1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "ExportTrie.h" 47 #include "InputSection.h" 48 #include "MachOStructs.h" 49 #include "OutputSection.h" 50 #include "SymbolTable.h" 51 #include "Symbols.h" 52 #include "Target.h" 53 54 #include "lld/Common/ErrorHandler.h" 55 #include "lld/Common/Memory.h" 56 #include "llvm/BinaryFormat/MachO.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/MemoryBuffer.h" 59 #include "llvm/Support/Path.h" 60 61 using namespace llvm; 62 using namespace llvm::MachO; 63 using namespace llvm::support::endian; 64 using namespace llvm::sys; 65 using namespace lld; 66 using namespace lld::macho; 67 68 std::vector<InputFile *> macho::inputFiles; 69 70 // Open a given file path and return it as a memory-mapped file. 71 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 72 // Open a file. 73 auto mbOrErr = MemoryBuffer::getFile(path); 74 if (auto ec = mbOrErr.getError()) { 75 error("cannot open " + path + ": " + ec.message()); 76 return None; 77 } 78 79 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 80 MemoryBufferRef mbref = mb->getMemBufferRef(); 81 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 82 83 // If this is a regular non-fat file, return it. 84 const char *buf = mbref.getBufferStart(); 85 auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf); 86 if (read32be(&hdr->magic) != MachO::FAT_MAGIC) 87 return mbref; 88 89 // Object files and archive files may be fat files, which contains 90 // multiple real files for different CPU ISAs. Here, we search for a 91 // file that matches with the current link target and returns it as 92 // a MemoryBufferRef. 93 auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr)); 94 95 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 96 if (reinterpret_cast<const char *>(arch + i + 1) > 97 buf + mbref.getBufferSize()) { 98 error(path + ": fat_arch struct extends beyond end of file"); 99 return None; 100 } 101 102 if (read32be(&arch[i].cputype) != target->cpuType || 103 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 104 continue; 105 106 uint32_t offset = read32be(&arch[i].offset); 107 uint32_t size = read32be(&arch[i].size); 108 if (offset + size > mbref.getBufferSize()) 109 error(path + ": slice extends beyond end of file"); 110 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 111 } 112 113 error("unable to find matching architecture in " + path); 114 return None; 115 } 116 117 static const load_command *findCommand(const mach_header_64 *hdr, 118 uint32_t type) { 119 const uint8_t *p = 120 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 121 122 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 123 auto *cmd = reinterpret_cast<const load_command *>(p); 124 if (cmd->cmd == type) 125 return cmd; 126 p += cmd->cmdsize; 127 } 128 return nullptr; 129 } 130 131 void InputFile::parseSections(ArrayRef<section_64> sections) { 132 subsections.reserve(sections.size()); 133 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 134 135 for (const section_64 &sec : sections) { 136 InputSection *isec = make<InputSection>(); 137 isec->file = this; 138 isec->name = StringRef(sec.sectname, strnlen(sec.sectname, 16)); 139 isec->segname = StringRef(sec.segname, strnlen(sec.segname, 16)); 140 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 141 static_cast<size_t>(sec.size)}; 142 if (sec.align >= 32) 143 error("alignment " + std::to_string(sec.align) + " of section " + 144 isec->name + " is too large"); 145 else 146 isec->align = 1 << sec.align; 147 isec->flags = sec.flags; 148 subsections.push_back({{0, isec}}); 149 } 150 } 151 152 // Find the subsection corresponding to the greatest section offset that is <= 153 // that of the given offset. 154 // 155 // offset: an offset relative to the start of the original InputSection (before 156 // any subsection splitting has occurred). It will be updated to represent the 157 // same location as an offset relative to the start of the containing 158 // subsection. 159 static InputSection *findContainingSubsection(SubsectionMap &map, 160 uint32_t *offset) { 161 auto it = std::prev(map.upper_bound(*offset)); 162 *offset -= it->first; 163 return it->second; 164 } 165 166 void InputFile::parseRelocations(const section_64 &sec, 167 SubsectionMap &subsecMap) { 168 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 169 ArrayRef<any_relocation_info> relInfos( 170 reinterpret_cast<const any_relocation_info *>(buf + sec.reloff), 171 sec.nreloc); 172 173 for (const any_relocation_info &anyRel : relInfos) { 174 if (anyRel.r_word0 & R_SCATTERED) 175 fatal("TODO: Scattered relocations not supported"); 176 177 auto rel = reinterpret_cast<const relocation_info &>(anyRel); 178 179 Reloc r; 180 r.type = rel.r_type; 181 r.pcrel = rel.r_pcrel; 182 r.length = rel.r_length; 183 uint64_t rawAddend = target->getImplicitAddend(mb, sec, rel); 184 185 if (rel.r_extern) { 186 r.target = symbols[rel.r_symbolnum]; 187 r.addend = rawAddend; 188 } else { 189 if (rel.r_symbolnum == 0 || rel.r_symbolnum > subsections.size()) 190 fatal("invalid section index in relocation for offset " + 191 std::to_string(r.offset) + " in section " + sec.sectname + 192 " of " + getName()); 193 194 SubsectionMap &targetSubsecMap = subsections[rel.r_symbolnum - 1]; 195 const section_64 &targetSec = sectionHeaders[rel.r_symbolnum - 1]; 196 uint32_t targetOffset; 197 if (rel.r_pcrel) { 198 // The implicit addend for pcrel section relocations is the pcrel offset 199 // in terms of the addresses in the input file. Here we adjust it so 200 // that it describes the offset from the start of the target section. 201 // TODO: The offset of 4 is probably not right for ARM64, nor for 202 // relocations with r_length != 2. 203 targetOffset = 204 sec.addr + rel.r_address + 4 + rawAddend - targetSec.addr; 205 } else { 206 // The addend for a non-pcrel relocation is its absolute address. 207 targetOffset = rawAddend - targetSec.addr; 208 } 209 r.target = findContainingSubsection(targetSubsecMap, &targetOffset); 210 r.addend = targetOffset; 211 } 212 213 r.offset = rel.r_address; 214 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 215 subsec->relocs.push_back(r); 216 } 217 } 218 219 void InputFile::parseSymbols(ArrayRef<structs::nlist_64> nList, 220 const char *strtab, bool subsectionsViaSymbols) { 221 // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols 222 // out-of-sequence. 223 symbols.resize(nList.size()); 224 std::vector<size_t> altEntrySymIdxs; 225 226 auto createDefined = [&](const structs::nlist_64 &sym, InputSection *isec, 227 uint32_t value) -> Symbol * { 228 StringRef name = strtab + sym.n_strx; 229 if (sym.n_type & N_EXT) 230 // Global defined symbol 231 return symtab->addDefined(name, isec, value); 232 else 233 // Local defined symbol 234 return make<Defined>(name, isec, value); 235 }; 236 237 for (size_t i = 0, n = nList.size(); i < n; ++i) { 238 const structs::nlist_64 &sym = nList[i]; 239 240 // Undefined symbol 241 if (!sym.n_sect) { 242 StringRef name = strtab + sym.n_strx; 243 symbols[i] = symtab->addUndefined(name); 244 continue; 245 } 246 247 const section_64 &sec = sectionHeaders[sym.n_sect - 1]; 248 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 249 uint64_t offset = sym.n_value - sec.addr; 250 251 // If the input file does not use subsections-via-symbols, all symbols can 252 // use the same subsection. Otherwise, we must split the sections along 253 // symbol boundaries. 254 if (!subsectionsViaSymbols) { 255 symbols[i] = createDefined(sym, subsecMap[0], offset); 256 continue; 257 } 258 259 // nList entries aren't necessarily arranged in address order. Therefore, 260 // we can't create alt-entry symbols at this point because a later symbol 261 // may split its section, which may affect which subsection the alt-entry 262 // symbol is assigned to. So we need to handle them in a second pass below. 263 if (sym.n_desc & N_ALT_ENTRY) { 264 altEntrySymIdxs.push_back(i); 265 continue; 266 } 267 268 // Find the subsection corresponding to the greatest section offset that is 269 // <= that of the current symbol. The subsection that we find either needs 270 // to be used directly or split in two. 271 uint32_t firstSize = offset; 272 InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); 273 274 if (firstSize == 0) { 275 // Alias of an existing symbol, or the first symbol in the section. These 276 // are handled by reusing the existing section. 277 symbols[i] = createDefined(sym, firstIsec, 0); 278 continue; 279 } 280 281 // We saw a symbol definition at a new offset. Split the section into two 282 // subsections. The new symbol uses the second subsection. 283 auto *secondIsec = make<InputSection>(*firstIsec); 284 secondIsec->data = firstIsec->data.slice(firstSize); 285 firstIsec->data = firstIsec->data.slice(0, firstSize); 286 // TODO: ld64 appears to preserve the original alignment as well as each 287 // subsection's offset from the last aligned address. We should consider 288 // emulating that behavior. 289 secondIsec->align = MinAlign(firstIsec->align, offset); 290 291 subsecMap[offset] = secondIsec; 292 // By construction, the symbol will be at offset zero in the new section. 293 symbols[i] = createDefined(sym, secondIsec, 0); 294 } 295 296 for (size_t idx : altEntrySymIdxs) { 297 const structs::nlist_64 &sym = nList[idx]; 298 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 299 uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; 300 InputSection *subsec = findContainingSubsection(subsecMap, &off); 301 symbols[idx] = createDefined(sym, subsec, off); 302 } 303 } 304 305 ObjFile::ObjFile(MemoryBufferRef mb) : InputFile(ObjKind, mb) { 306 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 307 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 308 309 if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { 310 auto *c = reinterpret_cast<const segment_command_64 *>(cmd); 311 sectionHeaders = ArrayRef<section_64>{ 312 reinterpret_cast<const section_64 *>(c + 1), c->nsects}; 313 parseSections(sectionHeaders); 314 } 315 316 // TODO: Error on missing LC_SYMTAB? 317 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 318 auto *c = reinterpret_cast<const symtab_command *>(cmd); 319 ArrayRef<structs::nlist_64> nList( 320 reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); 321 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 322 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 323 parseSymbols(nList, strtab, subsectionsViaSymbols); 324 } 325 326 // The relocations may refer to the symbols, so we parse them after we have 327 // parsed all the symbols. 328 for (size_t i = 0, n = subsections.size(); i < n; ++i) 329 parseRelocations(sectionHeaders[i], subsections[i]); 330 } 331 332 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella) 333 : InputFile(DylibKind, mb) { 334 if (umbrella == nullptr) 335 umbrella = this; 336 337 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 338 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 339 340 // Initialize dylibName. 341 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 342 auto *c = reinterpret_cast<const dylib_command *>(cmd); 343 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 344 } else { 345 error("dylib " + getName() + " missing LC_ID_DYLIB load command"); 346 return; 347 } 348 349 // Initialize symbols. 350 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 351 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 352 parseTrie(buf + c->export_off, c->export_size, 353 [&](const Twine &name, uint64_t flags) { 354 symbols.push_back(symtab->addDylib(saver.save(name), umbrella)); 355 }); 356 } else { 357 error("LC_DYLD_INFO_ONLY not found in " + getName()); 358 return; 359 } 360 361 if (hdr->flags & MH_NO_REEXPORTED_DYLIBS) 362 return; 363 364 const uint8_t *p = 365 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 366 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 367 auto *cmd = reinterpret_cast<const load_command *>(p); 368 p += cmd->cmdsize; 369 if (cmd->cmd != LC_REEXPORT_DYLIB) 370 continue; 371 372 auto *c = reinterpret_cast<const dylib_command *>(cmd); 373 StringRef reexportPath = 374 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 375 // TODO: Expand @loader_path, @executable_path etc in reexportPath 376 Optional<MemoryBufferRef> buffer = readFile(reexportPath); 377 if (!buffer) { 378 error("unable to read re-exported dylib at " + reexportPath); 379 return; 380 } 381 reexported.push_back(make<DylibFile>(*buffer, umbrella)); 382 } 383 } 384 385 DylibFile::DylibFile(std::shared_ptr<llvm::MachO::InterfaceFile> interface, 386 DylibFile *umbrella) 387 : InputFile(DylibKind, MemoryBufferRef()) { 388 if (umbrella == nullptr) 389 umbrella = this; 390 391 dylibName = saver.save(interface->getInstallName()); 392 // TODO(compnerd) filter out symbols based on the target platform 393 for (const auto symbol : interface->symbols()) 394 if (symbol->getArchitectures().has(config->arch)) 395 symbols.push_back( 396 symtab->addDylib(saver.save(symbol->getName()), umbrella)); 397 // TODO(compnerd) properly represent the hierarchy of the documents as it is 398 // in theory possible to have re-exported dylibs from re-exported dylibs which 399 // should be parent'ed to the child. 400 for (auto document : interface->documents()) 401 reexported.push_back(make<DylibFile>(document, umbrella)); 402 } 403 404 ArchiveFile::ArchiveFile(std::unique_ptr<llvm::object::Archive> &&f) 405 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 406 for (const object::Archive::Symbol &sym : file->symbols()) 407 symtab->addLazy(sym.getName(), this, sym); 408 } 409 410 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 411 object::Archive::Child c = 412 CHECK(sym.getMember(), toString(this) + 413 ": could not get the member for symbol " + 414 sym.getName()); 415 416 if (!seen.insert(c.getChildOffset()).second) 417 return; 418 419 MemoryBufferRef mb = 420 CHECK(c.getMemoryBufferRef(), 421 toString(this) + 422 ": could not get the buffer for the member defining symbol " + 423 sym.getName()); 424 auto file = make<ObjFile>(mb); 425 symbols.insert(symbols.end(), file->symbols.begin(), file->symbols.end()); 426 subsections.insert(subsections.end(), file->subsections.begin(), 427 file->subsections.end()); 428 } 429 430 // Returns "<internal>" or "baz.o". 431 std::string lld::toString(const InputFile *file) { 432 return file ? std::string(file->getName()) : "<internal>"; 433 } 434