1 //===- SyntheticSections.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SyntheticSections.h" 10 #include "ConcatOutputSection.h" 11 #include "Config.h" 12 #include "ExportTrie.h" 13 #include "InputFiles.h" 14 #include "MachOStructs.h" 15 #include "OutputSegment.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 19 #include "lld/Common/CommonLinkerContext.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Config/llvm-config.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/FileSystem.h" 24 #include "llvm/Support/LEB128.h" 25 #include "llvm/Support/Parallel.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/xxhash.h" 28 29 #if defined(__APPLE__) 30 #include <sys/mman.h> 31 32 #define COMMON_DIGEST_FOR_OPENSSL 33 #include <CommonCrypto/CommonDigest.h> 34 #else 35 #include "llvm/Support/SHA256.h" 36 #endif 37 38 using namespace llvm; 39 using namespace llvm::MachO; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::macho; 44 45 // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`. 46 static void sha256(const uint8_t *data, size_t len, uint8_t *output) { 47 #if defined(__APPLE__) 48 // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121 49 // for some notes on this. 50 CC_SHA256(data, len, output); 51 #else 52 ArrayRef<uint8_t> block(data, len); 53 std::array<uint8_t, 32> hash = SHA256::hash(block); 54 static_assert(hash.size() == CodeSignatureSection::hashSize); 55 memcpy(output, hash.data(), hash.size()); 56 #endif 57 } 58 59 InStruct macho::in; 60 std::vector<SyntheticSection *> macho::syntheticSections; 61 62 SyntheticSection::SyntheticSection(const char *segname, const char *name) 63 : OutputSection(SyntheticKind, name) { 64 std::tie(this->segname, this->name) = maybeRenameSection({segname, name}); 65 isec = makeSyntheticInputSection(segname, name); 66 isec->parent = this; 67 syntheticSections.push_back(this); 68 } 69 70 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts 71 // from the beginning of the file (i.e. the header). 72 MachHeaderSection::MachHeaderSection() 73 : SyntheticSection(segment_names::text, section_names::header) { 74 // XXX: This is a hack. (See D97007) 75 // Setting the index to 1 to pretend that this section is the text 76 // section. 77 index = 1; 78 isec->isFinal = true; 79 } 80 81 void MachHeaderSection::addLoadCommand(LoadCommand *lc) { 82 loadCommands.push_back(lc); 83 sizeOfCmds += lc->getSize(); 84 } 85 86 uint64_t MachHeaderSection::getSize() const { 87 uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; 88 // If we are emitting an encryptable binary, our load commands must have a 89 // separate (non-encrypted) page to themselves. 90 if (config->emitEncryptionInfo) 91 size = alignToPowerOf2(size, target->getPageSize()); 92 return size; 93 } 94 95 static uint32_t cpuSubtype() { 96 uint32_t subtype = target->cpuSubtype; 97 98 if (config->outputType == MH_EXECUTE && !config->staticLink && 99 target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && 100 config->platform() == PLATFORM_MACOS && 101 config->platformInfo.target.MinDeployment >= VersionTuple(10, 5)) 102 subtype |= CPU_SUBTYPE_LIB64; 103 104 return subtype; 105 } 106 107 static bool hasWeakBinding() { 108 return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding() 109 : in.weakBinding->hasEntry(); 110 } 111 112 static bool hasNonWeakDefinition() { 113 return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition() 114 : in.weakBinding->hasNonWeakDefinition(); 115 } 116 117 void MachHeaderSection::writeTo(uint8_t *buf) const { 118 auto *hdr = reinterpret_cast<mach_header *>(buf); 119 hdr->magic = target->magic; 120 hdr->cputype = target->cpuType; 121 hdr->cpusubtype = cpuSubtype(); 122 hdr->filetype = config->outputType; 123 hdr->ncmds = loadCommands.size(); 124 hdr->sizeofcmds = sizeOfCmds; 125 hdr->flags = MH_DYLDLINK; 126 127 if (config->namespaceKind == NamespaceKind::twolevel) 128 hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; 129 130 if (config->outputType == MH_DYLIB && !config->hasReexports) 131 hdr->flags |= MH_NO_REEXPORTED_DYLIBS; 132 133 if (config->markDeadStrippableDylib) 134 hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; 135 136 if (config->outputType == MH_EXECUTE && config->isPic) 137 hdr->flags |= MH_PIE; 138 139 if (config->outputType == MH_DYLIB && config->applicationExtension) 140 hdr->flags |= MH_APP_EXTENSION_SAFE; 141 142 if (in.exports->hasWeakSymbol || hasNonWeakDefinition()) 143 hdr->flags |= MH_WEAK_DEFINES; 144 145 if (in.exports->hasWeakSymbol || hasWeakBinding()) 146 hdr->flags |= MH_BINDS_TO_WEAK; 147 148 for (const OutputSegment *seg : outputSegments) { 149 for (const OutputSection *osec : seg->getSections()) { 150 if (isThreadLocalVariables(osec->flags)) { 151 hdr->flags |= MH_HAS_TLV_DESCRIPTORS; 152 break; 153 } 154 } 155 } 156 157 uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; 158 for (const LoadCommand *lc : loadCommands) { 159 lc->writeTo(p); 160 p += lc->getSize(); 161 } 162 } 163 164 PageZeroSection::PageZeroSection() 165 : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} 166 167 RebaseSection::RebaseSection() 168 : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} 169 170 namespace { 171 struct RebaseState { 172 uint64_t sequenceLength; 173 uint64_t skipLength; 174 }; 175 } // namespace 176 177 static void emitIncrement(uint64_t incr, raw_svector_ostream &os) { 178 assert(incr != 0); 179 180 if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK && 181 (incr % target->wordSize) == 0) { 182 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED | 183 (incr >> target->p2WordSize)); 184 } else { 185 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); 186 encodeULEB128(incr, os); 187 } 188 } 189 190 static void flushRebase(const RebaseState &state, raw_svector_ostream &os) { 191 assert(state.sequenceLength > 0); 192 193 if (state.skipLength == target->wordSize) { 194 if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) { 195 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | 196 state.sequenceLength); 197 } else { 198 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); 199 encodeULEB128(state.sequenceLength, os); 200 } 201 } else if (state.sequenceLength == 1) { 202 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB); 203 encodeULEB128(state.skipLength - target->wordSize, os); 204 } else { 205 os << static_cast<uint8_t>( 206 REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB); 207 encodeULEB128(state.sequenceLength, os); 208 encodeULEB128(state.skipLength - target->wordSize, os); 209 } 210 } 211 212 // Rebases are communicated to dyld using a bytecode, whose opcodes cause the 213 // memory location at a specific address to be rebased and/or the address to be 214 // incremented. 215 // 216 // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic 217 // one, encoding a series of evenly spaced addresses. This algorithm works by 218 // splitting up the sorted list of addresses into such chunks. If the locations 219 // are consecutive or the sequence consists of a single location, flushRebase 220 // will use a smaller, more specialized encoding. 221 static void encodeRebases(const OutputSegment *seg, 222 MutableArrayRef<Location> locations, 223 raw_svector_ostream &os) { 224 // dyld operates on segments. Translate section offsets into segment offsets. 225 for (Location &loc : locations) 226 loc.offset = 227 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset); 228 // The algorithm assumes that locations are unique. 229 Location *end = 230 llvm::unique(locations, [](const Location &a, const Location &b) { 231 return a.offset == b.offset; 232 }); 233 size_t count = end - locations.begin(); 234 235 os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 236 seg->index); 237 assert(!locations.empty()); 238 uint64_t offset = locations[0].offset; 239 encodeULEB128(offset, os); 240 241 RebaseState state{1, target->wordSize}; 242 243 for (size_t i = 1; i < count; ++i) { 244 offset = locations[i].offset; 245 246 uint64_t skip = offset - locations[i - 1].offset; 247 assert(skip != 0 && "duplicate locations should have been weeded out"); 248 249 if (skip == state.skipLength) { 250 ++state.sequenceLength; 251 } else if (state.sequenceLength == 1) { 252 ++state.sequenceLength; 253 state.skipLength = skip; 254 } else if (skip < state.skipLength) { 255 // The address is lower than what the rebase pointer would be if the last 256 // location would be part of a sequence. We start a new sequence from the 257 // previous location. 258 --state.sequenceLength; 259 flushRebase(state, os); 260 261 state.sequenceLength = 2; 262 state.skipLength = skip; 263 } else { 264 // The address is at some positive offset from the rebase pointer. We 265 // start a new sequence which begins with the current location. 266 flushRebase(state, os); 267 emitIncrement(skip - state.skipLength, os); 268 state.sequenceLength = 1; 269 state.skipLength = target->wordSize; 270 } 271 } 272 flushRebase(state, os); 273 } 274 275 void RebaseSection::finalizeContents() { 276 if (locations.empty()) 277 return; 278 279 raw_svector_ostream os{contents}; 280 os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); 281 282 llvm::sort(locations, [](const Location &a, const Location &b) { 283 return a.isec->getVA(a.offset) < b.isec->getVA(b.offset); 284 }); 285 286 for (size_t i = 0, count = locations.size(); i < count;) { 287 const OutputSegment *seg = locations[i].isec->parent->parent; 288 size_t j = i + 1; 289 while (j < count && locations[j].isec->parent->parent == seg) 290 ++j; 291 encodeRebases(seg, {locations.data() + i, locations.data() + j}, os); 292 i = j; 293 } 294 os << static_cast<uint8_t>(REBASE_OPCODE_DONE); 295 } 296 297 void RebaseSection::writeTo(uint8_t *buf) const { 298 memcpy(buf, contents.data(), contents.size()); 299 } 300 301 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, 302 const char *name) 303 : SyntheticSection(segname, name) { 304 align = target->wordSize; 305 } 306 307 void macho::addNonLazyBindingEntries(const Symbol *sym, 308 const InputSection *isec, uint64_t offset, 309 int64_t addend) { 310 if (config->emitChainedFixups) { 311 if (needsBinding(sym)) 312 in.chainedFixups->addBinding(sym, isec, offset, addend); 313 else if (isa<Defined>(sym)) 314 in.chainedFixups->addRebase(isec, offset); 315 else 316 llvm_unreachable("cannot bind to an undefined symbol"); 317 return; 318 } 319 320 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 321 in.binding->addEntry(dysym, isec, offset, addend); 322 if (dysym->isWeakDef()) 323 in.weakBinding->addEntry(sym, isec, offset, addend); 324 } else if (const auto *defined = dyn_cast<Defined>(sym)) { 325 in.rebase->addEntry(isec, offset); 326 if (defined->isExternalWeakDef()) 327 in.weakBinding->addEntry(sym, isec, offset, addend); 328 else if (defined->interposable) 329 in.binding->addEntry(sym, isec, offset, addend); 330 } else { 331 // Undefined symbols are filtered out in scanRelocations(); we should never 332 // get here 333 llvm_unreachable("cannot bind to an undefined symbol"); 334 } 335 } 336 337 void NonLazyPointerSectionBase::addEntry(Symbol *sym) { 338 if (entries.insert(sym)) { 339 assert(!sym->isInGot()); 340 sym->gotIndex = entries.size() - 1; 341 342 addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize); 343 } 344 } 345 346 void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) { 347 assert(config->emitChainedFixups); 348 assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); 349 auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf); 350 rebase->target = targetVA & 0xf'ffff'ffff; 351 rebase->high8 = (targetVA >> 56); 352 rebase->reserved = 0; 353 rebase->next = 0; 354 rebase->bind = 0; 355 356 // The fixup format places a 64 GiB limit on the output's size. 357 // Should we handle this gracefully? 358 uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56); 359 if (encodedVA != targetVA) 360 error("rebase target address 0x" + Twine::utohexstr(targetVA) + 361 " does not fit into chained fixup. Re-link with -no_fixup_chains"); 362 } 363 364 static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) { 365 assert(config->emitChainedFixups); 366 assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); 367 auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf); 368 auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend); 369 bind->ordinal = ordinal; 370 bind->addend = inlineAddend; 371 bind->reserved = 0; 372 bind->next = 0; 373 bind->bind = 1; 374 } 375 376 void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) { 377 if (needsBinding(sym)) 378 writeChainedBind(buf, sym, addend); 379 else 380 writeChainedRebase(buf, sym->getVA() + addend); 381 } 382 383 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { 384 if (config->emitChainedFixups) { 385 for (const auto &[i, entry] : llvm::enumerate(entries)) 386 writeChainedFixup(&buf[i * target->wordSize], entry, 0); 387 } else { 388 for (const auto &[i, entry] : llvm::enumerate(entries)) 389 if (auto *defined = dyn_cast<Defined>(entry)) 390 write64le(&buf[i * target->wordSize], defined->getVA()); 391 } 392 } 393 394 GotSection::GotSection() 395 : NonLazyPointerSectionBase(segment_names::data, section_names::got) { 396 flags = S_NON_LAZY_SYMBOL_POINTERS; 397 } 398 399 TlvPointerSection::TlvPointerSection() 400 : NonLazyPointerSectionBase(segment_names::data, 401 section_names::threadPtrs) { 402 flags = S_THREAD_LOCAL_VARIABLE_POINTERS; 403 } 404 405 BindingSection::BindingSection() 406 : LinkEditSection(segment_names::linkEdit, section_names::binding) {} 407 408 namespace { 409 struct Binding { 410 OutputSegment *segment = nullptr; 411 uint64_t offset = 0; 412 int64_t addend = 0; 413 }; 414 struct BindIR { 415 // Default value of 0xF0 is not valid opcode and should make the program 416 // scream instead of accidentally writing "valid" values. 417 uint8_t opcode = 0xF0; 418 uint64_t data = 0; 419 uint64_t consecutiveCount = 0; 420 }; 421 } // namespace 422 423 // Encode a sequence of opcodes that tell dyld to write the address of symbol + 424 // addend at osec->addr + outSecOff. 425 // 426 // The bind opcode "interpreter" remembers the values of each binding field, so 427 // we only need to encode the differences between bindings. Hence the use of 428 // lastBinding. 429 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, 430 int64_t addend, Binding &lastBinding, 431 std::vector<BindIR> &opcodes) { 432 OutputSegment *seg = osec->parent; 433 uint64_t offset = osec->getSegmentOffset() + outSecOff; 434 if (lastBinding.segment != seg) { 435 opcodes.push_back( 436 {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 437 seg->index), 438 offset}); 439 lastBinding.segment = seg; 440 lastBinding.offset = offset; 441 } else if (lastBinding.offset != offset) { 442 opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset}); 443 lastBinding.offset = offset; 444 } 445 446 if (lastBinding.addend != addend) { 447 opcodes.push_back( 448 {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)}); 449 lastBinding.addend = addend; 450 } 451 452 opcodes.push_back({BIND_OPCODE_DO_BIND, 0}); 453 // DO_BIND causes dyld to both perform the binding and increment the offset 454 lastBinding.offset += target->wordSize; 455 } 456 457 static void optimizeOpcodes(std::vector<BindIR> &opcodes) { 458 // Pass 1: Combine bind/add pairs 459 size_t i; 460 int pWrite = 0; 461 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 462 if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && 463 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { 464 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; 465 opcodes[pWrite].data = opcodes[i].data; 466 ++i; 467 } else { 468 opcodes[pWrite] = opcodes[i - 1]; 469 } 470 } 471 if (i == opcodes.size()) 472 opcodes[pWrite] = opcodes[i - 1]; 473 opcodes.resize(pWrite + 1); 474 475 // Pass 2: Compress two or more bind_add opcodes 476 pWrite = 0; 477 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 478 if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 479 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 480 (opcodes[i].data == opcodes[i - 1].data)) { 481 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; 482 opcodes[pWrite].consecutiveCount = 2; 483 opcodes[pWrite].data = opcodes[i].data; 484 ++i; 485 while (i < opcodes.size() && 486 (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 487 (opcodes[i].data == opcodes[i - 1].data)) { 488 opcodes[pWrite].consecutiveCount++; 489 ++i; 490 } 491 } else { 492 opcodes[pWrite] = opcodes[i - 1]; 493 } 494 } 495 if (i == opcodes.size()) 496 opcodes[pWrite] = opcodes[i - 1]; 497 opcodes.resize(pWrite + 1); 498 499 // Pass 3: Use immediate encodings 500 // Every binding is the size of one pointer. If the next binding is a 501 // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the 502 // opcode can be scaled by wordSize into a single byte and dyld will 503 // expand it to the correct address. 504 for (auto &p : opcodes) { 505 // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, 506 // but ld64 currently does this. This could be a potential bug, but 507 // for now, perform the same behavior to prevent mysterious bugs. 508 if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 509 ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && 510 ((p.data % target->wordSize) == 0)) { 511 p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; 512 p.data /= target->wordSize; 513 } 514 } 515 } 516 517 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { 518 uint8_t opcode = op.opcode & BIND_OPCODE_MASK; 519 switch (opcode) { 520 case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: 521 case BIND_OPCODE_ADD_ADDR_ULEB: 522 case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: 523 os << op.opcode; 524 encodeULEB128(op.data, os); 525 break; 526 case BIND_OPCODE_SET_ADDEND_SLEB: 527 os << op.opcode; 528 encodeSLEB128(static_cast<int64_t>(op.data), os); 529 break; 530 case BIND_OPCODE_DO_BIND: 531 os << op.opcode; 532 break; 533 case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: 534 os << op.opcode; 535 encodeULEB128(op.consecutiveCount, os); 536 encodeULEB128(op.data, os); 537 break; 538 case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: 539 os << static_cast<uint8_t>(op.opcode | op.data); 540 break; 541 default: 542 llvm_unreachable("cannot bind to an unrecognized symbol"); 543 } 544 } 545 546 // Non-weak bindings need to have their dylib ordinal encoded as well. 547 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { 548 if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) 549 return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); 550 assert(dysym.getFile()->isReferenced()); 551 return dysym.getFile()->ordinal; 552 } 553 554 static int16_t ordinalForSymbol(const Symbol &sym) { 555 if (const auto *dysym = dyn_cast<DylibSymbol>(&sym)) 556 return ordinalForDylibSymbol(*dysym); 557 assert(cast<Defined>(&sym)->interposable); 558 return BIND_SPECIAL_DYLIB_FLAT_LOOKUP; 559 } 560 561 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { 562 if (ordinal <= 0) { 563 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | 564 (ordinal & BIND_IMMEDIATE_MASK)); 565 } else if (ordinal <= BIND_IMMEDIATE_MASK) { 566 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); 567 } else { 568 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); 569 encodeULEB128(ordinal, os); 570 } 571 } 572 573 static void encodeWeakOverride(const Defined *defined, 574 raw_svector_ostream &os) { 575 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | 576 BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) 577 << defined->getName() << '\0'; 578 } 579 580 // Organize the bindings so we can encoded them with fewer opcodes. 581 // 582 // First, all bindings for a given symbol should be grouped together. 583 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it 584 // has an associated symbol string), so we only want to emit it once per symbol. 585 // 586 // Within each group, we sort the bindings by address. Since bindings are 587 // delta-encoded, sorting them allows for a more compact result. Note that 588 // sorting by address alone ensures that bindings for the same segment / section 589 // are located together, minimizing the number of times we have to emit 590 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. 591 // 592 // Finally, we sort the symbols by the address of their first binding, again 593 // to facilitate the delta-encoding process. 594 template <class Sym> 595 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> 596 sortBindings(const BindingsMap<const Sym *> &bindingsMap) { 597 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( 598 bindingsMap.begin(), bindingsMap.end()); 599 for (auto &p : bindingsVec) { 600 std::vector<BindingEntry> &bindings = p.second; 601 llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { 602 return a.target.getVA() < b.target.getVA(); 603 }); 604 } 605 llvm::sort(bindingsVec, [](const auto &a, const auto &b) { 606 return a.second[0].target.getVA() < b.second[0].target.getVA(); 607 }); 608 return bindingsVec; 609 } 610 611 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld 612 // interprets to update a record with the following fields: 613 // * segment index (of the segment to write the symbol addresses to, typically 614 // the __DATA_CONST segment which contains the GOT) 615 // * offset within the segment, indicating the next location to write a binding 616 // * symbol type 617 // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) 618 // * symbol name 619 // * addend 620 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind 621 // a symbol in the GOT, and increments the segment offset to point to the next 622 // entry. It does *not* clear the record state after doing the bind, so 623 // subsequent opcodes only need to encode the differences between bindings. 624 void BindingSection::finalizeContents() { 625 raw_svector_ostream os{contents}; 626 Binding lastBinding; 627 int16_t lastOrdinal = 0; 628 629 for (auto &p : sortBindings(bindingsMap)) { 630 const Symbol *sym = p.first; 631 std::vector<BindingEntry> &bindings = p.second; 632 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 633 if (sym->isWeakRef()) 634 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 635 os << flags << sym->getName() << '\0' 636 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 637 int16_t ordinal = ordinalForSymbol(*sym); 638 if (ordinal != lastOrdinal) { 639 encodeDylibOrdinal(ordinal, os); 640 lastOrdinal = ordinal; 641 } 642 std::vector<BindIR> opcodes; 643 for (const BindingEntry &b : bindings) 644 encodeBinding(b.target.isec->parent, 645 b.target.isec->getOffset(b.target.offset), b.addend, 646 lastBinding, opcodes); 647 if (config->optimize > 1) 648 optimizeOpcodes(opcodes); 649 for (const auto &op : opcodes) 650 flushOpcodes(op, os); 651 } 652 if (!bindingsMap.empty()) 653 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 654 } 655 656 void BindingSection::writeTo(uint8_t *buf) const { 657 memcpy(buf, contents.data(), contents.size()); 658 } 659 660 WeakBindingSection::WeakBindingSection() 661 : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} 662 663 void WeakBindingSection::finalizeContents() { 664 raw_svector_ostream os{contents}; 665 Binding lastBinding; 666 667 for (const Defined *defined : definitions) 668 encodeWeakOverride(defined, os); 669 670 for (auto &p : sortBindings(bindingsMap)) { 671 const Symbol *sym = p.first; 672 std::vector<BindingEntry> &bindings = p.second; 673 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) 674 << sym->getName() << '\0' 675 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 676 std::vector<BindIR> opcodes; 677 for (const BindingEntry &b : bindings) 678 encodeBinding(b.target.isec->parent, 679 b.target.isec->getOffset(b.target.offset), b.addend, 680 lastBinding, opcodes); 681 if (config->optimize > 1) 682 optimizeOpcodes(opcodes); 683 for (const auto &op : opcodes) 684 flushOpcodes(op, os); 685 } 686 if (!bindingsMap.empty() || !definitions.empty()) 687 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 688 } 689 690 void WeakBindingSection::writeTo(uint8_t *buf) const { 691 memcpy(buf, contents.data(), contents.size()); 692 } 693 694 StubsSection::StubsSection() 695 : SyntheticSection(segment_names::text, section_names::stubs) { 696 flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 697 // The stubs section comprises machine instructions, which are aligned to 698 // 4 bytes on the archs we care about. 699 align = 4; 700 reserved2 = target->stubSize; 701 } 702 703 uint64_t StubsSection::getSize() const { 704 return entries.size() * target->stubSize; 705 } 706 707 void StubsSection::writeTo(uint8_t *buf) const { 708 size_t off = 0; 709 for (const Symbol *sym : entries) { 710 uint64_t pointerVA = 711 config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA(); 712 target->writeStub(buf + off, *sym, pointerVA); 713 off += target->stubSize; 714 } 715 } 716 717 void StubsSection::finalize() { isFinal = true; } 718 719 static void addBindingsForStub(Symbol *sym) { 720 assert(!config->emitChainedFixups); 721 if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 722 if (sym->isWeakDef()) { 723 in.binding->addEntry(dysym, in.lazyPointers->isec, 724 sym->stubsIndex * target->wordSize); 725 in.weakBinding->addEntry(sym, in.lazyPointers->isec, 726 sym->stubsIndex * target->wordSize); 727 } else { 728 in.lazyBinding->addEntry(dysym); 729 } 730 } else if (auto *defined = dyn_cast<Defined>(sym)) { 731 if (defined->isExternalWeakDef()) { 732 in.rebase->addEntry(in.lazyPointers->isec, 733 sym->stubsIndex * target->wordSize); 734 in.weakBinding->addEntry(sym, in.lazyPointers->isec, 735 sym->stubsIndex * target->wordSize); 736 } else if (defined->interposable) { 737 in.lazyBinding->addEntry(sym); 738 } else { 739 llvm_unreachable("invalid stub target"); 740 } 741 } else { 742 llvm_unreachable("invalid stub target symbol type"); 743 } 744 } 745 746 void StubsSection::addEntry(Symbol *sym) { 747 bool inserted = entries.insert(sym); 748 if (inserted) { 749 sym->stubsIndex = entries.size() - 1; 750 751 if (config->emitChainedFixups) 752 in.got->addEntry(sym); 753 else 754 addBindingsForStub(sym); 755 } 756 } 757 758 StubHelperSection::StubHelperSection() 759 : SyntheticSection(segment_names::text, section_names::stubHelper) { 760 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 761 align = 4; // This section comprises machine instructions 762 } 763 764 uint64_t StubHelperSection::getSize() const { 765 return target->stubHelperHeaderSize + 766 in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; 767 } 768 769 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } 770 771 void StubHelperSection::writeTo(uint8_t *buf) const { 772 target->writeStubHelperHeader(buf); 773 size_t off = target->stubHelperHeaderSize; 774 for (const Symbol *sym : in.lazyBinding->getEntries()) { 775 target->writeStubHelperEntry(buf + off, *sym, addr + off); 776 off += target->stubHelperEntrySize; 777 } 778 } 779 780 void StubHelperSection::setUp() { 781 Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr, 782 /*isWeakRef=*/false); 783 if (auto *undefined = dyn_cast<Undefined>(binder)) 784 treatUndefinedSymbol(*undefined, 785 "lazy binding (normally in libSystem.dylib)"); 786 787 // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. 788 stubBinder = dyn_cast_or_null<DylibSymbol>(binder); 789 if (stubBinder == nullptr) 790 return; 791 792 in.got->addEntry(stubBinder); 793 794 in.imageLoaderCache->parent = 795 ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); 796 inputSections.push_back(in.imageLoaderCache); 797 // Since this isn't in the symbol table or in any input file, the noDeadStrip 798 // argument doesn't matter. 799 dyldPrivate = 800 make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0, 801 /*isWeakDef=*/false, 802 /*isExternal=*/false, /*isPrivateExtern=*/false, 803 /*includeInSymtab=*/true, 804 /*isReferencedDynamically=*/false, 805 /*noDeadStrip=*/false); 806 dyldPrivate->used = true; 807 } 808 809 ObjCStubsSection::ObjCStubsSection() 810 : SyntheticSection(segment_names::text, section_names::objcStubs) { 811 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 812 align = config->objcStubsMode == ObjCStubsMode::fast 813 ? target->objcStubsFastAlignment 814 : target->objcStubsSmallAlignment; 815 } 816 817 void ObjCStubsSection::addEntry(Symbol *sym) { 818 assert(sym->getName().starts_with(symbolPrefix) && "not an objc stub"); 819 StringRef methname = sym->getName().drop_front(symbolPrefix.size()); 820 offsets.push_back( 821 in.objcMethnameSection->getStringOffset(methname).outSecOff); 822 823 auto stubSize = config->objcStubsMode == ObjCStubsMode::fast 824 ? target->objcStubsFastSize 825 : target->objcStubsSmallSize; 826 Defined *newSym = replaceSymbol<Defined>( 827 sym, sym->getName(), nullptr, isec, 828 /*value=*/symbols.size() * stubSize, 829 /*size=*/stubSize, 830 /*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true, 831 /*includeInSymtab=*/true, /*isReferencedDynamically=*/false, 832 /*noDeadStrip=*/false); 833 symbols.push_back(newSym); 834 } 835 836 void ObjCStubsSection::setUp() { 837 objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr, 838 /*isWeakRef=*/false); 839 if (auto *undefined = dyn_cast<Undefined>(objcMsgSend)) 840 treatUndefinedSymbol(*undefined, 841 "lazy binding (normally in libobjc.dylib)"); 842 objcMsgSend->used = true; 843 if (config->objcStubsMode == ObjCStubsMode::fast) { 844 in.got->addEntry(objcMsgSend); 845 assert(objcMsgSend->isInGot()); 846 } else { 847 assert(config->objcStubsMode == ObjCStubsMode::small); 848 // In line with ld64's behavior, when objc_msgSend is a direct symbol, 849 // we directly reference it. 850 // In other cases, typically when binding in libobjc.dylib, 851 // we generate a stub to invoke objc_msgSend. 852 if (!isa<Defined>(objcMsgSend)) 853 in.stubs->addEntry(objcMsgSend); 854 } 855 856 size_t size = offsets.size() * target->wordSize; 857 uint8_t *selrefsData = bAlloc().Allocate<uint8_t>(size); 858 for (size_t i = 0, n = offsets.size(); i < n; ++i) 859 write64le(&selrefsData[i * target->wordSize], offsets[i]); 860 861 in.objcSelrefs = 862 makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs, 863 S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP, 864 ArrayRef<uint8_t>{selrefsData, size}, 865 /*align=*/target->wordSize); 866 in.objcSelrefs->live = true; 867 868 for (size_t i = 0, n = offsets.size(); i < n; ++i) { 869 in.objcSelrefs->relocs.push_back( 870 {/*type=*/target->unsignedRelocType, 871 /*pcrel=*/false, /*length=*/3, 872 /*offset=*/static_cast<uint32_t>(i * target->wordSize), 873 /*addend=*/offsets[i] * in.objcMethnameSection->align, 874 /*referent=*/in.objcMethnameSection->isec}); 875 } 876 877 in.objcSelrefs->parent = 878 ConcatOutputSection::getOrCreateForInput(in.objcSelrefs); 879 inputSections.push_back(in.objcSelrefs); 880 in.objcSelrefs->isFinal = true; 881 } 882 883 uint64_t ObjCStubsSection::getSize() const { 884 auto stubSize = config->objcStubsMode == ObjCStubsMode::fast 885 ? target->objcStubsFastSize 886 : target->objcStubsSmallSize; 887 return stubSize * symbols.size(); 888 } 889 890 void ObjCStubsSection::writeTo(uint8_t *buf) const { 891 assert(in.objcSelrefs->live); 892 assert(in.objcSelrefs->isFinal); 893 894 uint64_t stubOffset = 0; 895 for (size_t i = 0, n = symbols.size(); i < n; ++i) { 896 Defined *sym = symbols[i]; 897 target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr, 898 stubOffset, in.objcSelrefs->getVA(), i, 899 objcMsgSend); 900 } 901 } 902 903 LazyPointerSection::LazyPointerSection() 904 : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { 905 align = target->wordSize; 906 flags = S_LAZY_SYMBOL_POINTERS; 907 } 908 909 uint64_t LazyPointerSection::getSize() const { 910 return in.stubs->getEntries().size() * target->wordSize; 911 } 912 913 bool LazyPointerSection::isNeeded() const { 914 return !in.stubs->getEntries().empty(); 915 } 916 917 void LazyPointerSection::writeTo(uint8_t *buf) const { 918 size_t off = 0; 919 for (const Symbol *sym : in.stubs->getEntries()) { 920 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 921 if (dysym->hasStubsHelper()) { 922 uint64_t stubHelperOffset = 923 target->stubHelperHeaderSize + 924 dysym->stubsHelperIndex * target->stubHelperEntrySize; 925 write64le(buf + off, in.stubHelper->addr + stubHelperOffset); 926 } 927 } else { 928 write64le(buf + off, sym->getVA()); 929 } 930 off += target->wordSize; 931 } 932 } 933 934 LazyBindingSection::LazyBindingSection() 935 : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} 936 937 void LazyBindingSection::finalizeContents() { 938 // TODO: Just precompute output size here instead of writing to a temporary 939 // buffer 940 for (Symbol *sym : entries) 941 sym->lazyBindOffset = encode(*sym); 942 } 943 944 void LazyBindingSection::writeTo(uint8_t *buf) const { 945 memcpy(buf, contents.data(), contents.size()); 946 } 947 948 void LazyBindingSection::addEntry(Symbol *sym) { 949 assert(!config->emitChainedFixups && "Chained fixups always bind eagerly"); 950 if (entries.insert(sym)) { 951 sym->stubsHelperIndex = entries.size() - 1; 952 in.rebase->addEntry(in.lazyPointers->isec, 953 sym->stubsIndex * target->wordSize); 954 } 955 } 956 957 // Unlike the non-lazy binding section, the bind opcodes in this section aren't 958 // interpreted all at once. Rather, dyld will start interpreting opcodes at a 959 // given offset, typically only binding a single symbol before it finds a 960 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, 961 // we cannot encode just the differences between symbols; we have to emit the 962 // complete bind information for each symbol. 963 uint32_t LazyBindingSection::encode(const Symbol &sym) { 964 uint32_t opstreamOffset = contents.size(); 965 OutputSegment *dataSeg = in.lazyPointers->parent; 966 os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 967 dataSeg->index); 968 uint64_t offset = 969 in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize; 970 encodeULEB128(offset, os); 971 encodeDylibOrdinal(ordinalForSymbol(sym), os); 972 973 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 974 if (sym.isWeakRef()) 975 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 976 977 os << flags << sym.getName() << '\0' 978 << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) 979 << static_cast<uint8_t>(BIND_OPCODE_DONE); 980 return opstreamOffset; 981 } 982 983 ExportSection::ExportSection() 984 : LinkEditSection(segment_names::linkEdit, section_names::export_) {} 985 986 void ExportSection::finalizeContents() { 987 trieBuilder.setImageBase(in.header->addr); 988 for (const Symbol *sym : symtab->getSymbols()) { 989 if (const auto *defined = dyn_cast<Defined>(sym)) { 990 if (defined->privateExtern || !defined->isLive()) 991 continue; 992 trieBuilder.addSymbol(*defined); 993 hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); 994 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 995 if (dysym->shouldReexport) 996 trieBuilder.addSymbol(*dysym); 997 } 998 } 999 size = trieBuilder.build(); 1000 } 1001 1002 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } 1003 1004 DataInCodeSection::DataInCodeSection() 1005 : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} 1006 1007 template <class LP> 1008 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { 1009 std::vector<MachO::data_in_code_entry> dataInCodeEntries; 1010 for (const InputFile *inputFile : inputFiles) { 1011 if (!isa<ObjFile>(inputFile)) 1012 continue; 1013 const ObjFile *objFile = cast<ObjFile>(inputFile); 1014 ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode(); 1015 if (entries.empty()) 1016 continue; 1017 1018 assert(is_sorted(entries, [](const data_in_code_entry &lhs, 1019 const data_in_code_entry &rhs) { 1020 return lhs.offset < rhs.offset; 1021 })); 1022 // For each code subsection find 'data in code' entries residing in it. 1023 // Compute the new offset values as 1024 // <offset within subsection> + <subsection address> - <__TEXT address>. 1025 for (const Section *section : objFile->sections) { 1026 for (const Subsection &subsec : section->subsections) { 1027 const InputSection *isec = subsec.isec; 1028 if (!isCodeSection(isec)) 1029 continue; 1030 if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput()) 1031 continue; 1032 const uint64_t beginAddr = section->addr + subsec.offset; 1033 auto it = llvm::lower_bound( 1034 entries, beginAddr, 1035 [](const MachO::data_in_code_entry &entry, uint64_t addr) { 1036 return entry.offset < addr; 1037 }); 1038 const uint64_t endAddr = beginAddr + isec->getSize(); 1039 for (const auto end = entries.end(); 1040 it != end && it->offset + it->length <= endAddr; ++it) 1041 dataInCodeEntries.push_back( 1042 {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) - 1043 in.header->addr), 1044 it->length, it->kind}); 1045 } 1046 } 1047 } 1048 1049 // ld64 emits the table in sorted order too. 1050 llvm::sort(dataInCodeEntries, 1051 [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) { 1052 return lhs.offset < rhs.offset; 1053 }); 1054 return dataInCodeEntries; 1055 } 1056 1057 void DataInCodeSection::finalizeContents() { 1058 entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() 1059 : collectDataInCodeEntries<ILP32>(); 1060 } 1061 1062 void DataInCodeSection::writeTo(uint8_t *buf) const { 1063 if (!entries.empty()) 1064 memcpy(buf, entries.data(), getRawSize()); 1065 } 1066 1067 FunctionStartsSection::FunctionStartsSection() 1068 : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} 1069 1070 void FunctionStartsSection::finalizeContents() { 1071 raw_svector_ostream os{contents}; 1072 std::vector<uint64_t> addrs; 1073 for (const InputFile *file : inputFiles) { 1074 if (auto *objFile = dyn_cast<ObjFile>(file)) { 1075 for (const Symbol *sym : objFile->symbols) { 1076 if (const auto *defined = dyn_cast_or_null<Defined>(sym)) { 1077 if (!defined->isec || !isCodeSection(defined->isec) || 1078 !defined->isLive()) 1079 continue; 1080 addrs.push_back(defined->getVA()); 1081 } 1082 } 1083 } 1084 } 1085 llvm::sort(addrs); 1086 uint64_t addr = in.header->addr; 1087 for (uint64_t nextAddr : addrs) { 1088 uint64_t delta = nextAddr - addr; 1089 if (delta == 0) 1090 continue; 1091 encodeULEB128(delta, os); 1092 addr = nextAddr; 1093 } 1094 os << '\0'; 1095 } 1096 1097 void FunctionStartsSection::writeTo(uint8_t *buf) const { 1098 memcpy(buf, contents.data(), contents.size()); 1099 } 1100 1101 SymtabSection::SymtabSection(StringTableSection &stringTableSection) 1102 : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), 1103 stringTableSection(stringTableSection) {} 1104 1105 void SymtabSection::emitBeginSourceStab(StringRef sourceFile) { 1106 StabsEntry stab(N_SO); 1107 stab.strx = stringTableSection.addString(saver().save(sourceFile)); 1108 stabs.emplace_back(std::move(stab)); 1109 } 1110 1111 void SymtabSection::emitEndSourceStab() { 1112 StabsEntry stab(N_SO); 1113 stab.sect = 1; 1114 stabs.emplace_back(std::move(stab)); 1115 } 1116 1117 void SymtabSection::emitObjectFileStab(ObjFile *file) { 1118 StabsEntry stab(N_OSO); 1119 stab.sect = target->cpuSubtype; 1120 SmallString<261> path(!file->archiveName.empty() ? file->archiveName 1121 : file->getName()); 1122 std::error_code ec = sys::fs::make_absolute(path); 1123 if (ec) 1124 fatal("failed to get absolute path for " + path); 1125 1126 if (!file->archiveName.empty()) 1127 path.append({"(", file->getName(), ")"}); 1128 1129 StringRef adjustedPath = saver().save(path.str()); 1130 adjustedPath.consume_front(config->osoPrefix); 1131 1132 stab.strx = stringTableSection.addString(adjustedPath); 1133 stab.desc = 1; 1134 stab.value = file->modTime; 1135 stabs.emplace_back(std::move(stab)); 1136 } 1137 1138 void SymtabSection::emitEndFunStab(Defined *defined) { 1139 StabsEntry stab(N_FUN); 1140 stab.value = defined->size; 1141 stabs.emplace_back(std::move(stab)); 1142 } 1143 1144 void SymtabSection::emitStabs() { 1145 if (config->omitDebugInfo) 1146 return; 1147 1148 for (const std::string &s : config->astPaths) { 1149 StabsEntry astStab(N_AST); 1150 astStab.strx = stringTableSection.addString(s); 1151 stabs.emplace_back(std::move(astStab)); 1152 } 1153 1154 // Cache the file ID for each symbol in an std::pair for faster sorting. 1155 using SortingPair = std::pair<Defined *, int>; 1156 std::vector<SortingPair> symbolsNeedingStabs; 1157 for (const SymtabEntry &entry : 1158 concat<SymtabEntry>(localSymbols, externalSymbols)) { 1159 Symbol *sym = entry.sym; 1160 assert(sym->isLive() && 1161 "dead symbols should not be in localSymbols, externalSymbols"); 1162 if (auto *defined = dyn_cast<Defined>(sym)) { 1163 // Excluded symbols should have been filtered out in finalizeContents(). 1164 assert(defined->includeInSymtab); 1165 1166 if (defined->isAbsolute()) 1167 continue; 1168 1169 // Constant-folded symbols go in the executable's symbol table, but don't 1170 // get a stabs entry. 1171 if (defined->wasIdenticalCodeFolded) 1172 continue; 1173 1174 ObjFile *file = defined->getObjectFile(); 1175 if (!file || !file->compileUnit) 1176 continue; 1177 1178 symbolsNeedingStabs.emplace_back(defined, defined->isec->getFile()->id); 1179 } 1180 } 1181 1182 llvm::stable_sort(symbolsNeedingStabs, 1183 [&](const SortingPair &a, const SortingPair &b) { 1184 return a.second < b.second; 1185 }); 1186 1187 // Emit STABS symbols so that dsymutil and/or the debugger can map address 1188 // regions in the final binary to the source and object files from which they 1189 // originated. 1190 InputFile *lastFile = nullptr; 1191 for (SortingPair &pair : symbolsNeedingStabs) { 1192 Defined *defined = pair.first; 1193 InputSection *isec = defined->isec; 1194 ObjFile *file = cast<ObjFile>(isec->getFile()); 1195 1196 if (lastFile == nullptr || lastFile != file) { 1197 if (lastFile != nullptr) 1198 emitEndSourceStab(); 1199 lastFile = file; 1200 1201 emitBeginSourceStab(file->sourceFile()); 1202 emitObjectFileStab(file); 1203 } 1204 1205 StabsEntry symStab; 1206 symStab.sect = defined->isec->parent->index; 1207 symStab.strx = stringTableSection.addString(defined->getName()); 1208 symStab.value = defined->getVA(); 1209 1210 if (isCodeSection(isec)) { 1211 symStab.type = N_FUN; 1212 stabs.emplace_back(std::move(symStab)); 1213 emitEndFunStab(defined); 1214 } else { 1215 symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; 1216 stabs.emplace_back(std::move(symStab)); 1217 } 1218 } 1219 1220 if (!stabs.empty()) 1221 emitEndSourceStab(); 1222 } 1223 1224 void SymtabSection::finalizeContents() { 1225 auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { 1226 uint32_t strx = stringTableSection.addString(sym->getName()); 1227 symbols.push_back({sym, strx}); 1228 }; 1229 1230 std::function<void(Symbol *)> localSymbolsHandler; 1231 switch (config->localSymbolsPresence) { 1232 case SymtabPresence::All: 1233 localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); }; 1234 break; 1235 case SymtabPresence::None: 1236 localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ }; 1237 break; 1238 case SymtabPresence::SelectivelyIncluded: 1239 localSymbolsHandler = [&](Symbol *sym) { 1240 if (config->localSymbolPatterns.match(sym->getName())) 1241 addSymbol(localSymbols, sym); 1242 }; 1243 break; 1244 case SymtabPresence::SelectivelyExcluded: 1245 localSymbolsHandler = [&](Symbol *sym) { 1246 if (!config->localSymbolPatterns.match(sym->getName())) 1247 addSymbol(localSymbols, sym); 1248 }; 1249 break; 1250 } 1251 1252 // Local symbols aren't in the SymbolTable, so we walk the list of object 1253 // files to gather them. 1254 // But if `-x` is set, then we don't need to. localSymbolsHandler() will do 1255 // the right thing regardless, but this check is a perf optimization because 1256 // iterating through all the input files and their symbols is expensive. 1257 if (config->localSymbolsPresence != SymtabPresence::None) { 1258 for (const InputFile *file : inputFiles) { 1259 if (auto *objFile = dyn_cast<ObjFile>(file)) { 1260 for (Symbol *sym : objFile->symbols) { 1261 if (auto *defined = dyn_cast_or_null<Defined>(sym)) { 1262 if (defined->isExternal() || !defined->isLive() || 1263 !defined->includeInSymtab) 1264 continue; 1265 localSymbolsHandler(sym); 1266 } 1267 } 1268 } 1269 } 1270 } 1271 1272 // __dyld_private is a local symbol too. It's linker-created and doesn't 1273 // exist in any object file. 1274 if (in.stubHelper && in.stubHelper->dyldPrivate) 1275 localSymbolsHandler(in.stubHelper->dyldPrivate); 1276 1277 for (Symbol *sym : symtab->getSymbols()) { 1278 if (!sym->isLive()) 1279 continue; 1280 if (auto *defined = dyn_cast<Defined>(sym)) { 1281 if (!defined->includeInSymtab) 1282 continue; 1283 assert(defined->isExternal()); 1284 if (defined->privateExtern) 1285 localSymbolsHandler(defined); 1286 else 1287 addSymbol(externalSymbols, defined); 1288 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 1289 if (dysym->isReferenced()) 1290 addSymbol(undefinedSymbols, sym); 1291 } 1292 } 1293 1294 emitStabs(); 1295 uint32_t symtabIndex = stabs.size(); 1296 for (const SymtabEntry &entry : 1297 concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) { 1298 entry.sym->symtabIndex = symtabIndex++; 1299 } 1300 } 1301 1302 uint32_t SymtabSection::getNumSymbols() const { 1303 return stabs.size() + localSymbols.size() + externalSymbols.size() + 1304 undefinedSymbols.size(); 1305 } 1306 1307 // This serves to hide (type-erase) the template parameter from SymtabSection. 1308 template <class LP> class SymtabSectionImpl final : public SymtabSection { 1309 public: 1310 SymtabSectionImpl(StringTableSection &stringTableSection) 1311 : SymtabSection(stringTableSection) {} 1312 uint64_t getRawSize() const override; 1313 void writeTo(uint8_t *buf) const override; 1314 }; 1315 1316 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { 1317 return getNumSymbols() * sizeof(typename LP::nlist); 1318 } 1319 1320 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { 1321 auto *nList = reinterpret_cast<typename LP::nlist *>(buf); 1322 // Emit the stabs entries before the "real" symbols. We cannot emit them 1323 // after as that would render Symbol::symtabIndex inaccurate. 1324 for (const StabsEntry &entry : stabs) { 1325 nList->n_strx = entry.strx; 1326 nList->n_type = entry.type; 1327 nList->n_sect = entry.sect; 1328 nList->n_desc = entry.desc; 1329 nList->n_value = entry.value; 1330 ++nList; 1331 } 1332 1333 for (const SymtabEntry &entry : concat<const SymtabEntry>( 1334 localSymbols, externalSymbols, undefinedSymbols)) { 1335 nList->n_strx = entry.strx; 1336 // TODO populate n_desc with more flags 1337 if (auto *defined = dyn_cast<Defined>(entry.sym)) { 1338 uint8_t scope = 0; 1339 if (defined->privateExtern) { 1340 // Private external -- dylib scoped symbol. 1341 // Promote to non-external at link time. 1342 scope = N_PEXT; 1343 } else if (defined->isExternal()) { 1344 // Normal global symbol. 1345 scope = N_EXT; 1346 } else { 1347 // TU-local symbol from localSymbols. 1348 scope = 0; 1349 } 1350 1351 if (defined->isAbsolute()) { 1352 nList->n_type = scope | N_ABS; 1353 nList->n_sect = NO_SECT; 1354 nList->n_value = defined->value; 1355 } else { 1356 nList->n_type = scope | N_SECT; 1357 nList->n_sect = defined->isec->parent->index; 1358 // For the N_SECT symbol type, n_value is the address of the symbol 1359 nList->n_value = defined->getVA(); 1360 } 1361 nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; 1362 nList->n_desc |= 1363 defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; 1364 } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) { 1365 uint16_t n_desc = nList->n_desc; 1366 int16_t ordinal = ordinalForDylibSymbol(*dysym); 1367 if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) 1368 SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL); 1369 else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) 1370 SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL); 1371 else { 1372 assert(ordinal > 0); 1373 SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal)); 1374 } 1375 1376 nList->n_type = N_EXT; 1377 n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; 1378 n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; 1379 nList->n_desc = n_desc; 1380 } 1381 ++nList; 1382 } 1383 } 1384 1385 template <class LP> 1386 SymtabSection * 1387 macho::makeSymtabSection(StringTableSection &stringTableSection) { 1388 return make<SymtabSectionImpl<LP>>(stringTableSection); 1389 } 1390 1391 IndirectSymtabSection::IndirectSymtabSection() 1392 : LinkEditSection(segment_names::linkEdit, 1393 section_names::indirectSymbolTable) {} 1394 1395 uint32_t IndirectSymtabSection::getNumSymbols() const { 1396 uint32_t size = in.got->getEntries().size() + 1397 in.tlvPointers->getEntries().size() + 1398 in.stubs->getEntries().size(); 1399 if (!config->emitChainedFixups) 1400 size += in.stubs->getEntries().size(); 1401 return size; 1402 } 1403 1404 bool IndirectSymtabSection::isNeeded() const { 1405 return in.got->isNeeded() || in.tlvPointers->isNeeded() || 1406 in.stubs->isNeeded(); 1407 } 1408 1409 void IndirectSymtabSection::finalizeContents() { 1410 uint32_t off = 0; 1411 in.got->reserved1 = off; 1412 off += in.got->getEntries().size(); 1413 in.tlvPointers->reserved1 = off; 1414 off += in.tlvPointers->getEntries().size(); 1415 in.stubs->reserved1 = off; 1416 if (in.lazyPointers) { 1417 off += in.stubs->getEntries().size(); 1418 in.lazyPointers->reserved1 = off; 1419 } 1420 } 1421 1422 static uint32_t indirectValue(const Symbol *sym) { 1423 if (sym->symtabIndex == UINT32_MAX) 1424 return INDIRECT_SYMBOL_LOCAL; 1425 if (auto *defined = dyn_cast<Defined>(sym)) 1426 if (defined->privateExtern) 1427 return INDIRECT_SYMBOL_LOCAL; 1428 return sym->symtabIndex; 1429 } 1430 1431 void IndirectSymtabSection::writeTo(uint8_t *buf) const { 1432 uint32_t off = 0; 1433 for (const Symbol *sym : in.got->getEntries()) { 1434 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1435 ++off; 1436 } 1437 for (const Symbol *sym : in.tlvPointers->getEntries()) { 1438 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1439 ++off; 1440 } 1441 for (const Symbol *sym : in.stubs->getEntries()) { 1442 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1443 ++off; 1444 } 1445 1446 if (in.lazyPointers) { 1447 // There is a 1:1 correspondence between stubs and LazyPointerSection 1448 // entries. But giving __stubs and __la_symbol_ptr the same reserved1 1449 // (the offset into the indirect symbol table) so that they both refer 1450 // to the same range of offsets confuses `strip`, so write the stubs 1451 // symbol table offsets a second time. 1452 for (const Symbol *sym : in.stubs->getEntries()) { 1453 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1454 ++off; 1455 } 1456 } 1457 } 1458 1459 StringTableSection::StringTableSection() 1460 : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} 1461 1462 uint32_t StringTableSection::addString(StringRef str) { 1463 uint32_t strx = size; 1464 strings.push_back(str); // TODO: consider deduplicating strings 1465 size += str.size() + 1; // account for null terminator 1466 return strx; 1467 } 1468 1469 void StringTableSection::writeTo(uint8_t *buf) const { 1470 uint32_t off = 0; 1471 for (StringRef str : strings) { 1472 memcpy(buf + off, str.data(), str.size()); 1473 off += str.size() + 1; // account for null terminator 1474 } 1475 } 1476 1477 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0); 1478 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0); 1479 1480 CodeSignatureSection::CodeSignatureSection() 1481 : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { 1482 align = 16; // required by libstuff 1483 1484 // XXX: This mimics LD64, where it uses the install-name as codesign 1485 // identifier, if available. 1486 if (!config->installName.empty()) 1487 fileName = config->installName; 1488 else 1489 // FIXME: Consider using finalOutput instead of outputFile. 1490 fileName = config->outputFile; 1491 1492 size_t slashIndex = fileName.rfind("/"); 1493 if (slashIndex != std::string::npos) 1494 fileName = fileName.drop_front(slashIndex + 1); 1495 1496 // NOTE: Any changes to these calculations should be repeated 1497 // in llvm-objcopy's MachOLayoutBuilder::layoutTail. 1498 allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1); 1499 fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); 1500 } 1501 1502 uint32_t CodeSignatureSection::getBlockCount() const { 1503 return (fileOff + blockSize - 1) / blockSize; 1504 } 1505 1506 uint64_t CodeSignatureSection::getRawSize() const { 1507 return allHeadersSize + getBlockCount() * hashSize; 1508 } 1509 1510 void CodeSignatureSection::writeHashes(uint8_t *buf) const { 1511 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1512 // MachOWriter::writeSignatureData. 1513 uint8_t *hashes = buf + fileOff + allHeadersSize; 1514 parallelFor(0, getBlockCount(), [&](size_t i) { 1515 sha256(buf + i * blockSize, 1516 std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize), 1517 hashes + i * hashSize); 1518 }); 1519 #if defined(__APPLE__) 1520 // This is macOS-specific work-around and makes no sense for any 1521 // other host OS. See https://openradar.appspot.com/FB8914231 1522 // 1523 // The macOS kernel maintains a signature-verification cache to 1524 // quickly validate applications at time of execve(2). The trouble 1525 // is that for the kernel creates the cache entry at the time of the 1526 // mmap(2) call, before we have a chance to write either the code to 1527 // sign or the signature header+hashes. The fix is to invalidate 1528 // all cached data associated with the output file, thus discarding 1529 // the bogus prematurely-cached signature. 1530 msync(buf, fileOff + getSize(), MS_INVALIDATE); 1531 #endif 1532 } 1533 1534 void CodeSignatureSection::writeTo(uint8_t *buf) const { 1535 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1536 // MachOWriter::writeSignatureData. 1537 uint32_t signatureSize = static_cast<uint32_t>(getSize()); 1538 auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); 1539 write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE); 1540 write32be(&superBlob->length, signatureSize); 1541 write32be(&superBlob->count, 1); 1542 auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); 1543 write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY); 1544 write32be(&blobIndex->offset, blobHeadersSize); 1545 auto *codeDirectory = 1546 reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); 1547 write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY); 1548 write32be(&codeDirectory->length, signatureSize - blobHeadersSize); 1549 write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG); 1550 write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED); 1551 write32be(&codeDirectory->hashOffset, 1552 sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); 1553 write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory)); 1554 codeDirectory->nSpecialSlots = 0; 1555 write32be(&codeDirectory->nCodeSlots, getBlockCount()); 1556 write32be(&codeDirectory->codeLimit, fileOff); 1557 codeDirectory->hashSize = static_cast<uint8_t>(hashSize); 1558 codeDirectory->hashType = kSecCodeSignatureHashSHA256; 1559 codeDirectory->platform = 0; 1560 codeDirectory->pageSize = blockSizeShift; 1561 codeDirectory->spare2 = 0; 1562 codeDirectory->scatterOffset = 0; 1563 codeDirectory->teamOffset = 0; 1564 codeDirectory->spare3 = 0; 1565 codeDirectory->codeLimit64 = 0; 1566 OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text); 1567 write64be(&codeDirectory->execSegBase, textSeg->fileOff); 1568 write64be(&codeDirectory->execSegLimit, textSeg->fileSize); 1569 write64be(&codeDirectory->execSegFlags, 1570 config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); 1571 auto *id = reinterpret_cast<char *>(&codeDirectory[1]); 1572 memcpy(id, fileName.begin(), fileName.size()); 1573 memset(id + fileName.size(), 0, fileNamePad); 1574 } 1575 1576 CStringSection::CStringSection(const char *name) 1577 : SyntheticSection(segment_names::text, name) { 1578 flags = S_CSTRING_LITERALS; 1579 } 1580 1581 void CStringSection::addInput(CStringInputSection *isec) { 1582 isec->parent = this; 1583 inputs.push_back(isec); 1584 if (isec->align > align) 1585 align = isec->align; 1586 } 1587 1588 void CStringSection::writeTo(uint8_t *buf) const { 1589 for (const CStringInputSection *isec : inputs) { 1590 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1591 if (!piece.live) 1592 continue; 1593 StringRef string = isec->getStringRef(i); 1594 memcpy(buf + piece.outSecOff, string.data(), string.size()); 1595 } 1596 } 1597 } 1598 1599 void CStringSection::finalizeContents() { 1600 uint64_t offset = 0; 1601 for (CStringInputSection *isec : inputs) { 1602 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1603 if (!piece.live) 1604 continue; 1605 // See comment above DeduplicatedCStringSection for how alignment is 1606 // handled. 1607 uint32_t pieceAlign = 1 1608 << llvm::countr_zero(isec->align | piece.inSecOff); 1609 offset = alignToPowerOf2(offset, pieceAlign); 1610 piece.outSecOff = offset; 1611 isec->isFinal = true; 1612 StringRef string = isec->getStringRef(i); 1613 offset += string.size() + 1; // account for null terminator 1614 } 1615 } 1616 size = offset; 1617 } 1618 1619 // Mergeable cstring literals are found under the __TEXT,__cstring section. In 1620 // contrast to ELF, which puts strings that need different alignments into 1621 // different sections, clang's Mach-O backend puts them all in one section. 1622 // Strings that need to be aligned have the .p2align directive emitted before 1623 // them, which simply translates into zero padding in the object file. In other 1624 // words, we have to infer the desired alignment of these cstrings from their 1625 // addresses. 1626 // 1627 // We differ slightly from ld64 in how we've chosen to align these cstrings. 1628 // Both LLD and ld64 preserve the number of trailing zeros in each cstring's 1629 // address in the input object files. When deduplicating identical cstrings, 1630 // both linkers pick the cstring whose address has more trailing zeros, and 1631 // preserve the alignment of that address in the final binary. However, ld64 1632 // goes a step further and also preserves the offset of the cstring from the 1633 // last section-aligned address. I.e. if a cstring is at offset 18 in the 1634 // input, with a section alignment of 16, then both LLD and ld64 will ensure the 1635 // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also 1636 // ensure that the final address is of the form 16 * k + 2 for some k. 1637 // 1638 // Note that ld64's heuristic means that a dedup'ed cstring's final address is 1639 // dependent on the order of the input object files. E.g. if in addition to the 1640 // cstring at offset 18 above, we have a duplicate one in another file with a 1641 // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick 1642 // the cstring from the object file earlier on the command line (since both have 1643 // the same number of trailing zeros in their address). So the final cstring may 1644 // either be at some address `16 * k + 2` or at some address `2 * k`. 1645 // 1646 // I've opted not to follow this behavior primarily for implementation 1647 // simplicity, and secondarily to save a few more bytes. It's not clear to me 1648 // that preserving the section alignment + offset is ever necessary, and there 1649 // are many cases that are clearly redundant. In particular, if an x86_64 object 1650 // file contains some strings that are accessed via SIMD instructions, then the 1651 // .cstring section in the object file will be 16-byte-aligned (since SIMD 1652 // requires its operand addresses to be 16-byte aligned). However, there will 1653 // typically also be other cstrings in the same file that aren't used via SIMD 1654 // and don't need this alignment. They will be emitted at some arbitrary address 1655 // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16 1656 // % A`. 1657 void DeduplicatedCStringSection::finalizeContents() { 1658 // Find the largest alignment required for each string. 1659 for (const CStringInputSection *isec : inputs) { 1660 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1661 if (!piece.live) 1662 continue; 1663 auto s = isec->getCachedHashStringRef(i); 1664 assert(isec->align != 0); 1665 uint8_t trailingZeros = llvm::countr_zero(isec->align | piece.inSecOff); 1666 auto it = stringOffsetMap.insert( 1667 std::make_pair(s, StringOffset(trailingZeros))); 1668 if (!it.second && it.first->second.trailingZeros < trailingZeros) 1669 it.first->second.trailingZeros = trailingZeros; 1670 } 1671 } 1672 1673 // Assign an offset for each string and save it to the corresponding 1674 // StringPieces for easy access. 1675 for (CStringInputSection *isec : inputs) { 1676 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1677 if (!piece.live) 1678 continue; 1679 auto s = isec->getCachedHashStringRef(i); 1680 auto it = stringOffsetMap.find(s); 1681 assert(it != stringOffsetMap.end()); 1682 StringOffset &offsetInfo = it->second; 1683 if (offsetInfo.outSecOff == UINT64_MAX) { 1684 offsetInfo.outSecOff = 1685 alignToPowerOf2(size, 1ULL << offsetInfo.trailingZeros); 1686 size = 1687 offsetInfo.outSecOff + s.size() + 1; // account for null terminator 1688 } 1689 piece.outSecOff = offsetInfo.outSecOff; 1690 } 1691 isec->isFinal = true; 1692 } 1693 } 1694 1695 void DeduplicatedCStringSection::writeTo(uint8_t *buf) const { 1696 for (const auto &p : stringOffsetMap) { 1697 StringRef data = p.first.val(); 1698 uint64_t off = p.second.outSecOff; 1699 if (!data.empty()) 1700 memcpy(buf + off, data.data(), data.size()); 1701 } 1702 } 1703 1704 DeduplicatedCStringSection::StringOffset 1705 DeduplicatedCStringSection::getStringOffset(StringRef str) const { 1706 // StringPiece uses 31 bits to store the hashes, so we replicate that 1707 uint32_t hash = xxh3_64bits(str) & 0x7fffffff; 1708 auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash)); 1709 assert(offset != stringOffsetMap.end() && 1710 "Looked-up strings should always exist in section"); 1711 return offset->second; 1712 } 1713 1714 // This section is actually emitted as __TEXT,__const by ld64, but clang may 1715 // emit input sections of that name, and LLD doesn't currently support mixing 1716 // synthetic and concat-type OutputSections. To work around this, I've given 1717 // our merged-literals section a different name. 1718 WordLiteralSection::WordLiteralSection() 1719 : SyntheticSection(segment_names::text, section_names::literals) { 1720 align = 16; 1721 } 1722 1723 void WordLiteralSection::addInput(WordLiteralInputSection *isec) { 1724 isec->parent = this; 1725 inputs.push_back(isec); 1726 } 1727 1728 void WordLiteralSection::finalizeContents() { 1729 for (WordLiteralInputSection *isec : inputs) { 1730 // We do all processing of the InputSection here, so it will be effectively 1731 // finalized. 1732 isec->isFinal = true; 1733 const uint8_t *buf = isec->data.data(); 1734 switch (sectionType(isec->getFlags())) { 1735 case S_4BYTE_LITERALS: { 1736 for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { 1737 if (!isec->isLive(off)) 1738 continue; 1739 uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); 1740 literal4Map.emplace(value, literal4Map.size()); 1741 } 1742 break; 1743 } 1744 case S_8BYTE_LITERALS: { 1745 for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { 1746 if (!isec->isLive(off)) 1747 continue; 1748 uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); 1749 literal8Map.emplace(value, literal8Map.size()); 1750 } 1751 break; 1752 } 1753 case S_16BYTE_LITERALS: { 1754 for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { 1755 if (!isec->isLive(off)) 1756 continue; 1757 UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); 1758 literal16Map.emplace(value, literal16Map.size()); 1759 } 1760 break; 1761 } 1762 default: 1763 llvm_unreachable("invalid literal section type"); 1764 } 1765 } 1766 } 1767 1768 void WordLiteralSection::writeTo(uint8_t *buf) const { 1769 // Note that we don't attempt to do any endianness conversion in addInput(), 1770 // so we don't do it here either -- just write out the original value, 1771 // byte-for-byte. 1772 for (const auto &p : literal16Map) 1773 memcpy(buf + p.second * 16, &p.first, 16); 1774 buf += literal16Map.size() * 16; 1775 1776 for (const auto &p : literal8Map) 1777 memcpy(buf + p.second * 8, &p.first, 8); 1778 buf += literal8Map.size() * 8; 1779 1780 for (const auto &p : literal4Map) 1781 memcpy(buf + p.second * 4, &p.first, 4); 1782 } 1783 1784 ObjCImageInfoSection::ObjCImageInfoSection() 1785 : SyntheticSection(segment_names::data, section_names::objCImageInfo) {} 1786 1787 ObjCImageInfoSection::ImageInfo 1788 ObjCImageInfoSection::parseImageInfo(const InputFile *file) { 1789 ImageInfo info; 1790 ArrayRef<uint8_t> data = file->objCImageInfo; 1791 // The image info struct has the following layout: 1792 // struct { 1793 // uint32_t version; 1794 // uint32_t flags; 1795 // }; 1796 if (data.size() < 8) { 1797 warn(toString(file) + ": invalid __objc_imageinfo size"); 1798 return info; 1799 } 1800 1801 auto *buf = reinterpret_cast<const uint32_t *>(data.data()); 1802 if (read32le(buf) != 0) { 1803 warn(toString(file) + ": invalid __objc_imageinfo version"); 1804 return info; 1805 } 1806 1807 uint32_t flags = read32le(buf + 1); 1808 info.swiftVersion = (flags >> 8) & 0xff; 1809 info.hasCategoryClassProperties = flags & 0x40; 1810 return info; 1811 } 1812 1813 static std::string swiftVersionString(uint8_t version) { 1814 switch (version) { 1815 case 1: 1816 return "1.0"; 1817 case 2: 1818 return "1.1"; 1819 case 3: 1820 return "2.0"; 1821 case 4: 1822 return "3.0"; 1823 case 5: 1824 return "4.0"; 1825 default: 1826 return ("0x" + Twine::utohexstr(version)).str(); 1827 } 1828 } 1829 1830 // Validate each object file's __objc_imageinfo and use them to generate the 1831 // image info for the output binary. Only two pieces of info are relevant: 1832 // 1. The Swift version (should be identical across inputs) 1833 // 2. `bool hasCategoryClassProperties` (true only if true for all inputs) 1834 void ObjCImageInfoSection::finalizeContents() { 1835 assert(files.size() != 0); // should have already been checked via isNeeded() 1836 1837 info.hasCategoryClassProperties = true; 1838 const InputFile *firstFile; 1839 for (const InputFile *file : files) { 1840 ImageInfo inputInfo = parseImageInfo(file); 1841 info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties; 1842 1843 // swiftVersion 0 means no Swift is present, so no version checking required 1844 if (inputInfo.swiftVersion == 0) 1845 continue; 1846 1847 if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) { 1848 error("Swift version mismatch: " + toString(firstFile) + " has version " + 1849 swiftVersionString(info.swiftVersion) + " but " + toString(file) + 1850 " has version " + swiftVersionString(inputInfo.swiftVersion)); 1851 } else { 1852 info.swiftVersion = inputInfo.swiftVersion; 1853 firstFile = file; 1854 } 1855 } 1856 } 1857 1858 void ObjCImageInfoSection::writeTo(uint8_t *buf) const { 1859 uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0; 1860 flags |= info.swiftVersion << 8; 1861 write32le(buf + 4, flags); 1862 } 1863 1864 InitOffsetsSection::InitOffsetsSection() 1865 : SyntheticSection(segment_names::text, section_names::initOffsets) { 1866 flags = S_INIT_FUNC_OFFSETS; 1867 align = 4; // This section contains 32-bit integers. 1868 } 1869 1870 uint64_t InitOffsetsSection::getSize() const { 1871 size_t count = 0; 1872 for (const ConcatInputSection *isec : sections) 1873 count += isec->relocs.size(); 1874 return count * sizeof(uint32_t); 1875 } 1876 1877 void InitOffsetsSection::writeTo(uint8_t *buf) const { 1878 // FIXME: Add function specified by -init when that argument is implemented. 1879 for (ConcatInputSection *isec : sections) { 1880 for (const Reloc &rel : isec->relocs) { 1881 const Symbol *referent = rel.referent.dyn_cast<Symbol *>(); 1882 assert(referent && "section relocation should have been rejected"); 1883 uint64_t offset = referent->getVA() - in.header->addr; 1884 // FIXME: Can we handle this gracefully? 1885 if (offset > UINT32_MAX) 1886 fatal(isec->getLocation(rel.offset) + ": offset to initializer " + 1887 referent->getName() + " (" + utohexstr(offset) + 1888 ") does not fit in 32 bits"); 1889 1890 // Entries need to be added in the order they appear in the section, but 1891 // relocations aren't guaranteed to be sorted. 1892 size_t index = rel.offset >> target->p2WordSize; 1893 write32le(&buf[index * sizeof(uint32_t)], offset); 1894 } 1895 buf += isec->relocs.size() * sizeof(uint32_t); 1896 } 1897 } 1898 1899 // The inputs are __mod_init_func sections, which contain pointers to 1900 // initializer functions, therefore all relocations should be of the UNSIGNED 1901 // type. InitOffsetsSection stores offsets, so if the initializer's address is 1902 // not known at link time, stub-indirection has to be used. 1903 void InitOffsetsSection::setUp() { 1904 for (const ConcatInputSection *isec : sections) { 1905 for (const Reloc &rel : isec->relocs) { 1906 RelocAttrs attrs = target->getRelocAttrs(rel.type); 1907 if (!attrs.hasAttr(RelocAttrBits::UNSIGNED)) 1908 error(isec->getLocation(rel.offset) + 1909 ": unsupported relocation type: " + attrs.name); 1910 if (rel.addend != 0) 1911 error(isec->getLocation(rel.offset) + 1912 ": relocation addend is not representable in __init_offsets"); 1913 if (rel.referent.is<InputSection *>()) 1914 error(isec->getLocation(rel.offset) + 1915 ": unexpected section relocation"); 1916 1917 Symbol *sym = rel.referent.dyn_cast<Symbol *>(); 1918 if (auto *undefined = dyn_cast<Undefined>(sym)) 1919 treatUndefinedSymbol(*undefined, isec, rel.offset); 1920 if (needsBinding(sym)) 1921 in.stubs->addEntry(sym); 1922 } 1923 } 1924 } 1925 1926 void macho::createSyntheticSymbols() { 1927 auto addHeaderSymbol = [](const char *name) { 1928 symtab->addSynthetic(name, in.header->isec, /*value=*/0, 1929 /*isPrivateExtern=*/true, /*includeInSymtab=*/false, 1930 /*referencedDynamically=*/false); 1931 }; 1932 1933 switch (config->outputType) { 1934 // FIXME: Assign the right address value for these symbols 1935 // (rather than 0). But we need to do that after assignAddresses(). 1936 case MH_EXECUTE: 1937 // If linking PIE, __mh_execute_header is a defined symbol in 1938 // __TEXT, __text) 1939 // Otherwise, it's an absolute symbol. 1940 if (config->isPic) 1941 symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0, 1942 /*isPrivateExtern=*/false, /*includeInSymtab=*/true, 1943 /*referencedDynamically=*/true); 1944 else 1945 symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0, 1946 /*isPrivateExtern=*/false, /*includeInSymtab=*/true, 1947 /*referencedDynamically=*/true); 1948 break; 1949 1950 // The following symbols are N_SECT symbols, even though the header is not 1951 // part of any section and that they are private to the bundle/dylib/object 1952 // they are part of. 1953 case MH_BUNDLE: 1954 addHeaderSymbol("__mh_bundle_header"); 1955 break; 1956 case MH_DYLIB: 1957 addHeaderSymbol("__mh_dylib_header"); 1958 break; 1959 case MH_DYLINKER: 1960 addHeaderSymbol("__mh_dylinker_header"); 1961 break; 1962 case MH_OBJECT: 1963 addHeaderSymbol("__mh_object_header"); 1964 break; 1965 default: 1966 llvm_unreachable("unexpected outputType"); 1967 break; 1968 } 1969 1970 // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit 1971 // which does e.g. cleanup of static global variables. The ABI document 1972 // says that the pointer can point to any address in one of the dylib's 1973 // segments, but in practice ld64 seems to set it to point to the header, 1974 // so that's what's implemented here. 1975 addHeaderSymbol("___dso_handle"); 1976 } 1977 1978 ChainedFixupsSection::ChainedFixupsSection() 1979 : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {} 1980 1981 bool ChainedFixupsSection::isNeeded() const { 1982 assert(config->emitChainedFixups); 1983 // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid 1984 // dyld_chained_fixups_header, so we create this section even if there aren't 1985 // any fixups. 1986 return true; 1987 } 1988 1989 static bool needsWeakBind(const Symbol &sym) { 1990 if (auto *dysym = dyn_cast<DylibSymbol>(&sym)) 1991 return dysym->isWeakDef(); 1992 if (auto *defined = dyn_cast<Defined>(&sym)) 1993 return defined->isExternalWeakDef(); 1994 return false; 1995 } 1996 1997 void ChainedFixupsSection::addBinding(const Symbol *sym, 1998 const InputSection *isec, uint64_t offset, 1999 int64_t addend) { 2000 locations.emplace_back(isec, offset); 2001 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; 2002 auto [it, inserted] = bindings.insert( 2003 {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())}); 2004 2005 if (inserted) { 2006 symtabSize += sym->getName().size() + 1; 2007 hasWeakBind = hasWeakBind || needsWeakBind(*sym); 2008 if (!isInt<23>(outlineAddend)) 2009 needsLargeAddend = true; 2010 else if (outlineAddend != 0) 2011 needsAddend = true; 2012 } 2013 } 2014 2015 std::pair<uint32_t, uint8_t> 2016 ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const { 2017 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; 2018 auto it = bindings.find({sym, outlineAddend}); 2019 assert(it != bindings.end() && "binding not found in the imports table"); 2020 if (outlineAddend == 0) 2021 return {it->second, addend}; 2022 return {it->second, 0}; 2023 } 2024 2025 static size_t writeImport(uint8_t *buf, int format, uint32_t libOrdinal, 2026 bool weakRef, uint32_t nameOffset, int64_t addend) { 2027 switch (format) { 2028 case DYLD_CHAINED_IMPORT: { 2029 auto *import = reinterpret_cast<dyld_chained_import *>(buf); 2030 import->lib_ordinal = libOrdinal; 2031 import->weak_import = weakRef; 2032 import->name_offset = nameOffset; 2033 return sizeof(dyld_chained_import); 2034 } 2035 case DYLD_CHAINED_IMPORT_ADDEND: { 2036 auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf); 2037 import->lib_ordinal = libOrdinal; 2038 import->weak_import = weakRef; 2039 import->name_offset = nameOffset; 2040 import->addend = addend; 2041 return sizeof(dyld_chained_import_addend); 2042 } 2043 case DYLD_CHAINED_IMPORT_ADDEND64: { 2044 auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf); 2045 import->lib_ordinal = libOrdinal; 2046 import->weak_import = weakRef; 2047 import->name_offset = nameOffset; 2048 import->addend = addend; 2049 return sizeof(dyld_chained_import_addend64); 2050 } 2051 default: 2052 llvm_unreachable("Unknown import format"); 2053 } 2054 } 2055 2056 size_t ChainedFixupsSection::SegmentInfo::getSize() const { 2057 assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?"); 2058 return alignTo<8>(sizeof(dyld_chained_starts_in_segment) + 2059 pageStarts.back().first * sizeof(uint16_t)); 2060 } 2061 2062 size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const { 2063 auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf); 2064 segInfo->size = getSize(); 2065 segInfo->page_size = target->getPageSize(); 2066 // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions. 2067 segInfo->pointer_format = DYLD_CHAINED_PTR_64; 2068 segInfo->segment_offset = oseg->addr - in.header->addr; 2069 segInfo->max_valid_pointer = 0; // not used on 64-bit 2070 segInfo->page_count = pageStarts.back().first + 1; 2071 2072 uint16_t *starts = segInfo->page_start; 2073 for (size_t i = 0; i < segInfo->page_count; ++i) 2074 starts[i] = DYLD_CHAINED_PTR_START_NONE; 2075 2076 for (auto [pageIdx, startAddr] : pageStarts) 2077 starts[pageIdx] = startAddr; 2078 return segInfo->size; 2079 } 2080 2081 static size_t importEntrySize(int format) { 2082 switch (format) { 2083 case DYLD_CHAINED_IMPORT: 2084 return sizeof(dyld_chained_import); 2085 case DYLD_CHAINED_IMPORT_ADDEND: 2086 return sizeof(dyld_chained_import_addend); 2087 case DYLD_CHAINED_IMPORT_ADDEND64: 2088 return sizeof(dyld_chained_import_addend64); 2089 default: 2090 llvm_unreachable("Unknown import format"); 2091 } 2092 } 2093 2094 // This is step 3 of the algorithm described in the class comment of 2095 // ChainedFixupsSection. 2096 // 2097 // LC_DYLD_CHAINED_FIXUPS data consists of (in this order): 2098 // * A dyld_chained_fixups_header 2099 // * A dyld_chained_starts_in_image 2100 // * One dyld_chained_starts_in_segment per segment 2101 // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or 2102 // dyld_chained_import_addend64) 2103 // * Names of imported symbols 2104 void ChainedFixupsSection::writeTo(uint8_t *buf) const { 2105 auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf); 2106 header->fixups_version = 0; 2107 header->imports_count = bindings.size(); 2108 header->imports_format = importFormat; 2109 header->symbols_format = 0; 2110 2111 buf += alignTo<8>(sizeof(*header)); 2112 2113 auto curOffset = [&buf, &header]() -> uint32_t { 2114 return buf - reinterpret_cast<uint8_t *>(header); 2115 }; 2116 2117 header->starts_offset = curOffset(); 2118 2119 auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf); 2120 imageInfo->seg_count = outputSegments.size(); 2121 uint32_t *segStarts = imageInfo->seg_info_offset; 2122 2123 // dyld_chained_starts_in_image ends in a flexible array member containing an 2124 // uint32_t for each segment. Leave room for it, and fill it via segStarts. 2125 buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + 2126 outputSegments.size() * sizeof(uint32_t)); 2127 2128 // Initialize all offsets to 0, which indicates that the segment does not have 2129 // fixups. Those that do have them will be filled in below. 2130 for (size_t i = 0; i < outputSegments.size(); ++i) 2131 segStarts[i] = 0; 2132 2133 for (const SegmentInfo &seg : fixupSegments) { 2134 segStarts[seg.oseg->index] = curOffset() - header->starts_offset; 2135 buf += seg.writeTo(buf); 2136 } 2137 2138 // Write imports table. 2139 header->imports_offset = curOffset(); 2140 uint64_t nameOffset = 0; 2141 for (auto [import, idx] : bindings) { 2142 const Symbol &sym = *import.first; 2143 int16_t libOrdinal = needsWeakBind(sym) 2144 ? (int64_t)BIND_SPECIAL_DYLIB_WEAK_LOOKUP 2145 : ordinalForSymbol(sym); 2146 buf += writeImport(buf, importFormat, libOrdinal, sym.isWeakRef(), 2147 nameOffset, import.second); 2148 nameOffset += sym.getName().size() + 1; 2149 } 2150 2151 // Write imported symbol names. 2152 header->symbols_offset = curOffset(); 2153 for (auto [import, idx] : bindings) { 2154 StringRef name = import.first->getName(); 2155 memcpy(buf, name.data(), name.size()); 2156 buf += name.size() + 1; // account for null terminator 2157 } 2158 2159 assert(curOffset() == getRawSize()); 2160 } 2161 2162 // This is step 2 of the algorithm described in the class comment of 2163 // ChainedFixupsSection. 2164 void ChainedFixupsSection::finalizeContents() { 2165 assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); 2166 assert(config->emitChainedFixups); 2167 2168 if (!isUInt<32>(symtabSize)) 2169 error("cannot encode chained fixups: imported symbols table size " + 2170 Twine(symtabSize) + " exceeds 4 GiB"); 2171 2172 if (needsLargeAddend || !isUInt<23>(symtabSize)) 2173 importFormat = DYLD_CHAINED_IMPORT_ADDEND64; 2174 else if (needsAddend) 2175 importFormat = DYLD_CHAINED_IMPORT_ADDEND; 2176 else 2177 importFormat = DYLD_CHAINED_IMPORT; 2178 2179 for (Location &loc : locations) 2180 loc.offset = 2181 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset); 2182 2183 llvm::sort(locations, [](const Location &a, const Location &b) { 2184 const OutputSegment *segA = a.isec->parent->parent; 2185 const OutputSegment *segB = b.isec->parent->parent; 2186 if (segA == segB) 2187 return a.offset < b.offset; 2188 return segA->addr < segB->addr; 2189 }); 2190 2191 auto sameSegment = [](const Location &a, const Location &b) { 2192 return a.isec->parent->parent == b.isec->parent->parent; 2193 }; 2194 2195 const uint64_t pageSize = target->getPageSize(); 2196 for (size_t i = 0, count = locations.size(); i < count;) { 2197 const Location &firstLoc = locations[i]; 2198 fixupSegments.emplace_back(firstLoc.isec->parent->parent); 2199 while (i < count && sameSegment(locations[i], firstLoc)) { 2200 uint32_t pageIdx = locations[i].offset / pageSize; 2201 fixupSegments.back().pageStarts.emplace_back( 2202 pageIdx, locations[i].offset % pageSize); 2203 ++i; 2204 while (i < count && sameSegment(locations[i], firstLoc) && 2205 locations[i].offset / pageSize == pageIdx) 2206 ++i; 2207 } 2208 } 2209 2210 // Compute expected encoded size. 2211 size = alignTo<8>(sizeof(dyld_chained_fixups_header)); 2212 size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + 2213 outputSegments.size() * sizeof(uint32_t)); 2214 for (const SegmentInfo &seg : fixupSegments) 2215 size += seg.getSize(); 2216 size += importEntrySize(importFormat) * bindings.size(); 2217 size += symtabSize; 2218 } 2219 2220 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); 2221 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); 2222