xref: /freebsd/contrib/llvm-project/lld/MachO/SyntheticSections.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===- SyntheticSections.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SyntheticSections.h"
10 #include "ConcatOutputSection.h"
11 #include "Config.h"
12 #include "ExportTrie.h"
13 #include "InputFiles.h"
14 #include "MachOStructs.h"
15 #include "ObjC.h"
16 #include "OutputSegment.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 
20 #include "lld/Common/CommonLinkerContext.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/EndianStream.h"
24 #include "llvm/Support/FileSystem.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/Parallel.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/xxhash.h"
29 
30 #if defined(__APPLE__)
31 #include <sys/mman.h>
32 
33 #define COMMON_DIGEST_FOR_OPENSSL
34 #include <CommonCrypto/CommonDigest.h>
35 #else
36 #include "llvm/Support/SHA256.h"
37 #endif
38 
39 using namespace llvm;
40 using namespace llvm::MachO;
41 using namespace llvm::support;
42 using namespace llvm::support::endian;
43 using namespace lld;
44 using namespace lld::macho;
45 
46 // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
47 static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
48 #if defined(__APPLE__)
49   // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
50   // for some notes on this.
51   CC_SHA256(data, len, output);
52 #else
53   ArrayRef<uint8_t> block(data, len);
54   std::array<uint8_t, 32> hash = SHA256::hash(block);
55   static_assert(hash.size() == CodeSignatureSection::hashSize);
56   memcpy(output, hash.data(), hash.size());
57 #endif
58 }
59 
60 InStruct macho::in;
61 std::vector<SyntheticSection *> macho::syntheticSections;
62 
63 SyntheticSection::SyntheticSection(const char *segname, const char *name)
64     : OutputSection(SyntheticKind, name) {
65   std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
66   isec = makeSyntheticInputSection(segname, name);
67   isec->parent = this;
68   syntheticSections.push_back(this);
69 }
70 
71 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
72 // from the beginning of the file (i.e. the header).
73 MachHeaderSection::MachHeaderSection()
74     : SyntheticSection(segment_names::text, section_names::header) {
75   // XXX: This is a hack. (See D97007)
76   // Setting the index to 1 to pretend that this section is the text
77   // section.
78   index = 1;
79   isec->isFinal = true;
80 }
81 
82 void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
83   loadCommands.push_back(lc);
84   sizeOfCmds += lc->getSize();
85 }
86 
87 uint64_t MachHeaderSection::getSize() const {
88   uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
89   // If we are emitting an encryptable binary, our load commands must have a
90   // separate (non-encrypted) page to themselves.
91   if (config->emitEncryptionInfo)
92     size = alignToPowerOf2(size, target->getPageSize());
93   return size;
94 }
95 
96 static uint32_t cpuSubtype() {
97   uint32_t subtype = target->cpuSubtype;
98 
99   if (config->outputType == MH_EXECUTE && !config->staticLink &&
100       target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
101       config->platform() == PLATFORM_MACOS &&
102       config->platformInfo.target.MinDeployment >= VersionTuple(10, 5))
103     subtype |= CPU_SUBTYPE_LIB64;
104 
105   return subtype;
106 }
107 
108 static bool hasWeakBinding() {
109   return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding()
110                                    : in.weakBinding->hasEntry();
111 }
112 
113 static bool hasNonWeakDefinition() {
114   return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition()
115                                    : in.weakBinding->hasNonWeakDefinition();
116 }
117 
118 void MachHeaderSection::writeTo(uint8_t *buf) const {
119   auto *hdr = reinterpret_cast<mach_header *>(buf);
120   hdr->magic = target->magic;
121   hdr->cputype = target->cpuType;
122   hdr->cpusubtype = cpuSubtype();
123   hdr->filetype = config->outputType;
124   hdr->ncmds = loadCommands.size();
125   hdr->sizeofcmds = sizeOfCmds;
126   hdr->flags = MH_DYLDLINK;
127 
128   if (config->namespaceKind == NamespaceKind::twolevel)
129     hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
130 
131   if (config->outputType == MH_DYLIB && !config->hasReexports)
132     hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
133 
134   if (config->markDeadStrippableDylib)
135     hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
136 
137   if (config->outputType == MH_EXECUTE && config->isPic)
138     hdr->flags |= MH_PIE;
139 
140   if (config->outputType == MH_DYLIB && config->applicationExtension)
141     hdr->flags |= MH_APP_EXTENSION_SAFE;
142 
143   if (in.exports->hasWeakSymbol || hasNonWeakDefinition())
144     hdr->flags |= MH_WEAK_DEFINES;
145 
146   if (in.exports->hasWeakSymbol || hasWeakBinding())
147     hdr->flags |= MH_BINDS_TO_WEAK;
148 
149   for (const OutputSegment *seg : outputSegments) {
150     for (const OutputSection *osec : seg->getSections()) {
151       if (isThreadLocalVariables(osec->flags)) {
152         hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
153         break;
154       }
155     }
156   }
157 
158   uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
159   for (const LoadCommand *lc : loadCommands) {
160     lc->writeTo(p);
161     p += lc->getSize();
162   }
163 }
164 
165 PageZeroSection::PageZeroSection()
166     : SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
167 
168 RebaseSection::RebaseSection()
169     : LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
170 
171 namespace {
172 struct RebaseState {
173   uint64_t sequenceLength;
174   uint64_t skipLength;
175 };
176 } // namespace
177 
178 static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
179   assert(incr != 0);
180 
181   if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
182       (incr % target->wordSize) == 0) {
183     os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
184                                (incr >> target->p2WordSize));
185   } else {
186     os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
187     encodeULEB128(incr, os);
188   }
189 }
190 
191 static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
192   assert(state.sequenceLength > 0);
193 
194   if (state.skipLength == target->wordSize) {
195     if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
196       os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
197                                  state.sequenceLength);
198     } else {
199       os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
200       encodeULEB128(state.sequenceLength, os);
201     }
202   } else if (state.sequenceLength == 1) {
203     os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
204     encodeULEB128(state.skipLength - target->wordSize, os);
205   } else {
206     os << static_cast<uint8_t>(
207         REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
208     encodeULEB128(state.sequenceLength, os);
209     encodeULEB128(state.skipLength - target->wordSize, os);
210   }
211 }
212 
213 // Rebases are communicated to dyld using a bytecode, whose opcodes cause the
214 // memory location at a specific address to be rebased and/or the address to be
215 // incremented.
216 //
217 // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
218 // one, encoding a series of evenly spaced addresses. This algorithm works by
219 // splitting up the sorted list of addresses into such chunks. If the locations
220 // are consecutive or the sequence consists of a single location, flushRebase
221 // will use a smaller, more specialized encoding.
222 static void encodeRebases(const OutputSegment *seg,
223                           MutableArrayRef<Location> locations,
224                           raw_svector_ostream &os) {
225   // dyld operates on segments. Translate section offsets into segment offsets.
226   for (Location &loc : locations)
227     loc.offset =
228         loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
229   // The algorithm assumes that locations are unique.
230   Location *end =
231       llvm::unique(locations, [](const Location &a, const Location &b) {
232         return a.offset == b.offset;
233       });
234   size_t count = end - locations.begin();
235 
236   os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
237                              seg->index);
238   assert(!locations.empty());
239   uint64_t offset = locations[0].offset;
240   encodeULEB128(offset, os);
241 
242   RebaseState state{1, target->wordSize};
243 
244   for (size_t i = 1; i < count; ++i) {
245     offset = locations[i].offset;
246 
247     uint64_t skip = offset - locations[i - 1].offset;
248     assert(skip != 0 && "duplicate locations should have been weeded out");
249 
250     if (skip == state.skipLength) {
251       ++state.sequenceLength;
252     } else if (state.sequenceLength == 1) {
253       ++state.sequenceLength;
254       state.skipLength = skip;
255     } else if (skip < state.skipLength) {
256       // The address is lower than what the rebase pointer would be if the last
257       // location would be part of a sequence. We start a new sequence from the
258       // previous location.
259       --state.sequenceLength;
260       flushRebase(state, os);
261 
262       state.sequenceLength = 2;
263       state.skipLength = skip;
264     } else {
265       // The address is at some positive offset from the rebase pointer. We
266       // start a new sequence which begins with the current location.
267       flushRebase(state, os);
268       emitIncrement(skip - state.skipLength, os);
269       state.sequenceLength = 1;
270       state.skipLength = target->wordSize;
271     }
272   }
273   flushRebase(state, os);
274 }
275 
276 void RebaseSection::finalizeContents() {
277   if (locations.empty())
278     return;
279 
280   raw_svector_ostream os{contents};
281   os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
282 
283   llvm::sort(locations, [](const Location &a, const Location &b) {
284     return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
285   });
286 
287   for (size_t i = 0, count = locations.size(); i < count;) {
288     const OutputSegment *seg = locations[i].isec->parent->parent;
289     size_t j = i + 1;
290     while (j < count && locations[j].isec->parent->parent == seg)
291       ++j;
292     encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
293     i = j;
294   }
295   os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
296 }
297 
298 void RebaseSection::writeTo(uint8_t *buf) const {
299   memcpy(buf, contents.data(), contents.size());
300 }
301 
302 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
303                                                      const char *name)
304     : SyntheticSection(segname, name) {
305   align = target->wordSize;
306 }
307 
308 void macho::addNonLazyBindingEntries(const Symbol *sym,
309                                      const InputSection *isec, uint64_t offset,
310                                      int64_t addend) {
311   if (config->emitChainedFixups) {
312     if (needsBinding(sym))
313       in.chainedFixups->addBinding(sym, isec, offset, addend);
314     else if (isa<Defined>(sym))
315       in.chainedFixups->addRebase(isec, offset);
316     else
317       llvm_unreachable("cannot bind to an undefined symbol");
318     return;
319   }
320 
321   if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
322     in.binding->addEntry(dysym, isec, offset, addend);
323     if (dysym->isWeakDef())
324       in.weakBinding->addEntry(sym, isec, offset, addend);
325   } else if (const auto *defined = dyn_cast<Defined>(sym)) {
326     in.rebase->addEntry(isec, offset);
327     if (defined->isExternalWeakDef())
328       in.weakBinding->addEntry(sym, isec, offset, addend);
329     else if (defined->interposable)
330       in.binding->addEntry(sym, isec, offset, addend);
331   } else {
332     // Undefined symbols are filtered out in scanRelocations(); we should never
333     // get here
334     llvm_unreachable("cannot bind to an undefined symbol");
335   }
336 }
337 
338 void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
339   if (entries.insert(sym)) {
340     assert(!sym->isInGot());
341     sym->gotIndex = entries.size() - 1;
342 
343     addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
344   }
345 }
346 
347 void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) {
348   assert(config->emitChainedFixups);
349   assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
350   auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf);
351   rebase->target = targetVA & 0xf'ffff'ffff;
352   rebase->high8 = (targetVA >> 56);
353   rebase->reserved = 0;
354   rebase->next = 0;
355   rebase->bind = 0;
356 
357   // The fixup format places a 64 GiB limit on the output's size.
358   // Should we handle this gracefully?
359   uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56);
360   if (encodedVA != targetVA)
361     error("rebase target address 0x" + Twine::utohexstr(targetVA) +
362           " does not fit into chained fixup. Re-link with -no_fixup_chains");
363 }
364 
365 static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) {
366   assert(config->emitChainedFixups);
367   assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
368   auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf);
369   auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend);
370   bind->ordinal = ordinal;
371   bind->addend = inlineAddend;
372   bind->reserved = 0;
373   bind->next = 0;
374   bind->bind = 1;
375 }
376 
377 void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) {
378   if (needsBinding(sym))
379     writeChainedBind(buf, sym, addend);
380   else
381     writeChainedRebase(buf, sym->getVA() + addend);
382 }
383 
384 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
385   if (config->emitChainedFixups) {
386     for (const auto &[i, entry] : llvm::enumerate(entries))
387       writeChainedFixup(&buf[i * target->wordSize], entry, 0);
388   } else {
389     for (const auto &[i, entry] : llvm::enumerate(entries))
390       if (auto *defined = dyn_cast<Defined>(entry))
391         write64le(&buf[i * target->wordSize], defined->getVA());
392   }
393 }
394 
395 GotSection::GotSection()
396     : NonLazyPointerSectionBase(segment_names::data, section_names::got) {
397   flags = S_NON_LAZY_SYMBOL_POINTERS;
398 }
399 
400 TlvPointerSection::TlvPointerSection()
401     : NonLazyPointerSectionBase(segment_names::data,
402                                 section_names::threadPtrs) {
403   flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
404 }
405 
406 BindingSection::BindingSection()
407     : LinkEditSection(segment_names::linkEdit, section_names::binding) {}
408 
409 namespace {
410 struct Binding {
411   OutputSegment *segment = nullptr;
412   uint64_t offset = 0;
413   int64_t addend = 0;
414 };
415 struct BindIR {
416   // Default value of 0xF0 is not valid opcode and should make the program
417   // scream instead of accidentally writing "valid" values.
418   uint8_t opcode = 0xF0;
419   uint64_t data = 0;
420   uint64_t consecutiveCount = 0;
421 };
422 } // namespace
423 
424 // Encode a sequence of opcodes that tell dyld to write the address of symbol +
425 // addend at osec->addr + outSecOff.
426 //
427 // The bind opcode "interpreter" remembers the values of each binding field, so
428 // we only need to encode the differences between bindings. Hence the use of
429 // lastBinding.
430 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
431                           int64_t addend, Binding &lastBinding,
432                           std::vector<BindIR> &opcodes) {
433   OutputSegment *seg = osec->parent;
434   uint64_t offset = osec->getSegmentOffset() + outSecOff;
435   if (lastBinding.segment != seg) {
436     opcodes.push_back(
437         {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
438                               seg->index),
439          offset});
440     lastBinding.segment = seg;
441     lastBinding.offset = offset;
442   } else if (lastBinding.offset != offset) {
443     opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
444     lastBinding.offset = offset;
445   }
446 
447   if (lastBinding.addend != addend) {
448     opcodes.push_back(
449         {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
450     lastBinding.addend = addend;
451   }
452 
453   opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
454   // DO_BIND causes dyld to both perform the binding and increment the offset
455   lastBinding.offset += target->wordSize;
456 }
457 
458 static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
459   // Pass 1: Combine bind/add pairs
460   size_t i;
461   int pWrite = 0;
462   for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
463     if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
464         (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
465       opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
466       opcodes[pWrite].data = opcodes[i].data;
467       ++i;
468     } else {
469       opcodes[pWrite] = opcodes[i - 1];
470     }
471   }
472   if (i == opcodes.size())
473     opcodes[pWrite] = opcodes[i - 1];
474   opcodes.resize(pWrite + 1);
475 
476   // Pass 2: Compress two or more bind_add opcodes
477   pWrite = 0;
478   for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
479     if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
480         (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
481         (opcodes[i].data == opcodes[i - 1].data)) {
482       opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
483       opcodes[pWrite].consecutiveCount = 2;
484       opcodes[pWrite].data = opcodes[i].data;
485       ++i;
486       while (i < opcodes.size() &&
487              (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
488              (opcodes[i].data == opcodes[i - 1].data)) {
489         opcodes[pWrite].consecutiveCount++;
490         ++i;
491       }
492     } else {
493       opcodes[pWrite] = opcodes[i - 1];
494     }
495   }
496   if (i == opcodes.size())
497     opcodes[pWrite] = opcodes[i - 1];
498   opcodes.resize(pWrite + 1);
499 
500   // Pass 3: Use immediate encodings
501   // Every binding is the size of one pointer. If the next binding is a
502   // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
503   // opcode can be scaled by wordSize into a single byte and dyld will
504   // expand it to the correct address.
505   for (auto &p : opcodes) {
506     // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
507     // but ld64 currently does this. This could be a potential bug, but
508     // for now, perform the same behavior to prevent mysterious bugs.
509     if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
510         ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
511         ((p.data % target->wordSize) == 0)) {
512       p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
513       p.data /= target->wordSize;
514     }
515   }
516 }
517 
518 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
519   uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
520   switch (opcode) {
521   case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
522   case BIND_OPCODE_ADD_ADDR_ULEB:
523   case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
524     os << op.opcode;
525     encodeULEB128(op.data, os);
526     break;
527   case BIND_OPCODE_SET_ADDEND_SLEB:
528     os << op.opcode;
529     encodeSLEB128(static_cast<int64_t>(op.data), os);
530     break;
531   case BIND_OPCODE_DO_BIND:
532     os << op.opcode;
533     break;
534   case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
535     os << op.opcode;
536     encodeULEB128(op.consecutiveCount, os);
537     encodeULEB128(op.data, os);
538     break;
539   case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
540     os << static_cast<uint8_t>(op.opcode | op.data);
541     break;
542   default:
543     llvm_unreachable("cannot bind to an unrecognized symbol");
544   }
545 }
546 
547 static bool needsWeakBind(const Symbol &sym) {
548   if (auto *dysym = dyn_cast<DylibSymbol>(&sym))
549     return dysym->isWeakDef();
550   if (auto *defined = dyn_cast<Defined>(&sym))
551     return defined->isExternalWeakDef();
552   return false;
553 }
554 
555 // Non-weak bindings need to have their dylib ordinal encoded as well.
556 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
557   if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
558     return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
559   assert(dysym.getFile()->isReferenced());
560   return dysym.getFile()->ordinal;
561 }
562 
563 static int16_t ordinalForSymbol(const Symbol &sym) {
564   if (config->emitChainedFixups && needsWeakBind(sym))
565     return BIND_SPECIAL_DYLIB_WEAK_LOOKUP;
566   if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
567     return ordinalForDylibSymbol(*dysym);
568   assert(cast<Defined>(&sym)->interposable);
569   return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
570 }
571 
572 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
573   if (ordinal <= 0) {
574     os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
575                                (ordinal & BIND_IMMEDIATE_MASK));
576   } else if (ordinal <= BIND_IMMEDIATE_MASK) {
577     os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
578   } else {
579     os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
580     encodeULEB128(ordinal, os);
581   }
582 }
583 
584 static void encodeWeakOverride(const Defined *defined,
585                                raw_svector_ostream &os) {
586   os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
587                              BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
588      << defined->getName() << '\0';
589 }
590 
591 // Organize the bindings so we can encoded them with fewer opcodes.
592 //
593 // First, all bindings for a given symbol should be grouped together.
594 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
595 // has an associated symbol string), so we only want to emit it once per symbol.
596 //
597 // Within each group, we sort the bindings by address. Since bindings are
598 // delta-encoded, sorting them allows for a more compact result. Note that
599 // sorting by address alone ensures that bindings for the same segment / section
600 // are located together, minimizing the number of times we have to emit
601 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
602 //
603 // Finally, we sort the symbols by the address of their first binding, again
604 // to facilitate the delta-encoding process.
605 template <class Sym>
606 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
607 sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
608   std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
609       bindingsMap.begin(), bindingsMap.end());
610   for (auto &p : bindingsVec) {
611     std::vector<BindingEntry> &bindings = p.second;
612     llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
613       return a.target.getVA() < b.target.getVA();
614     });
615   }
616   llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
617     return a.second[0].target.getVA() < b.second[0].target.getVA();
618   });
619   return bindingsVec;
620 }
621 
622 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
623 // interprets to update a record with the following fields:
624 //  * segment index (of the segment to write the symbol addresses to, typically
625 //    the __DATA_CONST segment which contains the GOT)
626 //  * offset within the segment, indicating the next location to write a binding
627 //  * symbol type
628 //  * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
629 //  * symbol name
630 //  * addend
631 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
632 // a symbol in the GOT, and increments the segment offset to point to the next
633 // entry. It does *not* clear the record state after doing the bind, so
634 // subsequent opcodes only need to encode the differences between bindings.
635 void BindingSection::finalizeContents() {
636   raw_svector_ostream os{contents};
637   Binding lastBinding;
638   int16_t lastOrdinal = 0;
639 
640   for (auto &p : sortBindings(bindingsMap)) {
641     const Symbol *sym = p.first;
642     std::vector<BindingEntry> &bindings = p.second;
643     uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
644     if (sym->isWeakRef())
645       flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
646     os << flags << sym->getName() << '\0'
647        << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
648     int16_t ordinal = ordinalForSymbol(*sym);
649     if (ordinal != lastOrdinal) {
650       encodeDylibOrdinal(ordinal, os);
651       lastOrdinal = ordinal;
652     }
653     std::vector<BindIR> opcodes;
654     for (const BindingEntry &b : bindings)
655       encodeBinding(b.target.isec->parent,
656                     b.target.isec->getOffset(b.target.offset), b.addend,
657                     lastBinding, opcodes);
658     if (config->optimize > 1)
659       optimizeOpcodes(opcodes);
660     for (const auto &op : opcodes)
661       flushOpcodes(op, os);
662   }
663   if (!bindingsMap.empty())
664     os << static_cast<uint8_t>(BIND_OPCODE_DONE);
665 }
666 
667 void BindingSection::writeTo(uint8_t *buf) const {
668   memcpy(buf, contents.data(), contents.size());
669 }
670 
671 WeakBindingSection::WeakBindingSection()
672     : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
673 
674 void WeakBindingSection::finalizeContents() {
675   raw_svector_ostream os{contents};
676   Binding lastBinding;
677 
678   for (const Defined *defined : definitions)
679     encodeWeakOverride(defined, os);
680 
681   for (auto &p : sortBindings(bindingsMap)) {
682     const Symbol *sym = p.first;
683     std::vector<BindingEntry> &bindings = p.second;
684     os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
685        << sym->getName() << '\0'
686        << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
687     std::vector<BindIR> opcodes;
688     for (const BindingEntry &b : bindings)
689       encodeBinding(b.target.isec->parent,
690                     b.target.isec->getOffset(b.target.offset), b.addend,
691                     lastBinding, opcodes);
692     if (config->optimize > 1)
693       optimizeOpcodes(opcodes);
694     for (const auto &op : opcodes)
695       flushOpcodes(op, os);
696   }
697   if (!bindingsMap.empty() || !definitions.empty())
698     os << static_cast<uint8_t>(BIND_OPCODE_DONE);
699 }
700 
701 void WeakBindingSection::writeTo(uint8_t *buf) const {
702   memcpy(buf, contents.data(), contents.size());
703 }
704 
705 StubsSection::StubsSection()
706     : SyntheticSection(segment_names::text, section_names::stubs) {
707   flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
708   // The stubs section comprises machine instructions, which are aligned to
709   // 4 bytes on the archs we care about.
710   align = 4;
711   reserved2 = target->stubSize;
712 }
713 
714 uint64_t StubsSection::getSize() const {
715   return entries.size() * target->stubSize;
716 }
717 
718 void StubsSection::writeTo(uint8_t *buf) const {
719   size_t off = 0;
720   for (const Symbol *sym : entries) {
721     uint64_t pointerVA =
722         config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA();
723     target->writeStub(buf + off, *sym, pointerVA);
724     off += target->stubSize;
725   }
726 }
727 
728 void StubsSection::finalize() { isFinal = true; }
729 
730 static void addBindingsForStub(Symbol *sym) {
731   assert(!config->emitChainedFixups);
732   if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
733     if (sym->isWeakDef()) {
734       in.binding->addEntry(dysym, in.lazyPointers->isec,
735                            sym->stubsIndex * target->wordSize);
736       in.weakBinding->addEntry(sym, in.lazyPointers->isec,
737                                sym->stubsIndex * target->wordSize);
738     } else {
739       in.lazyBinding->addEntry(dysym);
740     }
741   } else if (auto *defined = dyn_cast<Defined>(sym)) {
742     if (defined->isExternalWeakDef()) {
743       in.rebase->addEntry(in.lazyPointers->isec,
744                           sym->stubsIndex * target->wordSize);
745       in.weakBinding->addEntry(sym, in.lazyPointers->isec,
746                                sym->stubsIndex * target->wordSize);
747     } else if (defined->interposable) {
748       in.lazyBinding->addEntry(sym);
749     } else {
750       llvm_unreachable("invalid stub target");
751     }
752   } else {
753     llvm_unreachable("invalid stub target symbol type");
754   }
755 }
756 
757 void StubsSection::addEntry(Symbol *sym) {
758   bool inserted = entries.insert(sym);
759   if (inserted) {
760     sym->stubsIndex = entries.size() - 1;
761 
762     if (config->emitChainedFixups)
763       in.got->addEntry(sym);
764     else
765       addBindingsForStub(sym);
766   }
767 }
768 
769 StubHelperSection::StubHelperSection()
770     : SyntheticSection(segment_names::text, section_names::stubHelper) {
771   flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
772   align = 4; // This section comprises machine instructions
773 }
774 
775 uint64_t StubHelperSection::getSize() const {
776   return target->stubHelperHeaderSize +
777          in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
778 }
779 
780 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
781 
782 void StubHelperSection::writeTo(uint8_t *buf) const {
783   target->writeStubHelperHeader(buf);
784   size_t off = target->stubHelperHeaderSize;
785   for (const Symbol *sym : in.lazyBinding->getEntries()) {
786     target->writeStubHelperEntry(buf + off, *sym, addr + off);
787     off += target->stubHelperEntrySize;
788   }
789 }
790 
791 void StubHelperSection::setUp() {
792   Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
793                                         /*isWeakRef=*/false);
794   if (auto *undefined = dyn_cast<Undefined>(binder))
795     treatUndefinedSymbol(*undefined,
796                          "lazy binding (normally in libSystem.dylib)");
797 
798   // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
799   stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
800   if (stubBinder == nullptr)
801     return;
802 
803   in.got->addEntry(stubBinder);
804 
805   in.imageLoaderCache->parent =
806       ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
807   addInputSection(in.imageLoaderCache);
808   // Since this isn't in the symbol table or in any input file, the noDeadStrip
809   // argument doesn't matter.
810   dyldPrivate =
811       make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
812                     /*isWeakDef=*/false,
813                     /*isExternal=*/false, /*isPrivateExtern=*/false,
814                     /*includeInSymtab=*/true,
815                     /*isReferencedDynamically=*/false,
816                     /*noDeadStrip=*/false);
817   dyldPrivate->used = true;
818 }
819 
820 llvm::DenseMap<llvm::CachedHashStringRef, ConcatInputSection *>
821     ObjCSelRefsHelper::methnameToSelref;
822 void ObjCSelRefsHelper::initialize() {
823   // Do not fold selrefs without ICF.
824   if (config->icfLevel == ICFLevel::none)
825     return;
826 
827   // Search methnames already referenced in __objc_selrefs
828   // Map the name to the corresponding selref entry
829   // which we will reuse when creating objc stubs.
830   for (ConcatInputSection *isec : inputSections) {
831     if (isec->shouldOmitFromOutput())
832       continue;
833     if (isec->getName() != section_names::objcSelrefs)
834       continue;
835     // We expect a single relocation per selref entry to __objc_methname that
836     // might be aggregated.
837     assert(isec->relocs.size() == 1);
838     auto Reloc = isec->relocs[0];
839     if (const auto *sym = Reloc.referent.dyn_cast<Symbol *>()) {
840       if (const auto *d = dyn_cast<Defined>(sym)) {
841         auto *cisec = cast<CStringInputSection>(d->isec());
842         auto methname = cisec->getStringRefAtOffset(d->value);
843         methnameToSelref[CachedHashStringRef(methname)] = isec;
844       }
845     }
846   }
847 }
848 
849 void ObjCSelRefsHelper::cleanup() { methnameToSelref.clear(); }
850 
851 ConcatInputSection *ObjCSelRefsHelper::makeSelRef(StringRef methname) {
852   auto methnameOffset =
853       in.objcMethnameSection->getStringOffset(methname).outSecOff;
854 
855   size_t wordSize = target->wordSize;
856   uint8_t *selrefData = bAlloc().Allocate<uint8_t>(wordSize);
857   write64le(selrefData, methnameOffset);
858   ConcatInputSection *objcSelref =
859       makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs,
860                                 S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP,
861                                 ArrayRef<uint8_t>{selrefData, wordSize},
862                                 /*align=*/wordSize);
863   assert(objcSelref->live);
864   objcSelref->relocs.push_back({/*type=*/target->unsignedRelocType,
865                                 /*pcrel=*/false, /*length=*/3,
866                                 /*offset=*/0,
867                                 /*addend=*/static_cast<int64_t>(methnameOffset),
868                                 /*referent=*/in.objcMethnameSection->isec});
869   objcSelref->parent = ConcatOutputSection::getOrCreateForInput(objcSelref);
870   addInputSection(objcSelref);
871   objcSelref->isFinal = true;
872   methnameToSelref[CachedHashStringRef(methname)] = objcSelref;
873   return objcSelref;
874 }
875 
876 ConcatInputSection *ObjCSelRefsHelper::getSelRef(StringRef methname) {
877   auto it = methnameToSelref.find(CachedHashStringRef(methname));
878   if (it == methnameToSelref.end())
879     return nullptr;
880   return it->second;
881 }
882 
883 ObjCStubsSection::ObjCStubsSection()
884     : SyntheticSection(segment_names::text, section_names::objcStubs) {
885   flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
886   align = config->objcStubsMode == ObjCStubsMode::fast
887               ? target->objcStubsFastAlignment
888               : target->objcStubsSmallAlignment;
889 }
890 
891 bool ObjCStubsSection::isObjCStubSymbol(Symbol *sym) {
892   return sym->getName().starts_with(symbolPrefix);
893 }
894 
895 StringRef ObjCStubsSection::getMethname(Symbol *sym) {
896   assert(isObjCStubSymbol(sym) && "not an objc stub");
897   auto name = sym->getName();
898   StringRef methname = name.drop_front(symbolPrefix.size());
899   return methname;
900 }
901 
902 void ObjCStubsSection::addEntry(Symbol *sym) {
903   StringRef methname = getMethname(sym);
904   // We create a selref entry for each unique methname.
905   if (!ObjCSelRefsHelper::getSelRef(methname))
906     ObjCSelRefsHelper::makeSelRef(methname);
907 
908   auto stubSize = config->objcStubsMode == ObjCStubsMode::fast
909                       ? target->objcStubsFastSize
910                       : target->objcStubsSmallSize;
911   Defined *newSym = replaceSymbol<Defined>(
912       sym, sym->getName(), nullptr, isec,
913       /*value=*/symbols.size() * stubSize,
914       /*size=*/stubSize,
915       /*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true,
916       /*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
917       /*noDeadStrip=*/false);
918   symbols.push_back(newSym);
919 }
920 
921 void ObjCStubsSection::setUp() {
922   objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr,
923                                      /*isWeakRef=*/false);
924   if (auto *undefined = dyn_cast<Undefined>(objcMsgSend))
925     treatUndefinedSymbol(*undefined,
926                          "lazy binding (normally in libobjc.dylib)");
927   objcMsgSend->used = true;
928   if (config->objcStubsMode == ObjCStubsMode::fast) {
929     in.got->addEntry(objcMsgSend);
930     assert(objcMsgSend->isInGot());
931   } else {
932     assert(config->objcStubsMode == ObjCStubsMode::small);
933     // In line with ld64's behavior, when objc_msgSend is a direct symbol,
934     // we directly reference it.
935     // In other cases, typically when binding in libobjc.dylib,
936     // we generate a stub to invoke objc_msgSend.
937     if (!isa<Defined>(objcMsgSend))
938       in.stubs->addEntry(objcMsgSend);
939   }
940 }
941 
942 uint64_t ObjCStubsSection::getSize() const {
943   auto stubSize = config->objcStubsMode == ObjCStubsMode::fast
944                       ? target->objcStubsFastSize
945                       : target->objcStubsSmallSize;
946   return stubSize * symbols.size();
947 }
948 
949 void ObjCStubsSection::writeTo(uint8_t *buf) const {
950   uint64_t stubOffset = 0;
951   for (size_t i = 0, n = symbols.size(); i < n; ++i) {
952     Defined *sym = symbols[i];
953 
954     auto methname = getMethname(sym);
955     InputSection *selRef = ObjCSelRefsHelper::getSelRef(methname);
956     assert(selRef != nullptr && "no selref for methname");
957     auto selrefAddr = selRef->getVA(0);
958     target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr,
959                                  stubOffset, selrefAddr, objcMsgSend);
960   }
961 }
962 
963 LazyPointerSection::LazyPointerSection()
964     : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
965   align = target->wordSize;
966   flags = S_LAZY_SYMBOL_POINTERS;
967 }
968 
969 uint64_t LazyPointerSection::getSize() const {
970   return in.stubs->getEntries().size() * target->wordSize;
971 }
972 
973 bool LazyPointerSection::isNeeded() const {
974   return !in.stubs->getEntries().empty();
975 }
976 
977 void LazyPointerSection::writeTo(uint8_t *buf) const {
978   size_t off = 0;
979   for (const Symbol *sym : in.stubs->getEntries()) {
980     if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
981       if (dysym->hasStubsHelper()) {
982         uint64_t stubHelperOffset =
983             target->stubHelperHeaderSize +
984             dysym->stubsHelperIndex * target->stubHelperEntrySize;
985         write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
986       }
987     } else {
988       write64le(buf + off, sym->getVA());
989     }
990     off += target->wordSize;
991   }
992 }
993 
994 LazyBindingSection::LazyBindingSection()
995     : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
996 
997 void LazyBindingSection::finalizeContents() {
998   // TODO: Just precompute output size here instead of writing to a temporary
999   // buffer
1000   for (Symbol *sym : entries)
1001     sym->lazyBindOffset = encode(*sym);
1002 }
1003 
1004 void LazyBindingSection::writeTo(uint8_t *buf) const {
1005   memcpy(buf, contents.data(), contents.size());
1006 }
1007 
1008 void LazyBindingSection::addEntry(Symbol *sym) {
1009   assert(!config->emitChainedFixups && "Chained fixups always bind eagerly");
1010   if (entries.insert(sym)) {
1011     sym->stubsHelperIndex = entries.size() - 1;
1012     in.rebase->addEntry(in.lazyPointers->isec,
1013                         sym->stubsIndex * target->wordSize);
1014   }
1015 }
1016 
1017 // Unlike the non-lazy binding section, the bind opcodes in this section aren't
1018 // interpreted all at once. Rather, dyld will start interpreting opcodes at a
1019 // given offset, typically only binding a single symbol before it finds a
1020 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
1021 // we cannot encode just the differences between symbols; we have to emit the
1022 // complete bind information for each symbol.
1023 uint32_t LazyBindingSection::encode(const Symbol &sym) {
1024   uint32_t opstreamOffset = contents.size();
1025   OutputSegment *dataSeg = in.lazyPointers->parent;
1026   os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
1027                              dataSeg->index);
1028   uint64_t offset =
1029       in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
1030   encodeULEB128(offset, os);
1031   encodeDylibOrdinal(ordinalForSymbol(sym), os);
1032 
1033   uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
1034   if (sym.isWeakRef())
1035     flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
1036 
1037   os << flags << sym.getName() << '\0'
1038      << static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
1039      << static_cast<uint8_t>(BIND_OPCODE_DONE);
1040   return opstreamOffset;
1041 }
1042 
1043 ExportSection::ExportSection()
1044     : LinkEditSection(segment_names::linkEdit, section_names::export_) {}
1045 
1046 void ExportSection::finalizeContents() {
1047   trieBuilder.setImageBase(in.header->addr);
1048   for (const Symbol *sym : symtab->getSymbols()) {
1049     if (const auto *defined = dyn_cast<Defined>(sym)) {
1050       if (defined->privateExtern || !defined->isLive())
1051         continue;
1052       trieBuilder.addSymbol(*defined);
1053       hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
1054     } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
1055       if (dysym->shouldReexport)
1056         trieBuilder.addSymbol(*dysym);
1057     }
1058   }
1059   size = trieBuilder.build();
1060 }
1061 
1062 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
1063 
1064 DataInCodeSection::DataInCodeSection()
1065     : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
1066 
1067 template <class LP>
1068 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
1069   std::vector<MachO::data_in_code_entry> dataInCodeEntries;
1070   for (const InputFile *inputFile : inputFiles) {
1071     if (!isa<ObjFile>(inputFile))
1072       continue;
1073     const ObjFile *objFile = cast<ObjFile>(inputFile);
1074     ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
1075     if (entries.empty())
1076       continue;
1077 
1078     std::vector<MachO::data_in_code_entry> sortedEntries;
1079     sortedEntries.assign(entries.begin(), entries.end());
1080     llvm::sort(sortedEntries, [](const data_in_code_entry &lhs,
1081                                  const data_in_code_entry &rhs) {
1082       return lhs.offset < rhs.offset;
1083     });
1084 
1085     // For each code subsection find 'data in code' entries residing in it.
1086     // Compute the new offset values as
1087     // <offset within subsection> + <subsection address> - <__TEXT address>.
1088     for (const Section *section : objFile->sections) {
1089       for (const Subsection &subsec : section->subsections) {
1090         const InputSection *isec = subsec.isec;
1091         if (!isCodeSection(isec))
1092           continue;
1093         if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
1094           continue;
1095         const uint64_t beginAddr = section->addr + subsec.offset;
1096         auto it = llvm::lower_bound(
1097             sortedEntries, beginAddr,
1098             [](const MachO::data_in_code_entry &entry, uint64_t addr) {
1099               return entry.offset < addr;
1100             });
1101         const uint64_t endAddr = beginAddr + isec->getSize();
1102         for (const auto end = sortedEntries.end();
1103              it != end && it->offset + it->length <= endAddr; ++it)
1104           dataInCodeEntries.push_back(
1105               {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
1106                                      in.header->addr),
1107                it->length, it->kind});
1108       }
1109     }
1110   }
1111 
1112   // ld64 emits the table in sorted order too.
1113   llvm::sort(dataInCodeEntries,
1114              [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) {
1115                return lhs.offset < rhs.offset;
1116              });
1117   return dataInCodeEntries;
1118 }
1119 
1120 void DataInCodeSection::finalizeContents() {
1121   entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
1122                                   : collectDataInCodeEntries<ILP32>();
1123 }
1124 
1125 void DataInCodeSection::writeTo(uint8_t *buf) const {
1126   if (!entries.empty())
1127     memcpy(buf, entries.data(), getRawSize());
1128 }
1129 
1130 FunctionStartsSection::FunctionStartsSection()
1131     : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
1132 
1133 void FunctionStartsSection::finalizeContents() {
1134   raw_svector_ostream os{contents};
1135   std::vector<uint64_t> addrs;
1136   for (const InputFile *file : inputFiles) {
1137     if (auto *objFile = dyn_cast<ObjFile>(file)) {
1138       for (const Symbol *sym : objFile->symbols) {
1139         if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
1140           if (!defined->isec() || !isCodeSection(defined->isec()) ||
1141               !defined->isLive())
1142             continue;
1143           addrs.push_back(defined->getVA());
1144         }
1145       }
1146     }
1147   }
1148   llvm::sort(addrs);
1149   uint64_t addr = in.header->addr;
1150   for (uint64_t nextAddr : addrs) {
1151     uint64_t delta = nextAddr - addr;
1152     if (delta == 0)
1153       continue;
1154     encodeULEB128(delta, os);
1155     addr = nextAddr;
1156   }
1157   os << '\0';
1158 }
1159 
1160 void FunctionStartsSection::writeTo(uint8_t *buf) const {
1161   memcpy(buf, contents.data(), contents.size());
1162 }
1163 
1164 SymtabSection::SymtabSection(StringTableSection &stringTableSection)
1165     : LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
1166       stringTableSection(stringTableSection) {}
1167 
1168 void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
1169   StabsEntry stab(N_SO);
1170   stab.strx = stringTableSection.addString(saver().save(sourceFile));
1171   stabs.emplace_back(std::move(stab));
1172 }
1173 
1174 void SymtabSection::emitEndSourceStab() {
1175   StabsEntry stab(N_SO);
1176   stab.sect = 1;
1177   stabs.emplace_back(std::move(stab));
1178 }
1179 
1180 void SymtabSection::emitObjectFileStab(ObjFile *file) {
1181   StabsEntry stab(N_OSO);
1182   stab.sect = target->cpuSubtype;
1183   SmallString<261> path(!file->archiveName.empty() ? file->archiveName
1184                                                    : file->getName());
1185   std::error_code ec = sys::fs::make_absolute(path);
1186   if (ec)
1187     fatal("failed to get absolute path for " + path);
1188 
1189   if (!file->archiveName.empty())
1190     path.append({"(", file->getName(), ")"});
1191 
1192   StringRef adjustedPath = saver().save(path.str());
1193   adjustedPath.consume_front(config->osoPrefix);
1194 
1195   stab.strx = stringTableSection.addString(adjustedPath);
1196   stab.desc = 1;
1197   stab.value = file->modTime;
1198   stabs.emplace_back(std::move(stab));
1199 }
1200 
1201 void SymtabSection::emitEndFunStab(Defined *defined) {
1202   StabsEntry stab(N_FUN);
1203   stab.value = defined->size;
1204   stabs.emplace_back(std::move(stab));
1205 }
1206 
1207 void SymtabSection::emitStabs() {
1208   if (config->omitDebugInfo)
1209     return;
1210 
1211   for (const std::string &s : config->astPaths) {
1212     StabsEntry astStab(N_AST);
1213     astStab.strx = stringTableSection.addString(s);
1214     stabs.emplace_back(std::move(astStab));
1215   }
1216 
1217   // Cache the file ID for each symbol in an std::pair for faster sorting.
1218   using SortingPair = std::pair<Defined *, int>;
1219   std::vector<SortingPair> symbolsNeedingStabs;
1220   for (const SymtabEntry &entry :
1221        concat<SymtabEntry>(localSymbols, externalSymbols)) {
1222     Symbol *sym = entry.sym;
1223     assert(sym->isLive() &&
1224            "dead symbols should not be in localSymbols, externalSymbols");
1225     if (auto *defined = dyn_cast<Defined>(sym)) {
1226       // Excluded symbols should have been filtered out in finalizeContents().
1227       assert(defined->includeInSymtab);
1228 
1229       if (defined->isAbsolute())
1230         continue;
1231 
1232       // Constant-folded symbols go in the executable's symbol table, but don't
1233       // get a stabs entry unless --keep-icf-stabs flag is specified
1234       if (!config->keepICFStabs && defined->wasIdenticalCodeFolded)
1235         continue;
1236 
1237       ObjFile *file = defined->getObjectFile();
1238       if (!file || !file->compileUnit)
1239         continue;
1240 
1241       // We use 'originalIsec' to get the file id of the symbol since 'isec()'
1242       // might point to the merged ICF symbol's file
1243       symbolsNeedingStabs.emplace_back(defined,
1244                                        defined->originalIsec->getFile()->id);
1245     }
1246   }
1247 
1248   llvm::stable_sort(symbolsNeedingStabs,
1249                     [&](const SortingPair &a, const SortingPair &b) {
1250                       return a.second < b.second;
1251                     });
1252 
1253   // Emit STABS symbols so that dsymutil and/or the debugger can map address
1254   // regions in the final binary to the source and object files from which they
1255   // originated.
1256   InputFile *lastFile = nullptr;
1257   for (SortingPair &pair : symbolsNeedingStabs) {
1258     Defined *defined = pair.first;
1259     // We use 'originalIsec' of the symbol since we care about the actual origin
1260     // of the symbol, not the canonical location returned by `isec()`.
1261     InputSection *isec = defined->originalIsec;
1262     ObjFile *file = cast<ObjFile>(isec->getFile());
1263 
1264     if (lastFile == nullptr || lastFile != file) {
1265       if (lastFile != nullptr)
1266         emitEndSourceStab();
1267       lastFile = file;
1268 
1269       emitBeginSourceStab(file->sourceFile());
1270       emitObjectFileStab(file);
1271     }
1272 
1273     StabsEntry symStab;
1274     symStab.sect = isec->parent->index;
1275     symStab.strx = stringTableSection.addString(defined->getName());
1276     symStab.value = defined->getVA();
1277 
1278     if (isCodeSection(isec)) {
1279       symStab.type = N_FUN;
1280       stabs.emplace_back(std::move(symStab));
1281       emitEndFunStab(defined);
1282     } else {
1283       symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
1284       stabs.emplace_back(std::move(symStab));
1285     }
1286   }
1287 
1288   if (!stabs.empty())
1289     emitEndSourceStab();
1290 }
1291 
1292 void SymtabSection::finalizeContents() {
1293   auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
1294     uint32_t strx = stringTableSection.addString(sym->getName());
1295     symbols.push_back({sym, strx});
1296   };
1297 
1298   std::function<void(Symbol *)> localSymbolsHandler;
1299   switch (config->localSymbolsPresence) {
1300   case SymtabPresence::All:
1301     localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
1302     break;
1303   case SymtabPresence::None:
1304     localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
1305     break;
1306   case SymtabPresence::SelectivelyIncluded:
1307     localSymbolsHandler = [&](Symbol *sym) {
1308       if (config->localSymbolPatterns.match(sym->getName()))
1309         addSymbol(localSymbols, sym);
1310     };
1311     break;
1312   case SymtabPresence::SelectivelyExcluded:
1313     localSymbolsHandler = [&](Symbol *sym) {
1314       if (!config->localSymbolPatterns.match(sym->getName()))
1315         addSymbol(localSymbols, sym);
1316     };
1317     break;
1318   }
1319 
1320   // Local symbols aren't in the SymbolTable, so we walk the list of object
1321   // files to gather them.
1322   // But if `-x` is set, then we don't need to. localSymbolsHandler() will do
1323   // the right thing regardless, but this check is a perf optimization because
1324   // iterating through all the input files and their symbols is expensive.
1325   if (config->localSymbolsPresence != SymtabPresence::None) {
1326     for (const InputFile *file : inputFiles) {
1327       if (auto *objFile = dyn_cast<ObjFile>(file)) {
1328         for (Symbol *sym : objFile->symbols) {
1329           if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
1330             if (defined->isExternal() || !defined->isLive() ||
1331                 !defined->includeInSymtab)
1332               continue;
1333             localSymbolsHandler(sym);
1334           }
1335         }
1336       }
1337     }
1338   }
1339 
1340   // __dyld_private is a local symbol too. It's linker-created and doesn't
1341   // exist in any object file.
1342   if (in.stubHelper && in.stubHelper->dyldPrivate)
1343     localSymbolsHandler(in.stubHelper->dyldPrivate);
1344 
1345   for (Symbol *sym : symtab->getSymbols()) {
1346     if (!sym->isLive())
1347       continue;
1348     if (auto *defined = dyn_cast<Defined>(sym)) {
1349       if (!defined->includeInSymtab)
1350         continue;
1351       assert(defined->isExternal());
1352       if (defined->privateExtern)
1353         localSymbolsHandler(defined);
1354       else
1355         addSymbol(externalSymbols, defined);
1356     } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
1357       if (dysym->isReferenced())
1358         addSymbol(undefinedSymbols, sym);
1359     }
1360   }
1361 
1362   emitStabs();
1363   uint32_t symtabIndex = stabs.size();
1364   for (const SymtabEntry &entry :
1365        concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
1366     entry.sym->symtabIndex = symtabIndex++;
1367   }
1368 }
1369 
1370 uint32_t SymtabSection::getNumSymbols() const {
1371   return stabs.size() + localSymbols.size() + externalSymbols.size() +
1372          undefinedSymbols.size();
1373 }
1374 
1375 // This serves to hide (type-erase) the template parameter from SymtabSection.
1376 template <class LP> class SymtabSectionImpl final : public SymtabSection {
1377 public:
1378   SymtabSectionImpl(StringTableSection &stringTableSection)
1379       : SymtabSection(stringTableSection) {}
1380   uint64_t getRawSize() const override;
1381   void writeTo(uint8_t *buf) const override;
1382 };
1383 
1384 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
1385   return getNumSymbols() * sizeof(typename LP::nlist);
1386 }
1387 
1388 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
1389   auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
1390   // Emit the stabs entries before the "real" symbols. We cannot emit them
1391   // after as that would render Symbol::symtabIndex inaccurate.
1392   for (const StabsEntry &entry : stabs) {
1393     nList->n_strx = entry.strx;
1394     nList->n_type = entry.type;
1395     nList->n_sect = entry.sect;
1396     nList->n_desc = entry.desc;
1397     nList->n_value = entry.value;
1398     ++nList;
1399   }
1400 
1401   for (const SymtabEntry &entry : concat<const SymtabEntry>(
1402            localSymbols, externalSymbols, undefinedSymbols)) {
1403     nList->n_strx = entry.strx;
1404     // TODO populate n_desc with more flags
1405     if (auto *defined = dyn_cast<Defined>(entry.sym)) {
1406       uint8_t scope = 0;
1407       if (defined->privateExtern) {
1408         // Private external -- dylib scoped symbol.
1409         // Promote to non-external at link time.
1410         scope = N_PEXT;
1411       } else if (defined->isExternal()) {
1412         // Normal global symbol.
1413         scope = N_EXT;
1414       } else {
1415         // TU-local symbol from localSymbols.
1416         scope = 0;
1417       }
1418 
1419       if (defined->isAbsolute()) {
1420         nList->n_type = scope | N_ABS;
1421         nList->n_sect = NO_SECT;
1422         nList->n_value = defined->value;
1423       } else {
1424         nList->n_type = scope | N_SECT;
1425         nList->n_sect = defined->isec()->parent->index;
1426         // For the N_SECT symbol type, n_value is the address of the symbol
1427         nList->n_value = defined->getVA();
1428       }
1429       nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
1430       nList->n_desc |=
1431           defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
1432     } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
1433       uint16_t n_desc = nList->n_desc;
1434       int16_t ordinal = ordinalForDylibSymbol(*dysym);
1435       if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
1436         SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
1437       else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
1438         SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
1439       else {
1440         assert(ordinal > 0);
1441         SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
1442       }
1443 
1444       nList->n_type = N_EXT;
1445       n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
1446       n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
1447       nList->n_desc = n_desc;
1448     }
1449     ++nList;
1450   }
1451 }
1452 
1453 template <class LP>
1454 SymtabSection *
1455 macho::makeSymtabSection(StringTableSection &stringTableSection) {
1456   return make<SymtabSectionImpl<LP>>(stringTableSection);
1457 }
1458 
1459 IndirectSymtabSection::IndirectSymtabSection()
1460     : LinkEditSection(segment_names::linkEdit,
1461                       section_names::indirectSymbolTable) {}
1462 
1463 uint32_t IndirectSymtabSection::getNumSymbols() const {
1464   uint32_t size = in.got->getEntries().size() +
1465                   in.tlvPointers->getEntries().size() +
1466                   in.stubs->getEntries().size();
1467   if (!config->emitChainedFixups)
1468     size += in.stubs->getEntries().size();
1469   return size;
1470 }
1471 
1472 bool IndirectSymtabSection::isNeeded() const {
1473   return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
1474          in.stubs->isNeeded();
1475 }
1476 
1477 void IndirectSymtabSection::finalizeContents() {
1478   uint32_t off = 0;
1479   in.got->reserved1 = off;
1480   off += in.got->getEntries().size();
1481   in.tlvPointers->reserved1 = off;
1482   off += in.tlvPointers->getEntries().size();
1483   in.stubs->reserved1 = off;
1484   if (in.lazyPointers) {
1485     off += in.stubs->getEntries().size();
1486     in.lazyPointers->reserved1 = off;
1487   }
1488 }
1489 
1490 static uint32_t indirectValue(const Symbol *sym) {
1491   if (sym->symtabIndex == UINT32_MAX || !needsBinding(sym))
1492     return INDIRECT_SYMBOL_LOCAL;
1493   return sym->symtabIndex;
1494 }
1495 
1496 void IndirectSymtabSection::writeTo(uint8_t *buf) const {
1497   uint32_t off = 0;
1498   for (const Symbol *sym : in.got->getEntries()) {
1499     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1500     ++off;
1501   }
1502   for (const Symbol *sym : in.tlvPointers->getEntries()) {
1503     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1504     ++off;
1505   }
1506   for (const Symbol *sym : in.stubs->getEntries()) {
1507     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1508     ++off;
1509   }
1510 
1511   if (in.lazyPointers) {
1512     // There is a 1:1 correspondence between stubs and LazyPointerSection
1513     // entries. But giving __stubs and __la_symbol_ptr the same reserved1
1514     // (the offset into the indirect symbol table) so that they both refer
1515     // to the same range of offsets confuses `strip`, so write the stubs
1516     // symbol table offsets a second time.
1517     for (const Symbol *sym : in.stubs->getEntries()) {
1518       write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1519       ++off;
1520     }
1521   }
1522 }
1523 
1524 StringTableSection::StringTableSection()
1525     : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
1526 
1527 uint32_t StringTableSection::addString(StringRef str) {
1528   uint32_t strx = size;
1529   strings.push_back(str); // TODO: consider deduplicating strings
1530   size += str.size() + 1; // account for null terminator
1531   return strx;
1532 }
1533 
1534 void StringTableSection::writeTo(uint8_t *buf) const {
1535   uint32_t off = 0;
1536   for (StringRef str : strings) {
1537     memcpy(buf + off, str.data(), str.size());
1538     off += str.size() + 1; // account for null terminator
1539   }
1540 }
1541 
1542 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0);
1543 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0);
1544 
1545 CodeSignatureSection::CodeSignatureSection()
1546     : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
1547   align = 16; // required by libstuff
1548 
1549   // XXX: This mimics LD64, where it uses the install-name as codesign
1550   // identifier, if available.
1551   if (!config->installName.empty())
1552     fileName = config->installName;
1553   else
1554     // FIXME: Consider using finalOutput instead of outputFile.
1555     fileName = config->outputFile;
1556 
1557   size_t slashIndex = fileName.rfind("/");
1558   if (slashIndex != std::string::npos)
1559     fileName = fileName.drop_front(slashIndex + 1);
1560 
1561   // NOTE: Any changes to these calculations should be repeated
1562   // in llvm-objcopy's MachOLayoutBuilder::layoutTail.
1563   allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
1564   fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
1565 }
1566 
1567 uint32_t CodeSignatureSection::getBlockCount() const {
1568   return (fileOff + blockSize - 1) / blockSize;
1569 }
1570 
1571 uint64_t CodeSignatureSection::getRawSize() const {
1572   return allHeadersSize + getBlockCount() * hashSize;
1573 }
1574 
1575 void CodeSignatureSection::writeHashes(uint8_t *buf) const {
1576   // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1577   // MachOWriter::writeSignatureData.
1578   uint8_t *hashes = buf + fileOff + allHeadersSize;
1579   parallelFor(0, getBlockCount(), [&](size_t i) {
1580     sha256(buf + i * blockSize,
1581            std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize),
1582            hashes + i * hashSize);
1583   });
1584 #if defined(__APPLE__)
1585   // This is macOS-specific work-around and makes no sense for any
1586   // other host OS. See https://openradar.appspot.com/FB8914231
1587   //
1588   // The macOS kernel maintains a signature-verification cache to
1589   // quickly validate applications at time of execve(2).  The trouble
1590   // is that for the kernel creates the cache entry at the time of the
1591   // mmap(2) call, before we have a chance to write either the code to
1592   // sign or the signature header+hashes.  The fix is to invalidate
1593   // all cached data associated with the output file, thus discarding
1594   // the bogus prematurely-cached signature.
1595   msync(buf, fileOff + getSize(), MS_INVALIDATE);
1596 #endif
1597 }
1598 
1599 void CodeSignatureSection::writeTo(uint8_t *buf) const {
1600   // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1601   // MachOWriter::writeSignatureData.
1602   uint32_t signatureSize = static_cast<uint32_t>(getSize());
1603   auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
1604   write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
1605   write32be(&superBlob->length, signatureSize);
1606   write32be(&superBlob->count, 1);
1607   auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
1608   write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
1609   write32be(&blobIndex->offset, blobHeadersSize);
1610   auto *codeDirectory =
1611       reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
1612   write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
1613   write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
1614   write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
1615   write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
1616   write32be(&codeDirectory->hashOffset,
1617             sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
1618   write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
1619   codeDirectory->nSpecialSlots = 0;
1620   write32be(&codeDirectory->nCodeSlots, getBlockCount());
1621   write32be(&codeDirectory->codeLimit, fileOff);
1622   codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
1623   codeDirectory->hashType = kSecCodeSignatureHashSHA256;
1624   codeDirectory->platform = 0;
1625   codeDirectory->pageSize = blockSizeShift;
1626   codeDirectory->spare2 = 0;
1627   codeDirectory->scatterOffset = 0;
1628   codeDirectory->teamOffset = 0;
1629   codeDirectory->spare3 = 0;
1630   codeDirectory->codeLimit64 = 0;
1631   OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
1632   write64be(&codeDirectory->execSegBase, textSeg->fileOff);
1633   write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
1634   write64be(&codeDirectory->execSegFlags,
1635             config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
1636   auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
1637   memcpy(id, fileName.begin(), fileName.size());
1638   memset(id + fileName.size(), 0, fileNamePad);
1639 }
1640 
1641 CStringSection::CStringSection(const char *name)
1642     : SyntheticSection(segment_names::text, name) {
1643   flags = S_CSTRING_LITERALS;
1644 }
1645 
1646 void CStringSection::addInput(CStringInputSection *isec) {
1647   isec->parent = this;
1648   inputs.push_back(isec);
1649   if (isec->align > align)
1650     align = isec->align;
1651 }
1652 
1653 void CStringSection::writeTo(uint8_t *buf) const {
1654   for (const CStringInputSection *isec : inputs) {
1655     for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1656       if (!piece.live)
1657         continue;
1658       StringRef string = isec->getStringRef(i);
1659       memcpy(buf + piece.outSecOff, string.data(), string.size());
1660     }
1661   }
1662 }
1663 
1664 void CStringSection::finalizeContents() {
1665   uint64_t offset = 0;
1666   for (CStringInputSection *isec : inputs) {
1667     for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1668       if (!piece.live)
1669         continue;
1670       // See comment above DeduplicatedCStringSection for how alignment is
1671       // handled.
1672       uint32_t pieceAlign = 1
1673                             << llvm::countr_zero(isec->align | piece.inSecOff);
1674       offset = alignToPowerOf2(offset, pieceAlign);
1675       piece.outSecOff = offset;
1676       isec->isFinal = true;
1677       StringRef string = isec->getStringRef(i);
1678       offset += string.size() + 1; // account for null terminator
1679     }
1680   }
1681   size = offset;
1682 }
1683 
1684 // Mergeable cstring literals are found under the __TEXT,__cstring section. In
1685 // contrast to ELF, which puts strings that need different alignments into
1686 // different sections, clang's Mach-O backend puts them all in one section.
1687 // Strings that need to be aligned have the .p2align directive emitted before
1688 // them, which simply translates into zero padding in the object file. In other
1689 // words, we have to infer the desired alignment of these cstrings from their
1690 // addresses.
1691 //
1692 // We differ slightly from ld64 in how we've chosen to align these cstrings.
1693 // Both LLD and ld64 preserve the number of trailing zeros in each cstring's
1694 // address in the input object files. When deduplicating identical cstrings,
1695 // both linkers pick the cstring whose address has more trailing zeros, and
1696 // preserve the alignment of that address in the final binary. However, ld64
1697 // goes a step further and also preserves the offset of the cstring from the
1698 // last section-aligned address.  I.e. if a cstring is at offset 18 in the
1699 // input, with a section alignment of 16, then both LLD and ld64 will ensure the
1700 // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
1701 // ensure that the final address is of the form 16 * k + 2 for some k.
1702 //
1703 // Note that ld64's heuristic means that a dedup'ed cstring's final address is
1704 // dependent on the order of the input object files. E.g. if in addition to the
1705 // cstring at offset 18 above, we have a duplicate one in another file with a
1706 // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
1707 // the cstring from the object file earlier on the command line (since both have
1708 // the same number of trailing zeros in their address). So the final cstring may
1709 // either be at some address `16 * k + 2` or at some address `2 * k`.
1710 //
1711 // I've opted not to follow this behavior primarily for implementation
1712 // simplicity, and secondarily to save a few more bytes. It's not clear to me
1713 // that preserving the section alignment + offset is ever necessary, and there
1714 // are many cases that are clearly redundant. In particular, if an x86_64 object
1715 // file contains some strings that are accessed via SIMD instructions, then the
1716 // .cstring section in the object file will be 16-byte-aligned (since SIMD
1717 // requires its operand addresses to be 16-byte aligned). However, there will
1718 // typically also be other cstrings in the same file that aren't used via SIMD
1719 // and don't need this alignment. They will be emitted at some arbitrary address
1720 // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
1721 // % A`.
1722 void DeduplicatedCStringSection::finalizeContents() {
1723   // Find the largest alignment required for each string.
1724   for (const CStringInputSection *isec : inputs) {
1725     for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1726       if (!piece.live)
1727         continue;
1728       auto s = isec->getCachedHashStringRef(i);
1729       assert(isec->align != 0);
1730       uint8_t trailingZeros = llvm::countr_zero(isec->align | piece.inSecOff);
1731       auto it = stringOffsetMap.insert(
1732           std::make_pair(s, StringOffset(trailingZeros)));
1733       if (!it.second && it.first->second.trailingZeros < trailingZeros)
1734         it.first->second.trailingZeros = trailingZeros;
1735     }
1736   }
1737 
1738   // Assign an offset for each string and save it to the corresponding
1739   // StringPieces for easy access.
1740   for (CStringInputSection *isec : inputs) {
1741     for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1742       if (!piece.live)
1743         continue;
1744       auto s = isec->getCachedHashStringRef(i);
1745       auto it = stringOffsetMap.find(s);
1746       assert(it != stringOffsetMap.end());
1747       StringOffset &offsetInfo = it->second;
1748       if (offsetInfo.outSecOff == UINT64_MAX) {
1749         offsetInfo.outSecOff =
1750             alignToPowerOf2(size, 1ULL << offsetInfo.trailingZeros);
1751         size =
1752             offsetInfo.outSecOff + s.size() + 1; // account for null terminator
1753       }
1754       piece.outSecOff = offsetInfo.outSecOff;
1755     }
1756     isec->isFinal = true;
1757   }
1758 }
1759 
1760 void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
1761   for (const auto &p : stringOffsetMap) {
1762     StringRef data = p.first.val();
1763     uint64_t off = p.second.outSecOff;
1764     if (!data.empty())
1765       memcpy(buf + off, data.data(), data.size());
1766   }
1767 }
1768 
1769 DeduplicatedCStringSection::StringOffset
1770 DeduplicatedCStringSection::getStringOffset(StringRef str) const {
1771   // StringPiece uses 31 bits to store the hashes, so we replicate that
1772   uint32_t hash = xxh3_64bits(str) & 0x7fffffff;
1773   auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash));
1774   assert(offset != stringOffsetMap.end() &&
1775          "Looked-up strings should always exist in section");
1776   return offset->second;
1777 }
1778 
1779 // This section is actually emitted as __TEXT,__const by ld64, but clang may
1780 // emit input sections of that name, and LLD doesn't currently support mixing
1781 // synthetic and concat-type OutputSections. To work around this, I've given
1782 // our merged-literals section a different name.
1783 WordLiteralSection::WordLiteralSection()
1784     : SyntheticSection(segment_names::text, section_names::literals) {
1785   align = 16;
1786 }
1787 
1788 void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
1789   isec->parent = this;
1790   inputs.push_back(isec);
1791 }
1792 
1793 void WordLiteralSection::finalizeContents() {
1794   for (WordLiteralInputSection *isec : inputs) {
1795     // We do all processing of the InputSection here, so it will be effectively
1796     // finalized.
1797     isec->isFinal = true;
1798     const uint8_t *buf = isec->data.data();
1799     switch (sectionType(isec->getFlags())) {
1800     case S_4BYTE_LITERALS: {
1801       for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
1802         if (!isec->isLive(off))
1803           continue;
1804         uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
1805         literal4Map.emplace(value, literal4Map.size());
1806       }
1807       break;
1808     }
1809     case S_8BYTE_LITERALS: {
1810       for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
1811         if (!isec->isLive(off))
1812           continue;
1813         uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
1814         literal8Map.emplace(value, literal8Map.size());
1815       }
1816       break;
1817     }
1818     case S_16BYTE_LITERALS: {
1819       for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
1820         if (!isec->isLive(off))
1821           continue;
1822         UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
1823         literal16Map.emplace(value, literal16Map.size());
1824       }
1825       break;
1826     }
1827     default:
1828       llvm_unreachable("invalid literal section type");
1829     }
1830   }
1831 }
1832 
1833 void WordLiteralSection::writeTo(uint8_t *buf) const {
1834   // Note that we don't attempt to do any endianness conversion in addInput(),
1835   // so we don't do it here either -- just write out the original value,
1836   // byte-for-byte.
1837   for (const auto &p : literal16Map)
1838     memcpy(buf + p.second * 16, &p.first, 16);
1839   buf += literal16Map.size() * 16;
1840 
1841   for (const auto &p : literal8Map)
1842     memcpy(buf + p.second * 8, &p.first, 8);
1843   buf += literal8Map.size() * 8;
1844 
1845   for (const auto &p : literal4Map)
1846     memcpy(buf + p.second * 4, &p.first, 4);
1847 }
1848 
1849 ObjCImageInfoSection::ObjCImageInfoSection()
1850     : SyntheticSection(segment_names::data, section_names::objCImageInfo) {}
1851 
1852 ObjCImageInfoSection::ImageInfo
1853 ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
1854   ImageInfo info;
1855   ArrayRef<uint8_t> data = file->objCImageInfo;
1856   // The image info struct has the following layout:
1857   // struct {
1858   //   uint32_t version;
1859   //   uint32_t flags;
1860   // };
1861   if (data.size() < 8) {
1862     warn(toString(file) + ": invalid __objc_imageinfo size");
1863     return info;
1864   }
1865 
1866   auto *buf = reinterpret_cast<const uint32_t *>(data.data());
1867   if (read32le(buf) != 0) {
1868     warn(toString(file) + ": invalid __objc_imageinfo version");
1869     return info;
1870   }
1871 
1872   uint32_t flags = read32le(buf + 1);
1873   info.swiftVersion = (flags >> 8) & 0xff;
1874   info.hasCategoryClassProperties = flags & 0x40;
1875   return info;
1876 }
1877 
1878 static std::string swiftVersionString(uint8_t version) {
1879   switch (version) {
1880     case 1:
1881       return "1.0";
1882     case 2:
1883       return "1.1";
1884     case 3:
1885       return "2.0";
1886     case 4:
1887       return "3.0";
1888     case 5:
1889       return "4.0";
1890     default:
1891       return ("0x" + Twine::utohexstr(version)).str();
1892   }
1893 }
1894 
1895 // Validate each object file's __objc_imageinfo and use them to generate the
1896 // image info for the output binary. Only two pieces of info are relevant:
1897 // 1. The Swift version (should be identical across inputs)
1898 // 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
1899 void ObjCImageInfoSection::finalizeContents() {
1900   assert(files.size() != 0); // should have already been checked via isNeeded()
1901 
1902   info.hasCategoryClassProperties = true;
1903   const InputFile *firstFile;
1904   for (const InputFile *file : files) {
1905     ImageInfo inputInfo = parseImageInfo(file);
1906     info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;
1907 
1908     // swiftVersion 0 means no Swift is present, so no version checking required
1909     if (inputInfo.swiftVersion == 0)
1910       continue;
1911 
1912     if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
1913       error("Swift version mismatch: " + toString(firstFile) + " has version " +
1914             swiftVersionString(info.swiftVersion) + " but " + toString(file) +
1915             " has version " + swiftVersionString(inputInfo.swiftVersion));
1916     } else {
1917       info.swiftVersion = inputInfo.swiftVersion;
1918       firstFile = file;
1919     }
1920   }
1921 }
1922 
1923 void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
1924   uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
1925   flags |= info.swiftVersion << 8;
1926   write32le(buf + 4, flags);
1927 }
1928 
1929 InitOffsetsSection::InitOffsetsSection()
1930     : SyntheticSection(segment_names::text, section_names::initOffsets) {
1931   flags = S_INIT_FUNC_OFFSETS;
1932   align = 4; // This section contains 32-bit integers.
1933 }
1934 
1935 uint64_t InitOffsetsSection::getSize() const {
1936   size_t count = 0;
1937   for (const ConcatInputSection *isec : sections)
1938     count += isec->relocs.size();
1939   return count * sizeof(uint32_t);
1940 }
1941 
1942 void InitOffsetsSection::writeTo(uint8_t *buf) const {
1943   // FIXME: Add function specified by -init when that argument is implemented.
1944   for (ConcatInputSection *isec : sections) {
1945     for (const Reloc &rel : isec->relocs) {
1946       const Symbol *referent = rel.referent.dyn_cast<Symbol *>();
1947       assert(referent && "section relocation should have been rejected");
1948       uint64_t offset = referent->getVA() - in.header->addr;
1949       // FIXME: Can we handle this gracefully?
1950       if (offset > UINT32_MAX)
1951         fatal(isec->getLocation(rel.offset) + ": offset to initializer " +
1952               referent->getName() + " (" + utohexstr(offset) +
1953               ") does not fit in 32 bits");
1954 
1955       // Entries need to be added in the order they appear in the section, but
1956       // relocations aren't guaranteed to be sorted.
1957       size_t index = rel.offset >> target->p2WordSize;
1958       write32le(&buf[index * sizeof(uint32_t)], offset);
1959     }
1960     buf += isec->relocs.size() * sizeof(uint32_t);
1961   }
1962 }
1963 
1964 // The inputs are __mod_init_func sections, which contain pointers to
1965 // initializer functions, therefore all relocations should be of the UNSIGNED
1966 // type. InitOffsetsSection stores offsets, so if the initializer's address is
1967 // not known at link time, stub-indirection has to be used.
1968 void InitOffsetsSection::setUp() {
1969   for (const ConcatInputSection *isec : sections) {
1970     for (const Reloc &rel : isec->relocs) {
1971       RelocAttrs attrs = target->getRelocAttrs(rel.type);
1972       if (!attrs.hasAttr(RelocAttrBits::UNSIGNED))
1973         error(isec->getLocation(rel.offset) +
1974               ": unsupported relocation type: " + attrs.name);
1975       if (rel.addend != 0)
1976         error(isec->getLocation(rel.offset) +
1977               ": relocation addend is not representable in __init_offsets");
1978       if (rel.referent.is<InputSection *>())
1979         error(isec->getLocation(rel.offset) +
1980               ": unexpected section relocation");
1981 
1982       Symbol *sym = rel.referent.dyn_cast<Symbol *>();
1983       if (auto *undefined = dyn_cast<Undefined>(sym))
1984         treatUndefinedSymbol(*undefined, isec, rel.offset);
1985       if (needsBinding(sym))
1986         in.stubs->addEntry(sym);
1987     }
1988   }
1989 }
1990 
1991 ObjCMethListSection::ObjCMethListSection()
1992     : SyntheticSection(segment_names::text, section_names::objcMethList) {
1993   flags = S_ATTR_NO_DEAD_STRIP;
1994   align = relativeOffsetSize;
1995 }
1996 
1997 // Go through all input method lists and ensure that we have selrefs for all
1998 // their method names. The selrefs will be needed later by ::writeTo. We need to
1999 // create them early on here to ensure they are processed correctly by the lld
2000 // pipeline.
2001 void ObjCMethListSection::setUp() {
2002   for (const ConcatInputSection *isec : inputs) {
2003     uint32_t structSizeAndFlags = 0, structCount = 0;
2004     readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount);
2005     uint32_t originalStructSize = structSizeAndFlags & structSizeMask;
2006     // Method name is immediately after header
2007     uint32_t methodNameOff = methodListHeaderSize;
2008 
2009     // Loop through all methods, and ensure a selref for each of them exists.
2010     while (methodNameOff < isec->data.size()) {
2011       const Reloc *reloc = isec->getRelocAt(methodNameOff);
2012       assert(reloc && "Relocation expected at method list name slot");
2013       auto *def = dyn_cast_or_null<Defined>(reloc->referent.get<Symbol *>());
2014       assert(def && "Expected valid Defined at method list name slot");
2015       auto *cisec = cast<CStringInputSection>(def->isec());
2016       assert(cisec && "Expected method name to be in a CStringInputSection");
2017       auto methname = cisec->getStringRefAtOffset(def->value);
2018       if (!ObjCSelRefsHelper::getSelRef(methname))
2019         ObjCSelRefsHelper::makeSelRef(methname);
2020 
2021       // Jump to method name offset in next struct
2022       methodNameOff += originalStructSize;
2023     }
2024   }
2025 }
2026 
2027 // Calculate section size and final offsets for where InputSection's need to be
2028 // written.
2029 void ObjCMethListSection::finalize() {
2030   // sectionSize will be the total size of the __objc_methlist section
2031   sectionSize = 0;
2032   for (ConcatInputSection *isec : inputs) {
2033     // We can also use sectionSize as write offset for isec
2034     assert(sectionSize == alignToPowerOf2(sectionSize, relativeOffsetSize) &&
2035            "expected __objc_methlist to be aligned by default with the "
2036            "required section alignment");
2037     isec->outSecOff = sectionSize;
2038 
2039     isec->isFinal = true;
2040     uint32_t relativeListSize =
2041         computeRelativeMethodListSize(isec->data.size());
2042     sectionSize += relativeListSize;
2043 
2044     // If encoding the method list in relative offset format shrinks the size,
2045     // then we also need to adjust symbol sizes to match the new size. Note that
2046     // on 32bit platforms the size of the method list will remain the same when
2047     // encoded in relative offset format.
2048     if (relativeListSize != isec->data.size()) {
2049       for (Symbol *sym : isec->symbols) {
2050         assert(isa<Defined>(sym) &&
2051                "Unexpected undefined symbol in ObjC method list");
2052         auto *def = cast<Defined>(sym);
2053         // There can be 0-size symbols, check if this is the case and ignore
2054         // them.
2055         if (def->size) {
2056           assert(
2057               def->size == isec->data.size() &&
2058               "Invalid ObjC method list symbol size: expected symbol size to "
2059               "match isec size");
2060           def->size = relativeListSize;
2061         }
2062       }
2063     }
2064   }
2065 }
2066 
2067 void ObjCMethListSection::writeTo(uint8_t *bufStart) const {
2068   uint8_t *buf = bufStart;
2069   for (const ConcatInputSection *isec : inputs) {
2070     assert(buf - bufStart == long(isec->outSecOff) &&
2071            "Writing at unexpected offset");
2072     uint32_t writtenSize = writeRelativeMethodList(isec, buf);
2073     buf += writtenSize;
2074   }
2075   assert(buf - bufStart == sectionSize &&
2076          "Written size does not match expected section size");
2077 }
2078 
2079 // Check if an InputSection is a method list. To do this we scan the
2080 // InputSection for any symbols who's names match the patterns we expect clang
2081 // to generate for method lists.
2082 bool ObjCMethListSection::isMethodList(const ConcatInputSection *isec) {
2083   const char *symPrefixes[] = {objc::symbol_names::classMethods,
2084                                objc::symbol_names::instanceMethods,
2085                                objc::symbol_names::categoryInstanceMethods,
2086                                objc::symbol_names::categoryClassMethods};
2087   if (!isec)
2088     return false;
2089   for (const Symbol *sym : isec->symbols) {
2090     auto *def = dyn_cast_or_null<Defined>(sym);
2091     if (!def)
2092       continue;
2093     for (const char *prefix : symPrefixes) {
2094       if (def->getName().starts_with(prefix)) {
2095         assert(def->size == isec->data.size() &&
2096                "Invalid ObjC method list symbol size: expected symbol size to "
2097                "match isec size");
2098         assert(def->value == 0 &&
2099                "Offset of ObjC method list symbol must be 0");
2100         return true;
2101       }
2102     }
2103   }
2104 
2105   return false;
2106 }
2107 
2108 // Encode a single relative offset value. The input is the data/symbol at
2109 // (&isec->data[inSecOff]). The output is written to (&buf[outSecOff]).
2110 // 'createSelRef' indicates that we should not directly use the specified
2111 // symbol, but instead get the selRef for the symbol and use that instead.
2112 void ObjCMethListSection::writeRelativeOffsetForIsec(
2113     const ConcatInputSection *isec, uint8_t *buf, uint32_t &inSecOff,
2114     uint32_t &outSecOff, bool useSelRef) const {
2115   const Reloc *reloc = isec->getRelocAt(inSecOff);
2116   assert(reloc && "Relocation expected at __objc_methlist Offset");
2117   auto *def = dyn_cast_or_null<Defined>(reloc->referent.get<Symbol *>());
2118   assert(def && "Expected all syms in __objc_methlist to be defined");
2119   uint32_t symVA = def->getVA();
2120 
2121   if (useSelRef) {
2122     auto *cisec = cast<CStringInputSection>(def->isec());
2123     auto methname = cisec->getStringRefAtOffset(def->value);
2124     ConcatInputSection *selRef = ObjCSelRefsHelper::getSelRef(methname);
2125     assert(selRef && "Expected all selector names to already be already be "
2126                      "present in __objc_selrefs");
2127     symVA = selRef->getVA();
2128     assert(selRef->data.size() == sizeof(target->wordSize) &&
2129            "Expected one selref per ConcatInputSection");
2130   }
2131 
2132   uint32_t currentVA = isec->getVA() + outSecOff;
2133   uint32_t delta = symVA - currentVA;
2134   write32le(buf + outSecOff, delta);
2135 
2136   // Move one pointer forward in the absolute method list
2137   inSecOff += target->wordSize;
2138   // Move one relative offset forward in the relative method list (32 bits)
2139   outSecOff += relativeOffsetSize;
2140 }
2141 
2142 // Write a relative method list to buf, return the size of the written
2143 // information
2144 uint32_t
2145 ObjCMethListSection::writeRelativeMethodList(const ConcatInputSection *isec,
2146                                              uint8_t *buf) const {
2147   // Copy over the header, and add the "this is a relative method list" magic
2148   // value flag
2149   uint32_t structSizeAndFlags = 0, structCount = 0;
2150   readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount);
2151   // Set the struct size for the relative method list
2152   uint32_t relativeStructSizeAndFlags =
2153       (relativeOffsetSize * pointersPerStruct) & structSizeMask;
2154   // Carry over the old flags from the input struct
2155   relativeStructSizeAndFlags |= structSizeAndFlags & structFlagsMask;
2156   // Set the relative method list flag
2157   relativeStructSizeAndFlags |= relMethodHeaderFlag;
2158 
2159   writeMethodListHeader(buf, relativeStructSizeAndFlags, structCount);
2160 
2161   assert(methodListHeaderSize +
2162                  (structCount * pointersPerStruct * target->wordSize) ==
2163              isec->data.size() &&
2164          "Invalid computed ObjC method list size");
2165 
2166   uint32_t inSecOff = methodListHeaderSize;
2167   uint32_t outSecOff = methodListHeaderSize;
2168 
2169   // Go through the method list and encode input absolute pointers as relative
2170   // offsets. writeRelativeOffsetForIsec will be incrementing inSecOff and
2171   // outSecOff
2172   for (uint32_t i = 0; i < structCount; i++) {
2173     // Write the name of the method
2174     writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, true);
2175     // Write the type of the method
2176     writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false);
2177     // Write reference to the selector of the method
2178     writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false);
2179   }
2180 
2181   // Expecting to have read all the data in the isec
2182   assert(inSecOff == isec->data.size() &&
2183          "Invalid actual ObjC method list size");
2184   assert(
2185       outSecOff == computeRelativeMethodListSize(inSecOff) &&
2186       "Mismatch between input & output size when writing relative method list");
2187   return outSecOff;
2188 }
2189 
2190 // Given the size of an ObjC method list InputSection, return the size of the
2191 // method list when encoded in relative offsets format. We can do this without
2192 // decoding the actual data, as it can be directly inferred from the size of the
2193 // isec.
2194 uint32_t ObjCMethListSection::computeRelativeMethodListSize(
2195     uint32_t absoluteMethodListSize) const {
2196   uint32_t oldPointersSize = absoluteMethodListSize - methodListHeaderSize;
2197   uint32_t pointerCount = oldPointersSize / target->wordSize;
2198   assert(((pointerCount % pointersPerStruct) == 0) &&
2199          "__objc_methlist expects method lists to have multiple-of-3 pointers");
2200 
2201   uint32_t newPointersSize = pointerCount * relativeOffsetSize;
2202   uint32_t newTotalSize = methodListHeaderSize + newPointersSize;
2203 
2204   assert((newTotalSize <= absoluteMethodListSize) &&
2205          "Expected relative method list size to be smaller or equal than "
2206          "original size");
2207   return newTotalSize;
2208 }
2209 
2210 // Read a method list header from buf
2211 void ObjCMethListSection::readMethodListHeader(const uint8_t *buf,
2212                                                uint32_t &structSizeAndFlags,
2213                                                uint32_t &structCount) const {
2214   structSizeAndFlags = read32le(buf);
2215   structCount = read32le(buf + sizeof(uint32_t));
2216 }
2217 
2218 // Write a method list header to buf
2219 void ObjCMethListSection::writeMethodListHeader(uint8_t *buf,
2220                                                 uint32_t structSizeAndFlags,
2221                                                 uint32_t structCount) const {
2222   write32le(buf, structSizeAndFlags);
2223   write32le(buf + sizeof(structSizeAndFlags), structCount);
2224 }
2225 
2226 void macho::createSyntheticSymbols() {
2227   auto addHeaderSymbol = [](const char *name) {
2228     symtab->addSynthetic(name, in.header->isec, /*value=*/0,
2229                          /*isPrivateExtern=*/true, /*includeInSymtab=*/false,
2230                          /*referencedDynamically=*/false);
2231   };
2232 
2233   switch (config->outputType) {
2234     // FIXME: Assign the right address value for these symbols
2235     // (rather than 0). But we need to do that after assignAddresses().
2236   case MH_EXECUTE:
2237     // If linking PIE, __mh_execute_header is a defined symbol in
2238     //  __TEXT, __text)
2239     // Otherwise, it's an absolute symbol.
2240     if (config->isPic)
2241       symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
2242                            /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
2243                            /*referencedDynamically=*/true);
2244     else
2245       symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
2246                            /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
2247                            /*referencedDynamically=*/true);
2248     break;
2249 
2250     // The following symbols are N_SECT symbols, even though the header is not
2251     // part of any section and that they are private to the bundle/dylib/object
2252     // they are part of.
2253   case MH_BUNDLE:
2254     addHeaderSymbol("__mh_bundle_header");
2255     break;
2256   case MH_DYLIB:
2257     addHeaderSymbol("__mh_dylib_header");
2258     break;
2259   case MH_DYLINKER:
2260     addHeaderSymbol("__mh_dylinker_header");
2261     break;
2262   case MH_OBJECT:
2263     addHeaderSymbol("__mh_object_header");
2264     break;
2265   default:
2266     llvm_unreachable("unexpected outputType");
2267     break;
2268   }
2269 
2270   // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
2271   // which does e.g. cleanup of static global variables. The ABI document
2272   // says that the pointer can point to any address in one of the dylib's
2273   // segments, but in practice ld64 seems to set it to point to the header,
2274   // so that's what's implemented here.
2275   addHeaderSymbol("___dso_handle");
2276 }
2277 
2278 ChainedFixupsSection::ChainedFixupsSection()
2279     : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {}
2280 
2281 bool ChainedFixupsSection::isNeeded() const {
2282   assert(config->emitChainedFixups);
2283   // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid
2284   // dyld_chained_fixups_header, so we create this section even if there aren't
2285   // any fixups.
2286   return true;
2287 }
2288 
2289 void ChainedFixupsSection::addBinding(const Symbol *sym,
2290                                       const InputSection *isec, uint64_t offset,
2291                                       int64_t addend) {
2292   locations.emplace_back(isec, offset);
2293   int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
2294   auto [it, inserted] = bindings.insert(
2295       {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())});
2296 
2297   if (inserted) {
2298     symtabSize += sym->getName().size() + 1;
2299     hasWeakBind = hasWeakBind || needsWeakBind(*sym);
2300     if (!isInt<23>(outlineAddend))
2301       needsLargeAddend = true;
2302     else if (outlineAddend != 0)
2303       needsAddend = true;
2304   }
2305 }
2306 
2307 std::pair<uint32_t, uint8_t>
2308 ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const {
2309   int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
2310   auto it = bindings.find({sym, outlineAddend});
2311   assert(it != bindings.end() && "binding not found in the imports table");
2312   if (outlineAddend == 0)
2313     return {it->second, addend};
2314   return {it->second, 0};
2315 }
2316 
2317 static size_t writeImport(uint8_t *buf, int format, int16_t libOrdinal,
2318                           bool weakRef, uint32_t nameOffset, int64_t addend) {
2319   switch (format) {
2320   case DYLD_CHAINED_IMPORT: {
2321     auto *import = reinterpret_cast<dyld_chained_import *>(buf);
2322     import->lib_ordinal = libOrdinal;
2323     import->weak_import = weakRef;
2324     import->name_offset = nameOffset;
2325     return sizeof(dyld_chained_import);
2326   }
2327   case DYLD_CHAINED_IMPORT_ADDEND: {
2328     auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf);
2329     import->lib_ordinal = libOrdinal;
2330     import->weak_import = weakRef;
2331     import->name_offset = nameOffset;
2332     import->addend = addend;
2333     return sizeof(dyld_chained_import_addend);
2334   }
2335   case DYLD_CHAINED_IMPORT_ADDEND64: {
2336     auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf);
2337     import->lib_ordinal = libOrdinal;
2338     import->weak_import = weakRef;
2339     import->name_offset = nameOffset;
2340     import->addend = addend;
2341     return sizeof(dyld_chained_import_addend64);
2342   }
2343   default:
2344     llvm_unreachable("Unknown import format");
2345   }
2346 }
2347 
2348 size_t ChainedFixupsSection::SegmentInfo::getSize() const {
2349   assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?");
2350   return alignTo<8>(sizeof(dyld_chained_starts_in_segment) +
2351                     pageStarts.back().first * sizeof(uint16_t));
2352 }
2353 
2354 size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const {
2355   auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf);
2356   segInfo->size = getSize();
2357   segInfo->page_size = target->getPageSize();
2358   // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions.
2359   segInfo->pointer_format = DYLD_CHAINED_PTR_64;
2360   segInfo->segment_offset = oseg->addr - in.header->addr;
2361   segInfo->max_valid_pointer = 0; // not used on 64-bit
2362   segInfo->page_count = pageStarts.back().first + 1;
2363 
2364   uint16_t *starts = segInfo->page_start;
2365   for (size_t i = 0; i < segInfo->page_count; ++i)
2366     starts[i] = DYLD_CHAINED_PTR_START_NONE;
2367 
2368   for (auto [pageIdx, startAddr] : pageStarts)
2369     starts[pageIdx] = startAddr;
2370   return segInfo->size;
2371 }
2372 
2373 static size_t importEntrySize(int format) {
2374   switch (format) {
2375   case DYLD_CHAINED_IMPORT:
2376     return sizeof(dyld_chained_import);
2377   case DYLD_CHAINED_IMPORT_ADDEND:
2378     return sizeof(dyld_chained_import_addend);
2379   case DYLD_CHAINED_IMPORT_ADDEND64:
2380     return sizeof(dyld_chained_import_addend64);
2381   default:
2382     llvm_unreachable("Unknown import format");
2383   }
2384 }
2385 
2386 // This is step 3 of the algorithm described in the class comment of
2387 // ChainedFixupsSection.
2388 //
2389 // LC_DYLD_CHAINED_FIXUPS data consists of (in this order):
2390 // * A dyld_chained_fixups_header
2391 // * A dyld_chained_starts_in_image
2392 // * One dyld_chained_starts_in_segment per segment
2393 // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or
2394 //   dyld_chained_import_addend64)
2395 // * Names of imported symbols
2396 void ChainedFixupsSection::writeTo(uint8_t *buf) const {
2397   auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf);
2398   header->fixups_version = 0;
2399   header->imports_count = bindings.size();
2400   header->imports_format = importFormat;
2401   header->symbols_format = 0;
2402 
2403   buf += alignTo<8>(sizeof(*header));
2404 
2405   auto curOffset = [&buf, &header]() -> uint32_t {
2406     return buf - reinterpret_cast<uint8_t *>(header);
2407   };
2408 
2409   header->starts_offset = curOffset();
2410 
2411   auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf);
2412   imageInfo->seg_count = outputSegments.size();
2413   uint32_t *segStarts = imageInfo->seg_info_offset;
2414 
2415   // dyld_chained_starts_in_image ends in a flexible array member containing an
2416   // uint32_t for each segment. Leave room for it, and fill it via segStarts.
2417   buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
2418                     outputSegments.size() * sizeof(uint32_t));
2419 
2420   // Initialize all offsets to 0, which indicates that the segment does not have
2421   // fixups. Those that do have them will be filled in below.
2422   for (size_t i = 0; i < outputSegments.size(); ++i)
2423     segStarts[i] = 0;
2424 
2425   for (const SegmentInfo &seg : fixupSegments) {
2426     segStarts[seg.oseg->index] = curOffset() - header->starts_offset;
2427     buf += seg.writeTo(buf);
2428   }
2429 
2430   // Write imports table.
2431   header->imports_offset = curOffset();
2432   uint64_t nameOffset = 0;
2433   for (auto [import, idx] : bindings) {
2434     const Symbol &sym = *import.first;
2435     buf += writeImport(buf, importFormat, ordinalForSymbol(sym),
2436                        sym.isWeakRef(), nameOffset, import.second);
2437     nameOffset += sym.getName().size() + 1;
2438   }
2439 
2440   // Write imported symbol names.
2441   header->symbols_offset = curOffset();
2442   for (auto [import, idx] : bindings) {
2443     StringRef name = import.first->getName();
2444     memcpy(buf, name.data(), name.size());
2445     buf += name.size() + 1; // account for null terminator
2446   }
2447 
2448   assert(curOffset() == getRawSize());
2449 }
2450 
2451 // This is step 2 of the algorithm described in the class comment of
2452 // ChainedFixupsSection.
2453 void ChainedFixupsSection::finalizeContents() {
2454   assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
2455   assert(config->emitChainedFixups);
2456 
2457   if (!isUInt<32>(symtabSize))
2458     error("cannot encode chained fixups: imported symbols table size " +
2459           Twine(symtabSize) + " exceeds 4 GiB");
2460 
2461   bool needsLargeOrdinal = any_of(bindings, [](const auto &p) {
2462     // 0xF1 - 0xFF are reserved for special ordinals in the 8-bit encoding.
2463     return ordinalForSymbol(*p.first.first) > 0xF0;
2464   });
2465 
2466   if (needsLargeAddend || !isUInt<23>(symtabSize) || needsLargeOrdinal)
2467     importFormat = DYLD_CHAINED_IMPORT_ADDEND64;
2468   else if (needsAddend)
2469     importFormat = DYLD_CHAINED_IMPORT_ADDEND;
2470   else
2471     importFormat = DYLD_CHAINED_IMPORT;
2472 
2473   for (Location &loc : locations)
2474     loc.offset =
2475         loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
2476 
2477   llvm::sort(locations, [](const Location &a, const Location &b) {
2478     const OutputSegment *segA = a.isec->parent->parent;
2479     const OutputSegment *segB = b.isec->parent->parent;
2480     if (segA == segB)
2481       return a.offset < b.offset;
2482     return segA->addr < segB->addr;
2483   });
2484 
2485   auto sameSegment = [](const Location &a, const Location &b) {
2486     return a.isec->parent->parent == b.isec->parent->parent;
2487   };
2488 
2489   const uint64_t pageSize = target->getPageSize();
2490   for (size_t i = 0, count = locations.size(); i < count;) {
2491     const Location &firstLoc = locations[i];
2492     fixupSegments.emplace_back(firstLoc.isec->parent->parent);
2493     while (i < count && sameSegment(locations[i], firstLoc)) {
2494       uint32_t pageIdx = locations[i].offset / pageSize;
2495       fixupSegments.back().pageStarts.emplace_back(
2496           pageIdx, locations[i].offset % pageSize);
2497       ++i;
2498       while (i < count && sameSegment(locations[i], firstLoc) &&
2499              locations[i].offset / pageSize == pageIdx)
2500         ++i;
2501     }
2502   }
2503 
2504   // Compute expected encoded size.
2505   size = alignTo<8>(sizeof(dyld_chained_fixups_header));
2506   size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
2507                      outputSegments.size() * sizeof(uint32_t));
2508   for (const SegmentInfo &seg : fixupSegments)
2509     size += seg.getSize();
2510   size += importEntrySize(importFormat) * bindings.size();
2511   size += symtabSize;
2512 }
2513 
2514 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
2515 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);
2516