : inputFiles) { 995 if (!isa<ObjFile>(inputFile)) 996 continue; 997 const ObjFile *objFile = cast<ObjFile>(inputFile); 998 ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode(); 999 if (entries.empty()) 1000 continue; 1001 1002 assert(is_sorted(entries, [](const data_in_code_entry &lhs, 1003 const data_in_code_entry &rhs) { 1004 return lhs.offset < rhs.offset; 1005 })); 1006 // For each code subsection find 'data in code' entries residing in it. 1007 // Compute the new offset values as 1008 // <offset within subsection> + <subsection address> - <__TEXT address>. 1009 for (const Section *section : objFile->sections) { 1010 for (const Subsection &subsec : section->subsections) { 1011 const InputSection *isec = subsec.isec; 1012 if (!isCodeSection(isec)) 1013 continue; 1014 if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput()) 1015 continue; 1016 const uint64_t beginAddr = section->addr + subsec.offset; 1017 auto it = llvm::lower_bound( 1018 entries, beginAddr, 1019 [](const MachO::data_in_code_entry &entry, uint64_t addr) { 1020 return entry.offset < addr; 1021 }); 1022 const uint64_t endAddr = beginAddr + isec->getSize(); 1023 for (const auto end = entries.end(); 1024 it != end && it->offset + it->length <= endAddr; ++it) 1025 dataInCodeEntries.push_back( 1026 {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) - 1027 in.header->addr), 1028 it->length, it->kind}); 1029 } 1030 } 1031 } 1032 1033 // ld64 emits the table in sorted order too. 1034 llvm::sort(dataInCodeEntries, 1035 [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) { 1036 return lhs.offset < rhs.offset; 1037 }); 1038 return dataInCodeEntries; 1039 } 1040 1041 void DataInCodeSection::finalizeContents() { 1042 entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() 1043 : collectDataInCodeEntries<ILP32>(); 1044 } 1045 1046 void DataInCodeSection::writeTo(uint8_t *buf) const { 1047 if (!entries.empty()) 1048 memcpy(buf, entries.data(), getRawSize()); 1049 } 1050 1051 FunctionStartsSection::FunctionStartsSection() 1052 : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} 1053 1054 void FunctionStartsSection::finalizeContents() { 1055 raw_svector_ostream os{contents}; 1056 std::vector<uint64_t> addrs; 1057 for (const InputFile *file : inputFiles) { 1058 if (auto *objFile = dyn_cast<ObjFile>(file)) { 1059 for (const Symbol *sym : objFile->symbols) { 1060 if (const auto *defined = dyn_cast_or_null<Defined>(sym)) { 1061 if (!defined->isec || !isCodeSection(defined->isec) || 1062 !defined->isLive()) 1063 continue; 1064 // TODO: Add support for thumbs, in that case 1065 // the lowest bit of nextAddr needs to be set to 1. 1066 addrs.push_back(defined->getVA()); 1067 } 1068 } 1069 } 1070 } 1071 llvm::sort(addrs); 1072 uint64_t addr = in.header->addr; 1073 for (uint64_t nextAddr : addrs) { 1074 uint64_t delta = nextAddr - addr; 1075 if (delta == 0) 1076 continue; 1077 encodeULEB128(delta, os); 1078 addr = nextAddr; 1079 } 1080 os << '\0'; 1081 } 1082 1083 void FunctionStartsSection::writeTo(uint8_t *buf) const { 1084 memcpy(buf, contents.data(), contents.size()); 1085 } 1086 1087 SymtabSection::SymtabSection(StringTableSection &stringTableSection) 1088 : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), 1089 stringTableSection(stringTableSection) {} 1090 1091 void SymtabSection::emitBeginSourceStab(StringRef sourceFile) { 1092 StabsEntry stab(N_SO); 1093 stab.strx = stringTableSection.addString(saver().save(sourceFile)); 1094 stabs.emplace_back(std::move(stab)); 1095 } 1096 1097 void SymtabSection::emitEndSourceStab() { 1098 StabsEntry stab(N_SO); 1099 stab.sect = 1; 1100 stabs.emplace_back(std::move(stab)); 1101 } 1102 1103 void SymtabSection::emitObjectFileStab(ObjFile *file) { 1104 StabsEntry stab(N_OSO); 1105 stab.sect = target->cpuSubtype; 1106 SmallString<261> path(!file->archiveName.empty() ? file->archiveName 1107 : file->getName()); 1108 std::error_code ec = sys::fs::make_absolute(path); 1109 if (ec) 1110 fatal("failed to get absolute path for " + path); 1111 1112 if (!file->archiveName.empty()) 1113 path.append({"(", file->getName(), ")"}); 1114 1115 StringRef adjustedPath = saver().save(path.str()); 1116 adjustedPath.consume_front(config->osoPrefix); 1117 1118 stab.strx = stringTableSection.addString(adjustedPath); 1119 stab.desc = 1; 1120 stab.value = file->modTime; 1121 stabs.emplace_back(std::move(stab)); 1122 } 1123 1124 void SymtabSection::emitEndFunStab(Defined *defined) { 1125 StabsEntry stab(N_FUN); 1126 stab.value = defined->size; 1127 stabs.emplace_back(std::move(stab)); 1128 } 1129 1130 void SymtabSection::emitStabs() { 1131 if (config->omitDebugInfo) 1132 return; 1133 1134 for (const std::string &s : config->astPaths) { 1135 StabsEntry astStab(N_AST); 1136 astStab.strx = stringTableSection.addString(s); 1137 stabs.emplace_back(std::move(astStab)); 1138 } 1139 1140 // Cache the file ID for each symbol in an std::pair for faster sorting. 1141 using SortingPair = std::pair<Defined *, int>; 1142 std::vector<SortingPair> symbolsNeedingStabs; 1143 for (const SymtabEntry &entry : 1144 concat<SymtabEntry>(localSymbols, externalSymbols)) { 1145 Symbol *sym = entry.sym; 1146 assert(sym->isLive() && 1147 "dead symbols should not be in localSymbols, externalSymbols"); 1148 if (auto *defined = dyn_cast<Defined>(sym)) { 1149 // Excluded symbols should have been filtered out in finalizeContents(). 1150 assert(defined->includeInSymtab); 1151 1152 if (defined->isAbsolute()) 1153 continue; 1154 1155 // Constant-folded symbols go in the executable's symbol table, but don't 1156 // get a stabs entry. 1157 if (defined->wasIdenticalCodeFolded) 1158 continue; 1159 1160 ObjFile *file = defined->getObjectFile(); 1161 if (!file || !file->compileUnit) 1162 continue; 1163 1164 symbolsNeedingStabs.emplace_back(defined, defined->isec->getFile()->id); 1165 } 1166 } 1167 1168 llvm::stable_sort(symbolsNeedingStabs, 1169 [&](const SortingPair &a, const SortingPair &b) { 1170 return a.second < b.second; 1171 }); 1172 1173 // Emit STABS symbols so that dsymutil and/or the debugger can map address 1174 // regions in the final binary to the source and object files from which they 1175 // originated. 1176 InputFile *lastFile = nullptr; 1177 for (SortingPair &pair : symbolsNeedingStabs) { 1178 Defined *defined = pair.first; 1179 InputSection *isec = defined->isec; 1180 ObjFile *file = cast<ObjFile>(isec->getFile()); 1181 1182 if (lastFile == nullptr || lastFile != file) { 1183 if (lastFile != nullptr) 1184 emitEndSourceStab(); 1185 lastFile = file; 1186 1187 emitBeginSourceStab(file->sourceFile()); 1188 emitObjectFileStab(file); 1189 } 1190 1191 StabsEntry symStab; 1192 symStab.sect = defined->isec->parent->index; 1193 symStab.strx = stringTableSection.addString(defined->getName()); 1194 symStab.value = defined->getVA(); 1195 1196 if (isCodeSection(isec)) { 1197 symStab.type = N_FUN; 1198 stabs.emplace_back(std::move(symStab)); 1199 emitEndFunStab(defined); 1200 } else { 1201 symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; 1202 stabs.emplace_back(std::move(symStab)); 1203 } 1204 } 1205 1206 if (!stabs.empty()) 1207 emitEndSourceStab(); 1208 } 1209 1210 void SymtabSection::finalizeContents() { 1211 auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { 1212 uint32_t strx = stringTableSection.addString(sym->getName()); 1213 symbols.push_back({sym, strx}); 1214 }; 1215 1216 std::function<void(Symbol *)> localSymbolsHandler; 1217 switch (config->localSymbolsPresence) { 1218 case SymtabPresence::All: 1219 localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); }; 1220 break; 1221 case SymtabPresence::None: 1222 localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ }; 1223 break; 1224 case SymtabPresence::SelectivelyIncluded: 1225 localSymbolsHandler = [&](Symbol *sym) { 1226 if (config->localSymbolPatterns.match(sym->getName())) 1227 addSymbol(localSymbols, sym); 1228 }; 1229 break; 1230 case SymtabPresence::SelectivelyExcluded: 1231 localSymbolsHandler = [&](Symbol *sym) { 1232 if (!config->localSymbolPatterns.match(sym->getName())) 1233 addSymbol(localSymbols, sym); 1234 }; 1235 break; 1236 } 1237 1238 // Local symbols aren't in the SymbolTable, so we walk the list of object 1239 // files to gather them. 1240 // But if `-x` is set, then we don't need to. localSymbolsHandler() will do 1241 // the right thing regardless, but this check is a perf optimization because 1242 // iterating through all the input files and their symbols is expensive. 1243 if (config->localSymbolsPresence != SymtabPresence::None) { 1244 for (const InputFile *file : inputFiles) { 1245 if (auto *objFile = dyn_cast<ObjFile>(file)) { 1246 for (Symbol *sym : objFile->symbols) { 1247 if (auto *defined = dyn_cast_or_null<Defined>(sym)) { 1248 if (defined->isExternal() || !defined->isLive() || 1249 !defined->includeInSymtab) 1250 continue; 1251 localSymbolsHandler(sym); 1252 } 1253 } 1254 } 1255 } 1256 } 1257 1258 // __dyld_private is a local symbol too. It's linker-created and doesn't 1259 // exist in any object file. 1260 if (in.stubHelper && in.stubHelper->dyldPrivate) 1261 localSymbolsHandler(in.stubHelper->dyldPrivate); 1262 1263 for (Symbol *sym : symtab->getSymbols()) { 1264 if (!sym->isLive()) 1265 continue; 1266 if (auto *defined = dyn_cast<Defined>(sym)) { 1267 if (!defined->includeInSymtab) 1268 continue; 1269 assert(defined->isExternal()); 1270 if (defined->privateExtern) 1271 localSymbolsHandler(defined); 1272 else 1273 addSymbol(externalSymbols, defined); 1274 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 1275 if (dysym->isReferenced()) 1276 addSymbol(undefinedSymbols, sym); 1277 } 1278 } 1279 1280 emitStabs(); 1281 uint32_t symtabIndex = stabs.size(); 1282 for (const SymtabEntry &entry : 1283 concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) { 1284 entry.sym->symtabIndex = symtabIndex++; 1285 } 1286 } 1287 1288 uint32_t SymtabSection::getNumSymbols() const { 1289 return stabs.size() + localSymbols.size() + externalSymbols.size() + 1290 undefinedSymbols.size(); 1291 } 1292 1293 // This serves to hide (type-erase) the template parameter from SymtabSection. 1294 template <class LP> class SymtabSectionImpl final : public SymtabSection { 1295 public: 1296 SymtabSectionImpl(StringTableSection &stringTableSection) 1297 : SymtabSection(stringTableSection) {} 1298 uint64_t getRawSize() const override; 1299 void writeTo(uint8_t *buf) const override; 1300 }; 1301 1302 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { 1303 return getNumSymbols() * sizeof(typename LP::nlist); 1304 } 1305 1306 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { 1307 auto *nList = reinterpret_cast<typename LP::nlist *>(buf); 1308 // Emit the stabs entries before the "real" symbols. We cannot emit them 1309 // after as that would render Symbol::symtabIndex inaccurate. 1310 for (const StabsEntry &entry : stabs) { 1311 nList->n_strx = entry.strx; 1312 nList->n_type = entry.type; 1313 nList->n_sect = entry.sect; 1314 nList->n_desc = entry.desc; 1315 nList->n_value = entry.value; 1316 ++nList; 1317 } 1318 1319 for (const SymtabEntry &entry : concat<const SymtabEntry>( 1320 localSymbols, externalSymbols, undefinedSymbols)) { 1321 nList->n_strx = entry.strx; 1322 // TODO populate n_desc with more flags 1323 if (auto *defined = dyn_cast<Defined>(entry.sym)) { 1324 uint8_t scope = 0; 1325 if (defined->privateExtern) { 1326 // Private external -- dylib scoped symbol. 1327 // Promote to non-external at link time. 1328 scope = N_PEXT; 1329 } else if (defined->isExternal()) { 1330 // Normal global symbol. 1331 scope = N_EXT; 1332 } else { 1333 // TU-local symbol from localSymbols. 1334 scope = 0; 1335 } 1336 1337 if (defined->isAbsolute()) { 1338 nList->n_type = scope | N_ABS; 1339 nList->n_sect = NO_SECT; 1340 nList->n_value = defined->value; 1341 } else { 1342 nList->n_type = scope | N_SECT; 1343 nList->n_sect = defined->isec->parent->index; 1344 // For the N_SECT symbol type, n_value is the address of the symbol 1345 nList->n_value = defined->getVA(); 1346 } 1347 nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0; 1348 nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; 1349 nList->n_desc |= 1350 defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; 1351 } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) { 1352 uint16_t n_desc = nList->n_desc; 1353 int16_t ordinal = ordinalForDylibSymbol(*dysym); 1354 if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) 1355 SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL); 1356 else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) 1357 SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL); 1358 else { 1359 assert(ordinal > 0); 1360 SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal)); 1361 } 1362 1363 nList->n_type = N_EXT; 1364 n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; 1365 n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; 1366 nList->n_desc = n_desc; 1367 } 1368 ++nList; 1369 } 1370 } 1371 1372 template <class LP> 1373 SymtabSection * 1374 macho::makeSymtabSection(StringTableSection &stringTableSection) { 1375 return make<SymtabSectionImpl<LP>>(stringTableSection); 1376 } 1377 1378 IndirectSymtabSection::IndirectSymtabSection() 1379 : LinkEditSection(segment_names::linkEdit, 1380 section_names::indirectSymbolTable) {} 1381 1382 uint32_t IndirectSymtabSection::getNumSymbols() const { 1383 uint32_t size = in.got->getEntries().size() + 1384 in.tlvPointers->getEntries().size() + 1385 in.stubs->getEntries().size(); 1386 if (!config->emitChainedFixups) 1387 size += in.stubs->getEntries().size(); 1388 return size; 1389 } 1390 1391 bool IndirectSymtabSection::isNeeded() const { 1392 return in.got->isNeeded() || in.tlvPointers->isNeeded() || 1393 in.stubs->isNeeded(); 1394 } 1395 1396 void IndirectSymtabSection::finalizeContents() { 1397 uint32_t off = 0; 1398 in.got->reserved1 = off; 1399 off += in.got->getEntries().size(); 1400 in.tlvPointers->reserved1 = off; 1401 off += in.tlvPointers->getEntries().size(); 1402 in.stubs->reserved1 = off; 1403 if (in.lazyPointers) { 1404 off += in.stubs->getEntries().size(); 1405 in.lazyPointers->reserved1 = off; 1406 } 1407 } 1408 1409 static uint32_t indirectValue(const Symbol *sym) { 1410 if (sym->symtabIndex == UINT32_MAX) 1411 return INDIRECT_SYMBOL_LOCAL; 1412 if (auto *defined = dyn_cast<Defined>(sym)) 1413 if (defined->privateExtern) 1414 return INDIRECT_SYMBOL_LOCAL; 1415 return sym->symtabIndex; 1416 } 1417 1418 void IndirectSymtabSection::writeTo(uint8_t *buf) const { 1419 uint32_t off = 0; 1420 for (const Symbol *sym : in.got->getEntries()) { 1421 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1422 ++off; 1423 } 1424 for (const Symbol *sym : in.tlvPointers->getEntries()) { 1425 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1426 ++off; 1427 } 1428 for (const Symbol *sym : in.stubs->getEntries()) { 1429 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1430 ++off; 1431 } 1432 1433 if (in.lazyPointers) { 1434 // There is a 1:1 correspondence between stubs and LazyPointerSection 1435 // entries. But giving __stubs and __la_symbol_ptr the same reserved1 1436 // (the offset into the indirect symbol table) so that they both refer 1437 // to the same range of offsets confuses `strip`, so write the stubs 1438 // symbol table offsets a second time. 1439 for (const Symbol *sym : in.stubs->getEntries()) { 1440 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1441 ++off; 1442 } 1443 } 1444 } 1445 1446 StringTableSection::StringTableSection() 1447 : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} 1448 1449 uint32_t StringTableSection::addString(StringRef str) { 1450 uint32_t strx = size; 1451 strings.push_back(str); // TODO: consider deduplicating strings 1452 size += str.size() + 1; // account for null terminator 1453 return strx; 1454 } 1455 1456 void StringTableSection::writeTo(uint8_t *buf) const { 1457 uint32_t off = 0; 1458 for (StringRef str : strings) { 1459 memcpy(buf + off, str.data(), str.size()); 1460 off += str.size() + 1; // account for null terminator 1461 } 1462 } 1463 1464 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0); 1465 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0); 1466 1467 CodeSignatureSection::CodeSignatureSection() 1468 : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { 1469 align = 16; // required by libstuff 1470 // FIXME: Consider using finalOutput instead of outputFile. 1471 fileName = config->outputFile; 1472 size_t slashIndex = fileName.rfind("/"); 1473 if (slashIndex != std::string::npos) 1474 fileName = fileName.drop_front(slashIndex + 1); 1475 1476 // NOTE: Any changes to these calculations should be repeated 1477 // in llvm-objcopy's MachOLayoutBuilder::layoutTail. 1478 allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1); 1479 fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); 1480 } 1481 1482 uint32_t CodeSignatureSection::getBlockCount() const { 1483 return (fileOff + blockSize - 1) / blockSize; 1484 } 1485 1486 uint64_t CodeSignatureSection::getRawSize() const { 1487 return allHeadersSize + getBlockCount() * hashSize; 1488 } 1489 1490 void CodeSignatureSection::writeHashes(uint8_t *buf) const { 1491 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1492 // MachOWriter::writeSignatureData. 1493 uint8_t *hashes = buf + fileOff + allHeadersSize; 1494 parallelFor(0, getBlockCount(), [&](size_t i) { 1495 sha256(buf + i * blockSize, 1496 std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize), 1497 hashes + i * hashSize); 1498 }); 1499 #if defined(__APPLE__) 1500 // This is macOS-specific work-around and makes no sense for any 1501 // other host OS. See https://openradar.appspot.com/FB8914231 1502 // 1503 // The macOS kernel maintains a signature-verification cache to 1504 // quickly validate applications at time of execve(2). The trouble 1505 // is that for the kernel creates the cache entry at the time of the 1506 // mmap(2) call, before we have a chance to write either the code to 1507 // sign or the signature header+hashes. The fix is to invalidate 1508 // all cached data associated with the output file, thus discarding 1509 // the bogus prematurely-cached signature. 1510 msync(buf, fileOff + getSize(), MS_INVALIDATE); 1511 #endif 1512 } 1513 1514 void CodeSignatureSection::writeTo(uint8_t *buf) const { 1515 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1516 // MachOWriter::writeSignatureData. 1517 uint32_t signatureSize = static_cast<uint32_t>(getSize()); 1518 auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); 1519 write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE); 1520 write32be(&superBlob->length, signatureSize); 1521 write32be(&superBlob->count, 1); 1522 auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); 1523 write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY); 1524 write32be(&blobIndex->offset, blobHeadersSize); 1525 auto *codeDirectory = 1526 reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); 1527 write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY); 1528 write32be(&codeDirectory->length, signatureSize - blobHeadersSize); 1529 write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG); 1530 write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED); 1531 write32be(&codeDirectory->hashOffset, 1532 sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); 1533 write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory)); 1534 codeDirectory->nSpecialSlots = 0; 1535 write32be(&codeDirectory->nCodeSlots, getBlockCount()); 1536 write32be(&codeDirectory->codeLimit, fileOff); 1537 codeDirectory->hashSize = static_cast<uint8_t>(hashSize); 1538 codeDirectory->hashType = kSecCodeSignatureHashSHA256; 1539 codeDirectory->platform = 0; 1540 codeDirectory->pageSize = blockSizeShift; 1541 codeDirectory->spare2 = 0; 1542 codeDirectory->scatterOffset = 0; 1543 codeDirectory->teamOffset = 0; 1544 codeDirectory->spare3 = 0; 1545 codeDirectory->codeLimit64 = 0; 1546 OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text); 1547 write64be(&codeDirectory->execSegBase, textSeg->fileOff); 1548 write64be(&codeDirectory->execSegLimit, textSeg->fileSize); 1549 write64be(&codeDirectory->execSegFlags, 1550 config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); 1551 auto *id = reinterpret_cast<char *>(&codeDirectory[1]); 1552 memcpy(id, fileName.begin(), fileName.size()); 1553 memset(id + fileName.size(), 0, fileNamePad); 1554 } 1555 1556 BitcodeBundleSection::BitcodeBundleSection() 1557 : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {} 1558 1559 class ErrorCodeWrapper { 1560 public: 1561 explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {} 1562 explicit ErrorCodeWrapper(int ec) : errorCode(ec) {} 1563 operator int() const { return errorCode; } 1564 1565 private: 1566 int errorCode; 1567 }; 1568 1569 #define CHECK_EC(exp) \ 1570 do { \ 1571 ErrorCodeWrapper ec(exp); \ 1572 if (ec) \ 1573 fatal(Twine("operation failed with error code ") + Twine(ec) + ": " + \ 1574 #exp); \ 1575 } while (0); 1576 1577 void BitcodeBundleSection::finalize() { 1578 #ifdef LLVM_HAVE_LIBXAR 1579 using namespace llvm::sys::fs; 1580 CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath)); 1581 1582 #pragma clang diagnostic push 1583 #pragma clang diagnostic ignored "-Wdeprecated-declarations" 1584 xar_t xar(xar_open(xarPath.data(), O_RDWR)); 1585 #pragma clang diagnostic pop 1586 if (!xar) 1587 fatal("failed to open XAR temporary file at " + xarPath); 1588 CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE)); 1589 // FIXME: add more data to XAR 1590 CHECK_EC(xar_close(xar)); 1591 1592 file_size(xarPath, xarSize); 1593 #endif // defined(LLVM_HAVE_LIBXAR) 1594 } 1595 1596 void BitcodeBundleSection::writeTo(uint8_t *buf) const { 1597 using namespace llvm::sys::fs; 1598 file_t handle = 1599 CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None), 1600 "failed to open XAR file"); 1601 std::error_code ec; 1602 mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly, 1603 xarSize, 0, ec); 1604 if (ec) 1605 fatal("failed to map XAR file"); 1606 memcpy(buf, xarMap.const_data(), xarSize); 1607 1608 closeFile(handle); 1609 remove(xarPath); 1610 } 1611 1612 CStringSection::CStringSection(const char *name) 1613 : SyntheticSection(segment_names::text, name) { 1614 flags = S_CSTRING_LITERALS; 1615 } 1616 1617 void CStringSection::addInput(CStringInputSection *isec) { 1618 isec->parent = this; 1619 inputs.push_back(isec); 1620 if (isec->align > align) 1621 align = isec->align; 1622 } 1623 1624 void CStringSection::writeTo(uint8_t *buf) const { 1625 for (const CStringInputSection *isec : inputs) { 1626 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1627 if (!piece.live) 1628 continue; 1629 StringRef string = isec->getStringRef(i); 1630 memcpy(buf + piece.outSecOff, string.data(), string.size()); 1631 } 1632 } 1633 } 1634 1635 void CStringSection::finalizeContents() { 1636 uint64_t offset = 0; 1637 for (CStringInputSection *isec : inputs) { 1638 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1639 if (!piece.live) 1640 continue; 1641 // See comment above DeduplicatedCStringSection for how alignment is 1642 // handled. 1643 uint32_t pieceAlign = 1 1644 << countTrailingZeros(isec->align | piece.inSecOff); 1645 offset = alignTo(offset, pieceAlign); 1646 piece.outSecOff = offset; 1647 isec->isFinal = true; 1648 StringRef string = isec->getStringRef(i); 1649 offset += string.size() + 1; // account for null terminator 1650 } 1651 } 1652 size = offset; 1653 } 1654 1655 // Mergeable cstring literals are found under the __TEXT,__cstring section. In 1656 // contrast to ELF, which puts strings that need different alignments into 1657 // different sections, clang's Mach-O backend puts them all in one section. 1658 // Strings that need to be aligned have the .p2align directive emitted before 1659 // them, which simply translates into zero padding in the object file. In other 1660 // words, we have to infer the desired alignment of these cstrings from their 1661 // addresses. 1662 // 1663 // We differ slightly from ld64 in how we've chosen to align these cstrings. 1664 // Both LLD and ld64 preserve the number of trailing zeros in each cstring's 1665 // address in the input object files. When deduplicating identical cstrings, 1666 // both linkers pick the cstring whose address has more trailing zeros, and 1667 // preserve the alignment of that address in the final binary. However, ld64 1668 // goes a step further and also preserves the offset of the cstring from the 1669 // last section-aligned address. I.e. if a cstring is at offset 18 in the 1670 // input, with a section alignment of 16, then both LLD and ld64 will ensure the 1671 // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also 1672 // ensure that the final address is of the form 16 * k + 2 for some k. 1673 // 1674 // Note that ld64's heuristic means that a dedup'ed cstring's final address is 1675 // dependent on the order of the input object files. E.g. if in addition to the 1676 // cstring at offset 18 above, we have a duplicate one in another file with a 1677 // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick 1678 // the cstring from the object file earlier on the command line (since both have 1679 // the same number of trailing zeros in their address). So the final cstring may 1680 // either be at some address `16 * k + 2` or at some address `2 * k`. 1681 // 1682 // I've opted not to follow this behavior primarily for implementation 1683 // simplicity, and secondarily to save a few more bytes. It's not clear to me 1684 // that preserving the section alignment + offset is ever necessary, and there 1685 // are many cases that are clearly redundant. In particular, if an x86_64 object 1686 // file contains some strings that are accessed via SIMD instructions, then the 1687 // .cstring section in the object file will be 16-byte-aligned (since SIMD 1688 // requires its operand addresses to be 16-byte aligned). However, there will 1689 // typically also be other cstrings in the same file that aren't used via SIMD 1690 // and don't need this alignment. They will be emitted at some arbitrary address 1691 // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16 1692 // % A`. 1693 void DeduplicatedCStringSection::finalizeContents() { 1694 // Find the largest alignment required for each string. 1695 for (const CStringInputSection *isec : inputs) { 1696 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1697 if (!piece.live) 1698 continue; 1699 auto s = isec->getCachedHashStringRef(i); 1700 assert(isec->align != 0); 1701 uint8_t trailingZeros = countTrailingZeros(isec->align | piece.inSecOff); 1702 auto it = stringOffsetMap.insert( 1703 std::make_pair(s, StringOffset(trailingZeros))); 1704 if (!it.second && it.first->second.trailingZeros < trailingZeros) 1705 it.first->second.trailingZeros = trailingZeros; 1706 } 1707 } 1708 1709 // Assign an offset for each string and save it to the corresponding 1710 // StringPieces for easy access. 1711 for (CStringInputSection *isec : inputs) { 1712 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1713 if (!piece.live) 1714 continue; 1715 auto s = isec->getCachedHashStringRef(i); 1716 auto it = stringOffsetMap.find(s); 1717 assert(it != stringOffsetMap.end()); 1718 StringOffset &offsetInfo = it->second; 1719 if (offsetInfo.outSecOff == UINT64_MAX) { 1720 offsetInfo.outSecOff = alignTo(size, 1ULL << offsetInfo.trailingZeros); 1721 size = 1722 offsetInfo.outSecOff + s.size() + 1; // account for null terminator 1723 } 1724 piece.outSecOff = offsetInfo.outSecOff; 1725 } 1726 isec->isFinal = true; 1727 } 1728 } 1729 1730 void DeduplicatedCStringSection::writeTo(uint8_t *buf) const { 1731 for (const auto &p : stringOffsetMap) { 1732 StringRef data = p.first.val(); 1733 uint64_t off = p.second.outSecOff; 1734 if (!data.empty()) 1735 memcpy(buf + off, data.data(), data.size()); 1736 } 1737 } 1738 1739 DeduplicatedCStringSection::StringOffset 1740 DeduplicatedCStringSection::getStringOffset(StringRef str) const { 1741 // StringPiece uses 31 bits to store the hashes, so we replicate that 1742 uint32_t hash = xxHash64(str) & 0x7fffffff; 1743 auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash)); 1744 assert(offset != stringOffsetMap.end() && 1745 "Looked-up strings should always exist in section"); 1746 return offset->second; 1747 } 1748 1749 // This section is actually emitted as __TEXT,__const by ld64, but clang may 1750 // emit input sections of that name, and LLD doesn't currently support mixing 1751 // synthetic and concat-type OutputSections. To work around this, I've given 1752 // our merged-literals section a different name. 1753 WordLiteralSection::WordLiteralSection() 1754 : SyntheticSection(segment_names::text, section_names::literals) { 1755 align = 16; 1756 } 1757 1758 void WordLiteralSection::addInput(WordLiteralInputSection *isec) { 1759 isec->parent = this; 1760 inputs.push_back(isec); 1761 } 1762 1763 void WordLiteralSection::finalizeContents() { 1764 for (WordLiteralInputSection *isec : inputs) { 1765 // We do all processing of the InputSection here, so it will be effectively 1766 // finalized. 1767 isec->isFinal = true; 1768 const uint8_t *buf = isec->data.data(); 1769 switch (sectionType(isec->getFlags())) { 1770 case S_4BYTE_LITERALS: { 1771 for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { 1772 if (!isec->isLive(off)) 1773 continue; 1774 uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); 1775 literal4Map.emplace(value, literal4Map.size()); 1776 } 1777 break; 1778 } 1779 case S_8BYTE_LITERALS: { 1780 for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { 1781 if (!isec->isLive(off)) 1782 continue; 1783 uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); 1784 literal8Map.emplace(value, literal8Map.size()); 1785 } 1786 break; 1787 } 1788 case S_16BYTE_LITERALS: { 1789 for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { 1790 if (!isec->isLive(off)) 1791 continue; 1792 UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); 1793 literal16Map.emplace(value, literal16Map.size()); 1794 } 1795 break; 1796 } 1797 default: 1798 llvm_unreachable("invalid literal section type"); 1799 } 1800 } 1801 } 1802 1803 void WordLiteralSection::writeTo(uint8_t *buf) const { 1804 // Note that we don't attempt to do any endianness conversion in addInput(), 1805 // so we don't do it here either -- just write out the original value, 1806 // byte-for-byte. 1807 for (const auto &p : literal16Map) 1808 memcpy(buf + p.second * 16, &p.first, 16); 1809 buf += literal16Map.size() * 16; 1810 1811 for (const auto &p : literal8Map) 1812 memcpy(buf + p.second * 8, &p.first, 8); 1813 buf += literal8Map.size() * 8; 1814 1815 for (const auto &p : literal4Map) 1816 memcpy(buf + p.second * 4, &p.first, 4); 1817 } 1818 1819 ObjCImageInfoSection::ObjCImageInfoSection() 1820 : SyntheticSection(segment_names::data, section_names::objCImageInfo) {} 1821 1822 ObjCImageInfoSection::ImageInfo 1823 ObjCImageInfoSection::parseImageInfo(const InputFile *file) { 1824 ImageInfo info; 1825 ArrayRef<uint8_t> data = file->objCImageInfo; 1826 // The image info struct has the following layout: 1827 // struct { 1828 // uint32_t version; 1829 // uint32_t flags; 1830 // }; 1831 if (data.size() < 8) { 1832 warn(toString(file) + ": invalid __objc_imageinfo size"); 1833 return info; 1834 } 1835 1836 auto *buf = reinterpret_cast<const uint32_t *>(data.data()); 1837 if (read32le(buf) != 0) { 1838 warn(toString(file) + ": invalid __objc_imageinfo version"); 1839 return info; 1840 } 1841 1842 uint32_t flags = read32le(buf + 1); 1843 info.swiftVersion = (flags >> 8) & 0xff; 1844 info.hasCategoryClassProperties = flags & 0x40; 1845 return info; 1846 } 1847 1848 static std::string swiftVersionString(uint8_t version) { 1849 switch (version) { 1850 case 1: 1851 return "1.0"; 1852 case 2: 1853 return "1.1"; 1854 case 3: 1855 return "2.0"; 1856 case 4: 1857 return "3.0"; 1858 case 5: 1859 return "4.0"; 1860 default: 1861 return ("0x" + Twine::utohexstr(version)).str(); 1862 } 1863 } 1864 1865 // Validate each object file's __objc_imageinfo and use them to generate the 1866 // image info for the output binary. Only two pieces of info are relevant: 1867 // 1. The Swift version (should be identical across inputs) 1868 // 2. `bool hasCategoryClassProperties` (true only if true for all inputs) 1869 void ObjCImageInfoSection::finalizeContents() { 1870 assert(files.size() != 0); // should have already been checked via isNeeded() 1871 1872 info.hasCategoryClassProperties = true; 1873 const InputFile *firstFile; 1874 for (auto file : files) { 1875 ImageInfo inputInfo = parseImageInfo(file); 1876 info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties; 1877 1878 // swiftVersion 0 means no Swift is present, so no version checking required 1879 if (inputInfo.swiftVersion == 0) 1880 continue; 1881 1882 if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) { 1883 error("Swift version mismatch: " + toString(firstFile) + " has version " + 1884 swiftVersionString(info.swiftVersion) + " but " + toString(file) + 1885 " has version " + swiftVersionString(inputInfo.swiftVersion)); 1886 } else { 1887 info.swiftVersion = inputInfo.swiftVersion; 1888 firstFile = file; 1889 } 1890 } 1891 } 1892 1893 void ObjCImageInfoSection::writeTo(uint8_t *buf) const { 1894 uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0; 1895 flags |= info.swiftVersion << 8; 1896 write32le(buf + 4, flags); 1897 } 1898 1899 InitOffsetsSection::InitOffsetsSection() 1900 : SyntheticSection(segment_names::text, section_names::initOffsets) { 1901 flags = S_INIT_FUNC_OFFSETS; 1902 align = 4; // This section contains 32-bit integers. 1903 } 1904 1905 uint64_t InitOffsetsSection::getSize() const { 1906 size_t count = 0; 1907 for (const ConcatInputSection *isec : sections) 1908 count += isec->relocs.size(); 1909 return count * sizeof(uint32_t); 1910 } 1911 1912 void InitOffsetsSection::writeTo(uint8_t *buf) const { 1913 // FIXME: Add function specified by -init when that argument is implemented. 1914 for (ConcatInputSection *isec : sections) { 1915 for (const Reloc &rel : isec->relocs) { 1916 const Symbol *referent = rel.referent.dyn_cast<Symbol *>(); 1917 assert(referent && "section relocation should have been rejected"); 1918 uint64_t offset = referent->getVA() - in.header->addr; 1919 // FIXME: Can we handle this gracefully? 1920 if (offset > UINT32_MAX) 1921 fatal(isec->getLocation(rel.offset) + ": offset to initializer " + 1922 referent->getName() + " (" + utohexstr(offset) + 1923 ") does not fit in 32 bits"); 1924 1925 // Entries need to be added in the order they appear in the section, but 1926 // relocations aren't guaranteed to be sorted. 1927 size_t index = rel.offset >> target->p2WordSize; 1928 write32le(&buf[index * sizeof(uint32_t)], offset); 1929 } 1930 buf += isec->relocs.size() * sizeof(uint32_t); 1931 } 1932 } 1933 1934 // The inputs are __mod_init_func sections, which contain pointers to 1935 // initializer functions, therefore all relocations should be of the UNSIGNED 1936 // type. InitOffsetsSection stores offsets, so if the initializer's address is 1937 // not known at link time, stub-indirection has to be used. 1938 void InitOffsetsSection::setUp() { 1939 for (const ConcatInputSection *isec : sections) { 1940 for (const Reloc &rel : isec->relocs) { 1941 RelocAttrs attrs = target->getRelocAttrs(rel.type); 1942 if (!attrs.hasAttr(RelocAttrBits::UNSIGNED)) 1943 error(isec->getLocation(rel.offset) + 1944 ": unsupported relocation type: " + attrs.name); 1945 if (rel.addend != 0) 1946 error(isec->getLocation(rel.offset) + 1947 ": relocation addend is not representable in __init_offsets"); 1948 if (rel.referent.is<InputSection *>()) 1949 error(isec->getLocation(rel.offset) + 1950 ": unexpected section relocation"); 1951 1952 Symbol *sym = rel.referent.dyn_cast<Symbol *>(); 1953 if (auto *undefined = dyn_cast<Undefined>(sym)) 1954 treatUndefinedSymbol(*undefined, isec, rel.offset); 1955 if (needsBinding(sym)) 1956 in.stubs->addEntry(sym); 1957 } 1958 } 1959 } 1960 1961 void macho::createSyntheticSymbols() { 1962 auto addHeaderSymbol = [](const char *name) { 1963 symtab->addSynthetic(name, in.header->isec, /*value=*/0, 1964 /*isPrivateExtern=*/true, /*includeInSymtab=*/false, 1965 /*referencedDynamically=*/false); 1966 }; 1967 1968 switch (config->outputType) { 1969 // FIXME: Assign the right address value for these symbols 1970 // (rather than 0). But we need to do that after assignAddresses(). 1971 case MH_EXECUTE: 1972 // If linking PIE, __mh_execute_header is a defined symbol in 1973 // __TEXT, __text) 1974 // Otherwise, it's an absolute symbol. 1975 if (config->isPic) 1976 symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0, 1977 /*isPrivateExtern=*/false, /*includeInSymtab=*/true, 1978 /*referencedDynamically=*/true); 1979 else 1980 symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0, 1981 /*isPrivateExtern=*/false, /*includeInSymtab=*/true, 1982 /*referencedDynamically=*/true); 1983 break; 1984 1985 // The following symbols are N_SECT symbols, even though the header is not 1986 // part of any section and that they are private to the bundle/dylib/object 1987 // they are part of. 1988 case MH_BUNDLE: 1989 addHeaderSymbol("__mh_bundle_header"); 1990 break; 1991 case MH_DYLIB: 1992 addHeaderSymbol("__mh_dylib_header"); 1993 break; 1994 case MH_DYLINKER: 1995 addHeaderSymbol("__mh_dylinker_header"); 1996 break; 1997 case MH_OBJECT: 1998 addHeaderSymbol("__mh_object_header"); 1999 break; 2000 default: 2001 llvm_unreachable("unexpected outputType"); 2002 break; 2003 } 2004 2005 // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit 2006 // which does e.g. cleanup of static global variables. The ABI document 2007 // says that the pointer can point to any address in one of the dylib's 2008 // segments, but in practice ld64 seems to set it to point to the header, 2009 // so that's what's implemented here. 2010 addHeaderSymbol("___dso_handle"); 2011 } 2012 2013 ChainedFixupsSection::ChainedFixupsSection() 2014 : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {} 2015 2016 bool ChainedFixupsSection::isNeeded() const { 2017 assert(config->emitChainedFixups); 2018 // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid 2019 // dyld_chained_fixups_header, so we create this section even if there aren't 2020 // any fixups. 2021 return true; 2022 } 2023 2024 static bool needsWeakBind(const Symbol &sym) { 2025 if (auto *dysym = dyn_cast<DylibSymbol>(&sym)) 2026 return dysym->isWeakDef(); 2027 if (auto *defined = dyn_cast<Defined>(&sym)) 2028 return defined->isExternalWeakDef(); 2029 return false; 2030 } 2031 2032 void ChainedFixupsSection::addBinding(const Symbol *sym, 2033 const InputSection *isec, uint64_t offset, 2034 int64_t addend) { 2035 locations.emplace_back(isec, offset); 2036 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; 2037 auto [it, inserted] = bindings.insert( 2038 {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())}); 2039 2040 if (inserted) { 2041 symtabSize += sym->getName().size() + 1; 2042 hasWeakBind = hasWeakBind || needsWeakBind(*sym); 2043 if (!isInt<23>(outlineAddend)) 2044 needsLargeAddend = true; 2045 else if (outlineAddend != 0) 2046 needsAddend = true; 2047 } 2048 } 2049 2050 std::pair<uint32_t, uint8_t> 2051 ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const { 2052 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; 2053 auto it = bindings.find({sym, outlineAddend}); 2054 assert(it != bindings.end() && "binding not found in the imports table"); 2055 if (outlineAddend == 0) 2056 return {it->second, addend}; 2057 return {it->second, 0}; 2058 } 2059 2060 static size_t writeImport(uint8_t *buf, int format, uint32_t libOrdinal, 2061 bool weakRef, uint32_t nameOffset, int64_t addend) { 2062 switch (format) { 2063 case DYLD_CHAINED_IMPORT: { 2064 auto *import = reinterpret_cast<dyld_chained_import *>(buf); 2065 import->lib_ordinal = libOrdinal; 2066 import->weak_import = weakRef; 2067 import->name_offset = nameOffset; 2068 return sizeof(dyld_chained_import); 2069 } 2070 case DYLD_CHAINED_IMPORT_ADDEND: { 2071 auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf); 2072 import->lib_ordinal = libOrdinal; 2073 import->weak_import = weakRef; 2074 import->name_offset = nameOffset; 2075 import->addend = addend; 2076 return sizeof(dyld_chained_import_addend); 2077 } 2078 case DYLD_CHAINED_IMPORT_ADDEND64: { 2079 auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf); 2080 import->lib_ordinal = libOrdinal; 2081 import->weak_import = weakRef; 2082 import->name_offset = nameOffset; 2083 import->addend = addend; 2084 return sizeof(dyld_chained_import_addend64); 2085 } 2086 default: 2087 llvm_unreachable("Unknown import format"); 2088 } 2089 } 2090 2091 size_t ChainedFixupsSection::SegmentInfo::getSize() const { 2092 assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?"); 2093 return alignTo<8>(sizeof(dyld_chained_starts_in_segment) + 2094 pageStarts.back().first * sizeof(uint16_t)); 2095 } 2096 2097 size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const { 2098 auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf); 2099 segInfo->size = getSize(); 2100 segInfo->page_size = target->getPageSize(); 2101 // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions. 2102 segInfo->pointer_format = DYLD_CHAINED_PTR_64; 2103 segInfo->segment_offset = oseg->addr - in.header->addr; 2104 segInfo->max_valid_pointer = 0; // not used on 64-bit 2105 segInfo->page_count = pageStarts.back().first + 1; 2106 2107 uint16_t *starts = segInfo->page_start; 2108 for (size_t i = 0; i < segInfo->page_count; ++i) 2109 starts[i] = DYLD_CHAINED_PTR_START_NONE; 2110 2111 for (auto [pageIdx, startAddr] : pageStarts) 2112 starts[pageIdx] = startAddr; 2113 return segInfo->size; 2114 } 2115 2116 static size_t importEntrySize(int format) { 2117 switch (format) { 2118 case DYLD_CHAINED_IMPORT: 2119 return sizeof(dyld_chained_import); 2120 case DYLD_CHAINED_IMPORT_ADDEND: 2121 return sizeof(dyld_chained_import_addend); 2122 case DYLD_CHAINED_IMPORT_ADDEND64: 2123 return sizeof(dyld_chained_import_addend64); 2124 default: 2125 llvm_unreachable("Unknown import format"); 2126 } 2127 } 2128 2129 // This is step 3 of the algorithm described in the class comment of 2130 // ChainedFixupsSection. 2131 // 2132 // LC_DYLD_CHAINED_FIXUPS data consists of (in this order): 2133 // * A dyld_chained_fixups_header 2134 // * A dyld_chained_starts_in_image 2135 // * One dyld_chained_starts_in_segment per segment 2136 // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or 2137 // dyld_chained_import_addend64) 2138 // * Names of imported symbols 2139 void ChainedFixupsSection::writeTo(uint8_t *buf) const { 2140 auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf); 2141 header->fixups_version = 0; 2142 header->imports_count = bindings.size(); 2143 header->imports_format = importFormat; 2144 header->symbols_format = 0; 2145 2146 buf += alignTo<8>(sizeof(*header)); 2147 2148 auto curOffset = [&buf, &header]() -> uint32_t { 2149 return buf - reinterpret_cast<uint8_t *>(header); 2150 }; 2151 2152 header->starts_offset = curOffset(); 2153 2154 auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf); 2155 imageInfo->seg_count = outputSegments.size(); 2156 uint32_t *segStarts = imageInfo->seg_info_offset; 2157 2158 // dyld_chained_starts_in_image ends in a flexible array member containing an 2159 // uint32_t for each segment. Leave room for it, and fill it via segStarts. 2160 buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + 2161 outputSegments.size() * sizeof(uint32_t)); 2162 2163 // Initialize all offsets to 0, which indicates that the segment does not have 2164 // fixups. Those that do have them will be filled in below. 2165 for (size_t i = 0; i < outputSegments.size(); ++i) 2166 segStarts[i] = 0; 2167 2168 for (const SegmentInfo &seg : fixupSegments) { 2169 segStarts[seg.oseg->index] = curOffset() - header->starts_offset; 2170 buf += seg.writeTo(buf); 2171 } 2172 2173 // Write imports table. 2174 header->imports_offset = curOffset(); 2175 uint64_t nameOffset = 0; 2176 for (auto [import, idx] : bindings) { 2177 const Symbol &sym = *import.first; 2178 int16_t libOrdinal = needsWeakBind(sym) 2179 ? (int64_t)BIND_SPECIAL_DYLIB_WEAK_LOOKUP 2180 : ordinalForSymbol(sym); 2181 buf += writeImport(buf, importFormat, libOrdinal, sym.isWeakRef(), 2182 nameOffset, import.second); 2183 nameOffset += sym.getName().size() + 1; 2184 } 2185 2186 // Write imported symbol names. 2187 header->symbols_offset = curOffset(); 2188 for (auto [import, idx] : bindings) { 2189 StringRef name = import.first->getName(); 2190 memcpy(buf, name.data(), name.size()); 2191 buf += name.size() + 1; // account for null terminator 2192 } 2193 2194 assert(curOffset() == getRawSize()); 2195 } 2196 2197 // This is step 2 of the algorithm described in the class comment of 2198 // ChainedFixupsSection. 2199 void ChainedFixupsSection::finalizeContents() { 2200 assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); 2201 assert(config->emitChainedFixups); 2202 2203 if (!isUInt<32>(symtabSize)) 2204 error("cannot encode chained fixups: imported symbols table size " + 2205 Twine(symtabSize) + " exceeds 4 GiB"); 2206 2207 if (needsLargeAddend || !isUInt<23>(symtabSize)) 2208 importFormat = DYLD_CHAINED_IMPORT_ADDEND64; 2209 else if (needsAddend) 2210 importFormat = DYLD_CHAINED_IMPORT_ADDEND; 2211 else 2212 importFormat = DYLD_CHAINED_IMPORT; 2213 2214 for (Location &loc : locations) 2215 loc.offset = 2216 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset); 2217 2218 llvm::sort(locations, [](const Location &a, const Location &b) { 2219 const OutputSegment *segA = a.isec->parent->parent; 2220 const OutputSegment *segB = b.isec->parent->parent; 2221 if (segA == segB) 2222 return a.offset < b.offset; 2223 return segA->addr < segB->addr; 2224 }); 2225 2226 auto sameSegment = [](const Location &a, const Location &b) { 2227 return a.isec->parent->parent == b.isec->parent->parent; 2228 }; 2229 2230 const uint64_t pageSize = target->getPageSize(); 2231 for (size_t i = 0, count = locations.size(); i < count;) { 2232 const Location &firstLoc = locations[i]; 2233 fixupSegments.emplace_back(firstLoc.isec->parent->parent); 2234 while (i < count && sameSegment(locations[i], firstLoc)) { 2235 uint32_t pageIdx = locations[i].offset / pageSize; 2236 fixupSegments.back().pageStarts.emplace_back( 2237 pageIdx, locations[i].offset % pageSize); 2238 ++i; 2239 while (i < count && sameSegment(locations[i], firstLoc) && 2240 locations[i].offset / pageSize == pageIdx) 2241 ++i; 2242 } 2243 } 2244 2245 // Compute expected encoded size. 2246 size = alignTo<8>(sizeof(dyld_chained_fixups_header)); 2247 size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + 2248 outputSegments.size() * sizeof(uint32_t)); 2249 for (const SegmentInfo &seg : fixupSegments) 2250 size += seg.getSize(); 2251 size += importEntrySize(importFormat) * bindings.size(); 2252 size += symtabSize; 2253 } 2254 2255 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); 2256 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); 2257