1 //===- SyntheticSections.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SyntheticSections.h" 10 #include "ConcatOutputSection.h" 11 #include "Config.h" 12 #include "ExportTrie.h" 13 #include "InputFiles.h" 14 #include "MachOStructs.h" 15 #include "OutputSegment.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 19 #include "lld/Common/CommonLinkerContext.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Config/llvm-config.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/FileSystem.h" 24 #include "llvm/Support/LEB128.h" 25 #include "llvm/Support/Parallel.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/xxhash.h" 28 29 #if defined(__APPLE__) 30 #include <sys/mman.h> 31 32 #define COMMON_DIGEST_FOR_OPENSSL 33 #include <CommonCrypto/CommonDigest.h> 34 #else 35 #include "llvm/Support/SHA256.h" 36 #endif 37 38 using namespace llvm; 39 using namespace llvm::MachO; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::macho; 44 45 // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`. 46 static void sha256(const uint8_t *data, size_t len, uint8_t *output) { 47 #if defined(__APPLE__) 48 // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121 49 // for some notes on this. 50 CC_SHA256(data, len, output); 51 #else 52 ArrayRef<uint8_t> block(data, len); 53 std::array<uint8_t, 32> hash = SHA256::hash(block); 54 static_assert(hash.size() == CodeSignatureSection::hashSize); 55 memcpy(output, hash.data(), hash.size()); 56 #endif 57 } 58 59 InStruct macho::in; 60 std::vector<SyntheticSection *> macho::syntheticSections; 61 62 SyntheticSection::SyntheticSection(const char *segname, const char *name) 63 : OutputSection(SyntheticKind, name) { 64 std::tie(this->segname, this->name) = maybeRenameSection({segname, name}); 65 isec = makeSyntheticInputSection(segname, name); 66 isec->parent = this; 67 syntheticSections.push_back(this); 68 } 69 70 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts 71 // from the beginning of the file (i.e. the header). 72 MachHeaderSection::MachHeaderSection() 73 : SyntheticSection(segment_names::text, section_names::header) { 74 // XXX: This is a hack. (See D97007) 75 // Setting the index to 1 to pretend that this section is the text 76 // section. 77 index = 1; 78 isec->isFinal = true; 79 } 80 81 void MachHeaderSection::addLoadCommand(LoadCommand *lc) { 82 loadCommands.push_back(lc); 83 sizeOfCmds += lc->getSize(); 84 } 85 86 uint64_t MachHeaderSection::getSize() const { 87 uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; 88 // If we are emitting an encryptable binary, our load commands must have a 89 // separate (non-encrypted) page to themselves. 90 if (config->emitEncryptionInfo) 91 size = alignToPowerOf2(size, target->getPageSize()); 92 return size; 93 } 94 95 static uint32_t cpuSubtype() { 96 uint32_t subtype = target->cpuSubtype; 97 98 if (config->outputType == MH_EXECUTE && !config->staticLink && 99 target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && 100 config->platform() == PLATFORM_MACOS && 101 config->platformInfo.target.MinDeployment >= VersionTuple(10, 5)) 102 subtype |= CPU_SUBTYPE_LIB64; 103 104 return subtype; 105 } 106 107 static bool hasWeakBinding() { 108 return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding() 109 : in.weakBinding->hasEntry(); 110 } 111 112 static bool hasNonWeakDefinition() { 113 return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition() 114 : in.weakBinding->hasNonWeakDefinition(); 115 } 116 117 void MachHeaderSection::writeTo(uint8_t *buf) const { 118 auto *hdr = reinterpret_cast<mach_header *>(buf); 119 hdr->magic = target->magic; 120 hdr->cputype = target->cpuType; 121 hdr->cpusubtype = cpuSubtype(); 122 hdr->filetype = config->outputType; 123 hdr->ncmds = loadCommands.size(); 124 hdr->sizeofcmds = sizeOfCmds; 125 hdr->flags = MH_DYLDLINK; 126 127 if (config->namespaceKind == NamespaceKind::twolevel) 128 hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; 129 130 if (config->outputType == MH_DYLIB && !config->hasReexports) 131 hdr->flags |= MH_NO_REEXPORTED_DYLIBS; 132 133 if (config->markDeadStrippableDylib) 134 hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; 135 136 if (config->outputType == MH_EXECUTE && config->isPic) 137 hdr->flags |= MH_PIE; 138 139 if (config->outputType == MH_DYLIB && config->applicationExtension) 140 hdr->flags |= MH_APP_EXTENSION_SAFE; 141 142 if (in.exports->hasWeakSymbol || hasNonWeakDefinition()) 143 hdr->flags |= MH_WEAK_DEFINES; 144 145 if (in.exports->hasWeakSymbol || hasWeakBinding()) 146 hdr->flags |= MH_BINDS_TO_WEAK; 147 148 for (const OutputSegment *seg : outputSegments) { 149 for (const OutputSection *osec : seg->getSections()) { 150 if (isThreadLocalVariables(osec->flags)) { 151 hdr->flags |= MH_HAS_TLV_DESCRIPTORS; 152 break; 153 } 154 } 155 } 156 157 uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; 158 for (const LoadCommand *lc : loadCommands) { 159 lc->writeTo(p); 160 p += lc->getSize(); 161 } 162 } 163 164 PageZeroSection::PageZeroSection() 165 : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} 166 167 RebaseSection::RebaseSection() 168 : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} 169 170 namespace { 171 struct RebaseState { 172 uint64_t sequenceLength; 173 uint64_t skipLength; 174 }; 175 } // namespace 176 177 static void emitIncrement(uint64_t incr, raw_svector_ostream &os) { 178 assert(incr != 0); 179 180 if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK && 181 (incr % target->wordSize) == 0) { 182 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED | 183 (incr >> target->p2WordSize)); 184 } else { 185 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); 186 encodeULEB128(incr, os); 187 } 188 } 189 190 static void flushRebase(const RebaseState &state, raw_svector_ostream &os) { 191 assert(state.sequenceLength > 0); 192 193 if (state.skipLength == target->wordSize) { 194 if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) { 195 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | 196 state.sequenceLength); 197 } else { 198 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); 199 encodeULEB128(state.sequenceLength, os); 200 } 201 } else if (state.sequenceLength == 1) { 202 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB); 203 encodeULEB128(state.skipLength - target->wordSize, os); 204 } else { 205 os << static_cast<uint8_t>( 206 REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB); 207 encodeULEB128(state.sequenceLength, os); 208 encodeULEB128(state.skipLength - target->wordSize, os); 209 } 210 } 211 212 // Rebases are communicated to dyld using a bytecode, whose opcodes cause the 213 // memory location at a specific address to be rebased and/or the address to be 214 // incremented. 215 // 216 // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic 217 // one, encoding a series of evenly spaced addresses. This algorithm works by 218 // splitting up the sorted list of addresses into such chunks. If the locations 219 // are consecutive or the sequence consists of a single location, flushRebase 220 // will use a smaller, more specialized encoding. 221 static void encodeRebases(const OutputSegment *seg, 222 MutableArrayRef<Location> locations, 223 raw_svector_ostream &os) { 224 // dyld operates on segments. Translate section offsets into segment offsets. 225 for (Location &loc : locations) 226 loc.offset = 227 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset); 228 // The algorithm assumes that locations are unique. 229 Location *end = 230 llvm::unique(locations, [](const Location &a, const Location &b) { 231 return a.offset == b.offset; 232 }); 233 size_t count = end - locations.begin(); 234 235 os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 236 seg->index); 237 assert(!locations.empty()); 238 uint64_t offset = locations[0].offset; 239 encodeULEB128(offset, os); 240 241 RebaseState state{1, target->wordSize}; 242 243 for (size_t i = 1; i < count; ++i) { 244 offset = locations[i].offset; 245 246 uint64_t skip = offset - locations[i - 1].offset; 247 assert(skip != 0 && "duplicate locations should have been weeded out"); 248 249 if (skip == state.skipLength) { 250 ++state.sequenceLength; 251 } else if (state.sequenceLength == 1) { 252 ++state.sequenceLength; 253 state.skipLength = skip; 254 } else if (skip < state.skipLength) { 255 // The address is lower than what the rebase pointer would be if the last 256 // location would be part of a sequence. We start a new sequence from the 257 // previous location. 258 --state.sequenceLength; 259 flushRebase(state, os); 260 261 state.sequenceLength = 2; 262 state.skipLength = skip; 263 } else { 264 // The address is at some positive offset from the rebase pointer. We 265 // start a new sequence which begins with the current location. 266 flushRebase(state, os); 267 emitIncrement(skip - state.skipLength, os); 268 state.sequenceLength = 1; 269 state.skipLength = target->wordSize; 270 } 271 } 272 flushRebase(state, os); 273 } 274 275 void RebaseSection::finalizeContents() { 276 if (locations.empty()) 277 return; 278 279 raw_svector_ostream os{contents}; 280 os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); 281 282 llvm::sort(locations, [](const Location &a, const Location &b) { 283 return a.isec->getVA(a.offset) < b.isec->getVA(b.offset); 284 }); 285 286 for (size_t i = 0, count = locations.size(); i < count;) { 287 const OutputSegment *seg = locations[i].isec->parent->parent; 288 size_t j = i + 1; 289 while (j < count && locations[j].isec->parent->parent == seg) 290 ++j; 291 encodeRebases(seg, {locations.data() + i, locations.data() + j}, os); 292 i = j; 293 } 294 os << static_cast<uint8_t>(REBASE_OPCODE_DONE); 295 } 296 297 void RebaseSection::writeTo(uint8_t *buf) const { 298 memcpy(buf, contents.data(), contents.size()); 299 } 300 301 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, 302 const char *name) 303 : SyntheticSection(segname, name) { 304 align = target->wordSize; 305 } 306 307 void macho::addNonLazyBindingEntries(const Symbol *sym, 308 const InputSection *isec, uint64_t offset, 309 int64_t addend) { 310 if (config->emitChainedFixups) { 311 if (needsBinding(sym)) 312 in.chainedFixups->addBinding(sym, isec, offset, addend); 313 else if (isa<Defined>(sym)) 314 in.chainedFixups->addRebase(isec, offset); 315 else 316 llvm_unreachable("cannot bind to an undefined symbol"); 317 return; 318 } 319 320 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 321 in.binding->addEntry(dysym, isec, offset, addend); 322 if (dysym->isWeakDef()) 323 in.weakBinding->addEntry(sym, isec, offset, addend); 324 } else if (const auto *defined = dyn_cast<Defined>(sym)) { 325 in.rebase->addEntry(isec, offset); 326 if (defined->isExternalWeakDef()) 327 in.weakBinding->addEntry(sym, isec, offset, addend); 328 else if (defined->interposable) 329 in.binding->addEntry(sym, isec, offset, addend); 330 } else { 331 // Undefined symbols are filtered out in scanRelocations(); we should never 332 // get here 333 llvm_unreachable("cannot bind to an undefined symbol"); 334 } 335 } 336 337 void NonLazyPointerSectionBase::addEntry(Symbol *sym) { 338 if (entries.insert(sym)) { 339 assert(!sym->isInGot()); 340 sym->gotIndex = entries.size() - 1; 341 342 addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize); 343 } 344 } 345 346 void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) { 347 assert(config->emitChainedFixups); 348 assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); 349 auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf); 350 rebase->target = targetVA & 0xf'ffff'ffff; 351 rebase->high8 = (targetVA >> 56); 352 rebase->reserved = 0; 353 rebase->next = 0; 354 rebase->bind = 0; 355 356 // The fixup format places a 64 GiB limit on the output's size. 357 // Should we handle this gracefully? 358 uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56); 359 if (encodedVA != targetVA) 360 error("rebase target address 0x" + Twine::utohexstr(targetVA) + 361 " does not fit into chained fixup. Re-link with -no_fixup_chains"); 362 } 363 364 static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) { 365 assert(config->emitChainedFixups); 366 assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); 367 auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf); 368 auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend); 369 bind->ordinal = ordinal; 370 bind->addend = inlineAddend; 371 bind->reserved = 0; 372 bind->next = 0; 373 bind->bind = 1; 374 } 375 376 void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) { 377 if (needsBinding(sym)) 378 writeChainedBind(buf, sym, addend); 379 else 380 writeChainedRebase(buf, sym->getVA() + addend); 381 } 382 383 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { 384 if (config->emitChainedFixups) { 385 for (const auto &[i, entry] : llvm::enumerate(entries)) 386 writeChainedFixup(&buf[i * target->wordSize], entry, 0); 387 } else { 388 for (const auto &[i, entry] : llvm::enumerate(entries)) 389 if (auto *defined = dyn_cast<Defined>(entry)) 390 write64le(&buf[i * target->wordSize], defined->getVA()); 391 } 392 } 393 394 GotSection::GotSection() 395 : NonLazyPointerSectionBase(segment_names::data, section_names::got) { 396 flags = S_NON_LAZY_SYMBOL_POINTERS; 397 } 398 399 TlvPointerSection::TlvPointerSection() 400 : NonLazyPointerSectionBase(segment_names::data, 401 section_names::threadPtrs) { 402 flags = S_THREAD_LOCAL_VARIABLE_POINTERS; 403 } 404 405 BindingSection::BindingSection() 406 : LinkEditSection(segment_names::linkEdit, section_names::binding) {} 407 408 namespace { 409 struct Binding { 410 OutputSegment *segment = nullptr; 411 uint64_t offset = 0; 412 int64_t addend = 0; 413 }; 414 struct BindIR { 415 // Default value of 0xF0 is not valid opcode and should make the program 416 // scream instead of accidentally writing "valid" values. 417 uint8_t opcode = 0xF0; 418 uint64_t data = 0; 419 uint64_t consecutiveCount = 0; 420 }; 421 } // namespace 422 423 // Encode a sequence of opcodes that tell dyld to write the address of symbol + 424 // addend at osec->addr + outSecOff. 425 // 426 // The bind opcode "interpreter" remembers the values of each binding field, so 427 // we only need to encode the differences between bindings. Hence the use of 428 // lastBinding. 429 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, 430 int64_t addend, Binding &lastBinding, 431 std::vector<BindIR> &opcodes) { 432 OutputSegment *seg = osec->parent; 433 uint64_t offset = osec->getSegmentOffset() + outSecOff; 434 if (lastBinding.segment != seg) { 435 opcodes.push_back( 436 {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 437 seg->index), 438 offset}); 439 lastBinding.segment = seg; 440 lastBinding.offset = offset; 441 } else if (lastBinding.offset != offset) { 442 opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset}); 443 lastBinding.offset = offset; 444 } 445 446 if (lastBinding.addend != addend) { 447 opcodes.push_back( 448 {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)}); 449 lastBinding.addend = addend; 450 } 451 452 opcodes.push_back({BIND_OPCODE_DO_BIND, 0}); 453 // DO_BIND causes dyld to both perform the binding and increment the offset 454 lastBinding.offset += target->wordSize; 455 } 456 457 static void optimizeOpcodes(std::vector<BindIR> &opcodes) { 458 // Pass 1: Combine bind/add pairs 459 size_t i; 460 int pWrite = 0; 461 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 462 if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && 463 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { 464 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; 465 opcodes[pWrite].data = opcodes[i].data; 466 ++i; 467 } else { 468 opcodes[pWrite] = opcodes[i - 1]; 469 } 470 } 471 if (i == opcodes.size()) 472 opcodes[pWrite] = opcodes[i - 1]; 473 opcodes.resize(pWrite + 1); 474 475 // Pass 2: Compress two or more bind_add opcodes 476 pWrite = 0; 477 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 478 if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 479 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 480 (opcodes[i].data == opcodes[i - 1].data)) { 481 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; 482 opcodes[pWrite].consecutiveCount = 2; 483 opcodes[pWrite].data = opcodes[i].data; 484 ++i; 485 while (i < opcodes.size() && 486 (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 487 (opcodes[i].data == opcodes[i - 1].data)) { 488 opcodes[pWrite].consecutiveCount++; 489 ++i; 490 } 491 } else { 492 opcodes[pWrite] = opcodes[i - 1]; 493 } 494 } 495 if (i == opcodes.size()) 496 opcodes[pWrite] = opcodes[i - 1]; 497 opcodes.resize(pWrite + 1); 498 499 // Pass 3: Use immediate encodings 500 // Every binding is the size of one pointer. If the next binding is a 501 // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the 502 // opcode can be scaled by wordSize into a single byte and dyld will 503 // expand it to the correct address. 504 for (auto &p : opcodes) { 505 // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, 506 // but ld64 currently does this. This could be a potential bug, but 507 // for now, perform the same behavior to prevent mysterious bugs. 508 if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 509 ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && 510 ((p.data % target->wordSize) == 0)) { 511 p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; 512 p.data /= target->wordSize; 513 } 514 } 515 } 516 517 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { 518 uint8_t opcode = op.opcode & BIND_OPCODE_MASK; 519 switch (opcode) { 520 case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: 521 case BIND_OPCODE_ADD_ADDR_ULEB: 522 case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: 523 os << op.opcode; 524 encodeULEB128(op.data, os); 525 break; 526 case BIND_OPCODE_SET_ADDEND_SLEB: 527 os << op.opcode; 528 encodeSLEB128(static_cast<int64_t>(op.data), os); 529 break; 530 case BIND_OPCODE_DO_BIND: 531 os << op.opcode; 532 break; 533 case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: 534 os << op.opcode; 535 encodeULEB128(op.consecutiveCount, os); 536 encodeULEB128(op.data, os); 537 break; 538 case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: 539 os << static_cast<uint8_t>(op.opcode | op.data); 540 break; 541 default: 542 llvm_unreachable("cannot bind to an unrecognized symbol"); 543 } 544 } 545 546 // Non-weak bindings need to have their dylib ordinal encoded as well. 547 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { 548 if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) 549 return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); 550 assert(dysym.getFile()->isReferenced()); 551 return dysym.getFile()->ordinal; 552 } 553 554 static int16_t ordinalForSymbol(const Symbol &sym) { 555 if (const auto *dysym = dyn_cast<DylibSymbol>(&sym)) 556 return ordinalForDylibSymbol(*dysym); 557 assert(cast<Defined>(&sym)->interposable); 558 return BIND_SPECIAL_DYLIB_FLAT_LOOKUP; 559 } 560 561 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { 562 if (ordinal <= 0) { 563 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | 564 (ordinal & BIND_IMMEDIATE_MASK)); 565 } else if (ordinal <= BIND_IMMEDIATE_MASK) { 566 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); 567 } else { 568 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); 569 encodeULEB128(ordinal, os); 570 } 571 } 572 573 static void encodeWeakOverride(const Defined *defined, 574 raw_svector_ostream &os) { 575 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | 576 BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) 577 << defined->getName() << '\0'; 578 } 579 580 // Organize the bindings so we can encoded them with fewer opcodes. 581 // 582 // First, all bindings for a given symbol should be grouped together. 583 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it 584 // has an associated symbol string), so we only want to emit it once per symbol. 585 // 586 // Within each group, we sort the bindings by address. Since bindings are 587 // delta-encoded, sorting them allows for a more compact result. Note that 588 // sorting by address alone ensures that bindings for the same segment / section 589 // are located together, minimizing the number of times we have to emit 590 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. 591 // 592 // Finally, we sort the symbols by the address of their first binding, again 593 // to facilitate the delta-encoding process. 594 template <class Sym> 595 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> 596 sortBindings(const BindingsMap<const Sym *> &bindingsMap) { 597 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( 598 bindingsMap.begin(), bindingsMap.end()); 599 for (auto &p : bindingsVec) { 600 std::vector<BindingEntry> &bindings = p.second; 601 llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { 602 return a.target.getVA() < b.target.getVA(); 603 }); 604 } 605 llvm::sort(bindingsVec, [](const auto &a, const auto &b) { 606 return a.second[0].target.getVA() < b.second[0].target.getVA(); 607 }); 608 return bindingsVec; 609 } 610 611 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld 612 // interprets to update a record with the following fields: 613 // * segment index (of the segment to write the symbol addresses to, typically 614 // the __DATA_CONST segment which contains the GOT) 615 // * offset within the segment, indicating the next location to write a binding 616 // * symbol type 617 // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) 618 // * symbol name 619 // * addend 620 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind 621 // a symbol in the GOT, and increments the segment offset to point to the next 622 // entry. It does *not* clear the record state after doing the bind, so 623 // subsequent opcodes only need to encode the differences between bindings. 624 void BindingSection::finalizeContents() { 625 raw_svector_ostream os{contents}; 626 Binding lastBinding; 627 int16_t lastOrdinal = 0; 628 629 for (auto &p : sortBindings(bindingsMap)) { 630 const Symbol *sym = p.first; 631 std::vector<BindingEntry> &bindings = p.second; 632 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 633 if (sym->isWeakRef()) 634 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 635 os << flags << sym->getName() << '\0' 636 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 637 int16_t ordinal = ordinalForSymbol(*sym); 638 if (ordinal != lastOrdinal) { 639 encodeDylibOrdinal(ordinal, os); 640 lastOrdinal = ordinal; 641 } 642 std::vector<BindIR> opcodes; 643 for (const BindingEntry &b : bindings) 644 encodeBinding(b.target.isec->parent, 645 b.target.isec->getOffset(b.target.offset), b.addend, 646 lastBinding, opcodes); 647 if (config->optimize > 1) 648 optimizeOpcodes(opcodes); 649 for (const auto &op : opcodes) 650 flushOpcodes(op, os); 651 } 652 if (!bindingsMap.empty()) 653 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 654 } 655 656 void BindingSection::writeTo(uint8_t *buf) const { 657 memcpy(buf, contents.data(), contents.size()); 658 } 659 660 WeakBindingSection::WeakBindingSection() 661 : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} 662 663 void WeakBindingSection::finalizeContents() { 664 raw_svector_ostream os{contents}; 665 Binding lastBinding; 666 667 for (const Defined *defined : definitions) 668 encodeWeakOverride(defined, os); 669 670 for (auto &p : sortBindings(bindingsMap)) { 671 const Symbol *sym = p.first; 672 std::vector<BindingEntry> &bindings = p.second; 673 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) 674 << sym->getName() << '\0' 675 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 676 std::vector<BindIR> opcodes; 677 for (const BindingEntry &b : bindings) 678 encodeBinding(b.target.isec->parent, 679 b.target.isec->getOffset(b.target.offset), b.addend, 680 lastBinding, opcodes); 681 if (config->optimize > 1) 682 optimizeOpcodes(opcodes); 683 for (const auto &op : opcodes) 684 flushOpcodes(op, os); 685 } 686 if (!bindingsMap.empty() || !definitions.empty()) 687 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 688 } 689 690 void WeakBindingSection::writeTo(uint8_t *buf) const { 691 memcpy(buf, contents.data(), contents.size()); 692 } 693 694 StubsSection::StubsSection() 695 : SyntheticSection(segment_names::text, section_names::stubs) { 696 flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 697 // The stubs section comprises machine instructions, which are aligned to 698 // 4 bytes on the archs we care about. 699 align = 4; 700 reserved2 = target->stubSize; 701 } 702 703 uint64_t StubsSection::getSize() const { 704 return entries.size() * target->stubSize; 705 } 706 707 void StubsSection::writeTo(uint8_t *buf) const { 708 size_t off = 0; 709 for (const Symbol *sym : entries) { 710 uint64_t pointerVA = 711 config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA(); 712 target->writeStub(buf + off, *sym, pointerVA); 713 off += target->stubSize; 714 } 715 } 716 717 void StubsSection::finalize() { isFinal = true; } 718 719 static void addBindingsForStub(Symbol *sym) { 720 assert(!config->emitChainedFixups); 721 if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 722 if (sym->isWeakDef()) { 723 in.binding->addEntry(dysym, in.lazyPointers->isec, 724 sym->stubsIndex * target->wordSize); 725 in.weakBinding->addEntry(sym, in.lazyPointers->isec, 726 sym->stubsIndex * target->wordSize); 727 } else { 728 in.lazyBinding->addEntry(dysym); 729 } 730 } else if (auto *defined = dyn_cast<Defined>(sym)) { 731 if (defined->isExternalWeakDef()) { 732 in.rebase->addEntry(in.lazyPointers->isec, 733 sym->stubsIndex * target->wordSize); 734 in.weakBinding->addEntry(sym, in.lazyPointers->isec, 735 sym->stubsIndex * target->wordSize); 736 } else if (defined->interposable) { 737 in.lazyBinding->addEntry(sym); 738 } else { 739 llvm_unreachable("invalid stub target"); 740 } 741 } else { 742 llvm_unreachable("invalid stub target symbol type"); 743 } 744 } 745 746 void StubsSection::addEntry(Symbol *sym) { 747 bool inserted = entries.insert(sym); 748 if (inserted) { 749 sym->stubsIndex = entries.size() - 1; 750 751 if (config->emitChainedFixups) 752 in.got->addEntry(sym); 753 else 754 addBindingsForStub(sym); 755 } 756 } 757 758 StubHelperSection::StubHelperSection() 759 : SyntheticSection(segment_names::text, section_names::stubHelper) { 760 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 761 align = 4; // This section comprises machine instructions 762 } 763 764 uint64_t StubHelperSection::getSize() const { 765 return target->stubHelperHeaderSize + 766 in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; 767 } 768 769 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } 770 771 void StubHelperSection::writeTo(uint8_t *buf) const { 772 target->writeStubHelperHeader(buf); 773 size_t off = target->stubHelperHeaderSize; 774 for (const Symbol *sym : in.lazyBinding->getEntries()) { 775 target->writeStubHelperEntry(buf + off, *sym, addr + off); 776 off += target->stubHelperEntrySize; 777 } 778 } 779 780 void StubHelperSection::setUp() { 781 Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr, 782 /*isWeakRef=*/false); 783 if (auto *undefined = dyn_cast<Undefined>(binder)) 784 treatUndefinedSymbol(*undefined, 785 "lazy binding (normally in libSystem.dylib)"); 786 787 // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. 788 stubBinder = dyn_cast_or_null<DylibSymbol>(binder); 789 if (stubBinder == nullptr) 790 return; 791 792 in.got->addEntry(stubBinder); 793 794 in.imageLoaderCache->parent = 795 ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); 796 inputSections.push_back(in.imageLoaderCache); 797 // Since this isn't in the symbol table or in any input file, the noDeadStrip 798 // argument doesn't matter. 799 dyldPrivate = 800 make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0, 801 /*isWeakDef=*/false, 802 /*isExternal=*/false, /*isPrivateExtern=*/false, 803 /*includeInSymtab=*/true, 804 /*isReferencedDynamically=*/false, 805 /*noDeadStrip=*/false); 806 dyldPrivate->used = true; 807 } 808 809 ObjCStubsSection::ObjCStubsSection() 810 : SyntheticSection(segment_names::text, section_names::objcStubs) { 811 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 812 align = target->objcStubsAlignment; 813 } 814 815 void ObjCStubsSection::addEntry(Symbol *sym) { 816 assert(sym->getName().starts_with(symbolPrefix) && "not an objc stub"); 817 StringRef methname = sym->getName().drop_front(symbolPrefix.size()); 818 offsets.push_back( 819 in.objcMethnameSection->getStringOffset(methname).outSecOff); 820 Defined *newSym = replaceSymbol<Defined>( 821 sym, sym->getName(), nullptr, isec, 822 /*value=*/symbols.size() * target->objcStubsFastSize, 823 /*size=*/target->objcStubsFastSize, 824 /*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true, 825 /*includeInSymtab=*/true, /*isReferencedDynamically=*/false, 826 /*noDeadStrip=*/false); 827 symbols.push_back(newSym); 828 } 829 830 void ObjCStubsSection::setUp() { 831 Symbol *objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr, 832 /*isWeakRef=*/false); 833 objcMsgSend->used = true; 834 in.got->addEntry(objcMsgSend); 835 assert(objcMsgSend->isInGot()); 836 objcMsgSendGotIndex = objcMsgSend->gotIndex; 837 838 size_t size = offsets.size() * target->wordSize; 839 uint8_t *selrefsData = bAlloc().Allocate<uint8_t>(size); 840 for (size_t i = 0, n = offsets.size(); i < n; ++i) 841 write64le(&selrefsData[i * target->wordSize], offsets[i]); 842 843 in.objcSelrefs = 844 makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs, 845 S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP, 846 ArrayRef<uint8_t>{selrefsData, size}, 847 /*align=*/target->wordSize); 848 in.objcSelrefs->live = true; 849 850 for (size_t i = 0, n = offsets.size(); i < n; ++i) { 851 in.objcSelrefs->relocs.push_back( 852 {/*type=*/target->unsignedRelocType, 853 /*pcrel=*/false, /*length=*/3, 854 /*offset=*/static_cast<uint32_t>(i * target->wordSize), 855 /*addend=*/offsets[i] * in.objcMethnameSection->align, 856 /*referent=*/in.objcMethnameSection->isec}); 857 } 858 859 in.objcSelrefs->parent = 860 ConcatOutputSection::getOrCreateForInput(in.objcSelrefs); 861 inputSections.push_back(in.objcSelrefs); 862 in.objcSelrefs->isFinal = true; 863 } 864 865 uint64_t ObjCStubsSection::getSize() const { 866 return target->objcStubsFastSize * symbols.size(); 867 } 868 869 void ObjCStubsSection::writeTo(uint8_t *buf) const { 870 assert(in.objcSelrefs->live); 871 assert(in.objcSelrefs->isFinal); 872 873 uint64_t stubOffset = 0; 874 for (size_t i = 0, n = symbols.size(); i < n; ++i) { 875 Defined *sym = symbols[i]; 876 target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr, 877 stubOffset, in.objcSelrefs->getVA(), i, 878 in.got->addr, objcMsgSendGotIndex); 879 stubOffset += target->objcStubsFastSize; 880 } 881 } 882 883 LazyPointerSection::LazyPointerSection() 884 : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { 885 align = target->wordSize; 886 flags = S_LAZY_SYMBOL_POINTERS; 887 } 888 889 uint64_t LazyPointerSection::getSize() const { 890 return in.stubs->getEntries().size() * target->wordSize; 891 } 892 893 bool LazyPointerSection::isNeeded() const { 894 return !in.stubs->getEntries().empty(); 895 } 896 897 void LazyPointerSection::writeTo(uint8_t *buf) const { 898 size_t off = 0; 899 for (const Symbol *sym : in.stubs->getEntries()) { 900 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 901 if (dysym->hasStubsHelper()) { 902 uint64_t stubHelperOffset = 903 target->stubHelperHeaderSize + 904 dysym->stubsHelperIndex * target->stubHelperEntrySize; 905 write64le(buf + off, in.stubHelper->addr + stubHelperOffset); 906 } 907 } else { 908 write64le(buf + off, sym->getVA()); 909 } 910 off += target->wordSize; 911 } 912 } 913 914 LazyBindingSection::LazyBindingSection() 915 : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} 916 917 void LazyBindingSection::finalizeContents() { 918 // TODO: Just precompute output size here instead of writing to a temporary 919 // buffer 920 for (Symbol *sym : entries) 921 sym->lazyBindOffset = encode(*sym); 922 } 923 924 void LazyBindingSection::writeTo(uint8_t *buf) const { 925 memcpy(buf, contents.data(), contents.size()); 926 } 927 928 void LazyBindingSection::addEntry(Symbol *sym) { 929 assert(!config->emitChainedFixups && "Chained fixups always bind eagerly"); 930 if (entries.insert(sym)) { 931 sym->stubsHelperIndex = entries.size() - 1; 932 in.rebase->addEntry(in.lazyPointers->isec, 933 sym->stubsIndex * target->wordSize); 934 } 935 } 936 937 // Unlike the non-lazy binding section, the bind opcodes in this section aren't 938 // interpreted all at once. Rather, dyld will start interpreting opcodes at a 939 // given offset, typically only binding a single symbol before it finds a 940 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, 941 // we cannot encode just the differences between symbols; we have to emit the 942 // complete bind information for each symbol. 943 uint32_t LazyBindingSection::encode(const Symbol &sym) { 944 uint32_t opstreamOffset = contents.size(); 945 OutputSegment *dataSeg = in.lazyPointers->parent; 946 os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 947 dataSeg->index); 948 uint64_t offset = 949 in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize; 950 encodeULEB128(offset, os); 951 encodeDylibOrdinal(ordinalForSymbol(sym), os); 952 953 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 954 if (sym.isWeakRef()) 955 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 956 957 os << flags << sym.getName() << '\0' 958 << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) 959 << static_cast<uint8_t>(BIND_OPCODE_DONE); 960 return opstreamOffset; 961 } 962 963 ExportSection::ExportSection() 964 : LinkEditSection(segment_names::linkEdit, section_names::export_) {} 965 966 void ExportSection::finalizeContents() { 967 trieBuilder.setImageBase(in.header->addr); 968 for (const Symbol *sym : symtab->getSymbols()) { 969 if (const auto *defined = dyn_cast<Defined>(sym)) { 970 if (defined->privateExtern || !defined->isLive()) 971 continue; 972 trieBuilder.addSymbol(*defined); 973 hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); 974 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 975 if (dysym->shouldReexport) 976 trieBuilder.addSymbol(*dysym); 977 } 978 } 979 size = trieBuilder.build(); 980 } 981 982 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } 983 984 DataInCodeSection::DataInCodeSection() 985 : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} 986 987 template <class LP> 988 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { 989 std::vector<MachO::data_in_code_entry> dataInCodeEntries; 990 for (const InputFile *inputFile : inputFiles) { 991 if (!isa<ObjFile>(inputFile)) 992 continue; 993 const ObjFile *objFile = cast<ObjFile>(inputFile); 994 ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode(); 995 if (entries.empty()) 996 continue; 997 998 assert(is_sorted(entries, [](const data_in_code_entry &lhs, 999 const data_in_code_entry &rhs) { 1000 return lhs.offset < rhs.offset; 1001 })); 1002 // For each code subsection find 'data in code' entries residing in it. 1003 // Compute the new offset values as 1004 // <offset within subsection> + <subsection address> - <__TEXT address>. 1005 for (const Section *section : objFile->sections) { 1006 for (const Subsection &subsec : section->subsections) { 1007 const InputSection *isec = subsec.isec; 1008 if (!isCodeSection(isec)) 1009 continue; 1010 if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput()) 1011 continue; 1012 const uint64_t beginAddr = section->addr + subsec.offset; 1013 auto it = llvm::lower_bound( 1014 entries, beginAddr, 1015 [](const MachO::data_in_code_entry &entry, uint64_t addr) { 1016 return entry.offset < addr; 1017 }); 1018 const uint64_t endAddr = beginAddr + isec->getSize(); 1019 for (const auto end = entries.end(); 1020 it != end && it->offset + it->length <= endAddr; ++it) 1021 dataInCodeEntries.push_back( 1022 {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) - 1023 in.header->addr), 1024 it->length, it->kind}); 1025 } 1026 } 1027 } 1028 1029 // ld64 emits the table in sorted order too. 1030 llvm::sort(dataInCodeEntries, 1031 [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) { 1032 return lhs.offset < rhs.offset; 1033 }); 1034 return dataInCodeEntries; 1035 } 1036 1037 void DataInCodeSection::finalizeContents() { 1038 entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() 1039 : collectDataInCodeEntries<ILP32>(); 1040 } 1041 1042 void DataInCodeSection::writeTo(uint8_t *buf) const { 1043 if (!entries.empty()) 1044 memcpy(buf, entries.data(), getRawSize()); 1045 } 1046 1047 FunctionStartsSection::FunctionStartsSection() 1048 : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} 1049 1050 void FunctionStartsSection::finalizeContents() { 1051 raw_svector_ostream os{contents}; 1052 std::vector<uint64_t> addrs; 1053 for (const InputFile *file : inputFiles) { 1054 if (auto *objFile = dyn_cast<ObjFile>(file)) { 1055 for (const Symbol *sym : objFile->symbols) { 1056 if (const auto *defined = dyn_cast_or_null<Defined>(sym)) { 1057 if (!defined->isec || !isCodeSection(defined->isec) || 1058 !defined->isLive()) 1059 continue; 1060 addrs.push_back(defined->getVA()); 1061 } 1062 } 1063 } 1064 } 1065 llvm::sort(addrs); 1066 uint64_t addr = in.header->addr; 1067 for (uint64_t nextAddr : addrs) { 1068 uint64_t delta = nextAddr - addr; 1069 if (delta == 0) 1070 continue; 1071 encodeULEB128(delta, os); 1072 addr = nextAddr; 1073 } 1074 os << '\0'; 1075 } 1076 1077 void FunctionStartsSection::writeTo(uint8_t *buf) const { 1078 memcpy(buf, contents.data(), contents.size()); 1079 } 1080 1081 SymtabSection::SymtabSection(StringTableSection &stringTableSection) 1082 : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), 1083 stringTableSection(stringTableSection) {} 1084 1085 void SymtabSection::emitBeginSourceStab(StringRef sourceFile) { 1086 StabsEntry stab(N_SO); 1087 stab.strx = stringTableSection.addString(saver().save(sourceFile)); 1088 stabs.emplace_back(std::move(stab)); 1089 } 1090 1091 void SymtabSection::emitEndSourceStab() { 1092 StabsEntry stab(N_SO); 1093 stab.sect = 1; 1094 stabs.emplace_back(std::move(stab)); 1095 } 1096 1097 void SymtabSection::emitObjectFileStab(ObjFile *file) { 1098 StabsEntry stab(N_OSO); 1099 stab.sect = target->cpuSubtype; 1100 SmallString<261> path(!file->archiveName.empty() ? file->archiveName 1101 : file->getName()); 1102 std::error_code ec = sys::fs::make_absolute(path); 1103 if (ec) 1104 fatal("failed to get absolute path for " + path); 1105 1106 if (!file->archiveName.empty()) 1107 path.append({"(", file->getName(), ")"}); 1108 1109 StringRef adjustedPath = saver().save(path.str()); 1110 adjustedPath.consume_front(config->osoPrefix); 1111 1112 stab.strx = stringTableSection.addString(adjustedPath); 1113 stab.desc = 1; 1114 stab.value = file->modTime; 1115 stabs.emplace_back(std::move(stab)); 1116 } 1117 1118 void SymtabSection::emitEndFunStab(Defined *defined) { 1119 StabsEntry stab(N_FUN); 1120 stab.value = defined->size; 1121 stabs.emplace_back(std::move(stab)); 1122 } 1123 1124 void SymtabSection::emitStabs() { 1125 if (config->omitDebugInfo) 1126 return; 1127 1128 for (const std::string &s : config->astPaths) { 1129 StabsEntry astStab(N_AST); 1130 astStab.strx = stringTableSection.addString(s); 1131 stabs.emplace_back(std::move(astStab)); 1132 } 1133 1134 // Cache the file ID for each symbol in an std::pair for faster sorting. 1135 using SortingPair = std::pair<Defined *, int>; 1136 std::vector<SortingPair> symbolsNeedingStabs; 1137 for (const SymtabEntry &entry : 1138 concat<SymtabEntry>(localSymbols, externalSymbols)) { 1139 Symbol *sym = entry.sym; 1140 assert(sym->isLive() && 1141 "dead symbols should not be in localSymbols, externalSymbols"); 1142 if (auto *defined = dyn_cast<Defined>(sym)) { 1143 // Excluded symbols should have been filtered out in finalizeContents(). 1144 assert(defined->includeInSymtab); 1145 1146 if (defined->isAbsolute()) 1147 continue; 1148 1149 // Constant-folded symbols go in the executable's symbol table, but don't 1150 // get a stabs entry. 1151 if (defined->wasIdenticalCodeFolded) 1152 continue; 1153 1154 ObjFile *file = defined->getObjectFile(); 1155 if (!file || !file->compileUnit) 1156 continue; 1157 1158 symbolsNeedingStabs.emplace_back(defined, defined->isec->getFile()->id); 1159 } 1160 } 1161 1162 llvm::stable_sort(symbolsNeedingStabs, 1163 [&](const SortingPair &a, const SortingPair &b) { 1164 return a.second < b.second; 1165 }); 1166 1167 // Emit STABS symbols so that dsymutil and/or the debugger can map address 1168 // regions in the final binary to the source and object files from which they 1169 // originated. 1170 InputFile *lastFile = nullptr; 1171 for (SortingPair &pair : symbolsNeedingStabs) { 1172 Defined *defined = pair.first; 1173 InputSection *isec = defined->isec; 1174 ObjFile *file = cast<ObjFile>(isec->getFile()); 1175 1176 if (lastFile == nullptr || lastFile != file) { 1177 if (lastFile != nullptr) 1178 emitEndSourceStab(); 1179 lastFile = file; 1180 1181 emitBeginSourceStab(file->sourceFile()); 1182 emitObjectFileStab(file); 1183 } 1184 1185 StabsEntry symStab; 1186 symStab.sect = defined->isec->parent->index; 1187 symStab.strx = stringTableSection.addString(defined->getName()); 1188 symStab.value = defined->getVA(); 1189 1190 if (isCodeSection(isec)) { 1191 symStab.type = N_FUN; 1192 stabs.emplace_back(std::move(symStab)); 1193 emitEndFunStab(defined); 1194 } else { 1195 symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; 1196 stabs.emplace_back(std::move(symStab)); 1197 } 1198 } 1199 1200 if (!stabs.empty()) 1201 emitEndSourceStab(); 1202 } 1203 1204 void SymtabSection::finalizeContents() { 1205 auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { 1206 uint32_t strx = stringTableSection.addString(sym->getName()); 1207 symbols.push_back({sym, strx}); 1208 }; 1209 1210 std::function<void(Symbol *)> localSymbolsHandler; 1211 switch (config->localSymbolsPresence) { 1212 case SymtabPresence::All: 1213 localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); }; 1214 break; 1215 case SymtabPresence::None: 1216 localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ }; 1217 break; 1218 case SymtabPresence::SelectivelyIncluded: 1219 localSymbolsHandler = [&](Symbol *sym) { 1220 if (config->localSymbolPatterns.match(sym->getName())) 1221 addSymbol(localSymbols, sym); 1222 }; 1223 break; 1224 case SymtabPresence::SelectivelyExcluded: 1225 localSymbolsHandler = [&](Symbol *sym) { 1226 if (!config->localSymbolPatterns.match(sym->getName())) 1227 addSymbol(localSymbols, sym); 1228 }; 1229 break; 1230 } 1231 1232 // Local symbols aren't in the SymbolTable, so we walk the list of object 1233 // files to gather them. 1234 // But if `-x` is set, then we don't need to. localSymbolsHandler() will do 1235 // the right thing regardless, but this check is a perf optimization because 1236 // iterating through all the input files and their symbols is expensive. 1237 if (config->localSymbolsPresence != SymtabPresence::None) { 1238 for (const InputFile *file : inputFiles) { 1239 if (auto *objFile = dyn_cast<ObjFile>(file)) { 1240 for (Symbol *sym : objFile->symbols) { 1241 if (auto *defined = dyn_cast_or_null<Defined>(sym)) { 1242 if (defined->isExternal() || !defined->isLive() || 1243 !defined->includeInSymtab) 1244 continue; 1245 localSymbolsHandler(sym); 1246 } 1247 } 1248 } 1249 } 1250 } 1251 1252 // __dyld_private is a local symbol too. It's linker-created and doesn't 1253 // exist in any object file. 1254 if (in.stubHelper && in.stubHelper->dyldPrivate) 1255 localSymbolsHandler(in.stubHelper->dyldPrivate); 1256 1257 for (Symbol *sym : symtab->getSymbols()) { 1258 if (!sym->isLive()) 1259 continue; 1260 if (auto *defined = dyn_cast<Defined>(sym)) { 1261 if (!defined->includeInSymtab) 1262 continue; 1263 assert(defined->isExternal()); 1264 if (defined->privateExtern) 1265 localSymbolsHandler(defined); 1266 else 1267 addSymbol(externalSymbols, defined); 1268 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 1269 if (dysym->isReferenced()) 1270 addSymbol(undefinedSymbols, sym); 1271 } 1272 } 1273 1274 emitStabs(); 1275 uint32_t symtabIndex = stabs.size(); 1276 for (const SymtabEntry &entry : 1277 concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) { 1278 entry.sym->symtabIndex = symtabIndex++; 1279 } 1280 } 1281 1282 uint32_t SymtabSection::getNumSymbols() const { 1283 return stabs.size() + localSymbols.size() + externalSymbols.size() + 1284 undefinedSymbols.size(); 1285 } 1286 1287 // This serves to hide (type-erase) the template parameter from SymtabSection. 1288 template <class LP> class SymtabSectionImpl final : public SymtabSection { 1289 public: 1290 SymtabSectionImpl(StringTableSection &stringTableSection) 1291 : SymtabSection(stringTableSection) {} 1292 uint64_t getRawSize() const override; 1293 void writeTo(uint8_t *buf) const override; 1294 }; 1295 1296 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { 1297 return getNumSymbols() * sizeof(typename LP::nlist); 1298 } 1299 1300 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { 1301 auto *nList = reinterpret_cast<typename LP::nlist *>(buf); 1302 // Emit the stabs entries before the "real" symbols. We cannot emit them 1303 // after as that would render Symbol::symtabIndex inaccurate. 1304 for (const StabsEntry &entry : stabs) { 1305 nList->n_strx = entry.strx; 1306 nList->n_type = entry.type; 1307 nList->n_sect = entry.sect; 1308 nList->n_desc = entry.desc; 1309 nList->n_value = entry.value; 1310 ++nList; 1311 } 1312 1313 for (const SymtabEntry &entry : concat<const SymtabEntry>( 1314 localSymbols, externalSymbols, undefinedSymbols)) { 1315 nList->n_strx = entry.strx; 1316 // TODO populate n_desc with more flags 1317 if (auto *defined = dyn_cast<Defined>(entry.sym)) { 1318 uint8_t scope = 0; 1319 if (defined->privateExtern) { 1320 // Private external -- dylib scoped symbol. 1321 // Promote to non-external at link time. 1322 scope = N_PEXT; 1323 } else if (defined->isExternal()) { 1324 // Normal global symbol. 1325 scope = N_EXT; 1326 } else { 1327 // TU-local symbol from localSymbols. 1328 scope = 0; 1329 } 1330 1331 if (defined->isAbsolute()) { 1332 nList->n_type = scope | N_ABS; 1333 nList->n_sect = NO_SECT; 1334 nList->n_value = defined->value; 1335 } else { 1336 nList->n_type = scope | N_SECT; 1337 nList->n_sect = defined->isec->parent->index; 1338 // For the N_SECT symbol type, n_value is the address of the symbol 1339 nList->n_value = defined->getVA(); 1340 } 1341 nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; 1342 nList->n_desc |= 1343 defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; 1344 } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) { 1345 uint16_t n_desc = nList->n_desc; 1346 int16_t ordinal = ordinalForDylibSymbol(*dysym); 1347 if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) 1348 SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL); 1349 else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) 1350 SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL); 1351 else { 1352 assert(ordinal > 0); 1353 SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal)); 1354 } 1355 1356 nList->n_type = N_EXT; 1357 n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; 1358 n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; 1359 nList->n_desc = n_desc; 1360 } 1361 ++nList; 1362 } 1363 } 1364 1365 template <class LP> 1366 SymtabSection * 1367 macho::makeSymtabSection(StringTableSection &stringTableSection) { 1368 return make<SymtabSectionImpl<LP>>(stringTableSection); 1369 } 1370 1371 IndirectSymtabSection::IndirectSymtabSection() 1372 : LinkEditSection(segment_names::linkEdit, 1373 section_names::indirectSymbolTable) {} 1374 1375 uint32_t IndirectSymtabSection::getNumSymbols() const { 1376 uint32_t size = in.got->getEntries().size() + 1377 in.tlvPointers->getEntries().size() + 1378 in.stubs->getEntries().size(); 1379 if (!config->emitChainedFixups) 1380 size += in.stubs->getEntries().size(); 1381 return size; 1382 } 1383 1384 bool IndirectSymtabSection::isNeeded() const { 1385 return in.got->isNeeded() || in.tlvPointers->isNeeded() || 1386 in.stubs->isNeeded(); 1387 } 1388 1389 void IndirectSymtabSection::finalizeContents() { 1390 uint32_t off = 0; 1391 in.got->reserved1 = off; 1392 off += in.got->getEntries().size(); 1393 in.tlvPointers->reserved1 = off; 1394 off += in.tlvPointers->getEntries().size(); 1395 in.stubs->reserved1 = off; 1396 if (in.lazyPointers) { 1397 off += in.stubs->getEntries().size(); 1398 in.lazyPointers->reserved1 = off; 1399 } 1400 } 1401 1402 static uint32_t indirectValue(const Symbol *sym) { 1403 if (sym->symtabIndex == UINT32_MAX) 1404 return INDIRECT_SYMBOL_LOCAL; 1405 if (auto *defined = dyn_cast<Defined>(sym)) 1406 if (defined->privateExtern) 1407 return INDIRECT_SYMBOL_LOCAL; 1408 return sym->symtabIndex; 1409 } 1410 1411 void IndirectSymtabSection::writeTo(uint8_t *buf) const { 1412 uint32_t off = 0; 1413 for (const Symbol *sym : in.got->getEntries()) { 1414 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1415 ++off; 1416 } 1417 for (const Symbol *sym : in.tlvPointers->getEntries()) { 1418 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1419 ++off; 1420 } 1421 for (const Symbol *sym : in.stubs->getEntries()) { 1422 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1423 ++off; 1424 } 1425 1426 if (in.lazyPointers) { 1427 // There is a 1:1 correspondence between stubs and LazyPointerSection 1428 // entries. But giving __stubs and __la_symbol_ptr the same reserved1 1429 // (the offset into the indirect symbol table) so that they both refer 1430 // to the same range of offsets confuses `strip`, so write the stubs 1431 // symbol table offsets a second time. 1432 for (const Symbol *sym : in.stubs->getEntries()) { 1433 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1434 ++off; 1435 } 1436 } 1437 } 1438 1439 StringTableSection::StringTableSection() 1440 : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} 1441 1442 uint32_t StringTableSection::addString(StringRef str) { 1443 uint32_t strx = size; 1444 strings.push_back(str); // TODO: consider deduplicating strings 1445 size += str.size() + 1; // account for null terminator 1446 return strx; 1447 } 1448 1449 void StringTableSection::writeTo(uint8_t *buf) const { 1450 uint32_t off = 0; 1451 for (StringRef str : strings) { 1452 memcpy(buf + off, str.data(), str.size()); 1453 off += str.size() + 1; // account for null terminator 1454 } 1455 } 1456 1457 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0); 1458 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0); 1459 1460 CodeSignatureSection::CodeSignatureSection() 1461 : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { 1462 align = 16; // required by libstuff 1463 1464 // XXX: This mimics LD64, where it uses the install-name as codesign 1465 // identifier, if available. 1466 if (!config->installName.empty()) 1467 fileName = config->installName; 1468 else 1469 // FIXME: Consider using finalOutput instead of outputFile. 1470 fileName = config->outputFile; 1471 1472 size_t slashIndex = fileName.rfind("/"); 1473 if (slashIndex != std::string::npos) 1474 fileName = fileName.drop_front(slashIndex + 1); 1475 1476 // NOTE: Any changes to these calculations should be repeated 1477 // in llvm-objcopy's MachOLayoutBuilder::layoutTail. 1478 allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1); 1479 fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); 1480 } 1481 1482 uint32_t CodeSignatureSection::getBlockCount() const { 1483 return (fileOff + blockSize - 1) / blockSize; 1484 } 1485 1486 uint64_t CodeSignatureSection::getRawSize() const { 1487 return allHeadersSize + getBlockCount() * hashSize; 1488 } 1489 1490 void CodeSignatureSection::writeHashes(uint8_t *buf) const { 1491 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1492 // MachOWriter::writeSignatureData. 1493 uint8_t *hashes = buf + fileOff + allHeadersSize; 1494 parallelFor(0, getBlockCount(), [&](size_t i) { 1495 sha256(buf + i * blockSize, 1496 std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize), 1497 hashes + i * hashSize); 1498 }); 1499 #if defined(__APPLE__) 1500 // This is macOS-specific work-around and makes no sense for any 1501 // other host OS. See https://openradar.appspot.com/FB8914231 1502 // 1503 // The macOS kernel maintains a signature-verification cache to 1504 // quickly validate applications at time of execve(2). The trouble 1505 // is that for the kernel creates the cache entry at the time of the 1506 // mmap(2) call, before we have a chance to write either the code to 1507 // sign or the signature header+hashes. The fix is to invalidate 1508 // all cached data associated with the output file, thus discarding 1509 // the bogus prematurely-cached signature. 1510 msync(buf, fileOff + getSize(), MS_INVALIDATE); 1511 #endif 1512 } 1513 1514 void CodeSignatureSection::writeTo(uint8_t *buf) const { 1515 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1516 // MachOWriter::writeSignatureData. 1517 uint32_t signatureSize = static_cast<uint32_t>(getSize()); 1518 auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); 1519 write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE); 1520 write32be(&superBlob->length, signatureSize); 1521 write32be(&superBlob->count, 1); 1522 auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); 1523 write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY); 1524 write32be(&blobIndex->offset, blobHeadersSize); 1525 auto *codeDirectory = 1526 reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); 1527 write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY); 1528 write32be(&codeDirectory->length, signatureSize - blobHeadersSize); 1529 write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG); 1530 write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED); 1531 write32be(&codeDirectory->hashOffset, 1532 sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); 1533 write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory)); 1534 codeDirectory->nSpecialSlots = 0; 1535 write32be(&codeDirectory->nCodeSlots, getBlockCount()); 1536 write32be(&codeDirectory->codeLimit, fileOff); 1537 codeDirectory->hashSize = static_cast<uint8_t>(hashSize); 1538 codeDirectory->hashType = kSecCodeSignatureHashSHA256; 1539 codeDirectory->platform = 0; 1540 codeDirectory->pageSize = blockSizeShift; 1541 codeDirectory->spare2 = 0; 1542 codeDirectory->scatterOffset = 0; 1543 codeDirectory->teamOffset = 0; 1544 codeDirectory->spare3 = 0; 1545 codeDirectory->codeLimit64 = 0; 1546 OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text); 1547 write64be(&codeDirectory->execSegBase, textSeg->fileOff); 1548 write64be(&codeDirectory->execSegLimit, textSeg->fileSize); 1549 write64be(&codeDirectory->execSegFlags, 1550 config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); 1551 auto *id = reinterpret_cast<char *>(&codeDirectory[1]); 1552 memcpy(id, fileName.begin(), fileName.size()); 1553 memset(id + fileName.size(), 0, fileNamePad); 1554 } 1555 1556 CStringSection::CStringSection(const char *name) 1557 : SyntheticSection(segment_names::text, name) { 1558 flags = S_CSTRING_LITERALS; 1559 } 1560 1561 void CStringSection::addInput(CStringInputSection *isec) { 1562 isec->parent = this; 1563 inputs.push_back(isec); 1564 if (isec->align > align) 1565 align = isec->align; 1566 } 1567 1568 void CStringSection::writeTo(uint8_t *buf) const { 1569 for (const CStringInputSection *isec : inputs) { 1570 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1571 if (!piece.live) 1572 continue; 1573 StringRef string = isec->getStringRef(i); 1574 memcpy(buf + piece.outSecOff, string.data(), string.size()); 1575 } 1576 } 1577 } 1578 1579 void CStringSection::finalizeContents() { 1580 uint64_t offset = 0; 1581 for (CStringInputSection *isec : inputs) { 1582 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1583 if (!piece.live) 1584 continue; 1585 // See comment above DeduplicatedCStringSection for how alignment is 1586 // handled. 1587 uint32_t pieceAlign = 1 1588 << llvm::countr_zero(isec->align | piece.inSecOff); 1589 offset = alignToPowerOf2(offset, pieceAlign); 1590 piece.outSecOff = offset; 1591 isec->isFinal = true; 1592 StringRef string = isec->getStringRef(i); 1593 offset += string.size() + 1; // account for null terminator 1594 } 1595 } 1596 size = offset; 1597 } 1598 1599 // Mergeable cstring literals are found under the __TEXT,__cstring section. In 1600 // contrast to ELF, which puts strings that need different alignments into 1601 // different sections, clang's Mach-O backend puts them all in one section. 1602 // Strings that need to be aligned have the .p2align directive emitted before 1603 // them, which simply translates into zero padding in the object file. In other 1604 // words, we have to infer the desired alignment of these cstrings from their 1605 // addresses. 1606 // 1607 // We differ slightly from ld64 in how we've chosen to align these cstrings. 1608 // Both LLD and ld64 preserve the number of trailing zeros in each cstring's 1609 // address in the input object files. When deduplicating identical cstrings, 1610 // both linkers pick the cstring whose address has more trailing zeros, and 1611 // preserve the alignment of that address in the final binary. However, ld64 1612 // goes a step further and also preserves the offset of the cstring from the 1613 // last section-aligned address. I.e. if a cstring is at offset 18 in the 1614 // input, with a section alignment of 16, then both LLD and ld64 will ensure the 1615 // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also 1616 // ensure that the final address is of the form 16 * k + 2 for some k. 1617 // 1618 // Note that ld64's heuristic means that a dedup'ed cstring's final address is 1619 // dependent on the order of the input object files. E.g. if in addition to the 1620 // cstring at offset 18 above, we have a duplicate one in another file with a 1621 // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick 1622 // the cstring from the object file earlier on the command line (since both have 1623 // the same number of trailing zeros in their address). So the final cstring may 1624 // either be at some address `16 * k + 2` or at some address `2 * k`. 1625 // 1626 // I've opted not to follow this behavior primarily for implementation 1627 // simplicity, and secondarily to save a few more bytes. It's not clear to me 1628 // that preserving the section alignment + offset is ever necessary, and there 1629 // are many cases that are clearly redundant. In particular, if an x86_64 object 1630 // file contains some strings that are accessed via SIMD instructions, then the 1631 // .cstring section in the object file will be 16-byte-aligned (since SIMD 1632 // requires its operand addresses to be 16-byte aligned). However, there will 1633 // typically also be other cstrings in the same file that aren't used via SIMD 1634 // and don't need this alignment. They will be emitted at some arbitrary address 1635 // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16 1636 // % A`. 1637 void DeduplicatedCStringSection::finalizeContents() { 1638 // Find the largest alignment required for each string. 1639 for (const CStringInputSection *isec : inputs) { 1640 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1641 if (!piece.live) 1642 continue; 1643 auto s = isec->getCachedHashStringRef(i); 1644 assert(isec->align != 0); 1645 uint8_t trailingZeros = llvm::countr_zero(isec->align | piece.inSecOff); 1646 auto it = stringOffsetMap.insert( 1647 std::make_pair(s, StringOffset(trailingZeros))); 1648 if (!it.second && it.first->second.trailingZeros < trailingZeros) 1649 it.first->second.trailingZeros = trailingZeros; 1650 } 1651 } 1652 1653 // Assign an offset for each string and save it to the corresponding 1654 // StringPieces for easy access. 1655 for (CStringInputSection *isec : inputs) { 1656 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { 1657 if (!piece.live) 1658 continue; 1659 auto s = isec->getCachedHashStringRef(i); 1660 auto it = stringOffsetMap.find(s); 1661 assert(it != stringOffsetMap.end()); 1662 StringOffset &offsetInfo = it->second; 1663 if (offsetInfo.outSecOff == UINT64_MAX) { 1664 offsetInfo.outSecOff = 1665 alignToPowerOf2(size, 1ULL << offsetInfo.trailingZeros); 1666 size = 1667 offsetInfo.outSecOff + s.size() + 1; // account for null terminator 1668 } 1669 piece.outSecOff = offsetInfo.outSecOff; 1670 } 1671 isec->isFinal = true; 1672 } 1673 } 1674 1675 void DeduplicatedCStringSection::writeTo(uint8_t *buf) const { 1676 for (const auto &p : stringOffsetMap) { 1677 StringRef data = p.first.val(); 1678 uint64_t off = p.second.outSecOff; 1679 if (!data.empty()) 1680 memcpy(buf + off, data.data(), data.size()); 1681 } 1682 } 1683 1684 DeduplicatedCStringSection::StringOffset 1685 DeduplicatedCStringSection::getStringOffset(StringRef str) const { 1686 // StringPiece uses 31 bits to store the hashes, so we replicate that 1687 uint32_t hash = xxh3_64bits(str) & 0x7fffffff; 1688 auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash)); 1689 assert(offset != stringOffsetMap.end() && 1690 "Looked-up strings should always exist in section"); 1691 return offset->second; 1692 } 1693 1694 // This section is actually emitted as __TEXT,__const by ld64, but clang may 1695 // emit input sections of that name, and LLD doesn't currently support mixing 1696 // synthetic and concat-type OutputSections. To work around this, I've given 1697 // our merged-literals section a different name. 1698 WordLiteralSection::WordLiteralSection() 1699 : SyntheticSection(segment_names::text, section_names::literals) { 1700 align = 16; 1701 } 1702 1703 void WordLiteralSection::addInput(WordLiteralInputSection *isec) { 1704 isec->parent = this; 1705 inputs.push_back(isec); 1706 } 1707 1708 void WordLiteralSection::finalizeContents() { 1709 for (WordLiteralInputSection *isec : inputs) { 1710 // We do all processing of the InputSection here, so it will be effectively 1711 // finalized. 1712 isec->isFinal = true; 1713 const uint8_t *buf = isec->data.data(); 1714 switch (sectionType(isec->getFlags())) { 1715 case S_4BYTE_LITERALS: { 1716 for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { 1717 if (!isec->isLive(off)) 1718 continue; 1719 uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); 1720 literal4Map.emplace(value, literal4Map.size()); 1721 } 1722 break; 1723 } 1724 case S_8BYTE_LITERALS: { 1725 for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { 1726 if (!isec->isLive(off)) 1727 continue; 1728 uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); 1729 literal8Map.emplace(value, literal8Map.size()); 1730 } 1731 break; 1732 } 1733 case S_16BYTE_LITERALS: { 1734 for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { 1735 if (!isec->isLive(off)) 1736 continue; 1737 UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); 1738 literal16Map.emplace(value, literal16Map.size()); 1739 } 1740 break; 1741 } 1742 default: 1743 llvm_unreachable("invalid literal section type"); 1744 } 1745 } 1746 } 1747 1748 void WordLiteralSection::writeTo(uint8_t *buf) const { 1749 // Note that we don't attempt to do any endianness conversion in addInput(), 1750 // so we don't do it here either -- just write out the original value, 1751 // byte-for-byte. 1752 for (const auto &p : literal16Map) 1753 memcpy(buf + p.second * 16, &p.first, 16); 1754 buf += literal16Map.size() * 16; 1755 1756 for (const auto &p : literal8Map) 1757 memcpy(buf + p.second * 8, &p.first, 8); 1758 buf += literal8Map.size() * 8; 1759 1760 for (const auto &p : literal4Map) 1761 memcpy(buf + p.second * 4, &p.first, 4); 1762 } 1763 1764 ObjCImageInfoSection::ObjCImageInfoSection() 1765 : SyntheticSection(segment_names::data, section_names::objCImageInfo) {} 1766 1767 ObjCImageInfoSection::ImageInfo 1768 ObjCImageInfoSection::parseImageInfo(const InputFile *file) { 1769 ImageInfo info; 1770 ArrayRef<uint8_t> data = file->objCImageInfo; 1771 // The image info struct has the following layout: 1772 // struct { 1773 // uint32_t version; 1774 // uint32_t flags; 1775 // }; 1776 if (data.size() < 8) { 1777 warn(toString(file) + ": invalid __objc_imageinfo size"); 1778 return info; 1779 } 1780 1781 auto *buf = reinterpret_cast<const uint32_t *>(data.data()); 1782 if (read32le(buf) != 0) { 1783 warn(toString(file) + ": invalid __objc_imageinfo version"); 1784 return info; 1785 } 1786 1787 uint32_t flags = read32le(buf + 1); 1788 info.swiftVersion = (flags >> 8) & 0xff; 1789 info.hasCategoryClassProperties = flags & 0x40; 1790 return info; 1791 } 1792 1793 static std::string swiftVersionString(uint8_t version) { 1794 switch (version) { 1795 case 1: 1796 return "1.0"; 1797 case 2: 1798 return "1.1"; 1799 case 3: 1800 return "2.0"; 1801 case 4: 1802 return "3.0"; 1803 case 5: 1804 return "4.0"; 1805 default: 1806 return ("0x" + Twine::utohexstr(version)).str(); 1807 } 1808 } 1809 1810 // Validate each object file's __objc_imageinfo and use them to generate the 1811 // image info for the output binary. Only two pieces of info are relevant: 1812 // 1. The Swift version (should be identical across inputs) 1813 // 2. `bool hasCategoryClassProperties` (true only if true for all inputs) 1814 void ObjCImageInfoSection::finalizeContents() { 1815 assert(files.size() != 0); // should have already been checked via isNeeded() 1816 1817 info.hasCategoryClassProperties = true; 1818 const InputFile *firstFile; 1819 for (const InputFile *file : files) { 1820 ImageInfo inputInfo = parseImageInfo(file); 1821 info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties; 1822 1823 // swiftVersion 0 means no Swift is present, so no version checking required 1824 if (inputInfo.swiftVersion == 0) 1825 continue; 1826 1827 if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) { 1828 error("Swift version mismatch: " + toString(firstFile) + " has version " + 1829 swiftVersionString(info.swiftVersion) + " but " + toString(file) + 1830 " has version " + swiftVersionString(inputInfo.swiftVersion)); 1831 } else { 1832 info.swiftVersion = inputInfo.swiftVersion; 1833 firstFile = file; 1834 } 1835 } 1836 } 1837 1838 void ObjCImageInfoSection::writeTo(uint8_t *buf) const { 1839 uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0; 1840 flags |= info.swiftVersion << 8; 1841 write32le(buf + 4, flags); 1842 } 1843 1844 InitOffsetsSection::InitOffsetsSection() 1845 : SyntheticSection(segment_names::text, section_names::initOffsets) { 1846 flags = S_INIT_FUNC_OFFSETS; 1847 align = 4; // This section contains 32-bit integers. 1848 } 1849 1850 uint64_t InitOffsetsSection::getSize() const { 1851 size_t count = 0; 1852 for (const ConcatInputSection *isec : sections) 1853 count += isec->relocs.size(); 1854 return count * sizeof(uint32_t); 1855 } 1856 1857 void InitOffsetsSection::writeTo(uint8_t *buf) const { 1858 // FIXME: Add function specified by -init when that argument is implemented. 1859 for (ConcatInputSection *isec : sections) { 1860 for (const Reloc &rel : isec->relocs) { 1861 const Symbol *referent = rel.referent.dyn_cast<Symbol *>(); 1862 assert(referent && "section relocation should have been rejected"); 1863 uint64_t offset = referent->getVA() - in.header->addr; 1864 // FIXME: Can we handle this gracefully? 1865 if (offset > UINT32_MAX) 1866 fatal(isec->getLocation(rel.offset) + ": offset to initializer " + 1867 referent->getName() + " (" + utohexstr(offset) + 1868 ") does not fit in 32 bits"); 1869 1870 // Entries need to be added in the order they appear in the section, but 1871 // relocations aren't guaranteed to be sorted. 1872 size_t index = rel.offset >> target->p2WordSize; 1873 write32le(&buf[index * sizeof(uint32_t)], offset); 1874 } 1875 buf += isec->relocs.size() * sizeof(uint32_t); 1876 } 1877 } 1878 1879 // The inputs are __mod_init_func sections, which contain pointers to 1880 // initializer functions, therefore all relocations should be of the UNSIGNED 1881 // type. InitOffsetsSection stores offsets, so if the initializer's address is 1882 // not known at link time, stub-indirection has to be used. 1883 void InitOffsetsSection::setUp() { 1884 for (const ConcatInputSection *isec : sections) { 1885 for (const Reloc &rel : isec->relocs) { 1886 RelocAttrs attrs = target->getRelocAttrs(rel.type); 1887 if (!attrs.hasAttr(RelocAttrBits::UNSIGNED)) 1888 error(isec->getLocation(rel.offset) + 1889 ": unsupported relocation type: " + attrs.name); 1890 if (rel.addend != 0) 1891 error(isec->getLocation(rel.offset) + 1892 ": relocation addend is not representable in __init_offsets"); 1893 if (rel.referent.is<InputSection *>()) 1894 error(isec->getLocation(rel.offset) + 1895 ": unexpected section relocation"); 1896 1897 Symbol *sym = rel.referent.dyn_cast<Symbol *>(); 1898 if (auto *undefined = dyn_cast<Undefined>(sym)) 1899 treatUndefinedSymbol(*undefined, isec, rel.offset); 1900 if (needsBinding(sym)) 1901 in.stubs->addEntry(sym); 1902 } 1903 } 1904 } 1905 1906 void macho::createSyntheticSymbols() { 1907 auto addHeaderSymbol = [](const char *name) { 1908 symtab->addSynthetic(name, in.header->isec, /*value=*/0, 1909 /*isPrivateExtern=*/true, /*includeInSymtab=*/false, 1910 /*referencedDynamically=*/false); 1911 }; 1912 1913 switch (config->outputType) { 1914 // FIXME: Assign the right address value for these symbols 1915 // (rather than 0). But we need to do that after assignAddresses(). 1916 case MH_EXECUTE: 1917 // If linking PIE, __mh_execute_header is a defined symbol in 1918 // __TEXT, __text) 1919 // Otherwise, it's an absolute symbol. 1920 if (config->isPic) 1921 symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0, 1922 /*isPrivateExtern=*/false, /*includeInSymtab=*/true, 1923 /*referencedDynamically=*/true); 1924 else 1925 symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0, 1926 /*isPrivateExtern=*/false, /*includeInSymtab=*/true, 1927 /*referencedDynamically=*/true); 1928 break; 1929 1930 // The following symbols are N_SECT symbols, even though the header is not 1931 // part of any section and that they are private to the bundle/dylib/object 1932 // they are part of. 1933 case MH_BUNDLE: 1934 addHeaderSymbol("__mh_bundle_header"); 1935 break; 1936 case MH_DYLIB: 1937 addHeaderSymbol("__mh_dylib_header"); 1938 break; 1939 case MH_DYLINKER: 1940 addHeaderSymbol("__mh_dylinker_header"); 1941 break; 1942 case MH_OBJECT: 1943 addHeaderSymbol("__mh_object_header"); 1944 break; 1945 default: 1946 llvm_unreachable("unexpected outputType"); 1947 break; 1948 } 1949 1950 // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit 1951 // which does e.g. cleanup of static global variables. The ABI document 1952 // says that the pointer can point to any address in one of the dylib's 1953 // segments, but in practice ld64 seems to set it to point to the header, 1954 // so that's what's implemented here. 1955 addHeaderSymbol("___dso_handle"); 1956 } 1957 1958 ChainedFixupsSection::ChainedFixupsSection() 1959 : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {} 1960 1961 bool ChainedFixupsSection::isNeeded() const { 1962 assert(config->emitChainedFixups); 1963 // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid 1964 // dyld_chained_fixups_header, so we create this section even if there aren't 1965 // any fixups. 1966 return true; 1967 } 1968 1969 static bool needsWeakBind(const Symbol &sym) { 1970 if (auto *dysym = dyn_cast<DylibSymbol>(&sym)) 1971 return dysym->isWeakDef(); 1972 if (auto *defined = dyn_cast<Defined>(&sym)) 1973 return defined->isExternalWeakDef(); 1974 return false; 1975 } 1976 1977 void ChainedFixupsSection::addBinding(const Symbol *sym, 1978 const InputSection *isec, uint64_t offset, 1979 int64_t addend) { 1980 locations.emplace_back(isec, offset); 1981 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; 1982 auto [it, inserted] = bindings.insert( 1983 {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())}); 1984 1985 if (inserted) { 1986 symtabSize += sym->getName().size() + 1; 1987 hasWeakBind = hasWeakBind || needsWeakBind(*sym); 1988 if (!isInt<23>(outlineAddend)) 1989 needsLargeAddend = true; 1990 else if (outlineAddend != 0) 1991 needsAddend = true; 1992 } 1993 } 1994 1995 std::pair<uint32_t, uint8_t> 1996 ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const { 1997 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; 1998 auto it = bindings.find({sym, outlineAddend}); 1999 assert(it != bindings.end() && "binding not found in the imports table"); 2000 if (outlineAddend == 0) 2001 return {it->second, addend}; 2002 return {it->second, 0}; 2003 } 2004 2005 static size_t writeImport(uint8_t *buf, int format, uint32_t libOrdinal, 2006 bool weakRef, uint32_t nameOffset, int64_t addend) { 2007 switch (format) { 2008 case DYLD_CHAINED_IMPORT: { 2009 auto *import = reinterpret_cast<dyld_chained_import *>(buf); 2010 import->lib_ordinal = libOrdinal; 2011 import->weak_import = weakRef; 2012 import->name_offset = nameOffset; 2013 return sizeof(dyld_chained_import); 2014 } 2015 case DYLD_CHAINED_IMPORT_ADDEND: { 2016 auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf); 2017 import->lib_ordinal = libOrdinal; 2018 import->weak_import = weakRef; 2019 import->name_offset = nameOffset; 2020 import->addend = addend; 2021 return sizeof(dyld_chained_import_addend); 2022 } 2023 case DYLD_CHAINED_IMPORT_ADDEND64: { 2024 auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf); 2025 import->lib_ordinal = libOrdinal; 2026 import->weak_import = weakRef; 2027 import->name_offset = nameOffset; 2028 import->addend = addend; 2029 return sizeof(dyld_chained_import_addend64); 2030 } 2031 default: 2032 llvm_unreachable("Unknown import format"); 2033 } 2034 } 2035 2036 size_t ChainedFixupsSection::SegmentInfo::getSize() const { 2037 assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?"); 2038 return alignTo<8>(sizeof(dyld_chained_starts_in_segment) + 2039 pageStarts.back().first * sizeof(uint16_t)); 2040 } 2041 2042 size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const { 2043 auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf); 2044 segInfo->size = getSize(); 2045 segInfo->page_size = target->getPageSize(); 2046 // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions. 2047 segInfo->pointer_format = DYLD_CHAINED_PTR_64; 2048 segInfo->segment_offset = oseg->addr - in.header->addr; 2049 segInfo->max_valid_pointer = 0; // not used on 64-bit 2050 segInfo->page_count = pageStarts.back().first + 1; 2051 2052 uint16_t *starts = segInfo->page_start; 2053 for (size_t i = 0; i < segInfo->page_count; ++i) 2054 starts[i] = DYLD_CHAINED_PTR_START_NONE; 2055 2056 for (auto [pageIdx, startAddr] : pageStarts) 2057 starts[pageIdx] = startAddr; 2058 return segInfo->size; 2059 } 2060 2061 static size_t importEntrySize(int format) { 2062 switch (format) { 2063 case DYLD_CHAINED_IMPORT: 2064 return sizeof(dyld_chained_import); 2065 case DYLD_CHAINED_IMPORT_ADDEND: 2066 return sizeof(dyld_chained_import_addend); 2067 case DYLD_CHAINED_IMPORT_ADDEND64: 2068 return sizeof(dyld_chained_import_addend64); 2069 default: 2070 llvm_unreachable("Unknown import format"); 2071 } 2072 } 2073 2074 // This is step 3 of the algorithm described in the class comment of 2075 // ChainedFixupsSection. 2076 // 2077 // LC_DYLD_CHAINED_FIXUPS data consists of (in this order): 2078 // * A dyld_chained_fixups_header 2079 // * A dyld_chained_starts_in_image 2080 // * One dyld_chained_starts_in_segment per segment 2081 // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or 2082 // dyld_chained_import_addend64) 2083 // * Names of imported symbols 2084 void ChainedFixupsSection::writeTo(uint8_t *buf) const { 2085 auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf); 2086 header->fixups_version = 0; 2087 header->imports_count = bindings.size(); 2088 header->imports_format = importFormat; 2089 header->symbols_format = 0; 2090 2091 buf += alignTo<8>(sizeof(*header)); 2092 2093 auto curOffset = [&buf, &header]() -> uint32_t { 2094 return buf - reinterpret_cast<uint8_t *>(header); 2095 }; 2096 2097 header->starts_offset = curOffset(); 2098 2099 auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf); 2100 imageInfo->seg_count = outputSegments.size(); 2101 uint32_t *segStarts = imageInfo->seg_info_offset; 2102 2103 // dyld_chained_starts_in_image ends in a flexible array member containing an 2104 // uint32_t for each segment. Leave room for it, and fill it via segStarts. 2105 buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + 2106 outputSegments.size() * sizeof(uint32_t)); 2107 2108 // Initialize all offsets to 0, which indicates that the segment does not have 2109 // fixups. Those that do have them will be filled in below. 2110 for (size_t i = 0; i < outputSegments.size(); ++i) 2111 segStarts[i] = 0; 2112 2113 for (const SegmentInfo &seg : fixupSegments) { 2114 segStarts[seg.oseg->index] = curOffset() - header->starts_offset; 2115 buf += seg.writeTo(buf); 2116 } 2117 2118 // Write imports table. 2119 header->imports_offset = curOffset(); 2120 uint64_t nameOffset = 0; 2121 for (auto [import, idx] : bindings) { 2122 const Symbol &sym = *import.first; 2123 int16_t libOrdinal = needsWeakBind(sym) 2124 ? (int64_t)BIND_SPECIAL_DYLIB_WEAK_LOOKUP 2125 : ordinalForSymbol(sym); 2126 buf += writeImport(buf, importFormat, libOrdinal, sym.isWeakRef(), 2127 nameOffset, import.second); 2128 nameOffset += sym.getName().size() + 1; 2129 } 2130 2131 // Write imported symbol names. 2132 header->symbols_offset = curOffset(); 2133 for (auto [import, idx] : bindings) { 2134 StringRef name = import.first->getName(); 2135 memcpy(buf, name.data(), name.size()); 2136 buf += name.size() + 1; // account for null terminator 2137 } 2138 2139 assert(curOffset() == getRawSize()); 2140 } 2141 2142 // This is step 2 of the algorithm described in the class comment of 2143 // ChainedFixupsSection. 2144 void ChainedFixupsSection::finalizeContents() { 2145 assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); 2146 assert(config->emitChainedFixups); 2147 2148 if (!isUInt<32>(symtabSize)) 2149 error("cannot encode chained fixups: imported symbols table size " + 2150 Twine(symtabSize) + " exceeds 4 GiB"); 2151 2152 if (needsLargeAddend || !isUInt<23>(symtabSize)) 2153 importFormat = DYLD_CHAINED_IMPORT_ADDEND64; 2154 else if (needsAddend) 2155 importFormat = DYLD_CHAINED_IMPORT_ADDEND; 2156 else 2157 importFormat = DYLD_CHAINED_IMPORT; 2158 2159 for (Location &loc : locations) 2160 loc.offset = 2161 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset); 2162 2163 llvm::sort(locations, [](const Location &a, const Location &b) { 2164 const OutputSegment *segA = a.isec->parent->parent; 2165 const OutputSegment *segB = b.isec->parent->parent; 2166 if (segA == segB) 2167 return a.offset < b.offset; 2168 return segA->addr < segB->addr; 2169 }); 2170 2171 auto sameSegment = [](const Location &a, const Location &b) { 2172 return a.isec->parent->parent == b.isec->parent->parent; 2173 }; 2174 2175 const uint64_t pageSize = target->getPageSize(); 2176 for (size_t i = 0, count = locations.size(); i < count;) { 2177 const Location &firstLoc = locations[i]; 2178 fixupSegments.emplace_back(firstLoc.isec->parent->parent); 2179 while (i < count && sameSegment(locations[i], firstLoc)) { 2180 uint32_t pageIdx = locations[i].offset / pageSize; 2181 fixupSegments.back().pageStarts.emplace_back( 2182 pageIdx, locations[i].offset % pageSize); 2183 ++i; 2184 while (i < count && sameSegment(locations[i], firstLoc) && 2185 locations[i].offset / pageSize == pageIdx) 2186 ++i; 2187 } 2188 } 2189 2190 // Compute expected encoded size. 2191 size = alignTo<8>(sizeof(dyld_chained_fixups_header)); 2192 size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + 2193 outputSegments.size() * sizeof(uint32_t)); 2194 for (const SegmentInfo &seg : fixupSegments) 2195 size += seg.getSize(); 2196 size += importEntrySize(importFormat) * bindings.size(); 2197 size += symtabSize; 2198 } 2199 2200 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); 2201 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); 2202