1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "EhFrame.h" 49 #include "ExportTrie.h" 50 #include "InputSection.h" 51 #include "MachOStructs.h" 52 #include "ObjC.h" 53 #include "OutputSection.h" 54 #include "OutputSegment.h" 55 #include "SymbolTable.h" 56 #include "Symbols.h" 57 #include "SyntheticSections.h" 58 #include "Target.h" 59 60 #include "lld/Common/CommonLinkerContext.h" 61 #include "lld/Common/DWARF.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/BinaryStreamReader.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/LEB128.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/TarWriter.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/TextAPI/Architecture.h" 74 #include "llvm/TextAPI/InterfaceFile.h" 75 76 #include <type_traits> 77 78 using namespace llvm; 79 using namespace llvm::MachO; 80 using namespace llvm::support::endian; 81 using namespace llvm::sys; 82 using namespace lld; 83 using namespace lld::macho; 84 85 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 86 std::string lld::toString(const InputFile *f) { 87 if (!f) 88 return "<internal>"; 89 90 // Multiple dylibs can be defined in one .tbd file. 91 if (auto dylibFile = dyn_cast<DylibFile>(f)) 92 if (f->getName().endswith(".tbd")) 93 return (f->getName() + "(" + dylibFile->installName + ")").str(); 94 95 if (f->archiveName.empty()) 96 return std::string(f->getName()); 97 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 98 } 99 100 std::string lld::toString(const Section &sec) { 101 return (toString(sec.file) + ":(" + sec.name + ")").str(); 102 } 103 104 SetVector<InputFile *> macho::inputFiles; 105 std::unique_ptr<TarWriter> macho::tar; 106 int InputFile::idCount = 0; 107 108 static VersionTuple decodeVersion(uint32_t version) { 109 unsigned major = version >> 16; 110 unsigned minor = (version >> 8) & 0xffu; 111 unsigned subMinor = version & 0xffu; 112 return VersionTuple(major, minor, subMinor); 113 } 114 115 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 116 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 117 return {}; 118 119 const char *hdr = input->mb.getBufferStart(); 120 121 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. 122 std::vector<PlatformInfo> platformInfos; 123 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 124 PlatformInfo info; 125 info.target.Platform = static_cast<PlatformType>(cmd->platform); 126 info.minimum = decodeVersion(cmd->minos); 127 platformInfos.emplace_back(std::move(info)); 128 } 129 for (auto *cmd : findCommands<version_min_command>( 130 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 131 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 132 PlatformInfo info; 133 switch (cmd->cmd) { 134 case LC_VERSION_MIN_MACOSX: 135 info.target.Platform = PLATFORM_MACOS; 136 break; 137 case LC_VERSION_MIN_IPHONEOS: 138 info.target.Platform = PLATFORM_IOS; 139 break; 140 case LC_VERSION_MIN_TVOS: 141 info.target.Platform = PLATFORM_TVOS; 142 break; 143 case LC_VERSION_MIN_WATCHOS: 144 info.target.Platform = PLATFORM_WATCHOS; 145 break; 146 } 147 info.minimum = decodeVersion(cmd->version); 148 platformInfos.emplace_back(std::move(info)); 149 } 150 151 return platformInfos; 152 } 153 154 static bool checkCompatibility(const InputFile *input) { 155 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 156 if (platformInfos.empty()) 157 return true; 158 159 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 160 return removeSimulator(info.target.Platform) == 161 removeSimulator(config->platform()); 162 }); 163 if (it == platformInfos.end()) { 164 std::string platformNames; 165 raw_string_ostream os(platformNames); 166 interleave( 167 platformInfos, os, 168 [&](const PlatformInfo &info) { 169 os << getPlatformName(info.target.Platform); 170 }, 171 "/"); 172 error(toString(input) + " has platform " + platformNames + 173 Twine(", which is different from target platform ") + 174 getPlatformName(config->platform())); 175 return false; 176 } 177 178 if (it->minimum > config->platformInfo.minimum) 179 warn(toString(input) + " has version " + it->minimum.getAsString() + 180 ", which is newer than target minimum of " + 181 config->platformInfo.minimum.getAsString()); 182 183 return true; 184 } 185 186 // This cache mostly exists to store system libraries (and .tbds) as they're 187 // loaded, rather than the input archives, which are already cached at a higher 188 // level, and other files like the filelist that are only read once. 189 // Theoretically this caching could be more efficient by hoisting it, but that 190 // would require altering many callers to track the state. 191 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 192 // Open a given file path and return it as a memory-mapped file. 193 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 194 CachedHashStringRef key(path); 195 auto entry = cachedReads.find(key); 196 if (entry != cachedReads.end()) 197 return entry->second; 198 199 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 200 if (std::error_code ec = mbOrErr.getError()) { 201 error("cannot open " + path + ": " + ec.message()); 202 return None; 203 } 204 205 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 206 MemoryBufferRef mbref = mb->getMemBufferRef(); 207 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 208 209 // If this is a regular non-fat file, return it. 210 const char *buf = mbref.getBufferStart(); 211 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 212 if (mbref.getBufferSize() < sizeof(uint32_t) || 213 read32be(&hdr->magic) != FAT_MAGIC) { 214 if (tar) 215 tar->append(relativeToRoot(path), mbref.getBuffer()); 216 return cachedReads[key] = mbref; 217 } 218 219 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 220 221 // Object files and archive files may be fat files, which contain multiple 222 // real files for different CPU ISAs. Here, we search for a file that matches 223 // with the current link target and returns it as a MemoryBufferRef. 224 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 225 226 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 227 if (reinterpret_cast<const char *>(arch + i + 1) > 228 buf + mbref.getBufferSize()) { 229 error(path + ": fat_arch struct extends beyond end of file"); 230 return None; 231 } 232 233 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 234 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 235 continue; 236 237 uint32_t offset = read32be(&arch[i].offset); 238 uint32_t size = read32be(&arch[i].size); 239 if (offset + size > mbref.getBufferSize()) 240 error(path + ": slice extends beyond end of file"); 241 if (tar) 242 tar->append(relativeToRoot(path), mbref.getBuffer()); 243 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 244 path.copy(bAlloc)); 245 } 246 247 error("unable to find matching architecture in " + path); 248 return None; 249 } 250 251 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 252 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 253 254 // Some sections comprise of fixed-size records, so instead of splitting them at 255 // symbol boundaries, we split them based on size. Records are distinct from 256 // literals in that they may contain references to other sections, instead of 257 // being leaf nodes in the InputSection graph. 258 // 259 // Note that "record" is a term I came up with. In contrast, "literal" is a term 260 // used by the Mach-O format. 261 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 262 if (name == section_names::compactUnwind) { 263 if (segname == segment_names::ld) 264 return target->wordSize == 8 ? 32 : 20; 265 } 266 if (!config->dedupLiterals) 267 return {}; 268 269 if (name == section_names::cfString && segname == segment_names::data) 270 return target->wordSize == 8 ? 32 : 16; 271 272 if (config->icfLevel == ICFLevel::none) 273 return {}; 274 275 if (name == section_names::objcClassRefs && segname == segment_names::data) 276 return target->wordSize; 277 return {}; 278 } 279 280 static Error parseCallGraph(ArrayRef<uint8_t> data, 281 std::vector<CallGraphEntry> &callGraph) { 282 TimeTraceScope timeScope("Parsing call graph section"); 283 BinaryStreamReader reader(data, support::little); 284 while (!reader.empty()) { 285 uint32_t fromIndex, toIndex; 286 uint64_t count; 287 if (Error err = reader.readInteger(fromIndex)) 288 return err; 289 if (Error err = reader.readInteger(toIndex)) 290 return err; 291 if (Error err = reader.readInteger(count)) 292 return err; 293 callGraph.emplace_back(fromIndex, toIndex, count); 294 } 295 return Error::success(); 296 } 297 298 // Parse the sequence of sections within a single LC_SEGMENT(_64). 299 // Split each section into subsections. 300 template <class SectionHeader> 301 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 302 sections.reserve(sectionHeaders.size()); 303 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 304 305 for (const SectionHeader &sec : sectionHeaders) { 306 StringRef name = 307 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 308 StringRef segname = 309 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 310 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 311 if (sec.align >= 32) { 312 error("alignment " + std::to_string(sec.align) + " of section " + name + 313 " is too large"); 314 continue; 315 } 316 Section §ion = *sections.back(); 317 uint32_t align = 1 << sec.align; 318 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 319 : buf + sec.offset, 320 static_cast<size_t>(sec.size)}; 321 322 auto splitRecords = [&](int recordSize) -> void { 323 if (data.empty()) 324 return; 325 Subsections &subsections = section.subsections; 326 subsections.reserve(data.size() / recordSize); 327 for (uint64_t off = 0; off < data.size(); off += recordSize) { 328 auto *isec = make<ConcatInputSection>( 329 section, data.slice(off, recordSize), align); 330 subsections.push_back({off, isec}); 331 } 332 section.doneSplitting = true; 333 }; 334 335 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 336 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 337 if (sec.nreloc && config->dedupLiterals) 338 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 339 sec.sectname + 340 ", so LLD cannot deduplicate literals. Try re-running without " 341 "--deduplicate-literals."); 342 343 InputSection *isec; 344 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 345 isec = make<CStringInputSection>(section, data, align); 346 // FIXME: parallelize this? 347 cast<CStringInputSection>(isec)->splitIntoPieces(); 348 } else { 349 isec = make<WordLiteralInputSection>(section, data, align); 350 } 351 section.subsections.push_back({0, isec}); 352 } else if (auto recordSize = getRecordSize(segname, name)) { 353 splitRecords(*recordSize); 354 } else if (name == section_names::ehFrame && 355 segname == segment_names::text) { 356 splitEhFrames(data, *sections.back()); 357 } else if (segname == segment_names::llvm) { 358 if (config->callGraphProfileSort && name == section_names::cgProfile) 359 checkError(parseCallGraph(data, callGraph)); 360 // ld64 does not appear to emit contents from sections within the __LLVM 361 // segment. Symbols within those sections point to bitcode metadata 362 // instead of actual symbols. Global symbols within those sections could 363 // have the same name without causing duplicate symbol errors. To avoid 364 // spurious duplicate symbol errors, we do not parse these sections. 365 // TODO: Evaluate whether the bitcode metadata is needed. 366 } else if (name == section_names::objCImageInfo && 367 segname == segment_names::data) { 368 objCImageInfo = data; 369 } else { 370 if (name == section_names::addrSig) 371 addrSigSection = sections.back(); 372 373 auto *isec = make<ConcatInputSection>(section, data, align); 374 if (isDebugSection(isec->getFlags()) && 375 isec->getSegName() == segment_names::dwarf) { 376 // Instead of emitting DWARF sections, we emit STABS symbols to the 377 // object files that contain them. We filter them out early to avoid 378 // parsing their relocations unnecessarily. 379 debugSections.push_back(isec); 380 } else { 381 section.subsections.push_back({0, isec}); 382 } 383 } 384 } 385 } 386 387 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) { 388 EhReader reader(this, data, /*dataOff=*/0); 389 size_t off = 0; 390 while (off < reader.size()) { 391 uint64_t frameOff = off; 392 uint64_t length = reader.readLength(&off); 393 if (length == 0) 394 break; 395 uint64_t fullLength = length + (off - frameOff); 396 off += length; 397 // We hard-code an alignment of 1 here because we don't actually want our 398 // EH frames to be aligned to the section alignment. EH frame decoders don't 399 // expect this alignment. Moreover, each EH frame must start where the 400 // previous one ends, and where it ends is indicated by the length field. 401 // Unless we update the length field (troublesome), we should keep the 402 // alignment to 1. 403 // Note that we still want to preserve the alignment of the overall section, 404 // just not of the individual EH frames. 405 ehFrameSection.subsections.push_back( 406 {frameOff, make<ConcatInputSection>(ehFrameSection, 407 data.slice(frameOff, fullLength), 408 /*align=*/1)}); 409 } 410 ehFrameSection.doneSplitting = true; 411 } 412 413 template <class T> 414 static Section *findContainingSection(const std::vector<Section *> §ions, 415 T *offset) { 416 static_assert(std::is_same<uint64_t, T>::value || 417 std::is_same<uint32_t, T>::value, 418 "unexpected type for offset"); 419 auto it = std::prev(llvm::upper_bound( 420 sections, *offset, 421 [](uint64_t value, const Section *sec) { return value < sec->addr; })); 422 *offset -= (*it)->addr; 423 return *it; 424 } 425 426 // Find the subsection corresponding to the greatest section offset that is <= 427 // that of the given offset. 428 // 429 // offset: an offset relative to the start of the original InputSection (before 430 // any subsection splitting has occurred). It will be updated to represent the 431 // same location as an offset relative to the start of the containing 432 // subsection. 433 template <class T> 434 static InputSection *findContainingSubsection(const Section §ion, 435 T *offset) { 436 static_assert(std::is_same<uint64_t, T>::value || 437 std::is_same<uint32_t, T>::value, 438 "unexpected type for offset"); 439 auto it = std::prev(llvm::upper_bound( 440 section.subsections, *offset, 441 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 442 *offset -= it->offset; 443 return it->isec; 444 } 445 446 // Find a symbol at offset `off` within `isec`. 447 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 448 uint64_t off) { 449 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 450 return d->value < off; 451 }); 452 // The offset should point at the exact address of a symbol (with no addend.) 453 if (it == isec->symbols.end() || (*it)->value != off) { 454 assert(isec->wasCoalesced); 455 return nullptr; 456 } 457 return *it; 458 } 459 460 // Linker optimization hints mark a sequence of instructions used for 461 // synthesizing an address which that be transformed into a faster sequence. The 462 // transformations depend on conditions that are determined at link time, like 463 // the distance to the referenced symbol or its alignment. 464 // 465 // Each hint has a type and refers to 2 or 3 instructions. Each of those 466 // instructions must have a corresponding relocation. After addresses have been 467 // finalized and relocations have been performed, we check if the requirements 468 // hold, and perform the optimizations if they do. 469 // 470 // Similar linker relaxations exist for ELF as well, with the difference being 471 // that the explicit marking allows for the relaxation of non-consecutive 472 // relocations too. 473 // 474 // The specific types of hints are documented in Arch/ARM64.cpp 475 void ObjFile::parseOptimizationHints(ArrayRef<uint8_t> data) { 476 auto expectedArgCount = [](uint8_t type) { 477 switch (type) { 478 case LOH_ARM64_ADRP_ADRP: 479 case LOH_ARM64_ADRP_LDR: 480 case LOH_ARM64_ADRP_ADD: 481 case LOH_ARM64_ADRP_LDR_GOT: 482 return 2; 483 case LOH_ARM64_ADRP_ADD_LDR: 484 case LOH_ARM64_ADRP_ADD_STR: 485 case LOH_ARM64_ADRP_LDR_GOT_LDR: 486 case LOH_ARM64_ADRP_LDR_GOT_STR: 487 return 3; 488 } 489 return -1; 490 }; 491 492 // Each hint contains at least 4 ULEB128-encoded fields, so in the worst case, 493 // there are data.size() / 4 LOHs. It's a huge overestimation though, as 494 // offsets are unlikely to fall in the 0-127 byte range, so we pre-allocate 495 // half as much. 496 optimizationHints.reserve(data.size() / 8); 497 498 for (const uint8_t *p = data.begin(); p < data.end();) { 499 const ptrdiff_t inputOffset = p - data.begin(); 500 unsigned int n = 0; 501 uint8_t type = decodeULEB128(p, &n, data.end()); 502 p += n; 503 504 // An entry of type 0 terminates the list. 505 if (type == 0) 506 break; 507 508 int expectedCount = expectedArgCount(type); 509 if (LLVM_UNLIKELY(expectedCount == -1)) { 510 error("Linker optimization hint at offset " + Twine(inputOffset) + 511 " has unknown type " + Twine(type)); 512 return; 513 } 514 515 uint8_t argCount = decodeULEB128(p, &n, data.end()); 516 p += n; 517 518 if (LLVM_UNLIKELY(argCount != expectedCount)) { 519 error("Linker optimization hint at offset " + Twine(inputOffset) + 520 " has " + Twine(argCount) + " arguments instead of the expected " + 521 Twine(expectedCount)); 522 return; 523 } 524 525 uint64_t offset0 = decodeULEB128(p, &n, data.end()); 526 p += n; 527 528 int16_t delta[2]; 529 for (int i = 0; i < argCount - 1; ++i) { 530 uint64_t address = decodeULEB128(p, &n, data.end()); 531 p += n; 532 int64_t d = address - offset0; 533 if (LLVM_UNLIKELY(d > std::numeric_limits<int16_t>::max() || 534 d < std::numeric_limits<int16_t>::min())) { 535 error("Linker optimization hint at offset " + Twine(inputOffset) + 536 " has addresses too far apart"); 537 return; 538 } 539 delta[i] = d; 540 } 541 542 optimizationHints.push_back({offset0, {delta[0], delta[1]}, type}); 543 } 544 545 // We sort the per-object vector of optimization hints so each section only 546 // needs to hold an ArrayRef to a contiguous range of hints. 547 llvm::sort(optimizationHints, 548 [](const OptimizationHint &a, const OptimizationHint &b) { 549 return a.offset0 < b.offset0; 550 }); 551 552 auto section = sections.begin(); 553 auto subsection = (*section)->subsections.begin(); 554 uint64_t subsectionBase = 0; 555 uint64_t subsectionEnd = 0; 556 557 auto updateAddr = [&]() { 558 subsectionBase = (*section)->addr + subsection->offset; 559 subsectionEnd = subsectionBase + subsection->isec->getSize(); 560 }; 561 562 auto advanceSubsection = [&]() { 563 if (section == sections.end()) 564 return; 565 ++subsection; 566 while (subsection == (*section)->subsections.end()) { 567 ++section; 568 if (section == sections.end()) 569 return; 570 subsection = (*section)->subsections.begin(); 571 } 572 }; 573 574 updateAddr(); 575 auto hintStart = optimizationHints.begin(); 576 for (auto hintEnd = hintStart, end = optimizationHints.end(); hintEnd != end; 577 ++hintEnd) { 578 if (hintEnd->offset0 >= subsectionEnd) { 579 subsection->isec->optimizationHints = 580 ArrayRef<OptimizationHint>(&*hintStart, hintEnd - hintStart); 581 582 hintStart = hintEnd; 583 while (hintStart->offset0 >= subsectionEnd) { 584 advanceSubsection(); 585 if (section == sections.end()) 586 break; 587 updateAddr(); 588 assert(hintStart->offset0 >= subsectionBase); 589 } 590 } 591 592 hintEnd->offset0 -= subsectionBase; 593 for (int i = 0, count = expectedArgCount(hintEnd->type); i < count - 1; 594 ++i) { 595 if (LLVM_UNLIKELY( 596 hintEnd->delta[i] < -static_cast<int64_t>(hintEnd->offset0) || 597 hintEnd->delta[i] >= 598 static_cast<int64_t>(subsectionEnd - hintEnd->offset0))) { 599 error("Linker optimization hint spans multiple sections"); 600 return; 601 } 602 } 603 } 604 if (section != sections.end()) 605 subsection->isec->optimizationHints = ArrayRef<OptimizationHint>( 606 &*hintStart, optimizationHints.end() - hintStart); 607 } 608 609 template <class SectionHeader> 610 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 611 relocation_info rel) { 612 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 613 bool valid = true; 614 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 615 valid = false; 616 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 617 std::to_string(rel.r_address) + " of " + sec.segname + "," + 618 sec.sectname + " in " + toString(file)) 619 .str(); 620 }; 621 622 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 623 error(message("must be extern")); 624 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 625 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 626 "be PC-relative")); 627 if (isThreadLocalVariables(sec.flags) && 628 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 629 error(message("not allowed in thread-local section, must be UNSIGNED")); 630 if (rel.r_length < 2 || rel.r_length > 3 || 631 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 632 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 633 error(message("has width " + std::to_string(1 << rel.r_length) + 634 " bytes, but must be " + 635 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 636 " bytes")); 637 } 638 return valid; 639 } 640 641 template <class SectionHeader> 642 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 643 const SectionHeader &sec, Section §ion) { 644 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 645 ArrayRef<relocation_info> relInfos( 646 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 647 648 Subsections &subsections = section.subsections; 649 auto subsecIt = subsections.rbegin(); 650 for (size_t i = 0; i < relInfos.size(); i++) { 651 // Paired relocations serve as Mach-O's method for attaching a 652 // supplemental datum to a primary relocation record. ELF does not 653 // need them because the *_RELOC_RELA records contain the extra 654 // addend field, vs. *_RELOC_REL which omit the addend. 655 // 656 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 657 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 658 // datum for each is a symbolic address. The result is the offset 659 // between two addresses. 660 // 661 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 662 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 663 // base symbolic address. 664 // 665 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 666 // addend into the instruction stream. On X86, a relocatable address 667 // field always occupies an entire contiguous sequence of byte(s), 668 // so there is no need to merge opcode bits with address 669 // bits. Therefore, it's easy and convenient to store addends in the 670 // instruction-stream bytes that would otherwise contain zeroes. By 671 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 672 // address bits so that bitwise arithmetic is necessary to extract 673 // and insert them. Storing addends in the instruction stream is 674 // possible, but inconvenient and more costly at link time. 675 676 relocation_info relInfo = relInfos[i]; 677 bool isSubtrahend = 678 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 679 int64_t pairedAddend = 0; 680 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 681 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 682 relInfo = relInfos[++i]; 683 } 684 assert(i < relInfos.size()); 685 if (!validateRelocationInfo(this, sec, relInfo)) 686 continue; 687 if (relInfo.r_address & R_SCATTERED) 688 fatal("TODO: Scattered relocations not supported"); 689 690 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 691 assert(!(embeddedAddend && pairedAddend)); 692 int64_t totalAddend = pairedAddend + embeddedAddend; 693 Reloc r; 694 r.type = relInfo.r_type; 695 r.pcrel = relInfo.r_pcrel; 696 r.length = relInfo.r_length; 697 r.offset = relInfo.r_address; 698 if (relInfo.r_extern) { 699 r.referent = symbols[relInfo.r_symbolnum]; 700 r.addend = isSubtrahend ? 0 : totalAddend; 701 } else { 702 assert(!isSubtrahend); 703 const SectionHeader &referentSecHead = 704 sectionHeaders[relInfo.r_symbolnum - 1]; 705 uint64_t referentOffset; 706 if (relInfo.r_pcrel) { 707 // The implicit addend for pcrel section relocations is the pcrel offset 708 // in terms of the addresses in the input file. Here we adjust it so 709 // that it describes the offset from the start of the referent section. 710 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 711 // have pcrel section relocations. We may want to factor this out into 712 // the arch-specific .cpp file. 713 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 714 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 715 referentSecHead.addr; 716 } else { 717 // The addend for a non-pcrel relocation is its absolute address. 718 referentOffset = totalAddend - referentSecHead.addr; 719 } 720 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 721 &referentOffset); 722 r.addend = referentOffset; 723 } 724 725 // Find the subsection that this relocation belongs to. 726 // Though not required by the Mach-O format, clang and gcc seem to emit 727 // relocations in order, so let's take advantage of it. However, ld64 emits 728 // unsorted relocations (in `-r` mode), so we have a fallback for that 729 // uncommon case. 730 InputSection *subsec; 731 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 732 ++subsecIt; 733 if (subsecIt == subsections.rend() || 734 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 735 subsec = findContainingSubsection(section, &r.offset); 736 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 737 // for the other relocations. 738 subsecIt = subsections.rend(); 739 } else { 740 subsec = subsecIt->isec; 741 r.offset -= subsecIt->offset; 742 } 743 subsec->relocs.push_back(r); 744 745 if (isSubtrahend) { 746 relocation_info minuendInfo = relInfos[++i]; 747 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 748 // attached to the same address. 749 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 750 relInfo.r_address == minuendInfo.r_address); 751 Reloc p; 752 p.type = minuendInfo.r_type; 753 if (minuendInfo.r_extern) { 754 p.referent = symbols[minuendInfo.r_symbolnum]; 755 p.addend = totalAddend; 756 } else { 757 uint64_t referentOffset = 758 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 759 p.referent = findContainingSubsection( 760 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 761 p.addend = referentOffset; 762 } 763 subsec->relocs.push_back(p); 764 } 765 } 766 } 767 768 template <class NList> 769 static macho::Symbol *createDefined(const NList &sym, StringRef name, 770 InputSection *isec, uint64_t value, 771 uint64_t size, bool forceHidden) { 772 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 773 // N_EXT: Global symbols. These go in the symbol table during the link, 774 // and also in the export table of the output so that the dynamic 775 // linker sees them. 776 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 777 // symbol table during the link so that duplicates are 778 // either reported (for non-weak symbols) or merged 779 // (for weak symbols), but they do not go in the export 780 // table of the output. 781 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 782 // object files) may produce them. LLD does not yet support -r. 783 // These are translation-unit scoped, identical to the `0` case. 784 // 0: Translation-unit scoped. These are not in the symbol table during 785 // link, and not in the export table of the output either. 786 bool isWeakDefCanBeHidden = 787 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 788 789 if (sym.n_type & N_EXT) { 790 // -load_hidden makes us treat global symbols as linkage unit scoped. 791 // Duplicates are reported but the symbol does not go in the export trie. 792 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 793 794 // lld's behavior for merging symbols is slightly different from ld64: 795 // ld64 picks the winning symbol based on several criteria (see 796 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 797 // just merges metadata and keeps the contents of the first symbol 798 // with that name (see SymbolTable::addDefined). For: 799 // * inline function F in a TU built with -fvisibility-inlines-hidden 800 // * and inline function F in another TU built without that flag 801 // ld64 will pick the one from the file built without 802 // -fvisibility-inlines-hidden. 803 // lld will instead pick the one listed first on the link command line and 804 // give it visibility as if the function was built without 805 // -fvisibility-inlines-hidden. 806 // If both functions have the same contents, this will have the same 807 // behavior. If not, it won't, but the input had an ODR violation in 808 // that case. 809 // 810 // Similarly, merging a symbol 811 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 812 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 813 // should produce one 814 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 815 // with ld64's semantics, because it means the non-private-extern 816 // definition will continue to take priority if more private extern 817 // definitions are encountered. With lld's semantics there's no observable 818 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 819 // that's privateExtern -- neither makes it into the dynamic symbol table, 820 // unless the autohide symbol is explicitly exported. 821 // But if a symbol is both privateExtern and autohide then it can't 822 // be exported. 823 // So we nullify the autohide flag when privateExtern is present 824 // and promote the symbol to privateExtern when it is not already. 825 if (isWeakDefCanBeHidden && isPrivateExtern) 826 isWeakDefCanBeHidden = false; 827 else if (isWeakDefCanBeHidden) 828 isPrivateExtern = true; 829 return symtab->addDefined( 830 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 831 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 832 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 833 isWeakDefCanBeHidden); 834 } 835 assert(!isWeakDefCanBeHidden && 836 "weak_def_can_be_hidden on already-hidden symbol?"); 837 bool includeInSymtab = 838 !name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec); 839 return make<Defined>( 840 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 841 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, 842 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 843 sym.n_desc & N_NO_DEAD_STRIP); 844 } 845 846 // Absolute symbols are defined symbols that do not have an associated 847 // InputSection. They cannot be weak. 848 template <class NList> 849 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 850 StringRef name, bool forceHidden) { 851 if (sym.n_type & N_EXT) { 852 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 853 return symtab->addDefined( 854 name, file, nullptr, sym.n_value, /*size=*/0, 855 /*isWeakDef=*/false, isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 856 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 857 /*isWeakDefCanBeHidden=*/false); 858 } 859 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 860 /*isWeakDef=*/false, 861 /*isExternal=*/false, /*isPrivateExtern=*/false, 862 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF, 863 /*isReferencedDynamically=*/false, 864 sym.n_desc & N_NO_DEAD_STRIP); 865 } 866 867 template <class NList> 868 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 869 StringRef name) { 870 uint8_t type = sym.n_type & N_TYPE; 871 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 872 switch (type) { 873 case N_UNDF: 874 return sym.n_value == 0 875 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 876 : symtab->addCommon(name, this, sym.n_value, 877 1 << GET_COMM_ALIGN(sym.n_desc), 878 isPrivateExtern); 879 case N_ABS: 880 return createAbsolute(sym, this, name, forceHidden); 881 case N_PBUD: 882 case N_INDR: 883 error("TODO: support symbols of type " + std::to_string(type)); 884 return nullptr; 885 case N_SECT: 886 llvm_unreachable( 887 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 888 default: 889 llvm_unreachable("invalid symbol type"); 890 } 891 } 892 893 template <class NList> static bool isUndef(const NList &sym) { 894 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 895 } 896 897 template <class LP> 898 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 899 ArrayRef<typename LP::nlist> nList, 900 const char *strtab, bool subsectionsViaSymbols) { 901 using NList = typename LP::nlist; 902 903 // Groups indices of the symbols by the sections that contain them. 904 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 905 symbols.resize(nList.size()); 906 SmallVector<unsigned, 32> undefineds; 907 for (uint32_t i = 0; i < nList.size(); ++i) { 908 const NList &sym = nList[i]; 909 910 // Ignore debug symbols for now. 911 // FIXME: may need special handling. 912 if (sym.n_type & N_STAB) 913 continue; 914 915 if ((sym.n_type & N_TYPE) == N_SECT) { 916 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 917 // parseSections() may have chosen not to parse this section. 918 if (subsections.empty()) 919 continue; 920 symbolsBySection[sym.n_sect - 1].push_back(i); 921 } else if (isUndef(sym)) { 922 undefineds.push_back(i); 923 } else { 924 symbols[i] = parseNonSectionSymbol(sym, StringRef(strtab + sym.n_strx)); 925 } 926 } 927 928 for (size_t i = 0; i < sections.size(); ++i) { 929 Subsections &subsections = sections[i]->subsections; 930 if (subsections.empty()) 931 continue; 932 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 933 uint64_t sectionAddr = sectionHeaders[i].addr; 934 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 935 936 // Some sections have already been split into subsections during 937 // parseSections(), so we simply need to match Symbols to the corresponding 938 // subsection here. 939 if (sections[i]->doneSplitting) { 940 for (size_t j = 0; j < symbolIndices.size(); ++j) { 941 uint32_t symIndex = symbolIndices[j]; 942 const NList &sym = nList[symIndex]; 943 StringRef name = strtab + sym.n_strx; 944 uint64_t symbolOffset = sym.n_value - sectionAddr; 945 InputSection *isec = 946 findContainingSubsection(*sections[i], &symbolOffset); 947 if (symbolOffset != 0) { 948 error(toString(*sections[i]) + ": symbol " + name + 949 " at misaligned offset"); 950 continue; 951 } 952 symbols[symIndex] = 953 createDefined(sym, name, isec, 0, isec->getSize(), forceHidden); 954 } 955 continue; 956 } 957 sections[i]->doneSplitting = true; 958 959 // Calculate symbol sizes and create subsections by splitting the sections 960 // along symbol boundaries. 961 // We populate subsections by repeatedly splitting the last (highest 962 // address) subsection. 963 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 964 return nList[lhs].n_value < nList[rhs].n_value; 965 }); 966 for (size_t j = 0; j < symbolIndices.size(); ++j) { 967 uint32_t symIndex = symbolIndices[j]; 968 const NList &sym = nList[symIndex]; 969 StringRef name = strtab + sym.n_strx; 970 Subsection &subsec = subsections.back(); 971 InputSection *isec = subsec.isec; 972 973 uint64_t subsecAddr = sectionAddr + subsec.offset; 974 size_t symbolOffset = sym.n_value - subsecAddr; 975 uint64_t symbolSize = 976 j + 1 < symbolIndices.size() 977 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 978 : isec->data.size() - symbolOffset; 979 // There are 4 cases where we do not need to create a new subsection: 980 // 1. If the input file does not use subsections-via-symbols. 981 // 2. Multiple symbols at the same address only induce one subsection. 982 // (The symbolOffset == 0 check covers both this case as well as 983 // the first loop iteration.) 984 // 3. Alternative entry points do not induce new subsections. 985 // 4. If we have a literal section (e.g. __cstring and __literal4). 986 if (!subsectionsViaSymbols || symbolOffset == 0 || 987 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 988 symbols[symIndex] = createDefined(sym, name, isec, symbolOffset, 989 symbolSize, forceHidden); 990 continue; 991 } 992 auto *concatIsec = cast<ConcatInputSection>(isec); 993 994 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 995 nextIsec->wasCoalesced = false; 996 if (isZeroFill(isec->getFlags())) { 997 // Zero-fill sections have NULL data.data() non-zero data.size() 998 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 999 isec->data = {nullptr, symbolOffset}; 1000 } else { 1001 nextIsec->data = isec->data.slice(symbolOffset); 1002 isec->data = isec->data.slice(0, symbolOffset); 1003 } 1004 1005 // By construction, the symbol will be at offset zero in the new 1006 // subsection. 1007 symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0, 1008 symbolSize, forceHidden); 1009 // TODO: ld64 appears to preserve the original alignment as well as each 1010 // subsection's offset from the last aligned address. We should consider 1011 // emulating that behavior. 1012 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 1013 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 1014 } 1015 } 1016 1017 // Undefined symbols can trigger recursive fetch from Archives due to 1018 // LazySymbols. Process defined symbols first so that the relative order 1019 // between a defined symbol and an undefined symbol does not change the 1020 // symbol resolution behavior. In addition, a set of interconnected symbols 1021 // will all be resolved to the same file, instead of being resolved to 1022 // different files. 1023 for (unsigned i : undefineds) { 1024 const NList &sym = nList[i]; 1025 StringRef name = strtab + sym.n_strx; 1026 symbols[i] = parseNonSectionSymbol(sym, name); 1027 } 1028 } 1029 1030 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 1031 StringRef sectName) 1032 : InputFile(OpaqueKind, mb) { 1033 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1034 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 1035 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 1036 sectName.take_front(16), 1037 /*flags=*/0, /*addr=*/0)); 1038 Section §ion = *sections.back(); 1039 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 1040 isec->live = true; 1041 section.subsections.push_back({0, isec}); 1042 } 1043 1044 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 1045 bool lazy, bool forceHidden) 1046 : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden) { 1047 this->archiveName = std::string(archiveName); 1048 if (lazy) { 1049 if (target->wordSize == 8) 1050 parseLazy<LP64>(); 1051 else 1052 parseLazy<ILP32>(); 1053 } else { 1054 if (target->wordSize == 8) 1055 parse<LP64>(); 1056 else 1057 parse<ILP32>(); 1058 } 1059 } 1060 1061 template <class LP> void ObjFile::parse() { 1062 using Header = typename LP::mach_header; 1063 using SegmentCommand = typename LP::segment_command; 1064 using SectionHeader = typename LP::section; 1065 using NList = typename LP::nlist; 1066 1067 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1068 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 1069 1070 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 1071 if (arch != config->arch()) { 1072 auto msg = config->errorForArchMismatch 1073 ? static_cast<void (*)(const Twine &)>(error) 1074 : warn; 1075 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 1076 " which is incompatible with target architecture " + 1077 getArchitectureName(config->arch())); 1078 return; 1079 } 1080 1081 if (!checkCompatibility(this)) 1082 return; 1083 1084 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 1085 StringRef data{reinterpret_cast<const char *>(cmd + 1), 1086 cmd->cmdsize - sizeof(linker_option_command)}; 1087 parseLCLinkerOption(this, cmd->count, data); 1088 } 1089 1090 ArrayRef<SectionHeader> sectionHeaders; 1091 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 1092 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 1093 sectionHeaders = ArrayRef<SectionHeader>{ 1094 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 1095 parseSections(sectionHeaders); 1096 } 1097 1098 // TODO: Error on missing LC_SYMTAB? 1099 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 1100 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1101 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1102 c->nsyms); 1103 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1104 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 1105 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 1106 } 1107 1108 // The relocations may refer to the symbols, so we parse them after we have 1109 // parsed all the symbols. 1110 for (size_t i = 0, n = sections.size(); i < n; ++i) 1111 if (!sections[i]->subsections.empty()) 1112 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 1113 1114 if (!config->ignoreOptimizationHints) 1115 if (auto *cmd = findCommand<linkedit_data_command>( 1116 hdr, LC_LINKER_OPTIMIZATION_HINT)) 1117 parseOptimizationHints({buf + cmd->dataoff, cmd->datasize}); 1118 1119 parseDebugInfo(); 1120 1121 Section *ehFrameSection = nullptr; 1122 Section *compactUnwindSection = nullptr; 1123 for (Section *sec : sections) { 1124 Section **s = StringSwitch<Section **>(sec->name) 1125 .Case(section_names::compactUnwind, &compactUnwindSection) 1126 .Case(section_names::ehFrame, &ehFrameSection) 1127 .Default(nullptr); 1128 if (s) 1129 *s = sec; 1130 } 1131 if (compactUnwindSection) 1132 registerCompactUnwind(*compactUnwindSection); 1133 if (ehFrameSection) 1134 registerEhFrames(*ehFrameSection); 1135 } 1136 1137 template <class LP> void ObjFile::parseLazy() { 1138 using Header = typename LP::mach_header; 1139 using NList = typename LP::nlist; 1140 1141 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1142 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 1143 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 1144 if (!cmd) 1145 return; 1146 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1147 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1148 c->nsyms); 1149 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1150 symbols.resize(nList.size()); 1151 for (auto it : llvm::enumerate(nList)) { 1152 const NList &sym = it.value(); 1153 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 1154 // TODO: Bound checking 1155 StringRef name = strtab + sym.n_strx; 1156 symbols[it.index()] = symtab->addLazyObject(name, *this); 1157 if (!lazy) 1158 break; 1159 } 1160 } 1161 } 1162 1163 void ObjFile::parseDebugInfo() { 1164 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 1165 if (!dObj) 1166 return; 1167 1168 // We do not re-use the context from getDwarf() here as that function 1169 // constructs an expensive DWARFCache object. 1170 auto *ctx = make<DWARFContext>( 1171 std::move(dObj), "", 1172 [&](Error err) { 1173 warn(toString(this) + ": " + toString(std::move(err))); 1174 }, 1175 [&](Error warning) { 1176 warn(toString(this) + ": " + toString(std::move(warning))); 1177 }); 1178 1179 // TODO: Since object files can contain a lot of DWARF info, we should verify 1180 // that we are parsing just the info we need 1181 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 1182 // FIXME: There can be more than one compile unit per object file. See 1183 // PR48637. 1184 auto it = units.begin(); 1185 compileUnit = it != units.end() ? it->get() : nullptr; 1186 } 1187 1188 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 1189 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1190 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 1191 if (!cmd) 1192 return {}; 1193 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 1194 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 1195 c->datasize / sizeof(data_in_code_entry)}; 1196 } 1197 1198 // Create pointers from symbols to their associated compact unwind entries. 1199 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { 1200 for (const Subsection &subsection : compactUnwindSection.subsections) { 1201 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 1202 // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed 1203 // their addends in its data. Thus if ICF operated naively and compared the 1204 // entire contents of each CUE, entries with identical unwind info but e.g. 1205 // belonging to different functions would never be considered equivalent. To 1206 // work around this problem, we remove some parts of the data containing the 1207 // embedded addends. In particular, we remove the function address and LSDA 1208 // pointers. Since these locations are at the start and end of the entry, 1209 // we can do this using a simple, efficient slice rather than performing a 1210 // copy. We are not losing any information here because the embedded 1211 // addends have already been parsed in the corresponding Reloc structs. 1212 // 1213 // Removing these pointers would not be safe if they were pointers to 1214 // absolute symbols. In that case, there would be no corresponding 1215 // relocation. However, (AFAIK) MC cannot emit references to absolute 1216 // symbols for either the function address or the LSDA. However, it *can* do 1217 // so for the personality pointer, so we are not slicing that field away. 1218 // 1219 // Note that we do not adjust the offsets of the corresponding relocations; 1220 // instead, we rely on `relocateCompactUnwind()` to correctly handle these 1221 // truncated input sections. 1222 isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize); 1223 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t)); 1224 // llvm-mc omits CU entries for functions that need DWARF encoding, but 1225 // `ld -r` doesn't. We can ignore them because we will re-synthesize these 1226 // CU entries from the DWARF info during the output phase. 1227 if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding) 1228 continue; 1229 1230 ConcatInputSection *referentIsec; 1231 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 1232 Reloc &r = *it; 1233 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 1234 if (r.offset != 0) { 1235 ++it; 1236 continue; 1237 } 1238 uint64_t add = r.addend; 1239 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1240 // Check whether the symbol defined in this file is the prevailing one. 1241 // Skip if it is e.g. a weak def that didn't prevail. 1242 if (sym->getFile() != this) { 1243 ++it; 1244 continue; 1245 } 1246 add += sym->value; 1247 referentIsec = cast<ConcatInputSection>(sym->isec); 1248 } else { 1249 referentIsec = 1250 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1251 } 1252 // Unwind info lives in __DATA, and finalization of __TEXT will occur 1253 // before finalization of __DATA. Moreover, the finalization of unwind 1254 // info depends on the exact addresses that it references. So it is safe 1255 // for compact unwind to reference addresses in __TEXT, but not addresses 1256 // in any other segment. 1257 if (referentIsec->getSegName() != segment_names::text) 1258 error(isec->getLocation(r.offset) + " references section " + 1259 referentIsec->getName() + " which is not in segment __TEXT"); 1260 // The functionAddress relocations are typically section relocations. 1261 // However, unwind info operates on a per-symbol basis, so we search for 1262 // the function symbol here. 1263 Defined *d = findSymbolAtOffset(referentIsec, add); 1264 if (!d) { 1265 ++it; 1266 continue; 1267 } 1268 d->unwindEntry = isec; 1269 // Now that the symbol points to the unwind entry, we can remove the reloc 1270 // that points from the unwind entry back to the symbol. 1271 // 1272 // First, the symbol keeps the unwind entry alive (and not vice versa), so 1273 // this keeps dead-stripping simple. 1274 // 1275 // Moreover, it reduces the work that ICF needs to do to figure out if 1276 // functions with unwind info are foldable. 1277 // 1278 // However, this does make it possible for ICF to fold CUEs that point to 1279 // distinct functions (if the CUEs are otherwise identical). 1280 // UnwindInfoSection takes care of this by re-duplicating the CUEs so that 1281 // each one can hold a distinct functionAddress value. 1282 // 1283 // Given that clang emits relocations in reverse order of address, this 1284 // relocation should be at the end of the vector for most of our input 1285 // object files, so this erase() is typically an O(1) operation. 1286 it = isec->relocs.erase(it); 1287 } 1288 } 1289 } 1290 1291 struct CIE { 1292 macho::Symbol *personalitySymbol = nullptr; 1293 bool fdesHaveAug = false; 1294 uint8_t lsdaPtrSize = 0; // 0 => no LSDA 1295 uint8_t funcPtrSize = 0; 1296 }; 1297 1298 static uint8_t pointerEncodingToSize(uint8_t enc) { 1299 switch (enc & 0xf) { 1300 case dwarf::DW_EH_PE_absptr: 1301 return target->wordSize; 1302 case dwarf::DW_EH_PE_sdata4: 1303 return 4; 1304 case dwarf::DW_EH_PE_sdata8: 1305 // ld64 doesn't actually support sdata8, but this seems simple enough... 1306 return 8; 1307 default: 1308 return 0; 1309 }; 1310 } 1311 1312 static CIE parseCIE(const InputSection *isec, const EhReader &reader, 1313 size_t off) { 1314 // Handling the full generality of possible DWARF encodings would be a major 1315 // pain. We instead take advantage of our knowledge of how llvm-mc encodes 1316 // DWARF and handle just that. 1317 constexpr uint8_t expectedPersonalityEnc = 1318 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4; 1319 1320 CIE cie; 1321 uint8_t version = reader.readByte(&off); 1322 if (version != 1 && version != 3) 1323 fatal("Expected CIE version of 1 or 3, got " + Twine(version)); 1324 StringRef aug = reader.readString(&off); 1325 reader.skipLeb128(&off); // skip code alignment 1326 reader.skipLeb128(&off); // skip data alignment 1327 reader.skipLeb128(&off); // skip return address register 1328 reader.skipLeb128(&off); // skip aug data length 1329 uint64_t personalityAddrOff = 0; 1330 for (char c : aug) { 1331 switch (c) { 1332 case 'z': 1333 cie.fdesHaveAug = true; 1334 break; 1335 case 'P': { 1336 uint8_t personalityEnc = reader.readByte(&off); 1337 if (personalityEnc != expectedPersonalityEnc) 1338 reader.failOn(off, "unexpected personality encoding 0x" + 1339 Twine::utohexstr(personalityEnc)); 1340 personalityAddrOff = off; 1341 off += 4; 1342 break; 1343 } 1344 case 'L': { 1345 uint8_t lsdaEnc = reader.readByte(&off); 1346 cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc); 1347 if (cie.lsdaPtrSize == 0) 1348 reader.failOn(off, "unexpected LSDA encoding 0x" + 1349 Twine::utohexstr(lsdaEnc)); 1350 break; 1351 } 1352 case 'R': { 1353 uint8_t pointerEnc = reader.readByte(&off); 1354 cie.funcPtrSize = pointerEncodingToSize(pointerEnc); 1355 if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel)) 1356 reader.failOn(off, "unexpected pointer encoding 0x" + 1357 Twine::utohexstr(pointerEnc)); 1358 break; 1359 } 1360 default: 1361 break; 1362 } 1363 } 1364 if (personalityAddrOff != 0) { 1365 auto personalityRelocIt = 1366 llvm::find_if(isec->relocs, [=](const macho::Reloc &r) { 1367 return r.offset == personalityAddrOff; 1368 }); 1369 if (personalityRelocIt == isec->relocs.end()) 1370 reader.failOn(off, "Failed to locate relocation for personality symbol"); 1371 cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>(); 1372 } 1373 return cie; 1374 } 1375 1376 // EH frame target addresses may be encoded as pcrel offsets. However, instead 1377 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead. 1378 // This function recovers the target address from the subtractors, essentially 1379 // performing the inverse operation of EhRelocator. 1380 // 1381 // Concretely, we expect our relocations to write the value of `PC - 1382 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that 1383 // points to a symbol plus an addend. 1384 // 1385 // It is important that the minuend relocation point to a symbol within the 1386 // same section as the fixup value, since sections may get moved around. 1387 // 1388 // For example, for arm64, llvm-mc emits relocations for the target function 1389 // address like so: 1390 // 1391 // ltmp: 1392 // <CIE start> 1393 // ... 1394 // <CIE end> 1395 // ... multiple FDEs ... 1396 // <FDE start> 1397 // <target function address - (ltmp + pcrel offset)> 1398 // ... 1399 // 1400 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start` 1401 // will move to an earlier address, and `ltmp + pcrel offset` will no longer 1402 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize" 1403 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating 1404 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`. 1405 // 1406 // If `Invert` is set, then we instead expect `target_addr - PC` to be written 1407 // to `PC`. 1408 template <bool Invert = false> 1409 Defined * 1410 targetSymFromCanonicalSubtractor(const InputSection *isec, 1411 std::vector<macho::Reloc>::iterator relocIt) { 1412 macho::Reloc &subtrahend = *relocIt; 1413 macho::Reloc &minuend = *std::next(relocIt); 1414 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND)); 1415 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED)); 1416 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero 1417 // addend. 1418 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>()); 1419 Defined *target = 1420 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>()); 1421 if (!pcSym) { 1422 auto *targetIsec = 1423 cast<ConcatInputSection>(minuend.referent.get<InputSection *>()); 1424 target = findSymbolAtOffset(targetIsec, minuend.addend); 1425 } 1426 if (Invert) 1427 std::swap(pcSym, target); 1428 if (pcSym->isec == isec) { 1429 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset) 1430 fatal("invalid FDE relocation in __eh_frame"); 1431 } else { 1432 // Ensure the pcReloc points to a symbol within the current EH frame. 1433 // HACK: we should really verify that the original relocation's semantics 1434 // are preserved. In particular, we should have 1435 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't 1436 // have an easy way to access the offsets from this point in the code; some 1437 // refactoring is needed for that. 1438 macho::Reloc &pcReloc = Invert ? minuend : subtrahend; 1439 pcReloc.referent = isec->symbols[0]; 1440 assert(isec->symbols[0]->value == 0); 1441 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL); 1442 } 1443 return target; 1444 } 1445 1446 Defined *findSymbolAtAddress(const std::vector<Section *> §ions, 1447 uint64_t addr) { 1448 Section *sec = findContainingSection(sections, &addr); 1449 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr)); 1450 return findSymbolAtOffset(isec, addr); 1451 } 1452 1453 // For symbols that don't have compact unwind info, associate them with the more 1454 // general-purpose (and verbose) DWARF unwind info found in __eh_frame. 1455 // 1456 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a 1457 // description of its format. 1458 // 1459 // While parsing, we also look for what MC calls "abs-ified" relocations -- they 1460 // are relocations which are implicitly encoded as offsets in the section data. 1461 // We convert them into explicit Reloc structs so that the EH frames can be 1462 // handled just like a regular ConcatInputSection later in our output phase. 1463 // 1464 // We also need to handle the case where our input object file has explicit 1465 // relocations. This is the case when e.g. it's the output of `ld -r`. We only 1466 // look for the "abs-ified" relocation if an explicit relocation is absent. 1467 void ObjFile::registerEhFrames(Section &ehFrameSection) { 1468 DenseMap<const InputSection *, CIE> cieMap; 1469 for (const Subsection &subsec : ehFrameSection.subsections) { 1470 auto *isec = cast<ConcatInputSection>(subsec.isec); 1471 uint64_t isecOff = subsec.offset; 1472 1473 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure 1474 // that all EH frames have an associated symbol so that we can generate 1475 // subtractor relocs that reference them. 1476 if (isec->symbols.size() == 0) 1477 isec->symbols.push_back(make<Defined>( 1478 "EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0, 1479 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, 1480 /*includeInSymtab=*/false, /*isThumb=*/false, 1481 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false)); 1482 else if (isec->symbols[0]->value != 0) 1483 fatal("found symbol at unexpected offset in __eh_frame"); 1484 1485 EhReader reader(this, isec->data, subsec.offset); 1486 size_t dataOff = 0; // Offset from the start of the EH frame. 1487 reader.skipValidLength(&dataOff); // readLength() already validated this. 1488 // cieOffOff is the offset from the start of the EH frame to the cieOff 1489 // value, which is itself an offset from the current PC to a CIE. 1490 const size_t cieOffOff = dataOff; 1491 1492 EhRelocator ehRelocator(isec); 1493 auto cieOffRelocIt = llvm::find_if( 1494 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; }); 1495 InputSection *cieIsec = nullptr; 1496 if (cieOffRelocIt != isec->relocs.end()) { 1497 // We already have an explicit relocation for the CIE offset. 1498 cieIsec = 1499 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt) 1500 ->isec; 1501 dataOff += sizeof(uint32_t); 1502 } else { 1503 // If we haven't found a relocation, then the CIE offset is most likely 1504 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that 1505 // and generate a Reloc struct. 1506 uint32_t cieMinuend = reader.readU32(&dataOff); 1507 if (cieMinuend == 0) 1508 cieIsec = isec; 1509 else { 1510 uint32_t cieOff = isecOff + dataOff - cieMinuend; 1511 cieIsec = findContainingSubsection(ehFrameSection, &cieOff); 1512 if (cieIsec == nullptr) 1513 fatal("failed to find CIE"); 1514 } 1515 if (cieIsec != isec) 1516 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0], 1517 /*length=*/2); 1518 } 1519 if (cieIsec == isec) { 1520 cieMap[cieIsec] = parseCIE(isec, reader, dataOff); 1521 continue; 1522 } 1523 1524 assert(cieMap.count(cieIsec)); 1525 const CIE &cie = cieMap[cieIsec]; 1526 // Offset of the function address within the EH frame. 1527 const size_t funcAddrOff = dataOff; 1528 uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) + 1529 ehFrameSection.addr + isecOff + funcAddrOff; 1530 uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize); 1531 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame. 1532 Optional<uint64_t> lsdaAddrOpt; 1533 if (cie.fdesHaveAug) { 1534 reader.skipLeb128(&dataOff); 1535 lsdaAddrOff = dataOff; 1536 if (cie.lsdaPtrSize != 0) { 1537 uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize); 1538 if (lsdaOff != 0) // FIXME possible to test this? 1539 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff; 1540 } 1541 } 1542 1543 auto funcAddrRelocIt = isec->relocs.end(); 1544 auto lsdaAddrRelocIt = isec->relocs.end(); 1545 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { 1546 if (it->offset == funcAddrOff) 1547 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1548 else if (lsdaAddrOpt && it->offset == lsdaAddrOff) 1549 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1550 } 1551 1552 Defined *funcSym; 1553 if (funcAddrRelocIt != isec->relocs.end()) { 1554 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt); 1555 // Canonicalize the symbol. If there are multiple symbols at the same 1556 // address, we want both `registerEhFrame` and `registerCompactUnwind` 1557 // to register the unwind entry under same symbol. 1558 // This is not particularly efficient, but we should run into this case 1559 // infrequently (only when handling the output of `ld -r`). 1560 if (funcSym->isec) 1561 funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec), 1562 funcSym->value); 1563 } else { 1564 funcSym = findSymbolAtAddress(sections, funcAddr); 1565 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize); 1566 } 1567 // The symbol has been coalesced, or already has a compact unwind entry. 1568 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) { 1569 // We must prune unused FDEs for correctness, so we cannot rely on 1570 // -dead_strip being enabled. 1571 isec->live = false; 1572 continue; 1573 } 1574 1575 InputSection *lsdaIsec = nullptr; 1576 if (lsdaAddrRelocIt != isec->relocs.end()) { 1577 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec; 1578 } else if (lsdaAddrOpt) { 1579 uint64_t lsdaAddr = *lsdaAddrOpt; 1580 Section *sec = findContainingSection(sections, &lsdaAddr); 1581 lsdaIsec = 1582 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr)); 1583 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize); 1584 } 1585 1586 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec}; 1587 funcSym->unwindEntry = isec; 1588 ehRelocator.commit(); 1589 } 1590 } 1591 1592 std::string ObjFile::sourceFile() const { 1593 SmallString<261> dir(compileUnit->getCompilationDir()); 1594 StringRef sep = sys::path::get_separator(); 1595 // We don't use `path::append` here because we want an empty `dir` to result 1596 // in an absolute path. `append` would give us a relative path for that case. 1597 if (!dir.endswith(sep)) 1598 dir += sep; 1599 return (dir + compileUnit->getUnitDIE().getShortName()).str(); 1600 } 1601 1602 lld::DWARFCache *ObjFile::getDwarf() { 1603 llvm::call_once(initDwarf, [this]() { 1604 auto dwObj = DwarfObject::create(this); 1605 if (!dwObj) 1606 return; 1607 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 1608 std::move(dwObj), "", 1609 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 1610 [&](Error warning) { 1611 warn(getName() + ": " + toString(std::move(warning))); 1612 })); 1613 }); 1614 1615 return dwarfCache.get(); 1616 } 1617 // The path can point to either a dylib or a .tbd file. 1618 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1619 Optional<MemoryBufferRef> mbref = readFile(path); 1620 if (!mbref) { 1621 error("could not read dylib file at " + path); 1622 return nullptr; 1623 } 1624 return loadDylib(*mbref, umbrella); 1625 } 1626 1627 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1628 // the first document storing child pointers to the rest of them. When we are 1629 // processing a given TBD file, we store that top-level document in 1630 // currentTopLevelTapi. When processing re-exports, we search its children for 1631 // potentially matching documents in the same TBD file. Note that the children 1632 // themselves don't point to further documents, i.e. this is a two-level tree. 1633 // 1634 // Re-exports can either refer to on-disk files, or to documents within .tbd 1635 // files. 1636 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1637 const InterfaceFile *currentTopLevelTapi) { 1638 // Search order: 1639 // 1. Install name basename in -F / -L directories. 1640 { 1641 StringRef stem = path::stem(path); 1642 SmallString<128> frameworkName; 1643 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1644 bool isFramework = path.endswith(frameworkName); 1645 if (isFramework) { 1646 for (StringRef dir : config->frameworkSearchPaths) { 1647 SmallString<128> candidate = dir; 1648 path::append(candidate, frameworkName); 1649 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1650 return loadDylib(*dylibPath, umbrella); 1651 } 1652 } else if (Optional<StringRef> dylibPath = findPathCombination( 1653 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1654 return loadDylib(*dylibPath, umbrella); 1655 } 1656 1657 // 2. As absolute path. 1658 if (path::is_absolute(path, path::Style::posix)) 1659 for (StringRef root : config->systemLibraryRoots) 1660 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1661 return loadDylib(*dylibPath, umbrella); 1662 1663 // 3. As relative path. 1664 1665 // TODO: Handle -dylib_file 1666 1667 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1668 SmallString<128> newPath; 1669 if (config->outputType == MH_EXECUTE && 1670 path.consume_front("@executable_path/")) { 1671 // ld64 allows overriding this with the undocumented flag -executable_path. 1672 // lld doesn't currently implement that flag. 1673 // FIXME: Consider using finalOutput instead of outputFile. 1674 path::append(newPath, path::parent_path(config->outputFile), path); 1675 path = newPath; 1676 } else if (path.consume_front("@loader_path/")) { 1677 fs::real_path(umbrella->getName(), newPath); 1678 path::remove_filename(newPath); 1679 path::append(newPath, path); 1680 path = newPath; 1681 } else if (path.startswith("@rpath/")) { 1682 for (StringRef rpath : umbrella->rpaths) { 1683 newPath.clear(); 1684 if (rpath.consume_front("@loader_path/")) { 1685 fs::real_path(umbrella->getName(), newPath); 1686 path::remove_filename(newPath); 1687 } 1688 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1689 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1690 return loadDylib(*dylibPath, umbrella); 1691 } 1692 } 1693 1694 // FIXME: Should this be further up? 1695 if (currentTopLevelTapi) { 1696 for (InterfaceFile &child : 1697 make_pointee_range(currentTopLevelTapi->documents())) { 1698 assert(child.documents().empty()); 1699 if (path == child.getInstallName()) { 1700 auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, 1701 /*explicitlyLinked=*/false); 1702 file->parseReexports(child); 1703 return file; 1704 } 1705 } 1706 } 1707 1708 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1709 return loadDylib(*dylibPath, umbrella); 1710 1711 return nullptr; 1712 } 1713 1714 // If a re-exported dylib is public (lives in /usr/lib or 1715 // /System/Library/Frameworks), then it is considered implicitly linked: we 1716 // should bind to its symbols directly instead of via the re-exporting umbrella 1717 // library. 1718 static bool isImplicitlyLinked(StringRef path) { 1719 if (!config->implicitDylibs) 1720 return false; 1721 1722 if (path::parent_path(path) == "/usr/lib") 1723 return true; 1724 1725 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1726 if (path.consume_front("/System/Library/Frameworks/")) { 1727 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1728 return path::filename(path) == frameworkName; 1729 } 1730 1731 return false; 1732 } 1733 1734 static void loadReexport(StringRef path, DylibFile *umbrella, 1735 const InterfaceFile *currentTopLevelTapi) { 1736 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1737 if (!reexport) 1738 error("unable to locate re-export with install name " + path); 1739 } 1740 1741 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1742 bool isBundleLoader, bool explicitlyLinked) 1743 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1744 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1745 assert(!isBundleLoader || !umbrella); 1746 if (umbrella == nullptr) 1747 umbrella = this; 1748 this->umbrella = umbrella; 1749 1750 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1751 1752 // Initialize installName. 1753 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1754 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1755 currentVersion = read32le(&c->dylib.current_version); 1756 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1757 installName = 1758 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1759 } else if (!isBundleLoader) { 1760 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1761 // so it's OK. 1762 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1763 return; 1764 } 1765 1766 if (config->printEachFile) 1767 message(toString(this)); 1768 inputFiles.insert(this); 1769 1770 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1771 1772 if (!checkCompatibility(this)) 1773 return; 1774 1775 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1776 1777 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1778 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1779 rpaths.push_back(rpath); 1780 } 1781 1782 // Initialize symbols. 1783 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1784 1785 const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY); 1786 const auto *exportsTrie = 1787 findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE); 1788 if (dyldInfo && exportsTrie) { 1789 // It's unclear what should happen in this case. Maybe we should only error 1790 // out if the two load commands refer to different data? 1791 error("dylib " + toString(this) + 1792 " has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE"); 1793 return; 1794 } else if (dyldInfo) { 1795 parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size); 1796 } else if (exportsTrie) { 1797 parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize); 1798 } else { 1799 error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " + 1800 toString(this)); 1801 return; 1802 } 1803 } 1804 1805 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) { 1806 struct TrieEntry { 1807 StringRef name; 1808 uint64_t flags; 1809 }; 1810 1811 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1812 std::vector<TrieEntry> entries; 1813 // Find all the $ld$* symbols to process first. 1814 parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) { 1815 StringRef savedName = saver().save(name); 1816 if (handleLDSymbol(savedName)) 1817 return; 1818 entries.push_back({savedName, flags}); 1819 }); 1820 1821 // Process the "normal" symbols. 1822 for (TrieEntry &entry : entries) { 1823 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name))) 1824 continue; 1825 1826 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1827 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1828 1829 symbols.push_back( 1830 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1831 } 1832 } 1833 1834 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1835 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1836 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1837 target->headerSize; 1838 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1839 auto *cmd = reinterpret_cast<const load_command *>(p); 1840 p += cmd->cmdsize; 1841 1842 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1843 cmd->cmd == LC_REEXPORT_DYLIB) { 1844 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1845 StringRef reexportPath = 1846 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1847 loadReexport(reexportPath, exportingFile, nullptr); 1848 } 1849 1850 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1851 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1852 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1853 if (config->namespaceKind == NamespaceKind::flat && 1854 cmd->cmd == LC_LOAD_DYLIB) { 1855 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1856 StringRef dylibPath = 1857 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1858 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1859 if (!dylib) 1860 error(Twine("unable to locate library '") + dylibPath + 1861 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1862 } 1863 } 1864 } 1865 1866 // Some versions of Xcode ship with .tbd files that don't have the right 1867 // platform settings. 1868 constexpr std::array<StringRef, 3> skipPlatformChecks{ 1869 "/usr/lib/system/libsystem_kernel.dylib", 1870 "/usr/lib/system/libsystem_platform.dylib", 1871 "/usr/lib/system/libsystem_pthread.dylib"}; 1872 1873 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, 1874 bool explicitlyLinked) { 1875 // Catalyst outputs can link against implicitly linked macOS-only libraries. 1876 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) 1877 return false; 1878 return is_contained(interface.targets(), 1879 MachO::Target(config->arch(), PLATFORM_MACOS)); 1880 } 1881 1882 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1883 bool isBundleLoader, bool explicitlyLinked) 1884 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1885 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1886 // FIXME: Add test for the missing TBD code path. 1887 1888 if (umbrella == nullptr) 1889 umbrella = this; 1890 this->umbrella = umbrella; 1891 1892 installName = saver().save(interface.getInstallName()); 1893 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1894 currentVersion = interface.getCurrentVersion().rawValue(); 1895 1896 if (config->printEachFile) 1897 message(toString(this)); 1898 inputFiles.insert(this); 1899 1900 if (!is_contained(skipPlatformChecks, installName) && 1901 !is_contained(interface.targets(), config->platformInfo.target) && 1902 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { 1903 error(toString(this) + " is incompatible with " + 1904 std::string(config->platformInfo.target)); 1905 return; 1906 } 1907 1908 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1909 1910 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1911 auto addSymbol = [&](const Twine &name) -> void { 1912 StringRef savedName = saver().save(name); 1913 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1914 return; 1915 1916 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1917 /*isWeakDef=*/false, 1918 /*isTlv=*/false)); 1919 }; 1920 1921 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1922 normalSymbols.reserve(interface.symbolsCount()); 1923 for (const auto *symbol : interface.symbols()) { 1924 if (!symbol->getArchitectures().has(config->arch())) 1925 continue; 1926 if (handleLDSymbol(symbol->getName())) 1927 continue; 1928 1929 switch (symbol->getKind()) { 1930 case SymbolKind::GlobalSymbol: // Fallthrough 1931 case SymbolKind::ObjectiveCClass: // Fallthrough 1932 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1933 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1934 normalSymbols.push_back(symbol); 1935 } 1936 } 1937 1938 // TODO(compnerd) filter out symbols based on the target platform 1939 // TODO: handle weak defs, thread locals 1940 for (const auto *symbol : normalSymbols) { 1941 switch (symbol->getKind()) { 1942 case SymbolKind::GlobalSymbol: 1943 addSymbol(symbol->getName()); 1944 break; 1945 case SymbolKind::ObjectiveCClass: 1946 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1947 // want to emulate that. 1948 addSymbol(objc::klass + symbol->getName()); 1949 addSymbol(objc::metaclass + symbol->getName()); 1950 break; 1951 case SymbolKind::ObjectiveCClassEHType: 1952 addSymbol(objc::ehtype + symbol->getName()); 1953 break; 1954 case SymbolKind::ObjectiveCInstanceVariable: 1955 addSymbol(objc::ivar + symbol->getName()); 1956 break; 1957 } 1958 } 1959 } 1960 1961 DylibFile::DylibFile(DylibFile *umbrella) 1962 : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced), 1963 explicitlyLinked(false), isBundleLoader(false) { 1964 if (umbrella == nullptr) 1965 umbrella = this; 1966 this->umbrella = umbrella; 1967 } 1968 1969 void DylibFile::parseReexports(const InterfaceFile &interface) { 1970 const InterfaceFile *topLevel = 1971 interface.getParent() == nullptr ? &interface : interface.getParent(); 1972 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1973 InterfaceFile::const_target_range targets = intfRef.targets(); 1974 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1975 is_contained(targets, config->platformInfo.target)) 1976 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1977 } 1978 } 1979 1980 bool DylibFile::isExplicitlyLinked() const { 1981 if (!explicitlyLinked) 1982 return false; 1983 1984 // If this dylib was explicitly linked, but at least one of the symbols 1985 // of the synthetic dylibs it created via $ld$previous symbols is 1986 // referenced, then that synthetic dylib fulfils the explicit linkedness 1987 // and we can deadstrip this dylib if it's unreferenced. 1988 for (const auto *dylib : extraDylibs) 1989 if (dylib->isReferenced()) 1990 return false; 1991 1992 return true; 1993 } 1994 1995 DylibFile *DylibFile::getSyntheticDylib(StringRef installName, 1996 uint32_t currentVersion, 1997 uint32_t compatVersion) { 1998 for (DylibFile *dylib : extraDylibs) 1999 if (dylib->installName == installName) { 2000 // FIXME: Check what to do if different $ld$previous symbols 2001 // request the same dylib, but with different versions. 2002 return dylib; 2003 } 2004 2005 auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella); 2006 dylib->installName = saver().save(installName); 2007 dylib->currentVersion = currentVersion; 2008 dylib->compatibilityVersion = compatVersion; 2009 extraDylibs.push_back(dylib); 2010 return dylib; 2011 } 2012 2013 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 2014 // name, compatibility version or hide/add symbols) for specific target 2015 // versions. 2016 bool DylibFile::handleLDSymbol(StringRef originalName) { 2017 if (!originalName.startswith("$ld$")) 2018 return false; 2019 2020 StringRef action; 2021 StringRef name; 2022 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 2023 if (action == "previous") 2024 handleLDPreviousSymbol(name, originalName); 2025 else if (action == "install_name") 2026 handleLDInstallNameSymbol(name, originalName); 2027 else if (action == "hide") 2028 handleLDHideSymbol(name, originalName); 2029 return true; 2030 } 2031 2032 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 2033 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 2034 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 2035 StringRef installName; 2036 StringRef compatVersion; 2037 StringRef platformStr; 2038 StringRef startVersion; 2039 StringRef endVersion; 2040 StringRef symbolName; 2041 StringRef rest; 2042 2043 std::tie(installName, name) = name.split('$'); 2044 std::tie(compatVersion, name) = name.split('$'); 2045 std::tie(platformStr, name) = name.split('$'); 2046 std::tie(startVersion, name) = name.split('$'); 2047 std::tie(endVersion, name) = name.split('$'); 2048 std::tie(symbolName, rest) = name.rsplit('$'); 2049 2050 // FIXME: Does this do the right thing for zippered files? 2051 unsigned platform; 2052 if (platformStr.getAsInteger(10, platform) || 2053 platform != static_cast<unsigned>(config->platform())) 2054 return; 2055 2056 VersionTuple start; 2057 if (start.tryParse(startVersion)) { 2058 warn("failed to parse start version, symbol '" + originalName + 2059 "' ignored"); 2060 return; 2061 } 2062 VersionTuple end; 2063 if (end.tryParse(endVersion)) { 2064 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 2065 return; 2066 } 2067 if (config->platformInfo.minimum < start || 2068 config->platformInfo.minimum >= end) 2069 return; 2070 2071 // Initialized to compatibilityVersion for the symbolName branch below. 2072 uint32_t newCompatibilityVersion = compatibilityVersion; 2073 uint32_t newCurrentVersionForSymbol = currentVersion; 2074 if (!compatVersion.empty()) { 2075 VersionTuple cVersion; 2076 if (cVersion.tryParse(compatVersion)) { 2077 warn("failed to parse compatibility version, symbol '" + originalName + 2078 "' ignored"); 2079 return; 2080 } 2081 newCompatibilityVersion = encodeVersion(cVersion); 2082 newCurrentVersionForSymbol = newCompatibilityVersion; 2083 } 2084 2085 if (!symbolName.empty()) { 2086 // A $ld$previous$ symbol with symbol name adds a symbol with that name to 2087 // a dylib with given name and version. 2088 auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol, 2089 newCompatibilityVersion); 2090 2091 // Just adding the symbol to the symtab works because dylibs contain their 2092 // symbols in alphabetical order, guaranteeing $ld$ symbols to precede 2093 // normal symbols. 2094 dylib->symbols.push_back(symtab->addDylib( 2095 saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false)); 2096 return; 2097 } 2098 2099 // A $ld$previous$ symbol without symbol name modifies the dylib it's in. 2100 this->installName = saver().save(installName); 2101 this->compatibilityVersion = newCompatibilityVersion; 2102 } 2103 2104 void DylibFile::handleLDInstallNameSymbol(StringRef name, 2105 StringRef originalName) { 2106 // originalName: $ld$ install_name $ os<version> $ install_name 2107 StringRef condition, installName; 2108 std::tie(condition, installName) = name.split('$'); 2109 VersionTuple version; 2110 if (!condition.consume_front("os") || version.tryParse(condition)) 2111 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 2112 else if (version == config->platformInfo.minimum) 2113 this->installName = saver().save(installName); 2114 } 2115 2116 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 2117 StringRef symbolName; 2118 bool shouldHide = true; 2119 if (name.startswith("os")) { 2120 // If it's hidden based on versions. 2121 name = name.drop_front(2); 2122 StringRef minVersion; 2123 std::tie(minVersion, symbolName) = name.split('$'); 2124 VersionTuple versionTup; 2125 if (versionTup.tryParse(minVersion)) { 2126 warn("Failed to parse hidden version, symbol `" + originalName + 2127 "` ignored."); 2128 return; 2129 } 2130 shouldHide = versionTup == config->platformInfo.minimum; 2131 } else { 2132 symbolName = name; 2133 } 2134 2135 if (shouldHide) 2136 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 2137 } 2138 2139 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 2140 if (config->applicationExtension && !dylibIsAppExtensionSafe) 2141 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 2142 } 2143 2144 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden) 2145 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)), 2146 forceHidden(forceHidden) {} 2147 2148 void ArchiveFile::addLazySymbols() { 2149 for (const object::Archive::Symbol &sym : file->symbols()) 2150 symtab->addLazyArchive(sym.getName(), this, sym); 2151 } 2152 2153 static Expected<InputFile *> 2154 loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 2155 uint64_t offsetInArchive, bool forceHidden) { 2156 if (config->zeroModTime) 2157 modTime = 0; 2158 2159 switch (identify_magic(mb.getBuffer())) { 2160 case file_magic::macho_object: 2161 return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden); 2162 case file_magic::bitcode: 2163 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false, 2164 forceHidden); 2165 default: 2166 return createStringError(inconvertibleErrorCode(), 2167 mb.getBufferIdentifier() + 2168 " has unhandled file type"); 2169 } 2170 } 2171 2172 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 2173 if (!seen.insert(c.getChildOffset()).second) 2174 return Error::success(); 2175 2176 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 2177 if (!mb) 2178 return mb.takeError(); 2179 2180 // Thin archives refer to .o files, so --reproduce needs the .o files too. 2181 if (tar && c.getParent()->isThin()) 2182 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 2183 2184 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 2185 if (!modTime) 2186 return modTime.takeError(); 2187 2188 Expected<InputFile *> file = loadArchiveMember( 2189 *mb, toTimeT(*modTime), getName(), c.getChildOffset(), forceHidden); 2190 2191 if (!file) 2192 return file.takeError(); 2193 2194 inputFiles.insert(*file); 2195 printArchiveMemberLoad(reason, *file); 2196 return Error::success(); 2197 } 2198 2199 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 2200 object::Archive::Child c = 2201 CHECK(sym.getMember(), toString(this) + 2202 ": could not get the member defining symbol " + 2203 toMachOString(sym)); 2204 2205 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 2206 // and become invalid after that call. Copy it to the stack so we can refer 2207 // to it later. 2208 const object::Archive::Symbol symCopy = sym; 2209 2210 // ld64 doesn't demangle sym here even with -demangle. 2211 // Match that: intentionally don't call toMachOString(). 2212 if (Error e = fetch(c, symCopy.getName())) 2213 error(toString(this) + ": could not get the member defining symbol " + 2214 toMachOString(symCopy) + ": " + toString(std::move(e))); 2215 } 2216 2217 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 2218 BitcodeFile &file) { 2219 StringRef name = saver().save(objSym.getName()); 2220 2221 if (objSym.isUndefined()) 2222 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 2223 2224 // TODO: Write a test demonstrating why computing isPrivateExtern before 2225 // LTO compilation is important. 2226 bool isPrivateExtern = false; 2227 switch (objSym.getVisibility()) { 2228 case GlobalValue::HiddenVisibility: 2229 isPrivateExtern = true; 2230 break; 2231 case GlobalValue::ProtectedVisibility: 2232 error(name + " has protected visibility, which is not supported by Mach-O"); 2233 break; 2234 case GlobalValue::DefaultVisibility: 2235 break; 2236 } 2237 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() || 2238 file.forceHidden; 2239 2240 if (objSym.isCommon()) 2241 return symtab->addCommon(name, &file, objSym.getCommonSize(), 2242 objSym.getCommonAlignment(), isPrivateExtern); 2243 2244 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 2245 /*size=*/0, objSym.isWeak(), isPrivateExtern, 2246 /*isThumb=*/false, 2247 /*isReferencedDynamically=*/false, 2248 /*noDeadStrip=*/false, 2249 /*isWeakDefCanBeHidden=*/false); 2250 } 2251 2252 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 2253 uint64_t offsetInArchive, bool lazy, bool forceHidden) 2254 : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) { 2255 this->archiveName = std::string(archiveName); 2256 std::string path = mb.getBufferIdentifier().str(); 2257 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 2258 // name. If two members with the same name are provided, this causes a 2259 // collision and ThinLTO can't proceed. 2260 // So, we append the archive name to disambiguate two members with the same 2261 // name from multiple different archives, and offset within the archive to 2262 // disambiguate two members of the same name from a single archive. 2263 MemoryBufferRef mbref(mb.getBuffer(), 2264 saver().save(archiveName.empty() 2265 ? path 2266 : archiveName + 2267 sys::path::filename(path) + 2268 utostr(offsetInArchive))); 2269 2270 obj = check(lto::InputFile::create(mbref)); 2271 if (lazy) 2272 parseLazy(); 2273 else 2274 parse(); 2275 } 2276 2277 void BitcodeFile::parse() { 2278 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 2279 // "winning" symbol will then be marked as Prevailing at LTO compilation 2280 // time. 2281 symbols.clear(); 2282 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 2283 symbols.push_back(createBitcodeSymbol(objSym, *this)); 2284 } 2285 2286 void BitcodeFile::parseLazy() { 2287 symbols.resize(obj->symbols().size()); 2288 for (auto it : llvm::enumerate(obj->symbols())) { 2289 const lto::InputFile::Symbol &objSym = it.value(); 2290 if (!objSym.isUndefined()) { 2291 symbols[it.index()] = 2292 symtab->addLazyObject(saver().save(objSym.getName()), *this); 2293 if (!lazy) 2294 break; 2295 } 2296 } 2297 } 2298 2299 void macho::extract(InputFile &file, StringRef reason) { 2300 assert(file.lazy); 2301 file.lazy = false; 2302 printArchiveMemberLoad(reason, &file); 2303 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 2304 bitcode->parse(); 2305 } else { 2306 auto &f = cast<ObjFile>(file); 2307 if (target->wordSize == 8) 2308 f.parse<LP64>(); 2309 else 2310 f.parse<ILP32>(); 2311 } 2312 } 2313 2314 template void ObjFile::parse<LP64>(); 2315