1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "EhFrame.h" 49 #include "ExportTrie.h" 50 #include "InputSection.h" 51 #include "MachOStructs.h" 52 #include "ObjC.h" 53 #include "OutputSection.h" 54 #include "OutputSegment.h" 55 #include "SymbolTable.h" 56 #include "Symbols.h" 57 #include "SyntheticSections.h" 58 #include "Target.h" 59 60 #include "lld/Common/CommonLinkerContext.h" 61 #include "lld/Common/DWARF.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/BinaryStreamReader.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/LEB128.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/TarWriter.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/TextAPI/Architecture.h" 74 #include "llvm/TextAPI/InterfaceFile.h" 75 76 #include <optional> 77 #include <type_traits> 78 79 using namespace llvm; 80 using namespace llvm::MachO; 81 using namespace llvm::support::endian; 82 using namespace llvm::sys; 83 using namespace lld; 84 using namespace lld::macho; 85 86 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 87 std::string lld::toString(const InputFile *f) { 88 if (!f) 89 return "<internal>"; 90 91 // Multiple dylibs can be defined in one .tbd file. 92 if (auto dylibFile = dyn_cast<DylibFile>(f)) 93 if (f->getName().endswith(".tbd")) 94 return (f->getName() + "(" + dylibFile->installName + ")").str(); 95 96 if (f->archiveName.empty()) 97 return std::string(f->getName()); 98 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 99 } 100 101 std::string lld::toString(const Section &sec) { 102 return (toString(sec.file) + ":(" + sec.name + ")").str(); 103 } 104 105 SetVector<InputFile *> macho::inputFiles; 106 std::unique_ptr<TarWriter> macho::tar; 107 int InputFile::idCount = 0; 108 109 static VersionTuple decodeVersion(uint32_t version) { 110 unsigned major = version >> 16; 111 unsigned minor = (version >> 8) & 0xffu; 112 unsigned subMinor = version & 0xffu; 113 return VersionTuple(major, minor, subMinor); 114 } 115 116 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 117 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 118 return {}; 119 120 const char *hdr = input->mb.getBufferStart(); 121 122 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. 123 std::vector<PlatformInfo> platformInfos; 124 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 125 PlatformInfo info; 126 info.target.Platform = static_cast<PlatformType>(cmd->platform); 127 info.minimum = decodeVersion(cmd->minos); 128 platformInfos.emplace_back(std::move(info)); 129 } 130 for (auto *cmd : findCommands<version_min_command>( 131 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 132 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 133 PlatformInfo info; 134 switch (cmd->cmd) { 135 case LC_VERSION_MIN_MACOSX: 136 info.target.Platform = PLATFORM_MACOS; 137 break; 138 case LC_VERSION_MIN_IPHONEOS: 139 info.target.Platform = PLATFORM_IOS; 140 break; 141 case LC_VERSION_MIN_TVOS: 142 info.target.Platform = PLATFORM_TVOS; 143 break; 144 case LC_VERSION_MIN_WATCHOS: 145 info.target.Platform = PLATFORM_WATCHOS; 146 break; 147 } 148 info.minimum = decodeVersion(cmd->version); 149 platformInfos.emplace_back(std::move(info)); 150 } 151 152 return platformInfos; 153 } 154 155 static bool checkCompatibility(const InputFile *input) { 156 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 157 if (platformInfos.empty()) 158 return true; 159 160 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 161 return removeSimulator(info.target.Platform) == 162 removeSimulator(config->platform()); 163 }); 164 if (it == platformInfos.end()) { 165 std::string platformNames; 166 raw_string_ostream os(platformNames); 167 interleave( 168 platformInfos, os, 169 [&](const PlatformInfo &info) { 170 os << getPlatformName(info.target.Platform); 171 }, 172 "/"); 173 error(toString(input) + " has platform " + platformNames + 174 Twine(", which is different from target platform ") + 175 getPlatformName(config->platform())); 176 return false; 177 } 178 179 if (it->minimum > config->platformInfo.minimum) 180 warn(toString(input) + " has version " + it->minimum.getAsString() + 181 ", which is newer than target minimum of " + 182 config->platformInfo.minimum.getAsString()); 183 184 return true; 185 } 186 187 // This cache mostly exists to store system libraries (and .tbds) as they're 188 // loaded, rather than the input archives, which are already cached at a higher 189 // level, and other files like the filelist that are only read once. 190 // Theoretically this caching could be more efficient by hoisting it, but that 191 // would require altering many callers to track the state. 192 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 193 // Open a given file path and return it as a memory-mapped file. 194 std::optional<MemoryBufferRef> macho::readFile(StringRef path) { 195 CachedHashStringRef key(path); 196 auto entry = cachedReads.find(key); 197 if (entry != cachedReads.end()) 198 return entry->second; 199 200 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 201 if (std::error_code ec = mbOrErr.getError()) { 202 error("cannot open " + path + ": " + ec.message()); 203 return std::nullopt; 204 } 205 206 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 207 MemoryBufferRef mbref = mb->getMemBufferRef(); 208 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 209 210 // If this is a regular non-fat file, return it. 211 const char *buf = mbref.getBufferStart(); 212 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 213 if (mbref.getBufferSize() < sizeof(uint32_t) || 214 read32be(&hdr->magic) != FAT_MAGIC) { 215 if (tar) 216 tar->append(relativeToRoot(path), mbref.getBuffer()); 217 return cachedReads[key] = mbref; 218 } 219 220 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 221 222 // Object files and archive files may be fat files, which contain multiple 223 // real files for different CPU ISAs. Here, we search for a file that matches 224 // with the current link target and returns it as a MemoryBufferRef. 225 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 226 auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) { 227 return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype)); 228 }; 229 230 std::vector<StringRef> archs; 231 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 232 if (reinterpret_cast<const char *>(arch + i + 1) > 233 buf + mbref.getBufferSize()) { 234 error(path + ": fat_arch struct extends beyond end of file"); 235 return std::nullopt; 236 } 237 238 uint32_t cpuType = read32be(&arch[i].cputype); 239 uint32_t cpuSubtype = 240 read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK; 241 242 // FIXME: LD64 has a more complex fallback logic here. 243 // Consider implementing that as well? 244 if (cpuType != static_cast<uint32_t>(target->cpuType) || 245 cpuSubtype != target->cpuSubtype) { 246 archs.emplace_back(getArchName(cpuType, cpuSubtype)); 247 continue; 248 } 249 250 uint32_t offset = read32be(&arch[i].offset); 251 uint32_t size = read32be(&arch[i].size); 252 if (offset + size > mbref.getBufferSize()) 253 error(path + ": slice extends beyond end of file"); 254 if (tar) 255 tar->append(relativeToRoot(path), mbref.getBuffer()); 256 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 257 path.copy(bAlloc)); 258 } 259 260 auto targetArchName = getArchName(target->cpuType, target->cpuSubtype); 261 warn(path + ": ignoring file because it is universal (" + join(archs, ",") + 262 ") but does not contain the " + targetArchName + " architecture"); 263 return std::nullopt; 264 } 265 266 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 267 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 268 269 // Some sections comprise of fixed-size records, so instead of splitting them at 270 // symbol boundaries, we split them based on size. Records are distinct from 271 // literals in that they may contain references to other sections, instead of 272 // being leaf nodes in the InputSection graph. 273 // 274 // Note that "record" is a term I came up with. In contrast, "literal" is a term 275 // used by the Mach-O format. 276 static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) { 277 if (name == section_names::compactUnwind) { 278 if (segname == segment_names::ld) 279 return target->wordSize == 8 ? 32 : 20; 280 } 281 if (!config->dedupStrings) 282 return {}; 283 284 if (name == section_names::cfString && segname == segment_names::data) 285 return target->wordSize == 8 ? 32 : 16; 286 287 if (config->icfLevel == ICFLevel::none) 288 return {}; 289 290 if (name == section_names::objcClassRefs && segname == segment_names::data) 291 return target->wordSize; 292 293 if (name == section_names::objcSelrefs && segname == segment_names::data) 294 return target->wordSize; 295 return {}; 296 } 297 298 static Error parseCallGraph(ArrayRef<uint8_t> data, 299 std::vector<CallGraphEntry> &callGraph) { 300 TimeTraceScope timeScope("Parsing call graph section"); 301 BinaryStreamReader reader(data, support::little); 302 while (!reader.empty()) { 303 uint32_t fromIndex, toIndex; 304 uint64_t count; 305 if (Error err = reader.readInteger(fromIndex)) 306 return err; 307 if (Error err = reader.readInteger(toIndex)) 308 return err; 309 if (Error err = reader.readInteger(count)) 310 return err; 311 callGraph.emplace_back(fromIndex, toIndex, count); 312 } 313 return Error::success(); 314 } 315 316 // Parse the sequence of sections within a single LC_SEGMENT(_64). 317 // Split each section into subsections. 318 template <class SectionHeader> 319 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 320 sections.reserve(sectionHeaders.size()); 321 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 322 323 for (const SectionHeader &sec : sectionHeaders) { 324 StringRef name = 325 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 326 StringRef segname = 327 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 328 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 329 if (sec.align >= 32) { 330 error("alignment " + std::to_string(sec.align) + " of section " + name + 331 " is too large"); 332 continue; 333 } 334 Section §ion = *sections.back(); 335 uint32_t align = 1 << sec.align; 336 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 337 : buf + sec.offset, 338 static_cast<size_t>(sec.size)}; 339 340 auto splitRecords = [&](size_t recordSize) -> void { 341 if (data.empty()) 342 return; 343 Subsections &subsections = section.subsections; 344 subsections.reserve(data.size() / recordSize); 345 for (uint64_t off = 0; off < data.size(); off += recordSize) { 346 auto *isec = make<ConcatInputSection>( 347 section, data.slice(off, std::min(data.size(), recordSize)), align); 348 subsections.push_back({off, isec}); 349 } 350 section.doneSplitting = true; 351 }; 352 353 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 354 if (sec.nreloc) 355 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + 356 " contains relocations, which is unsupported"); 357 bool dedupLiterals = 358 name == section_names::objcMethname || config->dedupStrings; 359 InputSection *isec = 360 make<CStringInputSection>(section, data, align, dedupLiterals); 361 // FIXME: parallelize this? 362 cast<CStringInputSection>(isec)->splitIntoPieces(); 363 section.subsections.push_back({0, isec}); 364 } else if (isWordLiteralSection(sec.flags)) { 365 if (sec.nreloc) 366 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + 367 " contains relocations, which is unsupported"); 368 InputSection *isec = make<WordLiteralInputSection>(section, data, align); 369 section.subsections.push_back({0, isec}); 370 } else if (auto recordSize = getRecordSize(segname, name)) { 371 splitRecords(*recordSize); 372 } else if (name == section_names::ehFrame && 373 segname == segment_names::text) { 374 splitEhFrames(data, *sections.back()); 375 } else if (segname == segment_names::llvm) { 376 if (config->callGraphProfileSort && name == section_names::cgProfile) 377 checkError(parseCallGraph(data, callGraph)); 378 // ld64 does not appear to emit contents from sections within the __LLVM 379 // segment. Symbols within those sections point to bitcode metadata 380 // instead of actual symbols. Global symbols within those sections could 381 // have the same name without causing duplicate symbol errors. To avoid 382 // spurious duplicate symbol errors, we do not parse these sections. 383 // TODO: Evaluate whether the bitcode metadata is needed. 384 } else if (name == section_names::objCImageInfo && 385 segname == segment_names::data) { 386 objCImageInfo = data; 387 } else { 388 if (name == section_names::addrSig) 389 addrSigSection = sections.back(); 390 391 auto *isec = make<ConcatInputSection>(section, data, align); 392 if (isDebugSection(isec->getFlags()) && 393 isec->getSegName() == segment_names::dwarf) { 394 // Instead of emitting DWARF sections, we emit STABS symbols to the 395 // object files that contain them. We filter them out early to avoid 396 // parsing their relocations unnecessarily. 397 debugSections.push_back(isec); 398 } else { 399 section.subsections.push_back({0, isec}); 400 } 401 } 402 } 403 } 404 405 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) { 406 EhReader reader(this, data, /*dataOff=*/0); 407 size_t off = 0; 408 while (off < reader.size()) { 409 uint64_t frameOff = off; 410 uint64_t length = reader.readLength(&off); 411 if (length == 0) 412 break; 413 uint64_t fullLength = length + (off - frameOff); 414 off += length; 415 // We hard-code an alignment of 1 here because we don't actually want our 416 // EH frames to be aligned to the section alignment. EH frame decoders don't 417 // expect this alignment. Moreover, each EH frame must start where the 418 // previous one ends, and where it ends is indicated by the length field. 419 // Unless we update the length field (troublesome), we should keep the 420 // alignment to 1. 421 // Note that we still want to preserve the alignment of the overall section, 422 // just not of the individual EH frames. 423 ehFrameSection.subsections.push_back( 424 {frameOff, make<ConcatInputSection>(ehFrameSection, 425 data.slice(frameOff, fullLength), 426 /*align=*/1)}); 427 } 428 ehFrameSection.doneSplitting = true; 429 } 430 431 template <class T> 432 static Section *findContainingSection(const std::vector<Section *> §ions, 433 T *offset) { 434 static_assert(std::is_same<uint64_t, T>::value || 435 std::is_same<uint32_t, T>::value, 436 "unexpected type for offset"); 437 auto it = std::prev(llvm::upper_bound( 438 sections, *offset, 439 [](uint64_t value, const Section *sec) { return value < sec->addr; })); 440 *offset -= (*it)->addr; 441 return *it; 442 } 443 444 // Find the subsection corresponding to the greatest section offset that is <= 445 // that of the given offset. 446 // 447 // offset: an offset relative to the start of the original InputSection (before 448 // any subsection splitting has occurred). It will be updated to represent the 449 // same location as an offset relative to the start of the containing 450 // subsection. 451 template <class T> 452 static InputSection *findContainingSubsection(const Section §ion, 453 T *offset) { 454 static_assert(std::is_same<uint64_t, T>::value || 455 std::is_same<uint32_t, T>::value, 456 "unexpected type for offset"); 457 auto it = std::prev(llvm::upper_bound( 458 section.subsections, *offset, 459 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 460 *offset -= it->offset; 461 return it->isec; 462 } 463 464 // Find a symbol at offset `off` within `isec`. 465 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 466 uint64_t off) { 467 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 468 return d->value < off; 469 }); 470 // The offset should point at the exact address of a symbol (with no addend.) 471 if (it == isec->symbols.end() || (*it)->value != off) { 472 assert(isec->wasCoalesced); 473 return nullptr; 474 } 475 return *it; 476 } 477 478 template <class SectionHeader> 479 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 480 relocation_info rel) { 481 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 482 bool valid = true; 483 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 484 valid = false; 485 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 486 std::to_string(rel.r_address) + " of " + sec.segname + "," + 487 sec.sectname + " in " + toString(file)) 488 .str(); 489 }; 490 491 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 492 error(message("must be extern")); 493 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 494 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 495 "be PC-relative")); 496 if (isThreadLocalVariables(sec.flags) && 497 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 498 error(message("not allowed in thread-local section, must be UNSIGNED")); 499 if (rel.r_length < 2 || rel.r_length > 3 || 500 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 501 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 502 error(message("has width " + std::to_string(1 << rel.r_length) + 503 " bytes, but must be " + 504 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 505 " bytes")); 506 } 507 return valid; 508 } 509 510 template <class SectionHeader> 511 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 512 const SectionHeader &sec, Section §ion) { 513 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 514 ArrayRef<relocation_info> relInfos( 515 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 516 517 Subsections &subsections = section.subsections; 518 auto subsecIt = subsections.rbegin(); 519 for (size_t i = 0; i < relInfos.size(); i++) { 520 // Paired relocations serve as Mach-O's method for attaching a 521 // supplemental datum to a primary relocation record. ELF does not 522 // need them because the *_RELOC_RELA records contain the extra 523 // addend field, vs. *_RELOC_REL which omit the addend. 524 // 525 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 526 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 527 // datum for each is a symbolic address. The result is the offset 528 // between two addresses. 529 // 530 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 531 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 532 // base symbolic address. 533 // 534 // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into 535 // the instruction stream. On X86, a relocatable address field always 536 // occupies an entire contiguous sequence of byte(s), so there is no need to 537 // merge opcode bits with address bits. Therefore, it's easy and convenient 538 // to store addends in the instruction-stream bytes that would otherwise 539 // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with 540 // address bits so that bitwise arithmetic is necessary to extract and 541 // insert them. Storing addends in the instruction stream is possible, but 542 // inconvenient and more costly at link time. 543 544 relocation_info relInfo = relInfos[i]; 545 bool isSubtrahend = 546 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 547 int64_t pairedAddend = 0; 548 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 549 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 550 relInfo = relInfos[++i]; 551 } 552 assert(i < relInfos.size()); 553 if (!validateRelocationInfo(this, sec, relInfo)) 554 continue; 555 if (relInfo.r_address & R_SCATTERED) 556 fatal("TODO: Scattered relocations not supported"); 557 558 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 559 assert(!(embeddedAddend && pairedAddend)); 560 int64_t totalAddend = pairedAddend + embeddedAddend; 561 Reloc r; 562 r.type = relInfo.r_type; 563 r.pcrel = relInfo.r_pcrel; 564 r.length = relInfo.r_length; 565 r.offset = relInfo.r_address; 566 if (relInfo.r_extern) { 567 r.referent = symbols[relInfo.r_symbolnum]; 568 r.addend = isSubtrahend ? 0 : totalAddend; 569 } else { 570 assert(!isSubtrahend); 571 const SectionHeader &referentSecHead = 572 sectionHeaders[relInfo.r_symbolnum - 1]; 573 uint64_t referentOffset; 574 if (relInfo.r_pcrel) { 575 // The implicit addend for pcrel section relocations is the pcrel offset 576 // in terms of the addresses in the input file. Here we adjust it so 577 // that it describes the offset from the start of the referent section. 578 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 579 // have pcrel section relocations. We may want to factor this out into 580 // the arch-specific .cpp file. 581 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 582 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 583 referentSecHead.addr; 584 } else { 585 // The addend for a non-pcrel relocation is its absolute address. 586 referentOffset = totalAddend - referentSecHead.addr; 587 } 588 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 589 &referentOffset); 590 r.addend = referentOffset; 591 } 592 593 // Find the subsection that this relocation belongs to. 594 // Though not required by the Mach-O format, clang and gcc seem to emit 595 // relocations in order, so let's take advantage of it. However, ld64 emits 596 // unsorted relocations (in `-r` mode), so we have a fallback for that 597 // uncommon case. 598 InputSection *subsec; 599 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 600 ++subsecIt; 601 if (subsecIt == subsections.rend() || 602 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 603 subsec = findContainingSubsection(section, &r.offset); 604 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 605 // for the other relocations. 606 subsecIt = subsections.rend(); 607 } else { 608 subsec = subsecIt->isec; 609 r.offset -= subsecIt->offset; 610 } 611 subsec->relocs.push_back(r); 612 613 if (isSubtrahend) { 614 relocation_info minuendInfo = relInfos[++i]; 615 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 616 // attached to the same address. 617 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 618 relInfo.r_address == minuendInfo.r_address); 619 Reloc p; 620 p.type = minuendInfo.r_type; 621 if (minuendInfo.r_extern) { 622 p.referent = symbols[minuendInfo.r_symbolnum]; 623 p.addend = totalAddend; 624 } else { 625 uint64_t referentOffset = 626 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 627 p.referent = findContainingSubsection( 628 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 629 p.addend = referentOffset; 630 } 631 subsec->relocs.push_back(p); 632 } 633 } 634 } 635 636 // Symbols with `l` or `L` as a prefix are linker-private and never appear in 637 // the output. 638 static bool isPrivateLabel(StringRef name) { 639 return name.startswith("l") || name.startswith("L"); 640 } 641 642 template <class NList> 643 static macho::Symbol *createDefined(const NList &sym, StringRef name, 644 InputSection *isec, uint64_t value, 645 uint64_t size, bool forceHidden) { 646 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 647 // N_EXT: Global symbols. These go in the symbol table during the link, 648 // and also in the export table of the output so that the dynamic 649 // linker sees them. 650 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 651 // symbol table during the link so that duplicates are 652 // either reported (for non-weak symbols) or merged 653 // (for weak symbols), but they do not go in the export 654 // table of the output. 655 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 656 // object files) may produce them. LLD does not yet support -r. 657 // These are translation-unit scoped, identical to the `0` case. 658 // 0: Translation-unit scoped. These are not in the symbol table during 659 // link, and not in the export table of the output either. 660 bool isWeakDefCanBeHidden = 661 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 662 663 if (sym.n_type & N_EXT) { 664 // -load_hidden makes us treat global symbols as linkage unit scoped. 665 // Duplicates are reported but the symbol does not go in the export trie. 666 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 667 668 // lld's behavior for merging symbols is slightly different from ld64: 669 // ld64 picks the winning symbol based on several criteria (see 670 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 671 // just merges metadata and keeps the contents of the first symbol 672 // with that name (see SymbolTable::addDefined). For: 673 // * inline function F in a TU built with -fvisibility-inlines-hidden 674 // * and inline function F in another TU built without that flag 675 // ld64 will pick the one from the file built without 676 // -fvisibility-inlines-hidden. 677 // lld will instead pick the one listed first on the link command line and 678 // give it visibility as if the function was built without 679 // -fvisibility-inlines-hidden. 680 // If both functions have the same contents, this will have the same 681 // behavior. If not, it won't, but the input had an ODR violation in 682 // that case. 683 // 684 // Similarly, merging a symbol 685 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 686 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 687 // should produce one 688 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 689 // with ld64's semantics, because it means the non-private-extern 690 // definition will continue to take priority if more private extern 691 // definitions are encountered. With lld's semantics there's no observable 692 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 693 // that's privateExtern -- neither makes it into the dynamic symbol table, 694 // unless the autohide symbol is explicitly exported. 695 // But if a symbol is both privateExtern and autohide then it can't 696 // be exported. 697 // So we nullify the autohide flag when privateExtern is present 698 // and promote the symbol to privateExtern when it is not already. 699 if (isWeakDefCanBeHidden && isPrivateExtern) 700 isWeakDefCanBeHidden = false; 701 else if (isWeakDefCanBeHidden) 702 isPrivateExtern = true; 703 return symtab->addDefined( 704 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 705 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 706 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 707 isWeakDefCanBeHidden); 708 } 709 bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec); 710 return make<Defined>( 711 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 712 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, 713 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 714 sym.n_desc & N_NO_DEAD_STRIP); 715 } 716 717 // Absolute symbols are defined symbols that do not have an associated 718 // InputSection. They cannot be weak. 719 template <class NList> 720 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 721 StringRef name, bool forceHidden) { 722 if (sym.n_type & N_EXT) { 723 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 724 return symtab->addDefined( 725 name, file, nullptr, sym.n_value, /*size=*/0, 726 /*isWeakDef=*/false, isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 727 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 728 /*isWeakDefCanBeHidden=*/false); 729 } 730 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 731 /*isWeakDef=*/false, 732 /*isExternal=*/false, /*isPrivateExtern=*/false, 733 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF, 734 /*isReferencedDynamically=*/false, 735 sym.n_desc & N_NO_DEAD_STRIP); 736 } 737 738 template <class NList> 739 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 740 const char *strtab) { 741 StringRef name = StringRef(strtab + sym.n_strx); 742 uint8_t type = sym.n_type & N_TYPE; 743 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 744 switch (type) { 745 case N_UNDF: 746 return sym.n_value == 0 747 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 748 : symtab->addCommon(name, this, sym.n_value, 749 1 << GET_COMM_ALIGN(sym.n_desc), 750 isPrivateExtern); 751 case N_ABS: 752 return createAbsolute(sym, this, name, forceHidden); 753 case N_INDR: { 754 // Not much point in making local aliases -- relocs in the current file can 755 // just refer to the actual symbol itself. ld64 ignores these symbols too. 756 if (!(sym.n_type & N_EXT)) 757 return nullptr; 758 StringRef aliasedName = StringRef(strtab + sym.n_value); 759 // isPrivateExtern is the only symbol flag that has an impact on the final 760 // aliased symbol. 761 auto alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern); 762 aliases.push_back(alias); 763 return alias; 764 } 765 case N_PBUD: 766 error("TODO: support symbols of type N_PBUD"); 767 return nullptr; 768 case N_SECT: 769 llvm_unreachable( 770 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 771 default: 772 llvm_unreachable("invalid symbol type"); 773 } 774 } 775 776 template <class NList> static bool isUndef(const NList &sym) { 777 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 778 } 779 780 template <class LP> 781 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 782 ArrayRef<typename LP::nlist> nList, 783 const char *strtab, bool subsectionsViaSymbols) { 784 using NList = typename LP::nlist; 785 786 // Groups indices of the symbols by the sections that contain them. 787 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 788 symbols.resize(nList.size()); 789 SmallVector<unsigned, 32> undefineds; 790 for (uint32_t i = 0; i < nList.size(); ++i) { 791 const NList &sym = nList[i]; 792 793 // Ignore debug symbols for now. 794 // FIXME: may need special handling. 795 if (sym.n_type & N_STAB) 796 continue; 797 798 if ((sym.n_type & N_TYPE) == N_SECT) { 799 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 800 // parseSections() may have chosen not to parse this section. 801 if (subsections.empty()) 802 continue; 803 symbolsBySection[sym.n_sect - 1].push_back(i); 804 } else if (isUndef(sym)) { 805 undefineds.push_back(i); 806 } else { 807 symbols[i] = parseNonSectionSymbol(sym, strtab); 808 } 809 } 810 811 for (size_t i = 0; i < sections.size(); ++i) { 812 Subsections &subsections = sections[i]->subsections; 813 if (subsections.empty()) 814 continue; 815 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 816 uint64_t sectionAddr = sectionHeaders[i].addr; 817 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 818 819 // Some sections have already been split into subsections during 820 // parseSections(), so we simply need to match Symbols to the corresponding 821 // subsection here. 822 if (sections[i]->doneSplitting) { 823 for (size_t j = 0; j < symbolIndices.size(); ++j) { 824 const uint32_t symIndex = symbolIndices[j]; 825 const NList &sym = nList[symIndex]; 826 StringRef name = strtab + sym.n_strx; 827 uint64_t symbolOffset = sym.n_value - sectionAddr; 828 InputSection *isec = 829 findContainingSubsection(*sections[i], &symbolOffset); 830 if (symbolOffset != 0) { 831 error(toString(*sections[i]) + ": symbol " + name + 832 " at misaligned offset"); 833 continue; 834 } 835 symbols[symIndex] = 836 createDefined(sym, name, isec, 0, isec->getSize(), forceHidden); 837 } 838 continue; 839 } 840 sections[i]->doneSplitting = true; 841 842 auto getSymName = [strtab](const NList& sym) -> StringRef { 843 return StringRef(strtab + sym.n_strx); 844 }; 845 846 // Calculate symbol sizes and create subsections by splitting the sections 847 // along symbol boundaries. 848 // We populate subsections by repeatedly splitting the last (highest 849 // address) subsection. 850 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 851 // Put private-label symbols that have no flags after other symbols at the 852 // same address. 853 StringRef lhsName = getSymName(nList[lhs]); 854 StringRef rhsName = getSymName(nList[rhs]); 855 if (nList[lhs].n_value == nList[rhs].n_value) { 856 if (isPrivateLabel(lhsName) && isPrivateLabel(rhsName)) 857 return nList[lhs].n_desc > nList[rhs].n_desc; 858 return !isPrivateLabel(lhsName) && isPrivateLabel(rhsName); 859 } 860 return nList[lhs].n_value < nList[rhs].n_value; 861 }); 862 for (size_t j = 0; j < symbolIndices.size(); ++j) { 863 const uint32_t symIndex = symbolIndices[j]; 864 const NList &sym = nList[symIndex]; 865 StringRef name = getSymName(sym); 866 Subsection &subsec = subsections.back(); 867 InputSection *isec = subsec.isec; 868 869 uint64_t subsecAddr = sectionAddr + subsec.offset; 870 size_t symbolOffset = sym.n_value - subsecAddr; 871 uint64_t symbolSize = 872 j + 1 < symbolIndices.size() 873 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 874 : isec->data.size() - symbolOffset; 875 // There are 4 cases where we do not need to create a new subsection: 876 // 1. If the input file does not use subsections-via-symbols. 877 // 2. Multiple symbols at the same address only induce one subsection. 878 // (The symbolOffset == 0 check covers both this case as well as 879 // the first loop iteration.) 880 // 3. Alternative entry points do not induce new subsections. 881 // 4. If we have a literal section (e.g. __cstring and __literal4). 882 if (!subsectionsViaSymbols || symbolOffset == 0 || 883 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 884 isec->hasAltEntry = symbolOffset != 0; 885 // If we have an private-label symbol that's an alias, and that alias 886 // doesn't have any flags of its own, then we can just reuse the aliased 887 // symbol. Our sorting step above ensures that any such symbols will 888 // appear after the non-private-label ones. See weak-def-alias-ignored.s 889 // for the motivation behind this. 890 if (symbolOffset == 0 && isPrivateLabel(name) && j != 0 && 891 sym.n_desc == 0) 892 symbols[symIndex] = symbols[symbolIndices[j - 1]]; 893 else 894 symbols[symIndex] = createDefined(sym, name, isec, symbolOffset, 895 symbolSize, forceHidden); 896 continue; 897 } 898 auto *concatIsec = cast<ConcatInputSection>(isec); 899 900 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 901 nextIsec->wasCoalesced = false; 902 if (isZeroFill(isec->getFlags())) { 903 // Zero-fill sections have NULL data.data() non-zero data.size() 904 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 905 isec->data = {nullptr, symbolOffset}; 906 } else { 907 nextIsec->data = isec->data.slice(symbolOffset); 908 isec->data = isec->data.slice(0, symbolOffset); 909 } 910 911 // By construction, the symbol will be at offset zero in the new 912 // subsection. 913 symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0, 914 symbolSize, forceHidden); 915 // TODO: ld64 appears to preserve the original alignment as well as each 916 // subsection's offset from the last aligned address. We should consider 917 // emulating that behavior. 918 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 919 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 920 } 921 } 922 923 // Undefined symbols can trigger recursive fetch from Archives due to 924 // LazySymbols. Process defined symbols first so that the relative order 925 // between a defined symbol and an undefined symbol does not change the 926 // symbol resolution behavior. In addition, a set of interconnected symbols 927 // will all be resolved to the same file, instead of being resolved to 928 // different files. 929 for (unsigned i : undefineds) 930 symbols[i] = parseNonSectionSymbol(nList[i], strtab); 931 } 932 933 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 934 StringRef sectName) 935 : InputFile(OpaqueKind, mb) { 936 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 937 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 938 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 939 sectName.take_front(16), 940 /*flags=*/0, /*addr=*/0)); 941 Section §ion = *sections.back(); 942 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 943 isec->live = true; 944 section.subsections.push_back({0, isec}); 945 } 946 947 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 948 bool lazy, bool forceHidden) 949 : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden) { 950 this->archiveName = std::string(archiveName); 951 if (lazy) { 952 if (target->wordSize == 8) 953 parseLazy<LP64>(); 954 else 955 parseLazy<ILP32>(); 956 } else { 957 if (target->wordSize == 8) 958 parse<LP64>(); 959 else 960 parse<ILP32>(); 961 } 962 } 963 964 template <class LP> void ObjFile::parse() { 965 using Header = typename LP::mach_header; 966 using SegmentCommand = typename LP::segment_command; 967 using SectionHeader = typename LP::section; 968 using NList = typename LP::nlist; 969 970 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 971 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 972 973 uint32_t cpuType; 974 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch()); 975 if (hdr->cputype != cpuType) { 976 Architecture arch = 977 getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 978 auto msg = config->errorForArchMismatch 979 ? static_cast<void (*)(const Twine &)>(error) 980 : warn; 981 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 982 " which is incompatible with target architecture " + 983 getArchitectureName(config->arch())); 984 return; 985 } 986 987 if (!checkCompatibility(this)) 988 return; 989 990 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 991 StringRef data{reinterpret_cast<const char *>(cmd + 1), 992 cmd->cmdsize - sizeof(linker_option_command)}; 993 parseLCLinkerOption(this, cmd->count, data); 994 } 995 996 ArrayRef<SectionHeader> sectionHeaders; 997 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 998 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 999 sectionHeaders = ArrayRef<SectionHeader>{ 1000 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 1001 parseSections(sectionHeaders); 1002 } 1003 1004 // TODO: Error on missing LC_SYMTAB? 1005 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 1006 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1007 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1008 c->nsyms); 1009 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1010 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 1011 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 1012 } 1013 1014 // The relocations may refer to the symbols, so we parse them after we have 1015 // parsed all the symbols. 1016 for (size_t i = 0, n = sections.size(); i < n; ++i) 1017 if (!sections[i]->subsections.empty()) 1018 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 1019 1020 parseDebugInfo(); 1021 1022 Section *ehFrameSection = nullptr; 1023 Section *compactUnwindSection = nullptr; 1024 for (Section *sec : sections) { 1025 Section **s = StringSwitch<Section **>(sec->name) 1026 .Case(section_names::compactUnwind, &compactUnwindSection) 1027 .Case(section_names::ehFrame, &ehFrameSection) 1028 .Default(nullptr); 1029 if (s) 1030 *s = sec; 1031 } 1032 if (compactUnwindSection) 1033 registerCompactUnwind(*compactUnwindSection); 1034 if (ehFrameSection) 1035 registerEhFrames(*ehFrameSection); 1036 } 1037 1038 template <class LP> void ObjFile::parseLazy() { 1039 using Header = typename LP::mach_header; 1040 using NList = typename LP::nlist; 1041 1042 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1043 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 1044 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 1045 if (!cmd) 1046 return; 1047 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1048 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1049 c->nsyms); 1050 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1051 symbols.resize(nList.size()); 1052 for (const auto &[i, sym] : llvm::enumerate(nList)) { 1053 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 1054 // TODO: Bound checking 1055 StringRef name = strtab + sym.n_strx; 1056 symbols[i] = symtab->addLazyObject(name, *this); 1057 if (!lazy) 1058 break; 1059 } 1060 } 1061 } 1062 1063 void ObjFile::parseDebugInfo() { 1064 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 1065 if (!dObj) 1066 return; 1067 1068 // We do not re-use the context from getDwarf() here as that function 1069 // constructs an expensive DWARFCache object. 1070 auto *ctx = make<DWARFContext>( 1071 std::move(dObj), "", 1072 [&](Error err) { 1073 warn(toString(this) + ": " + toString(std::move(err))); 1074 }, 1075 [&](Error warning) { 1076 warn(toString(this) + ": " + toString(std::move(warning))); 1077 }); 1078 1079 // TODO: Since object files can contain a lot of DWARF info, we should verify 1080 // that we are parsing just the info we need 1081 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 1082 // FIXME: There can be more than one compile unit per object file. See 1083 // PR48637. 1084 auto it = units.begin(); 1085 compileUnit = it != units.end() ? it->get() : nullptr; 1086 } 1087 1088 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 1089 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1090 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 1091 if (!cmd) 1092 return {}; 1093 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 1094 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 1095 c->datasize / sizeof(data_in_code_entry)}; 1096 } 1097 1098 ArrayRef<uint8_t> ObjFile::getOptimizationHints() const { 1099 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1100 if (auto *cmd = 1101 findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT)) 1102 return {buf + cmd->dataoff, cmd->datasize}; 1103 return {}; 1104 } 1105 1106 // Create pointers from symbols to their associated compact unwind entries. 1107 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { 1108 for (const Subsection &subsection : compactUnwindSection.subsections) { 1109 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 1110 // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed 1111 // their addends in its data. Thus if ICF operated naively and compared the 1112 // entire contents of each CUE, entries with identical unwind info but e.g. 1113 // belonging to different functions would never be considered equivalent. To 1114 // work around this problem, we remove some parts of the data containing the 1115 // embedded addends. In particular, we remove the function address and LSDA 1116 // pointers. Since these locations are at the start and end of the entry, 1117 // we can do this using a simple, efficient slice rather than performing a 1118 // copy. We are not losing any information here because the embedded 1119 // addends have already been parsed in the corresponding Reloc structs. 1120 // 1121 // Removing these pointers would not be safe if they were pointers to 1122 // absolute symbols. In that case, there would be no corresponding 1123 // relocation. However, (AFAIK) MC cannot emit references to absolute 1124 // symbols for either the function address or the LSDA. However, it *can* do 1125 // so for the personality pointer, so we are not slicing that field away. 1126 // 1127 // Note that we do not adjust the offsets of the corresponding relocations; 1128 // instead, we rely on `relocateCompactUnwind()` to correctly handle these 1129 // truncated input sections. 1130 isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize); 1131 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t)); 1132 // llvm-mc omits CU entries for functions that need DWARF encoding, but 1133 // `ld -r` doesn't. We can ignore them because we will re-synthesize these 1134 // CU entries from the DWARF info during the output phase. 1135 if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) == 1136 target->modeDwarfEncoding) 1137 continue; 1138 1139 ConcatInputSection *referentIsec; 1140 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 1141 Reloc &r = *it; 1142 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 1143 if (r.offset != 0) { 1144 ++it; 1145 continue; 1146 } 1147 uint64_t add = r.addend; 1148 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1149 // Check whether the symbol defined in this file is the prevailing one. 1150 // Skip if it is e.g. a weak def that didn't prevail. 1151 if (sym->getFile() != this) { 1152 ++it; 1153 continue; 1154 } 1155 add += sym->value; 1156 referentIsec = cast<ConcatInputSection>(sym->isec); 1157 } else { 1158 referentIsec = 1159 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1160 } 1161 // Unwind info lives in __DATA, and finalization of __TEXT will occur 1162 // before finalization of __DATA. Moreover, the finalization of unwind 1163 // info depends on the exact addresses that it references. So it is safe 1164 // for compact unwind to reference addresses in __TEXT, but not addresses 1165 // in any other segment. 1166 if (referentIsec->getSegName() != segment_names::text) 1167 error(isec->getLocation(r.offset) + " references section " + 1168 referentIsec->getName() + " which is not in segment __TEXT"); 1169 // The functionAddress relocations are typically section relocations. 1170 // However, unwind info operates on a per-symbol basis, so we search for 1171 // the function symbol here. 1172 Defined *d = findSymbolAtOffset(referentIsec, add); 1173 if (!d) { 1174 ++it; 1175 continue; 1176 } 1177 d->unwindEntry = isec; 1178 // Now that the symbol points to the unwind entry, we can remove the reloc 1179 // that points from the unwind entry back to the symbol. 1180 // 1181 // First, the symbol keeps the unwind entry alive (and not vice versa), so 1182 // this keeps dead-stripping simple. 1183 // 1184 // Moreover, it reduces the work that ICF needs to do to figure out if 1185 // functions with unwind info are foldable. 1186 // 1187 // However, this does make it possible for ICF to fold CUEs that point to 1188 // distinct functions (if the CUEs are otherwise identical). 1189 // UnwindInfoSection takes care of this by re-duplicating the CUEs so that 1190 // each one can hold a distinct functionAddress value. 1191 // 1192 // Given that clang emits relocations in reverse order of address, this 1193 // relocation should be at the end of the vector for most of our input 1194 // object files, so this erase() is typically an O(1) operation. 1195 it = isec->relocs.erase(it); 1196 } 1197 } 1198 } 1199 1200 struct CIE { 1201 macho::Symbol *personalitySymbol = nullptr; 1202 bool fdesHaveAug = false; 1203 uint8_t lsdaPtrSize = 0; // 0 => no LSDA 1204 uint8_t funcPtrSize = 0; 1205 }; 1206 1207 static uint8_t pointerEncodingToSize(uint8_t enc) { 1208 switch (enc & 0xf) { 1209 case dwarf::DW_EH_PE_absptr: 1210 return target->wordSize; 1211 case dwarf::DW_EH_PE_sdata4: 1212 return 4; 1213 case dwarf::DW_EH_PE_sdata8: 1214 // ld64 doesn't actually support sdata8, but this seems simple enough... 1215 return 8; 1216 default: 1217 return 0; 1218 }; 1219 } 1220 1221 static CIE parseCIE(const InputSection *isec, const EhReader &reader, 1222 size_t off) { 1223 // Handling the full generality of possible DWARF encodings would be a major 1224 // pain. We instead take advantage of our knowledge of how llvm-mc encodes 1225 // DWARF and handle just that. 1226 constexpr uint8_t expectedPersonalityEnc = 1227 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4; 1228 1229 CIE cie; 1230 uint8_t version = reader.readByte(&off); 1231 if (version != 1 && version != 3) 1232 fatal("Expected CIE version of 1 or 3, got " + Twine(version)); 1233 StringRef aug = reader.readString(&off); 1234 reader.skipLeb128(&off); // skip code alignment 1235 reader.skipLeb128(&off); // skip data alignment 1236 reader.skipLeb128(&off); // skip return address register 1237 reader.skipLeb128(&off); // skip aug data length 1238 uint64_t personalityAddrOff = 0; 1239 for (char c : aug) { 1240 switch (c) { 1241 case 'z': 1242 cie.fdesHaveAug = true; 1243 break; 1244 case 'P': { 1245 uint8_t personalityEnc = reader.readByte(&off); 1246 if (personalityEnc != expectedPersonalityEnc) 1247 reader.failOn(off, "unexpected personality encoding 0x" + 1248 Twine::utohexstr(personalityEnc)); 1249 personalityAddrOff = off; 1250 off += 4; 1251 break; 1252 } 1253 case 'L': { 1254 uint8_t lsdaEnc = reader.readByte(&off); 1255 cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc); 1256 if (cie.lsdaPtrSize == 0) 1257 reader.failOn(off, "unexpected LSDA encoding 0x" + 1258 Twine::utohexstr(lsdaEnc)); 1259 break; 1260 } 1261 case 'R': { 1262 uint8_t pointerEnc = reader.readByte(&off); 1263 cie.funcPtrSize = pointerEncodingToSize(pointerEnc); 1264 if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel)) 1265 reader.failOn(off, "unexpected pointer encoding 0x" + 1266 Twine::utohexstr(pointerEnc)); 1267 break; 1268 } 1269 default: 1270 break; 1271 } 1272 } 1273 if (personalityAddrOff != 0) { 1274 auto personalityRelocIt = 1275 llvm::find_if(isec->relocs, [=](const macho::Reloc &r) { 1276 return r.offset == personalityAddrOff; 1277 }); 1278 if (personalityRelocIt == isec->relocs.end()) 1279 reader.failOn(off, "Failed to locate relocation for personality symbol"); 1280 cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>(); 1281 } 1282 return cie; 1283 } 1284 1285 // EH frame target addresses may be encoded as pcrel offsets. However, instead 1286 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead. 1287 // This function recovers the target address from the subtractors, essentially 1288 // performing the inverse operation of EhRelocator. 1289 // 1290 // Concretely, we expect our relocations to write the value of `PC - 1291 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that 1292 // points to a symbol plus an addend. 1293 // 1294 // It is important that the minuend relocation point to a symbol within the 1295 // same section as the fixup value, since sections may get moved around. 1296 // 1297 // For example, for arm64, llvm-mc emits relocations for the target function 1298 // address like so: 1299 // 1300 // ltmp: 1301 // <CIE start> 1302 // ... 1303 // <CIE end> 1304 // ... multiple FDEs ... 1305 // <FDE start> 1306 // <target function address - (ltmp + pcrel offset)> 1307 // ... 1308 // 1309 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start` 1310 // will move to an earlier address, and `ltmp + pcrel offset` will no longer 1311 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize" 1312 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating 1313 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`. 1314 // 1315 // If `Invert` is set, then we instead expect `target_addr - PC` to be written 1316 // to `PC`. 1317 template <bool Invert = false> 1318 Defined * 1319 targetSymFromCanonicalSubtractor(const InputSection *isec, 1320 std::vector<macho::Reloc>::iterator relocIt) { 1321 macho::Reloc &subtrahend = *relocIt; 1322 macho::Reloc &minuend = *std::next(relocIt); 1323 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND)); 1324 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED)); 1325 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero 1326 // addend. 1327 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>()); 1328 Defined *target = 1329 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>()); 1330 if (!pcSym) { 1331 auto *targetIsec = 1332 cast<ConcatInputSection>(minuend.referent.get<InputSection *>()); 1333 target = findSymbolAtOffset(targetIsec, minuend.addend); 1334 } 1335 if (Invert) 1336 std::swap(pcSym, target); 1337 if (pcSym->isec == isec) { 1338 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset) 1339 fatal("invalid FDE relocation in __eh_frame"); 1340 } else { 1341 // Ensure the pcReloc points to a symbol within the current EH frame. 1342 // HACK: we should really verify that the original relocation's semantics 1343 // are preserved. In particular, we should have 1344 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't 1345 // have an easy way to access the offsets from this point in the code; some 1346 // refactoring is needed for that. 1347 macho::Reloc &pcReloc = Invert ? minuend : subtrahend; 1348 pcReloc.referent = isec->symbols[0]; 1349 assert(isec->symbols[0]->value == 0); 1350 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL); 1351 } 1352 return target; 1353 } 1354 1355 Defined *findSymbolAtAddress(const std::vector<Section *> §ions, 1356 uint64_t addr) { 1357 Section *sec = findContainingSection(sections, &addr); 1358 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr)); 1359 return findSymbolAtOffset(isec, addr); 1360 } 1361 1362 // For symbols that don't have compact unwind info, associate them with the more 1363 // general-purpose (and verbose) DWARF unwind info found in __eh_frame. 1364 // 1365 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a 1366 // description of its format. 1367 // 1368 // While parsing, we also look for what MC calls "abs-ified" relocations -- they 1369 // are relocations which are implicitly encoded as offsets in the section data. 1370 // We convert them into explicit Reloc structs so that the EH frames can be 1371 // handled just like a regular ConcatInputSection later in our output phase. 1372 // 1373 // We also need to handle the case where our input object file has explicit 1374 // relocations. This is the case when e.g. it's the output of `ld -r`. We only 1375 // look for the "abs-ified" relocation if an explicit relocation is absent. 1376 void ObjFile::registerEhFrames(Section &ehFrameSection) { 1377 DenseMap<const InputSection *, CIE> cieMap; 1378 for (const Subsection &subsec : ehFrameSection.subsections) { 1379 auto *isec = cast<ConcatInputSection>(subsec.isec); 1380 uint64_t isecOff = subsec.offset; 1381 1382 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure 1383 // that all EH frames have an associated symbol so that we can generate 1384 // subtractor relocs that reference them. 1385 if (isec->symbols.size() == 0) 1386 make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0, 1387 isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false, 1388 /*isPrivateExtern=*/false, /*includeInSymtab=*/false, 1389 /*isThumb=*/false, /*isReferencedDynamically=*/false, 1390 /*noDeadStrip=*/false); 1391 else if (isec->symbols[0]->value != 0) 1392 fatal("found symbol at unexpected offset in __eh_frame"); 1393 1394 EhReader reader(this, isec->data, subsec.offset); 1395 size_t dataOff = 0; // Offset from the start of the EH frame. 1396 reader.skipValidLength(&dataOff); // readLength() already validated this. 1397 // cieOffOff is the offset from the start of the EH frame to the cieOff 1398 // value, which is itself an offset from the current PC to a CIE. 1399 const size_t cieOffOff = dataOff; 1400 1401 EhRelocator ehRelocator(isec); 1402 auto cieOffRelocIt = llvm::find_if( 1403 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; }); 1404 InputSection *cieIsec = nullptr; 1405 if (cieOffRelocIt != isec->relocs.end()) { 1406 // We already have an explicit relocation for the CIE offset. 1407 cieIsec = 1408 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt) 1409 ->isec; 1410 dataOff += sizeof(uint32_t); 1411 } else { 1412 // If we haven't found a relocation, then the CIE offset is most likely 1413 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that 1414 // and generate a Reloc struct. 1415 uint32_t cieMinuend = reader.readU32(&dataOff); 1416 if (cieMinuend == 0) { 1417 cieIsec = isec; 1418 } else { 1419 uint32_t cieOff = isecOff + dataOff - cieMinuend; 1420 cieIsec = findContainingSubsection(ehFrameSection, &cieOff); 1421 if (cieIsec == nullptr) 1422 fatal("failed to find CIE"); 1423 } 1424 if (cieIsec != isec) 1425 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0], 1426 /*length=*/2); 1427 } 1428 if (cieIsec == isec) { 1429 cieMap[cieIsec] = parseCIE(isec, reader, dataOff); 1430 continue; 1431 } 1432 1433 assert(cieMap.count(cieIsec)); 1434 const CIE &cie = cieMap[cieIsec]; 1435 // Offset of the function address within the EH frame. 1436 const size_t funcAddrOff = dataOff; 1437 uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) + 1438 ehFrameSection.addr + isecOff + funcAddrOff; 1439 uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize); 1440 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame. 1441 std::optional<uint64_t> lsdaAddrOpt; 1442 if (cie.fdesHaveAug) { 1443 reader.skipLeb128(&dataOff); 1444 lsdaAddrOff = dataOff; 1445 if (cie.lsdaPtrSize != 0) { 1446 uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize); 1447 if (lsdaOff != 0) // FIXME possible to test this? 1448 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff; 1449 } 1450 } 1451 1452 auto funcAddrRelocIt = isec->relocs.end(); 1453 auto lsdaAddrRelocIt = isec->relocs.end(); 1454 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { 1455 if (it->offset == funcAddrOff) 1456 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1457 else if (lsdaAddrOpt && it->offset == lsdaAddrOff) 1458 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1459 } 1460 1461 Defined *funcSym; 1462 if (funcAddrRelocIt != isec->relocs.end()) { 1463 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt); 1464 // Canonicalize the symbol. If there are multiple symbols at the same 1465 // address, we want both `registerEhFrame` and `registerCompactUnwind` 1466 // to register the unwind entry under same symbol. 1467 // This is not particularly efficient, but we should run into this case 1468 // infrequently (only when handling the output of `ld -r`). 1469 if (funcSym->isec) 1470 funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec), 1471 funcSym->value); 1472 } else { 1473 funcSym = findSymbolAtAddress(sections, funcAddr); 1474 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize); 1475 } 1476 // The symbol has been coalesced, or already has a compact unwind entry. 1477 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) { 1478 // We must prune unused FDEs for correctness, so we cannot rely on 1479 // -dead_strip being enabled. 1480 isec->live = false; 1481 continue; 1482 } 1483 1484 InputSection *lsdaIsec = nullptr; 1485 if (lsdaAddrRelocIt != isec->relocs.end()) { 1486 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec; 1487 } else if (lsdaAddrOpt) { 1488 uint64_t lsdaAddr = *lsdaAddrOpt; 1489 Section *sec = findContainingSection(sections, &lsdaAddr); 1490 lsdaIsec = 1491 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr)); 1492 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize); 1493 } 1494 1495 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec}; 1496 funcSym->unwindEntry = isec; 1497 ehRelocator.commit(); 1498 } 1499 1500 // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs 1501 // are normally required to be kept alive if they reference a live symbol. 1502 // However, we've explicitly created a dependency from a symbol to its FDE, so 1503 // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only 1504 // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a 1505 // live symbol (e.g. if there were multiple weak copies). Remove this flag to 1506 // let dead-stripping proceed correctly. 1507 ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT; 1508 } 1509 1510 std::string ObjFile::sourceFile() const { 1511 SmallString<261> dir(compileUnit->getCompilationDir()); 1512 StringRef sep = sys::path::get_separator(); 1513 // We don't use `path::append` here because we want an empty `dir` to result 1514 // in an absolute path. `append` would give us a relative path for that case. 1515 if (!dir.endswith(sep)) 1516 dir += sep; 1517 return (dir + compileUnit->getUnitDIE().getShortName()).str(); 1518 } 1519 1520 lld::DWARFCache *ObjFile::getDwarf() { 1521 llvm::call_once(initDwarf, [this]() { 1522 auto dwObj = DwarfObject::create(this); 1523 if (!dwObj) 1524 return; 1525 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 1526 std::move(dwObj), "", 1527 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 1528 [&](Error warning) { 1529 warn(getName() + ": " + toString(std::move(warning))); 1530 })); 1531 }); 1532 1533 return dwarfCache.get(); 1534 } 1535 // The path can point to either a dylib or a .tbd file. 1536 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1537 std::optional<MemoryBufferRef> mbref = readFile(path); 1538 if (!mbref) { 1539 error("could not read dylib file at " + path); 1540 return nullptr; 1541 } 1542 return loadDylib(*mbref, umbrella); 1543 } 1544 1545 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1546 // the first document storing child pointers to the rest of them. When we are 1547 // processing a given TBD file, we store that top-level document in 1548 // currentTopLevelTapi. When processing re-exports, we search its children for 1549 // potentially matching documents in the same TBD file. Note that the children 1550 // themselves don't point to further documents, i.e. this is a two-level tree. 1551 // 1552 // Re-exports can either refer to on-disk files, or to documents within .tbd 1553 // files. 1554 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1555 const InterfaceFile *currentTopLevelTapi) { 1556 // Search order: 1557 // 1. Install name basename in -F / -L directories. 1558 { 1559 StringRef stem = path::stem(path); 1560 SmallString<128> frameworkName; 1561 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1562 bool isFramework = path.endswith(frameworkName); 1563 if (isFramework) { 1564 for (StringRef dir : config->frameworkSearchPaths) { 1565 SmallString<128> candidate = dir; 1566 path::append(candidate, frameworkName); 1567 if (std::optional<StringRef> dylibPath = 1568 resolveDylibPath(candidate.str())) 1569 return loadDylib(*dylibPath, umbrella); 1570 } 1571 } else if (std::optional<StringRef> dylibPath = findPathCombination( 1572 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1573 return loadDylib(*dylibPath, umbrella); 1574 } 1575 1576 // 2. As absolute path. 1577 if (path::is_absolute(path, path::Style::posix)) 1578 for (StringRef root : config->systemLibraryRoots) 1579 if (std::optional<StringRef> dylibPath = 1580 resolveDylibPath((root + path).str())) 1581 return loadDylib(*dylibPath, umbrella); 1582 1583 // 3. As relative path. 1584 1585 // TODO: Handle -dylib_file 1586 1587 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1588 SmallString<128> newPath; 1589 if (config->outputType == MH_EXECUTE && 1590 path.consume_front("@executable_path/")) { 1591 // ld64 allows overriding this with the undocumented flag -executable_path. 1592 // lld doesn't currently implement that flag. 1593 // FIXME: Consider using finalOutput instead of outputFile. 1594 path::append(newPath, path::parent_path(config->outputFile), path); 1595 path = newPath; 1596 } else if (path.consume_front("@loader_path/")) { 1597 fs::real_path(umbrella->getName(), newPath); 1598 path::remove_filename(newPath); 1599 path::append(newPath, path); 1600 path = newPath; 1601 } else if (path.startswith("@rpath/")) { 1602 for (StringRef rpath : umbrella->rpaths) { 1603 newPath.clear(); 1604 if (rpath.consume_front("@loader_path/")) { 1605 fs::real_path(umbrella->getName(), newPath); 1606 path::remove_filename(newPath); 1607 } 1608 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1609 if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1610 return loadDylib(*dylibPath, umbrella); 1611 } 1612 } 1613 1614 // FIXME: Should this be further up? 1615 if (currentTopLevelTapi) { 1616 for (InterfaceFile &child : 1617 make_pointee_range(currentTopLevelTapi->documents())) { 1618 assert(child.documents().empty()); 1619 if (path == child.getInstallName()) { 1620 auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, 1621 /*explicitlyLinked=*/false); 1622 file->parseReexports(child); 1623 return file; 1624 } 1625 } 1626 } 1627 1628 if (std::optional<StringRef> dylibPath = resolveDylibPath(path)) 1629 return loadDylib(*dylibPath, umbrella); 1630 1631 return nullptr; 1632 } 1633 1634 // If a re-exported dylib is public (lives in /usr/lib or 1635 // /System/Library/Frameworks), then it is considered implicitly linked: we 1636 // should bind to its symbols directly instead of via the re-exporting umbrella 1637 // library. 1638 static bool isImplicitlyLinked(StringRef path) { 1639 if (!config->implicitDylibs) 1640 return false; 1641 1642 if (path::parent_path(path) == "/usr/lib") 1643 return true; 1644 1645 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1646 if (path.consume_front("/System/Library/Frameworks/")) { 1647 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1648 return path::filename(path) == frameworkName; 1649 } 1650 1651 return false; 1652 } 1653 1654 void DylibFile::loadReexport(StringRef path, DylibFile *umbrella, 1655 const InterfaceFile *currentTopLevelTapi) { 1656 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1657 if (!reexport) 1658 error(toString(this) + ": unable to locate re-export with install name " + 1659 path); 1660 } 1661 1662 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1663 bool isBundleLoader, bool explicitlyLinked) 1664 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1665 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1666 assert(!isBundleLoader || !umbrella); 1667 if (umbrella == nullptr) 1668 umbrella = this; 1669 this->umbrella = umbrella; 1670 1671 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1672 1673 // Initialize installName. 1674 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1675 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1676 currentVersion = read32le(&c->dylib.current_version); 1677 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1678 installName = 1679 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1680 } else if (!isBundleLoader) { 1681 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1682 // so it's OK. 1683 error(toString(this) + ": dylib missing LC_ID_DYLIB load command"); 1684 return; 1685 } 1686 1687 if (config->printEachFile) 1688 message(toString(this)); 1689 inputFiles.insert(this); 1690 1691 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1692 1693 if (!checkCompatibility(this)) 1694 return; 1695 1696 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1697 1698 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1699 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1700 rpaths.push_back(rpath); 1701 } 1702 1703 // Initialize symbols. 1704 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1705 1706 const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY); 1707 const auto *exportsTrie = 1708 findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE); 1709 if (dyldInfo && exportsTrie) { 1710 // It's unclear what should happen in this case. Maybe we should only error 1711 // out if the two load commands refer to different data? 1712 error(toString(this) + 1713 ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE"); 1714 return; 1715 } else if (dyldInfo) { 1716 parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size); 1717 } else if (exportsTrie) { 1718 parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize); 1719 } else { 1720 error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " + 1721 toString(this)); 1722 return; 1723 } 1724 } 1725 1726 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) { 1727 struct TrieEntry { 1728 StringRef name; 1729 uint64_t flags; 1730 }; 1731 1732 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1733 std::vector<TrieEntry> entries; 1734 // Find all the $ld$* symbols to process first. 1735 parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) { 1736 StringRef savedName = saver().save(name); 1737 if (handleLDSymbol(savedName)) 1738 return; 1739 entries.push_back({savedName, flags}); 1740 }); 1741 1742 // Process the "normal" symbols. 1743 for (TrieEntry &entry : entries) { 1744 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name))) 1745 continue; 1746 1747 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1748 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1749 1750 symbols.push_back( 1751 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1752 } 1753 } 1754 1755 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1756 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1757 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1758 target->headerSize; 1759 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1760 auto *cmd = reinterpret_cast<const load_command *>(p); 1761 p += cmd->cmdsize; 1762 1763 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1764 cmd->cmd == LC_REEXPORT_DYLIB) { 1765 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1766 StringRef reexportPath = 1767 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1768 loadReexport(reexportPath, exportingFile, nullptr); 1769 } 1770 1771 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1772 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1773 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1774 if (config->namespaceKind == NamespaceKind::flat && 1775 cmd->cmd == LC_LOAD_DYLIB) { 1776 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1777 StringRef dylibPath = 1778 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1779 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1780 if (!dylib) 1781 error(Twine("unable to locate library '") + dylibPath + 1782 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1783 } 1784 } 1785 } 1786 1787 // Some versions of Xcode ship with .tbd files that don't have the right 1788 // platform settings. 1789 constexpr std::array<StringRef, 3> skipPlatformChecks{ 1790 "/usr/lib/system/libsystem_kernel.dylib", 1791 "/usr/lib/system/libsystem_platform.dylib", 1792 "/usr/lib/system/libsystem_pthread.dylib"}; 1793 1794 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, 1795 bool explicitlyLinked) { 1796 // Catalyst outputs can link against implicitly linked macOS-only libraries. 1797 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) 1798 return false; 1799 return is_contained(interface.targets(), 1800 MachO::Target(config->arch(), PLATFORM_MACOS)); 1801 } 1802 1803 static bool isArchABICompatible(ArchitectureSet archSet, 1804 Architecture targetArch) { 1805 uint32_t cpuType; 1806 uint32_t targetCpuType; 1807 std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch); 1808 1809 return llvm::any_of(archSet, [&](const auto &p) { 1810 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p); 1811 return cpuType == targetCpuType; 1812 }); 1813 } 1814 1815 static bool isTargetPlatformArchCompatible( 1816 InterfaceFile::const_target_range interfaceTargets, Target target) { 1817 if (is_contained(interfaceTargets, target)) 1818 return true; 1819 1820 if (config->forceExactCpuSubtypeMatch) 1821 return false; 1822 1823 ArchitectureSet archSet; 1824 for (const auto &p : interfaceTargets) 1825 if (p.Platform == target.Platform) 1826 archSet.set(p.Arch); 1827 if (archSet.empty()) 1828 return false; 1829 1830 return isArchABICompatible(archSet, target.Arch); 1831 } 1832 1833 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1834 bool isBundleLoader, bool explicitlyLinked) 1835 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1836 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1837 // FIXME: Add test for the missing TBD code path. 1838 1839 if (umbrella == nullptr) 1840 umbrella = this; 1841 this->umbrella = umbrella; 1842 1843 installName = saver().save(interface.getInstallName()); 1844 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1845 currentVersion = interface.getCurrentVersion().rawValue(); 1846 1847 if (config->printEachFile) 1848 message(toString(this)); 1849 inputFiles.insert(this); 1850 1851 if (!is_contained(skipPlatformChecks, installName) && 1852 !isTargetPlatformArchCompatible(interface.targets(), 1853 config->platformInfo.target) && 1854 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { 1855 error(toString(this) + " is incompatible with " + 1856 std::string(config->platformInfo.target)); 1857 return; 1858 } 1859 1860 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1861 1862 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1863 auto addSymbol = [&](const llvm::MachO::Symbol &symbol, 1864 const Twine &name) -> void { 1865 StringRef savedName = saver().save(name); 1866 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1867 return; 1868 1869 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1870 symbol.isWeakDefined(), 1871 symbol.isThreadLocalValue())); 1872 }; 1873 1874 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1875 normalSymbols.reserve(interface.symbolsCount()); 1876 for (const auto *symbol : interface.symbols()) { 1877 if (!isArchABICompatible(symbol->getArchitectures(), config->arch())) 1878 continue; 1879 if (handleLDSymbol(symbol->getName())) 1880 continue; 1881 1882 switch (symbol->getKind()) { 1883 case SymbolKind::GlobalSymbol: 1884 case SymbolKind::ObjectiveCClass: 1885 case SymbolKind::ObjectiveCClassEHType: 1886 case SymbolKind::ObjectiveCInstanceVariable: 1887 normalSymbols.push_back(symbol); 1888 } 1889 } 1890 1891 // TODO(compnerd) filter out symbols based on the target platform 1892 for (const auto *symbol : normalSymbols) { 1893 switch (symbol->getKind()) { 1894 case SymbolKind::GlobalSymbol: 1895 addSymbol(*symbol, symbol->getName()); 1896 break; 1897 case SymbolKind::ObjectiveCClass: 1898 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1899 // want to emulate that. 1900 addSymbol(*symbol, objc::klass + symbol->getName()); 1901 addSymbol(*symbol, objc::metaclass + symbol->getName()); 1902 break; 1903 case SymbolKind::ObjectiveCClassEHType: 1904 addSymbol(*symbol, objc::ehtype + symbol->getName()); 1905 break; 1906 case SymbolKind::ObjectiveCInstanceVariable: 1907 addSymbol(*symbol, objc::ivar + symbol->getName()); 1908 break; 1909 } 1910 } 1911 } 1912 1913 DylibFile::DylibFile(DylibFile *umbrella) 1914 : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced), 1915 explicitlyLinked(false), isBundleLoader(false) { 1916 if (umbrella == nullptr) 1917 umbrella = this; 1918 this->umbrella = umbrella; 1919 } 1920 1921 void DylibFile::parseReexports(const InterfaceFile &interface) { 1922 const InterfaceFile *topLevel = 1923 interface.getParent() == nullptr ? &interface : interface.getParent(); 1924 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1925 InterfaceFile::const_target_range targets = intfRef.targets(); 1926 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1927 isTargetPlatformArchCompatible(targets, config->platformInfo.target)) 1928 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1929 } 1930 } 1931 1932 bool DylibFile::isExplicitlyLinked() const { 1933 if (!explicitlyLinked) 1934 return false; 1935 1936 // If this dylib was explicitly linked, but at least one of the symbols 1937 // of the synthetic dylibs it created via $ld$previous symbols is 1938 // referenced, then that synthetic dylib fulfils the explicit linkedness 1939 // and we can deadstrip this dylib if it's unreferenced. 1940 for (const auto *dylib : extraDylibs) 1941 if (dylib->isReferenced()) 1942 return false; 1943 1944 return true; 1945 } 1946 1947 DylibFile *DylibFile::getSyntheticDylib(StringRef installName, 1948 uint32_t currentVersion, 1949 uint32_t compatVersion) { 1950 for (DylibFile *dylib : extraDylibs) 1951 if (dylib->installName == installName) { 1952 // FIXME: Check what to do if different $ld$previous symbols 1953 // request the same dylib, but with different versions. 1954 return dylib; 1955 } 1956 1957 auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella); 1958 dylib->installName = saver().save(installName); 1959 dylib->currentVersion = currentVersion; 1960 dylib->compatibilityVersion = compatVersion; 1961 extraDylibs.push_back(dylib); 1962 return dylib; 1963 } 1964 1965 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1966 // name, compatibility version or hide/add symbols) for specific target 1967 // versions. 1968 bool DylibFile::handleLDSymbol(StringRef originalName) { 1969 if (!originalName.startswith("$ld$")) 1970 return false; 1971 1972 StringRef action; 1973 StringRef name; 1974 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1975 if (action == "previous") 1976 handleLDPreviousSymbol(name, originalName); 1977 else if (action == "install_name") 1978 handleLDInstallNameSymbol(name, originalName); 1979 else if (action == "hide") 1980 handleLDHideSymbol(name, originalName); 1981 return true; 1982 } 1983 1984 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1985 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1986 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1987 StringRef installName; 1988 StringRef compatVersion; 1989 StringRef platformStr; 1990 StringRef startVersion; 1991 StringRef endVersion; 1992 StringRef symbolName; 1993 StringRef rest; 1994 1995 std::tie(installName, name) = name.split('$'); 1996 std::tie(compatVersion, name) = name.split('$'); 1997 std::tie(platformStr, name) = name.split('$'); 1998 std::tie(startVersion, name) = name.split('$'); 1999 std::tie(endVersion, name) = name.split('$'); 2000 std::tie(symbolName, rest) = name.rsplit('$'); 2001 2002 // FIXME: Does this do the right thing for zippered files? 2003 unsigned platform; 2004 if (platformStr.getAsInteger(10, platform) || 2005 platform != static_cast<unsigned>(config->platform())) 2006 return; 2007 2008 VersionTuple start; 2009 if (start.tryParse(startVersion)) { 2010 warn(toString(this) + ": failed to parse start version, symbol '" + 2011 originalName + "' ignored"); 2012 return; 2013 } 2014 VersionTuple end; 2015 if (end.tryParse(endVersion)) { 2016 warn(toString(this) + ": failed to parse end version, symbol '" + 2017 originalName + "' ignored"); 2018 return; 2019 } 2020 if (config->platformInfo.minimum < start || 2021 config->platformInfo.minimum >= end) 2022 return; 2023 2024 // Initialized to compatibilityVersion for the symbolName branch below. 2025 uint32_t newCompatibilityVersion = compatibilityVersion; 2026 uint32_t newCurrentVersionForSymbol = currentVersion; 2027 if (!compatVersion.empty()) { 2028 VersionTuple cVersion; 2029 if (cVersion.tryParse(compatVersion)) { 2030 warn(toString(this) + 2031 ": failed to parse compatibility version, symbol '" + originalName + 2032 "' ignored"); 2033 return; 2034 } 2035 newCompatibilityVersion = encodeVersion(cVersion); 2036 newCurrentVersionForSymbol = newCompatibilityVersion; 2037 } 2038 2039 if (!symbolName.empty()) { 2040 // A $ld$previous$ symbol with symbol name adds a symbol with that name to 2041 // a dylib with given name and version. 2042 auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol, 2043 newCompatibilityVersion); 2044 2045 // The tbd file usually contains the $ld$previous symbol for an old version, 2046 // and then the symbol itself later, for newer deployment targets, like so: 2047 // symbols: [ 2048 // '$ld$previous$/Another$$1$3.0$14.0$_zzz$', 2049 // _zzz, 2050 // ] 2051 // Since the symbols are sorted, adding them to the symtab in the given 2052 // order means the $ld$previous version of _zzz will prevail, as desired. 2053 dylib->symbols.push_back(symtab->addDylib( 2054 saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false)); 2055 return; 2056 } 2057 2058 // A $ld$previous$ symbol without symbol name modifies the dylib it's in. 2059 this->installName = saver().save(installName); 2060 this->compatibilityVersion = newCompatibilityVersion; 2061 } 2062 2063 void DylibFile::handleLDInstallNameSymbol(StringRef name, 2064 StringRef originalName) { 2065 // originalName: $ld$ install_name $ os<version> $ install_name 2066 StringRef condition, installName; 2067 std::tie(condition, installName) = name.split('$'); 2068 VersionTuple version; 2069 if (!condition.consume_front("os") || version.tryParse(condition)) 2070 warn(toString(this) + ": failed to parse os version, symbol '" + 2071 originalName + "' ignored"); 2072 else if (version == config->platformInfo.minimum) 2073 this->installName = saver().save(installName); 2074 } 2075 2076 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 2077 StringRef symbolName; 2078 bool shouldHide = true; 2079 if (name.startswith("os")) { 2080 // If it's hidden based on versions. 2081 name = name.drop_front(2); 2082 StringRef minVersion; 2083 std::tie(minVersion, symbolName) = name.split('$'); 2084 VersionTuple versionTup; 2085 if (versionTup.tryParse(minVersion)) { 2086 warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName + 2087 "` ignored."); 2088 return; 2089 } 2090 shouldHide = versionTup == config->platformInfo.minimum; 2091 } else { 2092 symbolName = name; 2093 } 2094 2095 if (shouldHide) 2096 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 2097 } 2098 2099 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 2100 if (config->applicationExtension && !dylibIsAppExtensionSafe) 2101 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 2102 } 2103 2104 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden) 2105 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)), 2106 forceHidden(forceHidden) {} 2107 2108 void ArchiveFile::addLazySymbols() { 2109 for (const object::Archive::Symbol &sym : file->symbols()) 2110 symtab->addLazyArchive(sym.getName(), this, sym); 2111 } 2112 2113 static Expected<InputFile *> 2114 loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 2115 uint64_t offsetInArchive, bool forceHidden) { 2116 if (config->zeroModTime) 2117 modTime = 0; 2118 2119 switch (identify_magic(mb.getBuffer())) { 2120 case file_magic::macho_object: 2121 return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden); 2122 case file_magic::bitcode: 2123 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false, 2124 forceHidden); 2125 default: 2126 return createStringError(inconvertibleErrorCode(), 2127 mb.getBufferIdentifier() + 2128 " has unhandled file type"); 2129 } 2130 } 2131 2132 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 2133 if (!seen.insert(c.getChildOffset()).second) 2134 return Error::success(); 2135 2136 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 2137 if (!mb) 2138 return mb.takeError(); 2139 2140 // Thin archives refer to .o files, so --reproduce needs the .o files too. 2141 if (tar && c.getParent()->isThin()) 2142 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 2143 2144 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 2145 if (!modTime) 2146 return modTime.takeError(); 2147 2148 Expected<InputFile *> file = loadArchiveMember( 2149 *mb, toTimeT(*modTime), getName(), c.getChildOffset(), forceHidden); 2150 2151 if (!file) 2152 return file.takeError(); 2153 2154 inputFiles.insert(*file); 2155 printArchiveMemberLoad(reason, *file); 2156 return Error::success(); 2157 } 2158 2159 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 2160 object::Archive::Child c = 2161 CHECK(sym.getMember(), toString(this) + 2162 ": could not get the member defining symbol " + 2163 toMachOString(sym)); 2164 2165 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 2166 // and become invalid after that call. Copy it to the stack so we can refer 2167 // to it later. 2168 const object::Archive::Symbol symCopy = sym; 2169 2170 // ld64 doesn't demangle sym here even with -demangle. 2171 // Match that: intentionally don't call toMachOString(). 2172 if (Error e = fetch(c, symCopy.getName())) 2173 error(toString(this) + ": could not get the member defining symbol " + 2174 toMachOString(symCopy) + ": " + toString(std::move(e))); 2175 } 2176 2177 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 2178 BitcodeFile &file) { 2179 StringRef name = saver().save(objSym.getName()); 2180 2181 if (objSym.isUndefined()) 2182 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 2183 2184 // TODO: Write a test demonstrating why computing isPrivateExtern before 2185 // LTO compilation is important. 2186 bool isPrivateExtern = false; 2187 switch (objSym.getVisibility()) { 2188 case GlobalValue::HiddenVisibility: 2189 isPrivateExtern = true; 2190 break; 2191 case GlobalValue::ProtectedVisibility: 2192 error(name + " has protected visibility, which is not supported by Mach-O"); 2193 break; 2194 case GlobalValue::DefaultVisibility: 2195 break; 2196 } 2197 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() || 2198 file.forceHidden; 2199 2200 if (objSym.isCommon()) 2201 return symtab->addCommon(name, &file, objSym.getCommonSize(), 2202 objSym.getCommonAlignment(), isPrivateExtern); 2203 2204 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 2205 /*size=*/0, objSym.isWeak(), isPrivateExtern, 2206 /*isThumb=*/false, 2207 /*isReferencedDynamically=*/false, 2208 /*noDeadStrip=*/false, 2209 /*isWeakDefCanBeHidden=*/false); 2210 } 2211 2212 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 2213 uint64_t offsetInArchive, bool lazy, bool forceHidden) 2214 : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) { 2215 this->archiveName = std::string(archiveName); 2216 std::string path = mb.getBufferIdentifier().str(); 2217 if (config->thinLTOIndexOnly) 2218 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 2219 2220 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 2221 // name. If two members with the same name are provided, this causes a 2222 // collision and ThinLTO can't proceed. 2223 // So, we append the archive name to disambiguate two members with the same 2224 // name from multiple different archives, and offset within the archive to 2225 // disambiguate two members of the same name from a single archive. 2226 MemoryBufferRef mbref(mb.getBuffer(), 2227 saver().save(archiveName.empty() 2228 ? path 2229 : archiveName + 2230 sys::path::filename(path) + 2231 utostr(offsetInArchive))); 2232 2233 obj = check(lto::InputFile::create(mbref)); 2234 if (lazy) 2235 parseLazy(); 2236 else 2237 parse(); 2238 } 2239 2240 void BitcodeFile::parse() { 2241 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 2242 // "winning" symbol will then be marked as Prevailing at LTO compilation 2243 // time. 2244 symbols.clear(); 2245 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 2246 symbols.push_back(createBitcodeSymbol(objSym, *this)); 2247 } 2248 2249 void BitcodeFile::parseLazy() { 2250 symbols.resize(obj->symbols().size()); 2251 for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) { 2252 if (!objSym.isUndefined()) { 2253 symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this); 2254 if (!lazy) 2255 break; 2256 } 2257 } 2258 } 2259 2260 std::string macho::replaceThinLTOSuffix(StringRef path) { 2261 auto [suffix, repl] = config->thinLTOObjectSuffixReplace; 2262 if (path.consume_back(suffix)) 2263 return (path + repl).str(); 2264 return std::string(path); 2265 } 2266 2267 void macho::extract(InputFile &file, StringRef reason) { 2268 if (!file.lazy) 2269 return; 2270 file.lazy = false; 2271 2272 printArchiveMemberLoad(reason, &file); 2273 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 2274 bitcode->parse(); 2275 } else { 2276 auto &f = cast<ObjFile>(file); 2277 if (target->wordSize == 8) 2278 f.parse<LP64>(); 2279 else 2280 f.parse<ILP32>(); 2281 } 2282 } 2283 2284 template void ObjFile::parse<LP64>(); 2285