1 //===- SyntheticSections.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SyntheticSections.h" 10 #include "ConcatOutputSection.h" 11 #include "Config.h" 12 #include "ExportTrie.h" 13 #include "InputFiles.h" 14 #include "MachOStructs.h" 15 #include "OutputSegment.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 19 #include "lld/Common/ErrorHandler.h" 20 #include "lld/Common/Memory.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/EndianStream.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/SHA256.h" 28 29 #if defined(__APPLE__) 30 #include <sys/mman.h> 31 #endif 32 33 #ifdef LLVM_HAVE_LIBXAR 34 #include <fcntl.h> 35 extern "C" { 36 #include <xar/xar.h> 37 } 38 #endif 39 40 using namespace llvm; 41 using namespace llvm::MachO; 42 using namespace llvm::support; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::macho; 46 47 InStruct macho::in; 48 std::vector<SyntheticSection *> macho::syntheticSections; 49 50 SyntheticSection::SyntheticSection(const char *segname, const char *name) 51 : OutputSection(SyntheticKind, name) { 52 std::tie(this->segname, this->name) = maybeRenameSection({segname, name}); 53 isec = make<ConcatInputSection>(segname, name); 54 isec->parent = this; 55 syntheticSections.push_back(this); 56 } 57 58 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts 59 // from the beginning of the file (i.e. the header). 60 MachHeaderSection::MachHeaderSection() 61 : SyntheticSection(segment_names::text, section_names::header) { 62 // XXX: This is a hack. (See D97007) 63 // Setting the index to 1 to pretend that this section is the text 64 // section. 65 index = 1; 66 isec->isFinal = true; 67 } 68 69 void MachHeaderSection::addLoadCommand(LoadCommand *lc) { 70 loadCommands.push_back(lc); 71 sizeOfCmds += lc->getSize(); 72 } 73 74 uint64_t MachHeaderSection::getSize() const { 75 uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; 76 // If we are emitting an encryptable binary, our load commands must have a 77 // separate (non-encrypted) page to themselves. 78 if (config->emitEncryptionInfo) 79 size = alignTo(size, target->getPageSize()); 80 return size; 81 } 82 83 static uint32_t cpuSubtype() { 84 uint32_t subtype = target->cpuSubtype; 85 86 if (config->outputType == MH_EXECUTE && !config->staticLink && 87 target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && 88 config->platform() == PlatformKind::macOS && 89 config->platformInfo.minimum >= VersionTuple(10, 5)) 90 subtype |= CPU_SUBTYPE_LIB64; 91 92 return subtype; 93 } 94 95 void MachHeaderSection::writeTo(uint8_t *buf) const { 96 auto *hdr = reinterpret_cast<mach_header *>(buf); 97 hdr->magic = target->magic; 98 hdr->cputype = target->cpuType; 99 hdr->cpusubtype = cpuSubtype(); 100 hdr->filetype = config->outputType; 101 hdr->ncmds = loadCommands.size(); 102 hdr->sizeofcmds = sizeOfCmds; 103 hdr->flags = MH_DYLDLINK; 104 105 if (config->namespaceKind == NamespaceKind::twolevel) 106 hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; 107 108 if (config->outputType == MH_DYLIB && !config->hasReexports) 109 hdr->flags |= MH_NO_REEXPORTED_DYLIBS; 110 111 if (config->markDeadStrippableDylib) 112 hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; 113 114 if (config->outputType == MH_EXECUTE && config->isPic) 115 hdr->flags |= MH_PIE; 116 117 if (config->outputType == MH_DYLIB && config->applicationExtension) 118 hdr->flags |= MH_APP_EXTENSION_SAFE; 119 120 if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition()) 121 hdr->flags |= MH_WEAK_DEFINES; 122 123 if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry()) 124 hdr->flags |= MH_BINDS_TO_WEAK; 125 126 for (const OutputSegment *seg : outputSegments) { 127 for (const OutputSection *osec : seg->getSections()) { 128 if (isThreadLocalVariables(osec->flags)) { 129 hdr->flags |= MH_HAS_TLV_DESCRIPTORS; 130 break; 131 } 132 } 133 } 134 135 uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; 136 for (const LoadCommand *lc : loadCommands) { 137 lc->writeTo(p); 138 p += lc->getSize(); 139 } 140 } 141 142 PageZeroSection::PageZeroSection() 143 : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} 144 145 RebaseSection::RebaseSection() 146 : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} 147 148 namespace { 149 struct Rebase { 150 OutputSegment *segment = nullptr; 151 uint64_t offset = 0; 152 uint64_t consecutiveCount = 0; 153 }; 154 } // namespace 155 156 // Rebase opcodes allow us to describe a contiguous sequence of rebase location 157 // using a single DO_REBASE opcode. To take advantage of it, we delay emitting 158 // `DO_REBASE` until we have reached the end of a contiguous sequence. 159 static void encodeDoRebase(Rebase &rebase, raw_svector_ostream &os) { 160 assert(rebase.consecutiveCount != 0); 161 if (rebase.consecutiveCount <= REBASE_IMMEDIATE_MASK) { 162 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | 163 rebase.consecutiveCount); 164 } else { 165 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); 166 encodeULEB128(rebase.consecutiveCount, os); 167 } 168 rebase.consecutiveCount = 0; 169 } 170 171 static void encodeRebase(const OutputSection *osec, uint64_t outSecOff, 172 Rebase &lastRebase, raw_svector_ostream &os) { 173 OutputSegment *seg = osec->parent; 174 uint64_t offset = osec->getSegmentOffset() + outSecOff; 175 if (lastRebase.segment != seg || lastRebase.offset != offset) { 176 if (lastRebase.consecutiveCount != 0) 177 encodeDoRebase(lastRebase, os); 178 179 if (lastRebase.segment != seg) { 180 os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 181 seg->index); 182 encodeULEB128(offset, os); 183 lastRebase.segment = seg; 184 lastRebase.offset = offset; 185 } else { 186 assert(lastRebase.offset != offset); 187 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); 188 encodeULEB128(offset - lastRebase.offset, os); 189 lastRebase.offset = offset; 190 } 191 } 192 ++lastRebase.consecutiveCount; 193 // DO_REBASE causes dyld to both perform the binding and increment the offset 194 lastRebase.offset += target->wordSize; 195 } 196 197 void RebaseSection::finalizeContents() { 198 if (locations.empty()) 199 return; 200 201 raw_svector_ostream os{contents}; 202 Rebase lastRebase; 203 204 os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); 205 206 llvm::sort(locations, [](const Location &a, const Location &b) { 207 return a.isec->getVA(a.offset) < b.isec->getVA(b.offset); 208 }); 209 for (const Location &loc : locations) 210 encodeRebase(loc.isec->parent, loc.isec->getOffset(loc.offset), lastRebase, 211 os); 212 if (lastRebase.consecutiveCount != 0) 213 encodeDoRebase(lastRebase, os); 214 215 os << static_cast<uint8_t>(REBASE_OPCODE_DONE); 216 } 217 218 void RebaseSection::writeTo(uint8_t *buf) const { 219 memcpy(buf, contents.data(), contents.size()); 220 } 221 222 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, 223 const char *name) 224 : SyntheticSection(segname, name) { 225 align = target->wordSize; 226 } 227 228 void macho::addNonLazyBindingEntries(const Symbol *sym, 229 const InputSection *isec, uint64_t offset, 230 int64_t addend) { 231 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 232 in.binding->addEntry(dysym, isec, offset, addend); 233 if (dysym->isWeakDef()) 234 in.weakBinding->addEntry(sym, isec, offset, addend); 235 } else if (const auto *defined = dyn_cast<Defined>(sym)) { 236 in.rebase->addEntry(isec, offset); 237 if (defined->isExternalWeakDef()) 238 in.weakBinding->addEntry(sym, isec, offset, addend); 239 } else { 240 // Undefined symbols are filtered out in scanRelocations(); we should never 241 // get here 242 llvm_unreachable("cannot bind to an undefined symbol"); 243 } 244 } 245 246 void NonLazyPointerSectionBase::addEntry(Symbol *sym) { 247 if (entries.insert(sym)) { 248 assert(!sym->isInGot()); 249 sym->gotIndex = entries.size() - 1; 250 251 addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize); 252 } 253 } 254 255 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { 256 for (size_t i = 0, n = entries.size(); i < n; ++i) 257 if (auto *defined = dyn_cast<Defined>(entries[i])) 258 write64le(&buf[i * target->wordSize], defined->getVA()); 259 } 260 261 GotSection::GotSection() 262 : NonLazyPointerSectionBase(segment_names::data, section_names::got) { 263 flags = S_NON_LAZY_SYMBOL_POINTERS; 264 } 265 266 TlvPointerSection::TlvPointerSection() 267 : NonLazyPointerSectionBase(segment_names::data, 268 section_names::threadPtrs) { 269 flags = S_THREAD_LOCAL_VARIABLE_POINTERS; 270 } 271 272 BindingSection::BindingSection() 273 : LinkEditSection(segment_names::linkEdit, section_names::binding) {} 274 275 namespace { 276 struct Binding { 277 OutputSegment *segment = nullptr; 278 uint64_t offset = 0; 279 int64_t addend = 0; 280 }; 281 struct BindIR { 282 // Default value of 0xF0 is not valid opcode and should make the program 283 // scream instead of accidentally writing "valid" values. 284 uint8_t opcode = 0xF0; 285 uint64_t data = 0; 286 uint64_t consecutiveCount = 0; 287 }; 288 } // namespace 289 290 // Encode a sequence of opcodes that tell dyld to write the address of symbol + 291 // addend at osec->addr + outSecOff. 292 // 293 // The bind opcode "interpreter" remembers the values of each binding field, so 294 // we only need to encode the differences between bindings. Hence the use of 295 // lastBinding. 296 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, 297 int64_t addend, Binding &lastBinding, 298 std::vector<BindIR> &opcodes) { 299 OutputSegment *seg = osec->parent; 300 uint64_t offset = osec->getSegmentOffset() + outSecOff; 301 if (lastBinding.segment != seg) { 302 opcodes.push_back( 303 {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 304 seg->index), 305 offset}); 306 lastBinding.segment = seg; 307 lastBinding.offset = offset; 308 } else if (lastBinding.offset != offset) { 309 opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset}); 310 lastBinding.offset = offset; 311 } 312 313 if (lastBinding.addend != addend) { 314 opcodes.push_back( 315 {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)}); 316 lastBinding.addend = addend; 317 } 318 319 opcodes.push_back({BIND_OPCODE_DO_BIND, 0}); 320 // DO_BIND causes dyld to both perform the binding and increment the offset 321 lastBinding.offset += target->wordSize; 322 } 323 324 static void optimizeOpcodes(std::vector<BindIR> &opcodes) { 325 // Pass 1: Combine bind/add pairs 326 size_t i; 327 int pWrite = 0; 328 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 329 if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && 330 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { 331 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; 332 opcodes[pWrite].data = opcodes[i].data; 333 ++i; 334 } else { 335 opcodes[pWrite] = opcodes[i - 1]; 336 } 337 } 338 if (i == opcodes.size()) 339 opcodes[pWrite] = opcodes[i - 1]; 340 opcodes.resize(pWrite + 1); 341 342 // Pass 2: Compress two or more bind_add opcodes 343 pWrite = 0; 344 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 345 if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 346 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 347 (opcodes[i].data == opcodes[i - 1].data)) { 348 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; 349 opcodes[pWrite].consecutiveCount = 2; 350 opcodes[pWrite].data = opcodes[i].data; 351 ++i; 352 while (i < opcodes.size() && 353 (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 354 (opcodes[i].data == opcodes[i - 1].data)) { 355 opcodes[pWrite].consecutiveCount++; 356 ++i; 357 } 358 } else { 359 opcodes[pWrite] = opcodes[i - 1]; 360 } 361 } 362 if (i == opcodes.size()) 363 opcodes[pWrite] = opcodes[i - 1]; 364 opcodes.resize(pWrite + 1); 365 366 // Pass 3: Use immediate encodings 367 // Every binding is the size of one pointer. If the next binding is a 368 // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the 369 // opcode can be scaled by wordSize into a single byte and dyld will 370 // expand it to the correct address. 371 for (auto &p : opcodes) { 372 // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, 373 // but ld64 currently does this. This could be a potential bug, but 374 // for now, perform the same behavior to prevent mysterious bugs. 375 if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 376 ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && 377 ((p.data % target->wordSize) == 0)) { 378 p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; 379 p.data /= target->wordSize; 380 } 381 } 382 } 383 384 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { 385 uint8_t opcode = op.opcode & BIND_OPCODE_MASK; 386 switch (opcode) { 387 case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: 388 case BIND_OPCODE_ADD_ADDR_ULEB: 389 case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: 390 os << op.opcode; 391 encodeULEB128(op.data, os); 392 break; 393 case BIND_OPCODE_SET_ADDEND_SLEB: 394 os << op.opcode; 395 encodeSLEB128(static_cast<int64_t>(op.data), os); 396 break; 397 case BIND_OPCODE_DO_BIND: 398 os << op.opcode; 399 break; 400 case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: 401 os << op.opcode; 402 encodeULEB128(op.consecutiveCount, os); 403 encodeULEB128(op.data, os); 404 break; 405 case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: 406 os << static_cast<uint8_t>(op.opcode | op.data); 407 break; 408 default: 409 llvm_unreachable("cannot bind to an unrecognized symbol"); 410 } 411 } 412 413 // Non-weak bindings need to have their dylib ordinal encoded as well. 414 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { 415 if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) 416 return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); 417 assert(dysym.getFile()->isReferenced()); 418 return dysym.getFile()->ordinal; 419 } 420 421 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { 422 if (ordinal <= 0) { 423 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | 424 (ordinal & BIND_IMMEDIATE_MASK)); 425 } else if (ordinal <= BIND_IMMEDIATE_MASK) { 426 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); 427 } else { 428 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); 429 encodeULEB128(ordinal, os); 430 } 431 } 432 433 static void encodeWeakOverride(const Defined *defined, 434 raw_svector_ostream &os) { 435 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | 436 BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) 437 << defined->getName() << '\0'; 438 } 439 440 // Organize the bindings so we can encoded them with fewer opcodes. 441 // 442 // First, all bindings for a given symbol should be grouped together. 443 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it 444 // has an associated symbol string), so we only want to emit it once per symbol. 445 // 446 // Within each group, we sort the bindings by address. Since bindings are 447 // delta-encoded, sorting them allows for a more compact result. Note that 448 // sorting by address alone ensures that bindings for the same segment / section 449 // are located together, minimizing the number of times we have to emit 450 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. 451 // 452 // Finally, we sort the symbols by the address of their first binding, again 453 // to facilitate the delta-encoding process. 454 template <class Sym> 455 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> 456 sortBindings(const BindingsMap<const Sym *> &bindingsMap) { 457 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( 458 bindingsMap.begin(), bindingsMap.end()); 459 for (auto &p : bindingsVec) { 460 std::vector<BindingEntry> &bindings = p.second; 461 llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { 462 return a.target.getVA() < b.target.getVA(); 463 }); 464 } 465 llvm::sort(bindingsVec, [](const auto &a, const auto &b) { 466 return a.second[0].target.getVA() < b.second[0].target.getVA(); 467 }); 468 return bindingsVec; 469 } 470 471 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld 472 // interprets to update a record with the following fields: 473 // * segment index (of the segment to write the symbol addresses to, typically 474 // the __DATA_CONST segment which contains the GOT) 475 // * offset within the segment, indicating the next location to write a binding 476 // * symbol type 477 // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) 478 // * symbol name 479 // * addend 480 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind 481 // a symbol in the GOT, and increments the segment offset to point to the next 482 // entry. It does *not* clear the record state after doing the bind, so 483 // subsequent opcodes only need to encode the differences between bindings. 484 void BindingSection::finalizeContents() { 485 raw_svector_ostream os{contents}; 486 Binding lastBinding; 487 int16_t lastOrdinal = 0; 488 489 for (auto &p : sortBindings(bindingsMap)) { 490 const DylibSymbol *sym = p.first; 491 std::vector<BindingEntry> &bindings = p.second; 492 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 493 if (sym->isWeakRef()) 494 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 495 os << flags << sym->getName() << '\0' 496 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 497 int16_t ordinal = ordinalForDylibSymbol(*sym); 498 if (ordinal != lastOrdinal) { 499 encodeDylibOrdinal(ordinal, os); 500 lastOrdinal = ordinal; 501 } 502 std::vector<BindIR> opcodes; 503 for (const BindingEntry &b : bindings) 504 encodeBinding(b.target.isec->parent, 505 b.target.isec->getOffset(b.target.offset), b.addend, 506 lastBinding, opcodes); 507 if (config->optimize > 1) 508 optimizeOpcodes(opcodes); 509 for (const auto &op : opcodes) 510 flushOpcodes(op, os); 511 } 512 if (!bindingsMap.empty()) 513 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 514 } 515 516 void BindingSection::writeTo(uint8_t *buf) const { 517 memcpy(buf, contents.data(), contents.size()); 518 } 519 520 WeakBindingSection::WeakBindingSection() 521 : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} 522 523 void WeakBindingSection::finalizeContents() { 524 raw_svector_ostream os{contents}; 525 Binding lastBinding; 526 527 for (const Defined *defined : definitions) 528 encodeWeakOverride(defined, os); 529 530 for (auto &p : sortBindings(bindingsMap)) { 531 const Symbol *sym = p.first; 532 std::vector<BindingEntry> &bindings = p.second; 533 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) 534 << sym->getName() << '\0' 535 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 536 std::vector<BindIR> opcodes; 537 for (const BindingEntry &b : bindings) 538 encodeBinding(b.target.isec->parent, 539 b.target.isec->getOffset(b.target.offset), b.addend, 540 lastBinding, opcodes); 541 if (config->optimize > 1) 542 optimizeOpcodes(opcodes); 543 for (const auto &op : opcodes) 544 flushOpcodes(op, os); 545 } 546 if (!bindingsMap.empty() || !definitions.empty()) 547 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 548 } 549 550 void WeakBindingSection::writeTo(uint8_t *buf) const { 551 memcpy(buf, contents.data(), contents.size()); 552 } 553 554 StubsSection::StubsSection() 555 : SyntheticSection(segment_names::text, section_names::stubs) { 556 flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 557 // The stubs section comprises machine instructions, which are aligned to 558 // 4 bytes on the archs we care about. 559 align = 4; 560 reserved2 = target->stubSize; 561 } 562 563 uint64_t StubsSection::getSize() const { 564 return entries.size() * target->stubSize; 565 } 566 567 void StubsSection::writeTo(uint8_t *buf) const { 568 size_t off = 0; 569 for (const Symbol *sym : entries) { 570 target->writeStub(buf + off, *sym); 571 off += target->stubSize; 572 } 573 } 574 575 void StubsSection::finalize() { isFinal = true; } 576 577 bool StubsSection::addEntry(Symbol *sym) { 578 bool inserted = entries.insert(sym); 579 if (inserted) 580 sym->stubsIndex = entries.size() - 1; 581 return inserted; 582 } 583 584 StubHelperSection::StubHelperSection() 585 : SyntheticSection(segment_names::text, section_names::stubHelper) { 586 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 587 align = 4; // This section comprises machine instructions 588 } 589 590 uint64_t StubHelperSection::getSize() const { 591 return target->stubHelperHeaderSize + 592 in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; 593 } 594 595 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } 596 597 void StubHelperSection::writeTo(uint8_t *buf) const { 598 target->writeStubHelperHeader(buf); 599 size_t off = target->stubHelperHeaderSize; 600 for (const DylibSymbol *sym : in.lazyBinding->getEntries()) { 601 target->writeStubHelperEntry(buf + off, *sym, addr + off); 602 off += target->stubHelperEntrySize; 603 } 604 } 605 606 void StubHelperSection::setup() { 607 Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr, 608 /*isWeakRef=*/false); 609 if (auto *undefined = dyn_cast<Undefined>(binder)) 610 treatUndefinedSymbol(*undefined, 611 "lazy binding (normally in libSystem.dylib)"); 612 613 // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. 614 stubBinder = dyn_cast_or_null<DylibSymbol>(binder); 615 if (stubBinder == nullptr) 616 return; 617 618 in.got->addEntry(stubBinder); 619 620 in.imageLoaderCache->parent = 621 ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); 622 inputSections.push_back(in.imageLoaderCache); 623 // Since this isn't in the symbol table or in any input file, the noDeadStrip 624 // argument doesn't matter. 625 dyldPrivate = 626 make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0, 627 /*isWeakDef=*/false, 628 /*isExternal=*/false, /*isPrivateExtern=*/false, 629 /*isThumb=*/false, /*isReferencedDynamically=*/false, 630 /*noDeadStrip=*/false); 631 dyldPrivate->used = true; 632 } 633 634 LazyPointerSection::LazyPointerSection() 635 : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { 636 align = target->wordSize; 637 flags = S_LAZY_SYMBOL_POINTERS; 638 } 639 640 uint64_t LazyPointerSection::getSize() const { 641 return in.stubs->getEntries().size() * target->wordSize; 642 } 643 644 bool LazyPointerSection::isNeeded() const { 645 return !in.stubs->getEntries().empty(); 646 } 647 648 void LazyPointerSection::writeTo(uint8_t *buf) const { 649 size_t off = 0; 650 for (const Symbol *sym : in.stubs->getEntries()) { 651 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 652 if (dysym->hasStubsHelper()) { 653 uint64_t stubHelperOffset = 654 target->stubHelperHeaderSize + 655 dysym->stubsHelperIndex * target->stubHelperEntrySize; 656 write64le(buf + off, in.stubHelper->addr + stubHelperOffset); 657 } 658 } else { 659 write64le(buf + off, sym->getVA()); 660 } 661 off += target->wordSize; 662 } 663 } 664 665 LazyBindingSection::LazyBindingSection() 666 : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} 667 668 void LazyBindingSection::finalizeContents() { 669 // TODO: Just precompute output size here instead of writing to a temporary 670 // buffer 671 for (DylibSymbol *sym : entries) 672 sym->lazyBindOffset = encode(*sym); 673 } 674 675 void LazyBindingSection::writeTo(uint8_t *buf) const { 676 memcpy(buf, contents.data(), contents.size()); 677 } 678 679 void LazyBindingSection::addEntry(DylibSymbol *dysym) { 680 if (entries.insert(dysym)) { 681 dysym->stubsHelperIndex = entries.size() - 1; 682 in.rebase->addEntry(in.lazyPointers->isec, 683 dysym->stubsIndex * target->wordSize); 684 } 685 } 686 687 // Unlike the non-lazy binding section, the bind opcodes in this section aren't 688 // interpreted all at once. Rather, dyld will start interpreting opcodes at a 689 // given offset, typically only binding a single symbol before it finds a 690 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, 691 // we cannot encode just the differences between symbols; we have to emit the 692 // complete bind information for each symbol. 693 uint32_t LazyBindingSection::encode(const DylibSymbol &sym) { 694 uint32_t opstreamOffset = contents.size(); 695 OutputSegment *dataSeg = in.lazyPointers->parent; 696 os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 697 dataSeg->index); 698 uint64_t offset = in.lazyPointers->addr - dataSeg->addr + 699 sym.stubsIndex * target->wordSize; 700 encodeULEB128(offset, os); 701 encodeDylibOrdinal(ordinalForDylibSymbol(sym), os); 702 703 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 704 if (sym.isWeakRef()) 705 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 706 707 os << flags << sym.getName() << '\0' 708 << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) 709 << static_cast<uint8_t>(BIND_OPCODE_DONE); 710 return opstreamOffset; 711 } 712 713 ExportSection::ExportSection() 714 : LinkEditSection(segment_names::linkEdit, section_names::export_) {} 715 716 void ExportSection::finalizeContents() { 717 trieBuilder.setImageBase(in.header->addr); 718 for (const Symbol *sym : symtab->getSymbols()) { 719 if (const auto *defined = dyn_cast<Defined>(sym)) { 720 if (defined->privateExtern || !defined->isLive()) 721 continue; 722 trieBuilder.addSymbol(*defined); 723 hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); 724 } 725 } 726 size = trieBuilder.build(); 727 } 728 729 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } 730 731 DataInCodeSection::DataInCodeSection() 732 : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} 733 734 template <class LP> 735 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { 736 using SegmentCommand = typename LP::segment_command; 737 using SectionHeader = typename LP::section; 738 739 std::vector<MachO::data_in_code_entry> dataInCodeEntries; 740 for (const InputFile *inputFile : inputFiles) { 741 if (!isa<ObjFile>(inputFile)) 742 continue; 743 const ObjFile *objFile = cast<ObjFile>(inputFile); 744 const auto *c = reinterpret_cast<const SegmentCommand *>( 745 findCommand(objFile->mb.getBufferStart(), LP::segmentLCType)); 746 if (!c) 747 continue; 748 ArrayRef<SectionHeader> sectionHeaders{ 749 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 750 751 ArrayRef<MachO::data_in_code_entry> entries = objFile->dataInCodeEntries; 752 if (entries.empty()) 753 continue; 754 // For each code subsection find 'data in code' entries residing in it. 755 // Compute the new offset values as 756 // <offset within subsection> + <subsection address> - <__TEXT address>. 757 for (size_t i = 0, n = sectionHeaders.size(); i < n; ++i) { 758 for (const Subsection &subsec : objFile->sections[i].subsections) { 759 const InputSection *isec = subsec.isec; 760 if (!isCodeSection(isec)) 761 continue; 762 if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput()) 763 continue; 764 const uint64_t beginAddr = sectionHeaders[i].addr + subsec.offset; 765 auto it = llvm::lower_bound( 766 entries, beginAddr, 767 [](const MachO::data_in_code_entry &entry, uint64_t addr) { 768 return entry.offset < addr; 769 }); 770 const uint64_t endAddr = beginAddr + isec->getFileSize(); 771 for (const auto end = entries.end(); 772 it != end && it->offset + it->length <= endAddr; ++it) 773 dataInCodeEntries.push_back( 774 {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) - 775 in.header->addr), 776 it->length, it->kind}); 777 } 778 } 779 } 780 return dataInCodeEntries; 781 } 782 783 void DataInCodeSection::finalizeContents() { 784 entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() 785 : collectDataInCodeEntries<ILP32>(); 786 } 787 788 void DataInCodeSection::writeTo(uint8_t *buf) const { 789 if (!entries.empty()) 790 memcpy(buf, entries.data(), getRawSize()); 791 } 792 793 FunctionStartsSection::FunctionStartsSection() 794 : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} 795 796 void FunctionStartsSection::finalizeContents() { 797 raw_svector_ostream os{contents}; 798 std::vector<uint64_t> addrs; 799 for (const Symbol *sym : symtab->getSymbols()) { 800 if (const auto *defined = dyn_cast<Defined>(sym)) { 801 if (!defined->isec || !isCodeSection(defined->isec) || !defined->isLive()) 802 continue; 803 if (const auto *concatIsec = dyn_cast<ConcatInputSection>(defined->isec)) 804 if (concatIsec->shouldOmitFromOutput()) 805 continue; 806 // TODO: Add support for thumbs, in that case 807 // the lowest bit of nextAddr needs to be set to 1. 808 addrs.push_back(defined->getVA()); 809 } 810 } 811 llvm::sort(addrs); 812 uint64_t addr = in.header->addr; 813 for (uint64_t nextAddr : addrs) { 814 uint64_t delta = nextAddr - addr; 815 if (delta == 0) 816 continue; 817 encodeULEB128(delta, os); 818 addr = nextAddr; 819 } 820 os << '\0'; 821 } 822 823 void FunctionStartsSection::writeTo(uint8_t *buf) const { 824 memcpy(buf, contents.data(), contents.size()); 825 } 826 827 SymtabSection::SymtabSection(StringTableSection &stringTableSection) 828 : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), 829 stringTableSection(stringTableSection) {} 830 831 void SymtabSection::emitBeginSourceStab(DWARFUnit *compileUnit) { 832 StabsEntry stab(N_SO); 833 SmallString<261> dir(compileUnit->getCompilationDir()); 834 StringRef sep = sys::path::get_separator(); 835 // We don't use `path::append` here because we want an empty `dir` to result 836 // in an absolute path. `append` would give us a relative path for that case. 837 if (!dir.endswith(sep)) 838 dir += sep; 839 stab.strx = stringTableSection.addString( 840 saver.save(dir + compileUnit->getUnitDIE().getShortName())); 841 stabs.emplace_back(std::move(stab)); 842 } 843 844 void SymtabSection::emitEndSourceStab() { 845 StabsEntry stab(N_SO); 846 stab.sect = 1; 847 stabs.emplace_back(std::move(stab)); 848 } 849 850 void SymtabSection::emitObjectFileStab(ObjFile *file) { 851 StabsEntry stab(N_OSO); 852 stab.sect = target->cpuSubtype; 853 SmallString<261> path(!file->archiveName.empty() ? file->archiveName 854 : file->getName()); 855 std::error_code ec = sys::fs::make_absolute(path); 856 if (ec) 857 fatal("failed to get absolute path for " + path); 858 859 if (!file->archiveName.empty()) 860 path.append({"(", file->getName(), ")"}); 861 862 StringRef adjustedPath = saver.save(path.str()); 863 adjustedPath.consume_front(config->osoPrefix); 864 865 stab.strx = stringTableSection.addString(adjustedPath); 866 stab.desc = 1; 867 stab.value = file->modTime; 868 stabs.emplace_back(std::move(stab)); 869 } 870 871 void SymtabSection::emitEndFunStab(Defined *defined) { 872 StabsEntry stab(N_FUN); 873 stab.value = defined->size; 874 stabs.emplace_back(std::move(stab)); 875 } 876 877 void SymtabSection::emitStabs() { 878 if (config->omitDebugInfo) 879 return; 880 881 for (const std::string &s : config->astPaths) { 882 StabsEntry astStab(N_AST); 883 astStab.strx = stringTableSection.addString(s); 884 stabs.emplace_back(std::move(astStab)); 885 } 886 887 std::vector<Defined *> symbolsNeedingStabs; 888 for (const SymtabEntry &entry : 889 concat<SymtabEntry>(localSymbols, externalSymbols)) { 890 Symbol *sym = entry.sym; 891 assert(sym->isLive() && 892 "dead symbols should not be in localSymbols, externalSymbols"); 893 if (auto *defined = dyn_cast<Defined>(sym)) { 894 if (defined->isAbsolute()) 895 continue; 896 InputSection *isec = defined->isec; 897 ObjFile *file = dyn_cast_or_null<ObjFile>(isec->getFile()); 898 if (!file || !file->compileUnit) 899 continue; 900 symbolsNeedingStabs.push_back(defined); 901 } 902 } 903 904 llvm::stable_sort(symbolsNeedingStabs, [&](Defined *a, Defined *b) { 905 return a->isec->getFile()->id < b->isec->getFile()->id; 906 }); 907 908 // Emit STABS symbols so that dsymutil and/or the debugger can map address 909 // regions in the final binary to the source and object files from which they 910 // originated. 911 InputFile *lastFile = nullptr; 912 for (Defined *defined : symbolsNeedingStabs) { 913 InputSection *isec = defined->isec; 914 ObjFile *file = cast<ObjFile>(isec->getFile()); 915 916 if (lastFile == nullptr || lastFile != file) { 917 if (lastFile != nullptr) 918 emitEndSourceStab(); 919 lastFile = file; 920 921 emitBeginSourceStab(file->compileUnit); 922 emitObjectFileStab(file); 923 } 924 925 StabsEntry symStab; 926 symStab.sect = defined->isec->parent->index; 927 symStab.strx = stringTableSection.addString(defined->getName()); 928 symStab.value = defined->getVA(); 929 930 if (isCodeSection(isec)) { 931 symStab.type = N_FUN; 932 stabs.emplace_back(std::move(symStab)); 933 emitEndFunStab(defined); 934 } else { 935 symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; 936 stabs.emplace_back(std::move(symStab)); 937 } 938 } 939 940 if (!stabs.empty()) 941 emitEndSourceStab(); 942 } 943 944 void SymtabSection::finalizeContents() { 945 auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { 946 uint32_t strx = stringTableSection.addString(sym->getName()); 947 symbols.push_back({sym, strx}); 948 }; 949 950 // Local symbols aren't in the SymbolTable, so we walk the list of object 951 // files to gather them. 952 for (const InputFile *file : inputFiles) { 953 if (auto *objFile = dyn_cast<ObjFile>(file)) { 954 for (Symbol *sym : objFile->symbols) { 955 if (auto *defined = dyn_cast_or_null<Defined>(sym)) { 956 if (!defined->isExternal() && defined->isLive()) { 957 StringRef name = defined->getName(); 958 if (!name.startswith("l") && !name.startswith("L")) 959 addSymbol(localSymbols, sym); 960 } 961 } 962 } 963 } 964 } 965 966 // __dyld_private is a local symbol too. It's linker-created and doesn't 967 // exist in any object file. 968 if (Defined *dyldPrivate = in.stubHelper->dyldPrivate) 969 addSymbol(localSymbols, dyldPrivate); 970 971 for (Symbol *sym : symtab->getSymbols()) { 972 if (!sym->isLive()) 973 continue; 974 if (auto *defined = dyn_cast<Defined>(sym)) { 975 if (!defined->includeInSymtab) 976 continue; 977 assert(defined->isExternal()); 978 if (defined->privateExtern) 979 addSymbol(localSymbols, defined); 980 else 981 addSymbol(externalSymbols, defined); 982 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 983 if (dysym->isReferenced()) 984 addSymbol(undefinedSymbols, sym); 985 } 986 } 987 988 emitStabs(); 989 uint32_t symtabIndex = stabs.size(); 990 for (const SymtabEntry &entry : 991 concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) { 992 entry.sym->symtabIndex = symtabIndex++; 993 } 994 } 995 996 uint32_t SymtabSection::getNumSymbols() const { 997 return stabs.size() + localSymbols.size() + externalSymbols.size() + 998 undefinedSymbols.size(); 999 } 1000 1001 // This serves to hide (type-erase) the template parameter from SymtabSection. 1002 template <class LP> class SymtabSectionImpl final : public SymtabSection { 1003 public: 1004 SymtabSectionImpl(StringTableSection &stringTableSection) 1005 : SymtabSection(stringTableSection) {} 1006 uint64_t getRawSize() const override; 1007 void writeTo(uint8_t *buf) const override; 1008 }; 1009 1010 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { 1011 return getNumSymbols() * sizeof(typename LP::nlist); 1012 } 1013 1014 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { 1015 auto *nList = reinterpret_cast<typename LP::nlist *>(buf); 1016 // Emit the stabs entries before the "real" symbols. We cannot emit them 1017 // after as that would render Symbol::symtabIndex inaccurate. 1018 for (const StabsEntry &entry : stabs) { 1019 nList->n_strx = entry.strx; 1020 nList->n_type = entry.type; 1021 nList->n_sect = entry.sect; 1022 nList->n_desc = entry.desc; 1023 nList->n_value = entry.value; 1024 ++nList; 1025 } 1026 1027 for (const SymtabEntry &entry : concat<const SymtabEntry>( 1028 localSymbols, externalSymbols, undefinedSymbols)) { 1029 nList->n_strx = entry.strx; 1030 // TODO populate n_desc with more flags 1031 if (auto *defined = dyn_cast<Defined>(entry.sym)) { 1032 uint8_t scope = 0; 1033 if (defined->privateExtern) { 1034 // Private external -- dylib scoped symbol. 1035 // Promote to non-external at link time. 1036 scope = N_PEXT; 1037 } else if (defined->isExternal()) { 1038 // Normal global symbol. 1039 scope = N_EXT; 1040 } else { 1041 // TU-local symbol from localSymbols. 1042 scope = 0; 1043 } 1044 1045 if (defined->isAbsolute()) { 1046 nList->n_type = scope | N_ABS; 1047 nList->n_sect = NO_SECT; 1048 nList->n_value = defined->value; 1049 } else { 1050 nList->n_type = scope | N_SECT; 1051 nList->n_sect = defined->isec->parent->index; 1052 // For the N_SECT symbol type, n_value is the address of the symbol 1053 nList->n_value = defined->getVA(); 1054 } 1055 nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0; 1056 nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; 1057 nList->n_desc |= 1058 defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; 1059 } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) { 1060 uint16_t n_desc = nList->n_desc; 1061 int16_t ordinal = ordinalForDylibSymbol(*dysym); 1062 if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) 1063 SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL); 1064 else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) 1065 SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL); 1066 else { 1067 assert(ordinal > 0); 1068 SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal)); 1069 } 1070 1071 nList->n_type = N_EXT; 1072 n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; 1073 n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; 1074 nList->n_desc = n_desc; 1075 } 1076 ++nList; 1077 } 1078 } 1079 1080 template <class LP> 1081 SymtabSection * 1082 macho::makeSymtabSection(StringTableSection &stringTableSection) { 1083 return make<SymtabSectionImpl<LP>>(stringTableSection); 1084 } 1085 1086 IndirectSymtabSection::IndirectSymtabSection() 1087 : LinkEditSection(segment_names::linkEdit, 1088 section_names::indirectSymbolTable) {} 1089 1090 uint32_t IndirectSymtabSection::getNumSymbols() const { 1091 return in.got->getEntries().size() + in.tlvPointers->getEntries().size() + 1092 2 * in.stubs->getEntries().size(); 1093 } 1094 1095 bool IndirectSymtabSection::isNeeded() const { 1096 return in.got->isNeeded() || in.tlvPointers->isNeeded() || 1097 in.stubs->isNeeded(); 1098 } 1099 1100 void IndirectSymtabSection::finalizeContents() { 1101 uint32_t off = 0; 1102 in.got->reserved1 = off; 1103 off += in.got->getEntries().size(); 1104 in.tlvPointers->reserved1 = off; 1105 off += in.tlvPointers->getEntries().size(); 1106 in.stubs->reserved1 = off; 1107 off += in.stubs->getEntries().size(); 1108 in.lazyPointers->reserved1 = off; 1109 } 1110 1111 static uint32_t indirectValue(const Symbol *sym) { 1112 if (sym->symtabIndex == UINT32_MAX) 1113 return INDIRECT_SYMBOL_LOCAL; 1114 if (auto *defined = dyn_cast<Defined>(sym)) 1115 if (defined->privateExtern) 1116 return INDIRECT_SYMBOL_LOCAL; 1117 return sym->symtabIndex; 1118 } 1119 1120 void IndirectSymtabSection::writeTo(uint8_t *buf) const { 1121 uint32_t off = 0; 1122 for (const Symbol *sym : in.got->getEntries()) { 1123 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1124 ++off; 1125 } 1126 for (const Symbol *sym : in.tlvPointers->getEntries()) { 1127 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1128 ++off; 1129 } 1130 for (const Symbol *sym : in.stubs->getEntries()) { 1131 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1132 ++off; 1133 } 1134 // There is a 1:1 correspondence between stubs and LazyPointerSection 1135 // entries. But giving __stubs and __la_symbol_ptr the same reserved1 1136 // (the offset into the indirect symbol table) so that they both refer 1137 // to the same range of offsets confuses `strip`, so write the stubs 1138 // symbol table offsets a second time. 1139 for (const Symbol *sym : in.stubs->getEntries()) { 1140 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1141 ++off; 1142 } 1143 } 1144 1145 StringTableSection::StringTableSection() 1146 : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} 1147 1148 uint32_t StringTableSection::addString(StringRef str) { 1149 uint32_t strx = size; 1150 strings.push_back(str); // TODO: consider deduplicating strings 1151 size += str.size() + 1; // account for null terminator 1152 return strx; 1153 } 1154 1155 void StringTableSection::writeTo(uint8_t *buf) const { 1156 uint32_t off = 0; 1157 for (StringRef str : strings) { 1158 memcpy(buf + off, str.data(), str.size()); 1159 off += str.size() + 1; // account for null terminator 1160 } 1161 } 1162 1163 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0, ""); 1164 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0, ""); 1165 1166 CodeSignatureSection::CodeSignatureSection() 1167 : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { 1168 align = 16; // required by libstuff 1169 // FIXME: Consider using finalOutput instead of outputFile. 1170 fileName = config->outputFile; 1171 size_t slashIndex = fileName.rfind("/"); 1172 if (slashIndex != std::string::npos) 1173 fileName = fileName.drop_front(slashIndex + 1); 1174 1175 // NOTE: Any changes to these calculations should be repeated 1176 // in llvm-objcopy's MachOLayoutBuilder::layoutTail. 1177 allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1); 1178 fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); 1179 } 1180 1181 uint32_t CodeSignatureSection::getBlockCount() const { 1182 return (fileOff + blockSize - 1) / blockSize; 1183 } 1184 1185 uint64_t CodeSignatureSection::getRawSize() const { 1186 return allHeadersSize + getBlockCount() * hashSize; 1187 } 1188 1189 void CodeSignatureSection::writeHashes(uint8_t *buf) const { 1190 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1191 // MachOWriter::writeSignatureData. 1192 uint8_t *code = buf; 1193 uint8_t *codeEnd = buf + fileOff; 1194 uint8_t *hashes = codeEnd + allHeadersSize; 1195 while (code < codeEnd) { 1196 StringRef block(reinterpret_cast<char *>(code), 1197 std::min(codeEnd - code, static_cast<ssize_t>(blockSize))); 1198 SHA256 hasher; 1199 hasher.update(block); 1200 StringRef hash = hasher.final(); 1201 assert(hash.size() == hashSize); 1202 memcpy(hashes, hash.data(), hashSize); 1203 code += blockSize; 1204 hashes += hashSize; 1205 } 1206 #if defined(__APPLE__) 1207 // This is macOS-specific work-around and makes no sense for any 1208 // other host OS. See https://openradar.appspot.com/FB8914231 1209 // 1210 // The macOS kernel maintains a signature-verification cache to 1211 // quickly validate applications at time of execve(2). The trouble 1212 // is that for the kernel creates the cache entry at the time of the 1213 // mmap(2) call, before we have a chance to write either the code to 1214 // sign or the signature header+hashes. The fix is to invalidate 1215 // all cached data associated with the output file, thus discarding 1216 // the bogus prematurely-cached signature. 1217 msync(buf, fileOff + getSize(), MS_INVALIDATE); 1218 #endif 1219 } 1220 1221 void CodeSignatureSection::writeTo(uint8_t *buf) const { 1222 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1223 // MachOWriter::writeSignatureData. 1224 uint32_t signatureSize = static_cast<uint32_t>(getSize()); 1225 auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); 1226 write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE); 1227 write32be(&superBlob->length, signatureSize); 1228 write32be(&superBlob->count, 1); 1229 auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); 1230 write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY); 1231 write32be(&blobIndex->offset, blobHeadersSize); 1232 auto *codeDirectory = 1233 reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); 1234 write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY); 1235 write32be(&codeDirectory->length, signatureSize - blobHeadersSize); 1236 write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG); 1237 write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED); 1238 write32be(&codeDirectory->hashOffset, 1239 sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); 1240 write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory)); 1241 codeDirectory->nSpecialSlots = 0; 1242 write32be(&codeDirectory->nCodeSlots, getBlockCount()); 1243 write32be(&codeDirectory->codeLimit, fileOff); 1244 codeDirectory->hashSize = static_cast<uint8_t>(hashSize); 1245 codeDirectory->hashType = kSecCodeSignatureHashSHA256; 1246 codeDirectory->platform = 0; 1247 codeDirectory->pageSize = blockSizeShift; 1248 codeDirectory->spare2 = 0; 1249 codeDirectory->scatterOffset = 0; 1250 codeDirectory->teamOffset = 0; 1251 codeDirectory->spare3 = 0; 1252 codeDirectory->codeLimit64 = 0; 1253 OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text); 1254 write64be(&codeDirectory->execSegBase, textSeg->fileOff); 1255 write64be(&codeDirectory->execSegLimit, textSeg->fileSize); 1256 write64be(&codeDirectory->execSegFlags, 1257 config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); 1258 auto *id = reinterpret_cast<char *>(&codeDirectory[1]); 1259 memcpy(id, fileName.begin(), fileName.size()); 1260 memset(id + fileName.size(), 0, fileNamePad); 1261 } 1262 1263 BitcodeBundleSection::BitcodeBundleSection() 1264 : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {} 1265 1266 class ErrorCodeWrapper { 1267 public: 1268 explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {} 1269 explicit ErrorCodeWrapper(int ec) : errorCode(ec) {} 1270 operator int() const { return errorCode; } 1271 1272 private: 1273 int errorCode; 1274 }; 1275 1276 #define CHECK_EC(exp) \ 1277 do { \ 1278 ErrorCodeWrapper ec(exp); \ 1279 if (ec) \ 1280 fatal(Twine("operation failed with error code ") + Twine(ec) + ": " + \ 1281 #exp); \ 1282 } while (0); 1283 1284 void BitcodeBundleSection::finalize() { 1285 #ifdef LLVM_HAVE_LIBXAR 1286 using namespace llvm::sys::fs; 1287 CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath)); 1288 1289 xar_t xar(xar_open(xarPath.data(), O_RDWR)); 1290 if (!xar) 1291 fatal("failed to open XAR temporary file at " + xarPath); 1292 CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE)); 1293 // FIXME: add more data to XAR 1294 CHECK_EC(xar_close(xar)); 1295 1296 file_size(xarPath, xarSize); 1297 #endif // defined(LLVM_HAVE_LIBXAR) 1298 } 1299 1300 void BitcodeBundleSection::writeTo(uint8_t *buf) const { 1301 using namespace llvm::sys::fs; 1302 file_t handle = 1303 CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None), 1304 "failed to open XAR file"); 1305 std::error_code ec; 1306 mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly, 1307 xarSize, 0, ec); 1308 if (ec) 1309 fatal("failed to map XAR file"); 1310 memcpy(buf, xarMap.const_data(), xarSize); 1311 1312 closeFile(handle); 1313 remove(xarPath); 1314 } 1315 1316 CStringSection::CStringSection() 1317 : SyntheticSection(segment_names::text, section_names::cString) { 1318 flags = S_CSTRING_LITERALS; 1319 } 1320 1321 void CStringSection::addInput(CStringInputSection *isec) { 1322 isec->parent = this; 1323 inputs.push_back(isec); 1324 if (isec->align > align) 1325 align = isec->align; 1326 } 1327 1328 void CStringSection::writeTo(uint8_t *buf) const { 1329 for (const CStringInputSection *isec : inputs) { 1330 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { 1331 if (!isec->pieces[i].live) 1332 continue; 1333 StringRef string = isec->getStringRef(i); 1334 memcpy(buf + isec->pieces[i].outSecOff, string.data(), string.size()); 1335 } 1336 } 1337 } 1338 1339 void CStringSection::finalizeContents() { 1340 uint64_t offset = 0; 1341 for (CStringInputSection *isec : inputs) { 1342 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { 1343 if (!isec->pieces[i].live) 1344 continue; 1345 uint32_t pieceAlign = MinAlign(isec->pieces[i].inSecOff, align); 1346 offset = alignTo(offset, pieceAlign); 1347 isec->pieces[i].outSecOff = offset; 1348 isec->isFinal = true; 1349 StringRef string = isec->getStringRef(i); 1350 offset += string.size(); 1351 } 1352 } 1353 size = offset; 1354 } 1355 // Mergeable cstring literals are found under the __TEXT,__cstring section. In 1356 // contrast to ELF, which puts strings that need different alignments into 1357 // different sections, clang's Mach-O backend puts them all in one section. 1358 // Strings that need to be aligned have the .p2align directive emitted before 1359 // them, which simply translates into zero padding in the object file. 1360 // 1361 // I *think* ld64 extracts the desired per-string alignment from this data by 1362 // preserving each string's offset from the last section-aligned address. I'm 1363 // not entirely certain since it doesn't seem consistent about doing this, and 1364 // in fact doesn't seem to be correct in general: we can in fact can induce ld64 1365 // to produce a crashing binary just by linking in an additional object file 1366 // that only contains a duplicate cstring at a different alignment. See PR50563 1367 // for details. 1368 // 1369 // On x86_64, the cstrings we've seen so far that require special alignment are 1370 // all accessed by SIMD operations -- x86_64 requires SIMD accesses to be 1371 // 16-byte-aligned. arm64 also seems to require 16-byte-alignment in some cases 1372 // (PR50791), but I haven't tracked down the root cause. So for now, I'm just 1373 // aligning all strings to 16 bytes. This is indeed wasteful, but 1374 // implementation-wise it's simpler than preserving per-string 1375 // alignment+offsets. It also avoids the aforementioned crash after 1376 // deduplication of differently-aligned strings. Finally, the overhead is not 1377 // huge: using 16-byte alignment (vs no alignment) is only a 0.5% size overhead 1378 // when linking chromium_framework on x86_64. 1379 DeduplicatedCStringSection::DeduplicatedCStringSection() 1380 : builder(StringTableBuilder::RAW, /*Alignment=*/16) {} 1381 1382 void DeduplicatedCStringSection::finalizeContents() { 1383 // Add all string pieces to the string table builder to create section 1384 // contents. 1385 for (const CStringInputSection *isec : inputs) 1386 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) 1387 if (isec->pieces[i].live) 1388 builder.add(isec->getCachedHashStringRef(i)); 1389 1390 // Fix the string table content. After this, the contents will never change. 1391 builder.finalizeInOrder(); 1392 1393 // finalize() fixed tail-optimized strings, so we can now get 1394 // offsets of strings. Get an offset for each string and save it 1395 // to a corresponding SectionPiece for easy access. 1396 for (CStringInputSection *isec : inputs) { 1397 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { 1398 if (!isec->pieces[i].live) 1399 continue; 1400 isec->pieces[i].outSecOff = 1401 builder.getOffset(isec->getCachedHashStringRef(i)); 1402 isec->isFinal = true; 1403 } 1404 } 1405 } 1406 1407 // This section is actually emitted as __TEXT,__const by ld64, but clang may 1408 // emit input sections of that name, and LLD doesn't currently support mixing 1409 // synthetic and concat-type OutputSections. To work around this, I've given 1410 // our merged-literals section a different name. 1411 WordLiteralSection::WordLiteralSection() 1412 : SyntheticSection(segment_names::text, section_names::literals) { 1413 align = 16; 1414 } 1415 1416 void WordLiteralSection::addInput(WordLiteralInputSection *isec) { 1417 isec->parent = this; 1418 inputs.push_back(isec); 1419 } 1420 1421 void WordLiteralSection::finalizeContents() { 1422 for (WordLiteralInputSection *isec : inputs) { 1423 // We do all processing of the InputSection here, so it will be effectively 1424 // finalized. 1425 isec->isFinal = true; 1426 const uint8_t *buf = isec->data.data(); 1427 switch (sectionType(isec->getFlags())) { 1428 case S_4BYTE_LITERALS: { 1429 for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { 1430 if (!isec->isLive(off)) 1431 continue; 1432 uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); 1433 literal4Map.emplace(value, literal4Map.size()); 1434 } 1435 break; 1436 } 1437 case S_8BYTE_LITERALS: { 1438 for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { 1439 if (!isec->isLive(off)) 1440 continue; 1441 uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); 1442 literal8Map.emplace(value, literal8Map.size()); 1443 } 1444 break; 1445 } 1446 case S_16BYTE_LITERALS: { 1447 for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { 1448 if (!isec->isLive(off)) 1449 continue; 1450 UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); 1451 literal16Map.emplace(value, literal16Map.size()); 1452 } 1453 break; 1454 } 1455 default: 1456 llvm_unreachable("invalid literal section type"); 1457 } 1458 } 1459 } 1460 1461 void WordLiteralSection::writeTo(uint8_t *buf) const { 1462 // Note that we don't attempt to do any endianness conversion in addInput(), 1463 // so we don't do it here either -- just write out the original value, 1464 // byte-for-byte. 1465 for (const auto &p : literal16Map) 1466 memcpy(buf + p.second * 16, &p.first, 16); 1467 buf += literal16Map.size() * 16; 1468 1469 for (const auto &p : literal8Map) 1470 memcpy(buf + p.second * 8, &p.first, 8); 1471 buf += literal8Map.size() * 8; 1472 1473 for (const auto &p : literal4Map) 1474 memcpy(buf + p.second * 4, &p.first, 4); 1475 } 1476 1477 void macho::createSyntheticSymbols() { 1478 auto addHeaderSymbol = [](const char *name) { 1479 symtab->addSynthetic(name, in.header->isec, /*value=*/0, 1480 /*privateExtern=*/true, /*includeInSymtab=*/false, 1481 /*referencedDynamically=*/false); 1482 }; 1483 1484 switch (config->outputType) { 1485 // FIXME: Assign the right address value for these symbols 1486 // (rather than 0). But we need to do that after assignAddresses(). 1487 case MH_EXECUTE: 1488 // If linking PIE, __mh_execute_header is a defined symbol in 1489 // __TEXT, __text) 1490 // Otherwise, it's an absolute symbol. 1491 if (config->isPic) 1492 symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0, 1493 /*privateExtern=*/false, /*includeInSymtab=*/true, 1494 /*referencedDynamically=*/true); 1495 else 1496 symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0, 1497 /*privateExtern=*/false, /*includeInSymtab=*/true, 1498 /*referencedDynamically=*/true); 1499 break; 1500 1501 // The following symbols are N_SECT symbols, even though the header is not 1502 // part of any section and that they are private to the bundle/dylib/object 1503 // they are part of. 1504 case MH_BUNDLE: 1505 addHeaderSymbol("__mh_bundle_header"); 1506 break; 1507 case MH_DYLIB: 1508 addHeaderSymbol("__mh_dylib_header"); 1509 break; 1510 case MH_DYLINKER: 1511 addHeaderSymbol("__mh_dylinker_header"); 1512 break; 1513 case MH_OBJECT: 1514 addHeaderSymbol("__mh_object_header"); 1515 break; 1516 default: 1517 llvm_unreachable("unexpected outputType"); 1518 break; 1519 } 1520 1521 // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit 1522 // which does e.g. cleanup of static global variables. The ABI document 1523 // says that the pointer can point to any address in one of the dylib's 1524 // segments, but in practice ld64 seems to set it to point to the header, 1525 // so that's what's implemented here. 1526 addHeaderSymbol("___dso_handle"); 1527 } 1528 1529 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); 1530 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); 1531