1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "EhFrame.h" 49 #include "ExportTrie.h" 50 #include "InputSection.h" 51 #include "MachOStructs.h" 52 #include "ObjC.h" 53 #include "OutputSection.h" 54 #include "OutputSegment.h" 55 #include "SymbolTable.h" 56 #include "Symbols.h" 57 #include "SyntheticSections.h" 58 #include "Target.h" 59 60 #include "lld/Common/CommonLinkerContext.h" 61 #include "lld/Common/DWARF.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/BinaryStreamReader.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/LEB128.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/TarWriter.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/TextAPI/Architecture.h" 74 #include "llvm/TextAPI/InterfaceFile.h" 75 76 #include <optional> 77 #include <type_traits> 78 79 using namespace llvm; 80 using namespace llvm::MachO; 81 using namespace llvm::support::endian; 82 using namespace llvm::sys; 83 using namespace lld; 84 using namespace lld::macho; 85 86 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 87 std::string lld::toString(const InputFile *f) { 88 if (!f) 89 return "<internal>"; 90 91 // Multiple dylibs can be defined in one .tbd file. 92 if (const auto *dylibFile = dyn_cast<DylibFile>(f)) 93 if (f->getName().ends_with(".tbd")) 94 return (f->getName() + "(" + dylibFile->installName + ")").str(); 95 96 if (f->archiveName.empty()) 97 return std::string(f->getName()); 98 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 99 } 100 101 std::string lld::toString(const Section &sec) { 102 return (toString(sec.file) + ":(" + sec.name + ")").str(); 103 } 104 105 SetVector<InputFile *> macho::inputFiles; 106 std::unique_ptr<TarWriter> macho::tar; 107 int InputFile::idCount = 0; 108 109 static VersionTuple decodeVersion(uint32_t version) { 110 unsigned major = version >> 16; 111 unsigned minor = (version >> 8) & 0xffu; 112 unsigned subMinor = version & 0xffu; 113 return VersionTuple(major, minor, subMinor); 114 } 115 116 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 117 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 118 return {}; 119 120 const char *hdr = input->mb.getBufferStart(); 121 122 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. 123 std::vector<PlatformInfo> platformInfos; 124 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 125 PlatformInfo info; 126 info.target.Platform = static_cast<PlatformType>(cmd->platform); 127 info.target.MinDeployment = decodeVersion(cmd->minos); 128 platformInfos.emplace_back(std::move(info)); 129 } 130 for (auto *cmd : findCommands<version_min_command>( 131 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 132 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 133 PlatformInfo info; 134 switch (cmd->cmd) { 135 case LC_VERSION_MIN_MACOSX: 136 info.target.Platform = PLATFORM_MACOS; 137 break; 138 case LC_VERSION_MIN_IPHONEOS: 139 info.target.Platform = PLATFORM_IOS; 140 break; 141 case LC_VERSION_MIN_TVOS: 142 info.target.Platform = PLATFORM_TVOS; 143 break; 144 case LC_VERSION_MIN_WATCHOS: 145 info.target.Platform = PLATFORM_WATCHOS; 146 break; 147 } 148 info.target.MinDeployment = decodeVersion(cmd->version); 149 platformInfos.emplace_back(std::move(info)); 150 } 151 152 return platformInfos; 153 } 154 155 static bool checkCompatibility(const InputFile *input) { 156 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 157 if (platformInfos.empty()) 158 return true; 159 160 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 161 return removeSimulator(info.target.Platform) == 162 removeSimulator(config->platform()); 163 }); 164 if (it == platformInfos.end()) { 165 std::string platformNames; 166 raw_string_ostream os(platformNames); 167 interleave( 168 platformInfos, os, 169 [&](const PlatformInfo &info) { 170 os << getPlatformName(info.target.Platform); 171 }, 172 "/"); 173 error(toString(input) + " has platform " + platformNames + 174 Twine(", which is different from target platform ") + 175 getPlatformName(config->platform())); 176 return false; 177 } 178 179 if (it->target.MinDeployment > config->platformInfo.target.MinDeployment) 180 warn(toString(input) + " has version " + 181 it->target.MinDeployment.getAsString() + 182 ", which is newer than target minimum of " + 183 config->platformInfo.target.MinDeployment.getAsString()); 184 185 return true; 186 } 187 188 // This cache mostly exists to store system libraries (and .tbds) as they're 189 // loaded, rather than the input archives, which are already cached at a higher 190 // level, and other files like the filelist that are only read once. 191 // Theoretically this caching could be more efficient by hoisting it, but that 192 // would require altering many callers to track the state. 193 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 194 // Open a given file path and return it as a memory-mapped file. 195 std::optional<MemoryBufferRef> macho::readFile(StringRef path) { 196 CachedHashStringRef key(path); 197 auto entry = cachedReads.find(key); 198 if (entry != cachedReads.end()) 199 return entry->second; 200 201 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 202 if (std::error_code ec = mbOrErr.getError()) { 203 error("cannot open " + path + ": " + ec.message()); 204 return std::nullopt; 205 } 206 207 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 208 MemoryBufferRef mbref = mb->getMemBufferRef(); 209 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 210 211 // If this is a regular non-fat file, return it. 212 const char *buf = mbref.getBufferStart(); 213 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 214 if (mbref.getBufferSize() < sizeof(uint32_t) || 215 read32be(&hdr->magic) != FAT_MAGIC) { 216 if (tar) 217 tar->append(relativeToRoot(path), mbref.getBuffer()); 218 return cachedReads[key] = mbref; 219 } 220 221 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 222 223 // Object files and archive files may be fat files, which contain multiple 224 // real files for different CPU ISAs. Here, we search for a file that matches 225 // with the current link target and returns it as a MemoryBufferRef. 226 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 227 auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) { 228 return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype)); 229 }; 230 231 std::vector<StringRef> archs; 232 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 233 if (reinterpret_cast<const char *>(arch + i + 1) > 234 buf + mbref.getBufferSize()) { 235 error(path + ": fat_arch struct extends beyond end of file"); 236 return std::nullopt; 237 } 238 239 uint32_t cpuType = read32be(&arch[i].cputype); 240 uint32_t cpuSubtype = 241 read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK; 242 243 // FIXME: LD64 has a more complex fallback logic here. 244 // Consider implementing that as well? 245 if (cpuType != static_cast<uint32_t>(target->cpuType) || 246 cpuSubtype != target->cpuSubtype) { 247 archs.emplace_back(getArchName(cpuType, cpuSubtype)); 248 continue; 249 } 250 251 uint32_t offset = read32be(&arch[i].offset); 252 uint32_t size = read32be(&arch[i].size); 253 if (offset + size > mbref.getBufferSize()) 254 error(path + ": slice extends beyond end of file"); 255 if (tar) 256 tar->append(relativeToRoot(path), mbref.getBuffer()); 257 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 258 path.copy(bAlloc)); 259 } 260 261 auto targetArchName = getArchName(target->cpuType, target->cpuSubtype); 262 warn(path + ": ignoring file because it is universal (" + join(archs, ",") + 263 ") but does not contain the " + targetArchName + " architecture"); 264 return std::nullopt; 265 } 266 267 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 268 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 269 270 // Some sections comprise of fixed-size records, so instead of splitting them at 271 // symbol boundaries, we split them based on size. Records are distinct from 272 // literals in that they may contain references to other sections, instead of 273 // being leaf nodes in the InputSection graph. 274 // 275 // Note that "record" is a term I came up with. In contrast, "literal" is a term 276 // used by the Mach-O format. 277 static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) { 278 if (name == section_names::compactUnwind) { 279 if (segname == segment_names::ld) 280 return target->wordSize == 8 ? 32 : 20; 281 } 282 if (!config->dedupStrings) 283 return {}; 284 285 if (name == section_names::cfString && segname == segment_names::data) 286 return target->wordSize == 8 ? 32 : 16; 287 288 if (config->icfLevel == ICFLevel::none) 289 return {}; 290 291 if (name == section_names::objcClassRefs && segname == segment_names::data) 292 return target->wordSize; 293 294 if (name == section_names::objcSelrefs && segname == segment_names::data) 295 return target->wordSize; 296 return {}; 297 } 298 299 static Error parseCallGraph(ArrayRef<uint8_t> data, 300 std::vector<CallGraphEntry> &callGraph) { 301 TimeTraceScope timeScope("Parsing call graph section"); 302 BinaryStreamReader reader(data, support::little); 303 while (!reader.empty()) { 304 uint32_t fromIndex, toIndex; 305 uint64_t count; 306 if (Error err = reader.readInteger(fromIndex)) 307 return err; 308 if (Error err = reader.readInteger(toIndex)) 309 return err; 310 if (Error err = reader.readInteger(count)) 311 return err; 312 callGraph.emplace_back(fromIndex, toIndex, count); 313 } 314 return Error::success(); 315 } 316 317 // Parse the sequence of sections within a single LC_SEGMENT(_64). 318 // Split each section into subsections. 319 template <class SectionHeader> 320 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 321 sections.reserve(sectionHeaders.size()); 322 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 323 324 for (const SectionHeader &sec : sectionHeaders) { 325 StringRef name = 326 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 327 StringRef segname = 328 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 329 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 330 if (sec.align >= 32) { 331 error("alignment " + std::to_string(sec.align) + " of section " + name + 332 " is too large"); 333 continue; 334 } 335 Section §ion = *sections.back(); 336 uint32_t align = 1 << sec.align; 337 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 338 : buf + sec.offset, 339 static_cast<size_t>(sec.size)}; 340 341 auto splitRecords = [&](size_t recordSize) -> void { 342 if (data.empty()) 343 return; 344 Subsections &subsections = section.subsections; 345 subsections.reserve(data.size() / recordSize); 346 for (uint64_t off = 0; off < data.size(); off += recordSize) { 347 auto *isec = make<ConcatInputSection>( 348 section, data.slice(off, std::min(data.size(), recordSize)), align); 349 subsections.push_back({off, isec}); 350 } 351 section.doneSplitting = true; 352 }; 353 354 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 355 if (sec.nreloc) 356 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + 357 " contains relocations, which is unsupported"); 358 bool dedupLiterals = 359 name == section_names::objcMethname || config->dedupStrings; 360 InputSection *isec = 361 make<CStringInputSection>(section, data, align, dedupLiterals); 362 // FIXME: parallelize this? 363 cast<CStringInputSection>(isec)->splitIntoPieces(); 364 section.subsections.push_back({0, isec}); 365 } else if (isWordLiteralSection(sec.flags)) { 366 if (sec.nreloc) 367 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + 368 " contains relocations, which is unsupported"); 369 InputSection *isec = make<WordLiteralInputSection>(section, data, align); 370 section.subsections.push_back({0, isec}); 371 } else if (auto recordSize = getRecordSize(segname, name)) { 372 splitRecords(*recordSize); 373 } else if (name == section_names::ehFrame && 374 segname == segment_names::text) { 375 splitEhFrames(data, *sections.back()); 376 } else if (segname == segment_names::llvm) { 377 if (config->callGraphProfileSort && name == section_names::cgProfile) 378 checkError(parseCallGraph(data, callGraph)); 379 // ld64 does not appear to emit contents from sections within the __LLVM 380 // segment. Symbols within those sections point to bitcode metadata 381 // instead of actual symbols. Global symbols within those sections could 382 // have the same name without causing duplicate symbol errors. To avoid 383 // spurious duplicate symbol errors, we do not parse these sections. 384 // TODO: Evaluate whether the bitcode metadata is needed. 385 } else if (name == section_names::objCImageInfo && 386 segname == segment_names::data) { 387 objCImageInfo = data; 388 } else { 389 if (name == section_names::addrSig) 390 addrSigSection = sections.back(); 391 392 auto *isec = make<ConcatInputSection>(section, data, align); 393 if (isDebugSection(isec->getFlags()) && 394 isec->getSegName() == segment_names::dwarf) { 395 // Instead of emitting DWARF sections, we emit STABS symbols to the 396 // object files that contain them. We filter them out early to avoid 397 // parsing their relocations unnecessarily. 398 debugSections.push_back(isec); 399 } else { 400 section.subsections.push_back({0, isec}); 401 } 402 } 403 } 404 } 405 406 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) { 407 EhReader reader(this, data, /*dataOff=*/0); 408 size_t off = 0; 409 while (off < reader.size()) { 410 uint64_t frameOff = off; 411 uint64_t length = reader.readLength(&off); 412 if (length == 0) 413 break; 414 uint64_t fullLength = length + (off - frameOff); 415 off += length; 416 // We hard-code an alignment of 1 here because we don't actually want our 417 // EH frames to be aligned to the section alignment. EH frame decoders don't 418 // expect this alignment. Moreover, each EH frame must start where the 419 // previous one ends, and where it ends is indicated by the length field. 420 // Unless we update the length field (troublesome), we should keep the 421 // alignment to 1. 422 // Note that we still want to preserve the alignment of the overall section, 423 // just not of the individual EH frames. 424 ehFrameSection.subsections.push_back( 425 {frameOff, make<ConcatInputSection>(ehFrameSection, 426 data.slice(frameOff, fullLength), 427 /*align=*/1)}); 428 } 429 ehFrameSection.doneSplitting = true; 430 } 431 432 template <class T> 433 static Section *findContainingSection(const std::vector<Section *> §ions, 434 T *offset) { 435 static_assert(std::is_same<uint64_t, T>::value || 436 std::is_same<uint32_t, T>::value, 437 "unexpected type for offset"); 438 auto it = std::prev(llvm::upper_bound( 439 sections, *offset, 440 [](uint64_t value, const Section *sec) { return value < sec->addr; })); 441 *offset -= (*it)->addr; 442 return *it; 443 } 444 445 // Find the subsection corresponding to the greatest section offset that is <= 446 // that of the given offset. 447 // 448 // offset: an offset relative to the start of the original InputSection (before 449 // any subsection splitting has occurred). It will be updated to represent the 450 // same location as an offset relative to the start of the containing 451 // subsection. 452 template <class T> 453 static InputSection *findContainingSubsection(const Section §ion, 454 T *offset) { 455 static_assert(std::is_same<uint64_t, T>::value || 456 std::is_same<uint32_t, T>::value, 457 "unexpected type for offset"); 458 auto it = std::prev(llvm::upper_bound( 459 section.subsections, *offset, 460 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 461 *offset -= it->offset; 462 return it->isec; 463 } 464 465 // Find a symbol at offset `off` within `isec`. 466 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 467 uint64_t off) { 468 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 469 return d->value < off; 470 }); 471 // The offset should point at the exact address of a symbol (with no addend.) 472 if (it == isec->symbols.end() || (*it)->value != off) { 473 assert(isec->wasCoalesced); 474 return nullptr; 475 } 476 return *it; 477 } 478 479 template <class SectionHeader> 480 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 481 relocation_info rel) { 482 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 483 bool valid = true; 484 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 485 valid = false; 486 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 487 std::to_string(rel.r_address) + " of " + sec.segname + "," + 488 sec.sectname + " in " + toString(file)) 489 .str(); 490 }; 491 492 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 493 error(message("must be extern")); 494 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 495 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 496 "be PC-relative")); 497 if (isThreadLocalVariables(sec.flags) && 498 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 499 error(message("not allowed in thread-local section, must be UNSIGNED")); 500 if (rel.r_length < 2 || rel.r_length > 3 || 501 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 502 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 503 error(message("has width " + std::to_string(1 << rel.r_length) + 504 " bytes, but must be " + 505 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 506 " bytes")); 507 } 508 return valid; 509 } 510 511 template <class SectionHeader> 512 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 513 const SectionHeader &sec, Section §ion) { 514 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 515 ArrayRef<relocation_info> relInfos( 516 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 517 518 Subsections &subsections = section.subsections; 519 auto subsecIt = subsections.rbegin(); 520 for (size_t i = 0; i < relInfos.size(); i++) { 521 // Paired relocations serve as Mach-O's method for attaching a 522 // supplemental datum to a primary relocation record. ELF does not 523 // need them because the *_RELOC_RELA records contain the extra 524 // addend field, vs. *_RELOC_REL which omit the addend. 525 // 526 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 527 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 528 // datum for each is a symbolic address. The result is the offset 529 // between two addresses. 530 // 531 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 532 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 533 // base symbolic address. 534 // 535 // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into 536 // the instruction stream. On X86, a relocatable address field always 537 // occupies an entire contiguous sequence of byte(s), so there is no need to 538 // merge opcode bits with address bits. Therefore, it's easy and convenient 539 // to store addends in the instruction-stream bytes that would otherwise 540 // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with 541 // address bits so that bitwise arithmetic is necessary to extract and 542 // insert them. Storing addends in the instruction stream is possible, but 543 // inconvenient and more costly at link time. 544 545 relocation_info relInfo = relInfos[i]; 546 bool isSubtrahend = 547 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 548 int64_t pairedAddend = 0; 549 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 550 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 551 relInfo = relInfos[++i]; 552 } 553 assert(i < relInfos.size()); 554 if (!validateRelocationInfo(this, sec, relInfo)) 555 continue; 556 if (relInfo.r_address & R_SCATTERED) 557 fatal("TODO: Scattered relocations not supported"); 558 559 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 560 assert(!(embeddedAddend && pairedAddend)); 561 int64_t totalAddend = pairedAddend + embeddedAddend; 562 Reloc r; 563 r.type = relInfo.r_type; 564 r.pcrel = relInfo.r_pcrel; 565 r.length = relInfo.r_length; 566 r.offset = relInfo.r_address; 567 if (relInfo.r_extern) { 568 r.referent = symbols[relInfo.r_symbolnum]; 569 r.addend = isSubtrahend ? 0 : totalAddend; 570 } else { 571 assert(!isSubtrahend); 572 const SectionHeader &referentSecHead = 573 sectionHeaders[relInfo.r_symbolnum - 1]; 574 uint64_t referentOffset; 575 if (relInfo.r_pcrel) { 576 // The implicit addend for pcrel section relocations is the pcrel offset 577 // in terms of the addresses in the input file. Here we adjust it so 578 // that it describes the offset from the start of the referent section. 579 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 580 // have pcrel section relocations. We may want to factor this out into 581 // the arch-specific .cpp file. 582 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 583 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 584 referentSecHead.addr; 585 } else { 586 // The addend for a non-pcrel relocation is its absolute address. 587 referentOffset = totalAddend - referentSecHead.addr; 588 } 589 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 590 &referentOffset); 591 r.addend = referentOffset; 592 } 593 594 // Find the subsection that this relocation belongs to. 595 // Though not required by the Mach-O format, clang and gcc seem to emit 596 // relocations in order, so let's take advantage of it. However, ld64 emits 597 // unsorted relocations (in `-r` mode), so we have a fallback for that 598 // uncommon case. 599 InputSection *subsec; 600 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 601 ++subsecIt; 602 if (subsecIt == subsections.rend() || 603 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 604 subsec = findContainingSubsection(section, &r.offset); 605 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 606 // for the other relocations. 607 subsecIt = subsections.rend(); 608 } else { 609 subsec = subsecIt->isec; 610 r.offset -= subsecIt->offset; 611 } 612 subsec->relocs.push_back(r); 613 614 if (isSubtrahend) { 615 relocation_info minuendInfo = relInfos[++i]; 616 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 617 // attached to the same address. 618 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 619 relInfo.r_address == minuendInfo.r_address); 620 Reloc p; 621 p.type = minuendInfo.r_type; 622 if (minuendInfo.r_extern) { 623 p.referent = symbols[minuendInfo.r_symbolnum]; 624 p.addend = totalAddend; 625 } else { 626 uint64_t referentOffset = 627 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 628 p.referent = findContainingSubsection( 629 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 630 p.addend = referentOffset; 631 } 632 subsec->relocs.push_back(p); 633 } 634 } 635 } 636 637 template <class NList> 638 static macho::Symbol *createDefined(const NList &sym, StringRef name, 639 InputSection *isec, uint64_t value, 640 uint64_t size, bool forceHidden) { 641 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 642 // N_EXT: Global symbols. These go in the symbol table during the link, 643 // and also in the export table of the output so that the dynamic 644 // linker sees them. 645 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 646 // symbol table during the link so that duplicates are 647 // either reported (for non-weak symbols) or merged 648 // (for weak symbols), but they do not go in the export 649 // table of the output. 650 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 651 // object files) may produce them. LLD does not yet support -r. 652 // These are translation-unit scoped, identical to the `0` case. 653 // 0: Translation-unit scoped. These are not in the symbol table during 654 // link, and not in the export table of the output either. 655 bool isWeakDefCanBeHidden = 656 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 657 658 assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported"); 659 660 if (sym.n_type & N_EXT) { 661 // -load_hidden makes us treat global symbols as linkage unit scoped. 662 // Duplicates are reported but the symbol does not go in the export trie. 663 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 664 665 // lld's behavior for merging symbols is slightly different from ld64: 666 // ld64 picks the winning symbol based on several criteria (see 667 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 668 // just merges metadata and keeps the contents of the first symbol 669 // with that name (see SymbolTable::addDefined). For: 670 // * inline function F in a TU built with -fvisibility-inlines-hidden 671 // * and inline function F in another TU built without that flag 672 // ld64 will pick the one from the file built without 673 // -fvisibility-inlines-hidden. 674 // lld will instead pick the one listed first on the link command line and 675 // give it visibility as if the function was built without 676 // -fvisibility-inlines-hidden. 677 // If both functions have the same contents, this will have the same 678 // behavior. If not, it won't, but the input had an ODR violation in 679 // that case. 680 // 681 // Similarly, merging a symbol 682 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 683 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 684 // should produce one 685 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 686 // with ld64's semantics, because it means the non-private-extern 687 // definition will continue to take priority if more private extern 688 // definitions are encountered. With lld's semantics there's no observable 689 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 690 // that's privateExtern -- neither makes it into the dynamic symbol table, 691 // unless the autohide symbol is explicitly exported. 692 // But if a symbol is both privateExtern and autohide then it can't 693 // be exported. 694 // So we nullify the autohide flag when privateExtern is present 695 // and promote the symbol to privateExtern when it is not already. 696 if (isWeakDefCanBeHidden && isPrivateExtern) 697 isWeakDefCanBeHidden = false; 698 else if (isWeakDefCanBeHidden) 699 isPrivateExtern = true; 700 return symtab->addDefined( 701 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 702 isPrivateExtern, sym.n_desc & REFERENCED_DYNAMICALLY, 703 sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden); 704 } 705 bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec); 706 return make<Defined>( 707 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 708 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, 709 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 710 } 711 712 // Absolute symbols are defined symbols that do not have an associated 713 // InputSection. They cannot be weak. 714 template <class NList> 715 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 716 StringRef name, bool forceHidden) { 717 assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported"); 718 719 if (sym.n_type & N_EXT) { 720 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 721 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 722 /*isWeakDef=*/false, isPrivateExtern, 723 /*isReferencedDynamically=*/false, 724 sym.n_desc & N_NO_DEAD_STRIP, 725 /*isWeakDefCanBeHidden=*/false); 726 } 727 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 728 /*isWeakDef=*/false, 729 /*isExternal=*/false, /*isPrivateExtern=*/false, 730 /*includeInSymtab=*/true, 731 /*isReferencedDynamically=*/false, 732 sym.n_desc & N_NO_DEAD_STRIP); 733 } 734 735 template <class NList> 736 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 737 const char *strtab) { 738 StringRef name = StringRef(strtab + sym.n_strx); 739 uint8_t type = sym.n_type & N_TYPE; 740 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; 741 switch (type) { 742 case N_UNDF: 743 return sym.n_value == 0 744 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 745 : symtab->addCommon(name, this, sym.n_value, 746 1 << GET_COMM_ALIGN(sym.n_desc), 747 isPrivateExtern); 748 case N_ABS: 749 return createAbsolute(sym, this, name, forceHidden); 750 case N_INDR: { 751 // Not much point in making local aliases -- relocs in the current file can 752 // just refer to the actual symbol itself. ld64 ignores these symbols too. 753 if (!(sym.n_type & N_EXT)) 754 return nullptr; 755 StringRef aliasedName = StringRef(strtab + sym.n_value); 756 // isPrivateExtern is the only symbol flag that has an impact on the final 757 // aliased symbol. 758 auto *alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern); 759 aliases.push_back(alias); 760 return alias; 761 } 762 case N_PBUD: 763 error("TODO: support symbols of type N_PBUD"); 764 return nullptr; 765 case N_SECT: 766 llvm_unreachable( 767 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 768 default: 769 llvm_unreachable("invalid symbol type"); 770 } 771 } 772 773 template <class NList> static bool isUndef(const NList &sym) { 774 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 775 } 776 777 template <class LP> 778 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 779 ArrayRef<typename LP::nlist> nList, 780 const char *strtab, bool subsectionsViaSymbols) { 781 using NList = typename LP::nlist; 782 783 // Groups indices of the symbols by the sections that contain them. 784 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 785 symbols.resize(nList.size()); 786 SmallVector<unsigned, 32> undefineds; 787 for (uint32_t i = 0; i < nList.size(); ++i) { 788 const NList &sym = nList[i]; 789 790 // Ignore debug symbols for now. 791 // FIXME: may need special handling. 792 if (sym.n_type & N_STAB) 793 continue; 794 795 if ((sym.n_type & N_TYPE) == N_SECT) { 796 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 797 // parseSections() may have chosen not to parse this section. 798 if (subsections.empty()) 799 continue; 800 symbolsBySection[sym.n_sect - 1].push_back(i); 801 } else if (isUndef(sym)) { 802 undefineds.push_back(i); 803 } else { 804 symbols[i] = parseNonSectionSymbol(sym, strtab); 805 } 806 } 807 808 for (size_t i = 0; i < sections.size(); ++i) { 809 Subsections &subsections = sections[i]->subsections; 810 if (subsections.empty()) 811 continue; 812 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 813 uint64_t sectionAddr = sectionHeaders[i].addr; 814 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 815 816 // Some sections have already been split into subsections during 817 // parseSections(), so we simply need to match Symbols to the corresponding 818 // subsection here. 819 if (sections[i]->doneSplitting) { 820 for (size_t j = 0; j < symbolIndices.size(); ++j) { 821 const uint32_t symIndex = symbolIndices[j]; 822 const NList &sym = nList[symIndex]; 823 StringRef name = strtab + sym.n_strx; 824 uint64_t symbolOffset = sym.n_value - sectionAddr; 825 InputSection *isec = 826 findContainingSubsection(*sections[i], &symbolOffset); 827 if (symbolOffset != 0) { 828 error(toString(*sections[i]) + ": symbol " + name + 829 " at misaligned offset"); 830 continue; 831 } 832 symbols[symIndex] = 833 createDefined(sym, name, isec, 0, isec->getSize(), forceHidden); 834 } 835 continue; 836 } 837 sections[i]->doneSplitting = true; 838 839 auto getSymName = [strtab](const NList& sym) -> StringRef { 840 return StringRef(strtab + sym.n_strx); 841 }; 842 843 // Calculate symbol sizes and create subsections by splitting the sections 844 // along symbol boundaries. 845 // We populate subsections by repeatedly splitting the last (highest 846 // address) subsection. 847 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 848 // Put extern weak symbols after other symbols at the same address so 849 // that weak symbol coalescing works correctly. See 850 // SymbolTable::addDefined() for details. 851 if (nList[lhs].n_value == nList[rhs].n_value && 852 nList[lhs].n_type & N_EXT && nList[rhs].n_type & N_EXT) 853 return !(nList[lhs].n_desc & N_WEAK_DEF) && (nList[rhs].n_desc & N_WEAK_DEF); 854 return nList[lhs].n_value < nList[rhs].n_value; 855 }); 856 for (size_t j = 0; j < symbolIndices.size(); ++j) { 857 const uint32_t symIndex = symbolIndices[j]; 858 const NList &sym = nList[symIndex]; 859 StringRef name = getSymName(sym); 860 Subsection &subsec = subsections.back(); 861 InputSection *isec = subsec.isec; 862 863 uint64_t subsecAddr = sectionAddr + subsec.offset; 864 size_t symbolOffset = sym.n_value - subsecAddr; 865 uint64_t symbolSize = 866 j + 1 < symbolIndices.size() 867 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 868 : isec->data.size() - symbolOffset; 869 // There are 4 cases where we do not need to create a new subsection: 870 // 1. If the input file does not use subsections-via-symbols. 871 // 2. Multiple symbols at the same address only induce one subsection. 872 // (The symbolOffset == 0 check covers both this case as well as 873 // the first loop iteration.) 874 // 3. Alternative entry points do not induce new subsections. 875 // 4. If we have a literal section (e.g. __cstring and __literal4). 876 if (!subsectionsViaSymbols || symbolOffset == 0 || 877 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 878 isec->hasAltEntry = symbolOffset != 0; 879 symbols[symIndex] = createDefined(sym, name, isec, symbolOffset, 880 symbolSize, forceHidden); 881 continue; 882 } 883 auto *concatIsec = cast<ConcatInputSection>(isec); 884 885 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 886 nextIsec->wasCoalesced = false; 887 if (isZeroFill(isec->getFlags())) { 888 // Zero-fill sections have NULL data.data() non-zero data.size() 889 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 890 isec->data = {nullptr, symbolOffset}; 891 } else { 892 nextIsec->data = isec->data.slice(symbolOffset); 893 isec->data = isec->data.slice(0, symbolOffset); 894 } 895 896 // By construction, the symbol will be at offset zero in the new 897 // subsection. 898 symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0, 899 symbolSize, forceHidden); 900 // TODO: ld64 appears to preserve the original alignment as well as each 901 // subsection's offset from the last aligned address. We should consider 902 // emulating that behavior. 903 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 904 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 905 } 906 } 907 908 // Undefined symbols can trigger recursive fetch from Archives due to 909 // LazySymbols. Process defined symbols first so that the relative order 910 // between a defined symbol and an undefined symbol does not change the 911 // symbol resolution behavior. In addition, a set of interconnected symbols 912 // will all be resolved to the same file, instead of being resolved to 913 // different files. 914 for (unsigned i : undefineds) 915 symbols[i] = parseNonSectionSymbol(nList[i], strtab); 916 } 917 918 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 919 StringRef sectName) 920 : InputFile(OpaqueKind, mb) { 921 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 922 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 923 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 924 sectName.take_front(16), 925 /*flags=*/0, /*addr=*/0)); 926 Section §ion = *sections.back(); 927 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 928 isec->live = true; 929 section.subsections.push_back({0, isec}); 930 } 931 932 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 933 bool lazy, bool forceHidden) 934 : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden) { 935 this->archiveName = std::string(archiveName); 936 if (lazy) { 937 if (target->wordSize == 8) 938 parseLazy<LP64>(); 939 else 940 parseLazy<ILP32>(); 941 } else { 942 if (target->wordSize == 8) 943 parse<LP64>(); 944 else 945 parse<ILP32>(); 946 } 947 } 948 949 template <class LP> void ObjFile::parse() { 950 using Header = typename LP::mach_header; 951 using SegmentCommand = typename LP::segment_command; 952 using SectionHeader = typename LP::section; 953 using NList = typename LP::nlist; 954 955 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 956 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 957 958 uint32_t cpuType; 959 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch()); 960 if (hdr->cputype != cpuType) { 961 Architecture arch = 962 getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 963 auto msg = config->errorForArchMismatch 964 ? static_cast<void (*)(const Twine &)>(error) 965 : warn; 966 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 967 " which is incompatible with target architecture " + 968 getArchitectureName(config->arch())); 969 return; 970 } 971 972 if (!checkCompatibility(this)) 973 return; 974 975 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 976 StringRef data{reinterpret_cast<const char *>(cmd + 1), 977 cmd->cmdsize - sizeof(linker_option_command)}; 978 parseLCLinkerOption(this, cmd->count, data); 979 } 980 981 ArrayRef<SectionHeader> sectionHeaders; 982 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 983 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 984 sectionHeaders = ArrayRef<SectionHeader>{ 985 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 986 parseSections(sectionHeaders); 987 } 988 989 // TODO: Error on missing LC_SYMTAB? 990 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 991 auto *c = reinterpret_cast<const symtab_command *>(cmd); 992 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 993 c->nsyms); 994 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 995 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 996 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 997 } 998 999 // The relocations may refer to the symbols, so we parse them after we have 1000 // parsed all the symbols. 1001 for (size_t i = 0, n = sections.size(); i < n; ++i) 1002 if (!sections[i]->subsections.empty()) 1003 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 1004 1005 parseDebugInfo(); 1006 1007 Section *ehFrameSection = nullptr; 1008 Section *compactUnwindSection = nullptr; 1009 for (Section *sec : sections) { 1010 Section **s = StringSwitch<Section **>(sec->name) 1011 .Case(section_names::compactUnwind, &compactUnwindSection) 1012 .Case(section_names::ehFrame, &ehFrameSection) 1013 .Default(nullptr); 1014 if (s) 1015 *s = sec; 1016 } 1017 if (compactUnwindSection) 1018 registerCompactUnwind(*compactUnwindSection); 1019 if (ehFrameSection) 1020 registerEhFrames(*ehFrameSection); 1021 } 1022 1023 template <class LP> void ObjFile::parseLazy() { 1024 using Header = typename LP::mach_header; 1025 using NList = typename LP::nlist; 1026 1027 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1028 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 1029 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 1030 if (!cmd) 1031 return; 1032 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1033 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1034 c->nsyms); 1035 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1036 symbols.resize(nList.size()); 1037 for (const auto &[i, sym] : llvm::enumerate(nList)) { 1038 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 1039 // TODO: Bound checking 1040 StringRef name = strtab + sym.n_strx; 1041 symbols[i] = symtab->addLazyObject(name, *this); 1042 if (!lazy) 1043 break; 1044 } 1045 } 1046 } 1047 1048 void ObjFile::parseDebugInfo() { 1049 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 1050 if (!dObj) 1051 return; 1052 1053 // We do not re-use the context from getDwarf() here as that function 1054 // constructs an expensive DWARFCache object. 1055 auto *ctx = make<DWARFContext>( 1056 std::move(dObj), "", 1057 [&](Error err) { 1058 warn(toString(this) + ": " + toString(std::move(err))); 1059 }, 1060 [&](Error warning) { 1061 warn(toString(this) + ": " + toString(std::move(warning))); 1062 }); 1063 1064 // TODO: Since object files can contain a lot of DWARF info, we should verify 1065 // that we are parsing just the info we need 1066 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 1067 // FIXME: There can be more than one compile unit per object file. See 1068 // PR48637. 1069 auto it = units.begin(); 1070 compileUnit = it != units.end() ? it->get() : nullptr; 1071 } 1072 1073 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 1074 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1075 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 1076 if (!cmd) 1077 return {}; 1078 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 1079 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 1080 c->datasize / sizeof(data_in_code_entry)}; 1081 } 1082 1083 ArrayRef<uint8_t> ObjFile::getOptimizationHints() const { 1084 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1085 if (auto *cmd = 1086 findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT)) 1087 return {buf + cmd->dataoff, cmd->datasize}; 1088 return {}; 1089 } 1090 1091 // Create pointers from symbols to their associated compact unwind entries. 1092 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { 1093 for (const Subsection &subsection : compactUnwindSection.subsections) { 1094 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 1095 // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed 1096 // their addends in its data. Thus if ICF operated naively and compared the 1097 // entire contents of each CUE, entries with identical unwind info but e.g. 1098 // belonging to different functions would never be considered equivalent. To 1099 // work around this problem, we remove some parts of the data containing the 1100 // embedded addends. In particular, we remove the function address and LSDA 1101 // pointers. Since these locations are at the start and end of the entry, 1102 // we can do this using a simple, efficient slice rather than performing a 1103 // copy. We are not losing any information here because the embedded 1104 // addends have already been parsed in the corresponding Reloc structs. 1105 // 1106 // Removing these pointers would not be safe if they were pointers to 1107 // absolute symbols. In that case, there would be no corresponding 1108 // relocation. However, (AFAIK) MC cannot emit references to absolute 1109 // symbols for either the function address or the LSDA. However, it *can* do 1110 // so for the personality pointer, so we are not slicing that field away. 1111 // 1112 // Note that we do not adjust the offsets of the corresponding relocations; 1113 // instead, we rely on `relocateCompactUnwind()` to correctly handle these 1114 // truncated input sections. 1115 isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize); 1116 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t)); 1117 // llvm-mc omits CU entries for functions that need DWARF encoding, but 1118 // `ld -r` doesn't. We can ignore them because we will re-synthesize these 1119 // CU entries from the DWARF info during the output phase. 1120 if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) == 1121 target->modeDwarfEncoding) 1122 continue; 1123 1124 ConcatInputSection *referentIsec; 1125 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 1126 Reloc &r = *it; 1127 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 1128 if (r.offset != 0) { 1129 ++it; 1130 continue; 1131 } 1132 uint64_t add = r.addend; 1133 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1134 // Check whether the symbol defined in this file is the prevailing one. 1135 // Skip if it is e.g. a weak def that didn't prevail. 1136 if (sym->getFile() != this) { 1137 ++it; 1138 continue; 1139 } 1140 add += sym->value; 1141 referentIsec = cast<ConcatInputSection>(sym->isec); 1142 } else { 1143 referentIsec = 1144 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1145 } 1146 // Unwind info lives in __DATA, and finalization of __TEXT will occur 1147 // before finalization of __DATA. Moreover, the finalization of unwind 1148 // info depends on the exact addresses that it references. So it is safe 1149 // for compact unwind to reference addresses in __TEXT, but not addresses 1150 // in any other segment. 1151 if (referentIsec->getSegName() != segment_names::text) 1152 error(isec->getLocation(r.offset) + " references section " + 1153 referentIsec->getName() + " which is not in segment __TEXT"); 1154 // The functionAddress relocations are typically section relocations. 1155 // However, unwind info operates on a per-symbol basis, so we search for 1156 // the function symbol here. 1157 Defined *d = findSymbolAtOffset(referentIsec, add); 1158 if (!d) { 1159 ++it; 1160 continue; 1161 } 1162 d->unwindEntry = isec; 1163 // Now that the symbol points to the unwind entry, we can remove the reloc 1164 // that points from the unwind entry back to the symbol. 1165 // 1166 // First, the symbol keeps the unwind entry alive (and not vice versa), so 1167 // this keeps dead-stripping simple. 1168 // 1169 // Moreover, it reduces the work that ICF needs to do to figure out if 1170 // functions with unwind info are foldable. 1171 // 1172 // However, this does make it possible for ICF to fold CUEs that point to 1173 // distinct functions (if the CUEs are otherwise identical). 1174 // UnwindInfoSection takes care of this by re-duplicating the CUEs so that 1175 // each one can hold a distinct functionAddress value. 1176 // 1177 // Given that clang emits relocations in reverse order of address, this 1178 // relocation should be at the end of the vector for most of our input 1179 // object files, so this erase() is typically an O(1) operation. 1180 it = isec->relocs.erase(it); 1181 } 1182 } 1183 } 1184 1185 struct CIE { 1186 macho::Symbol *personalitySymbol = nullptr; 1187 bool fdesHaveAug = false; 1188 uint8_t lsdaPtrSize = 0; // 0 => no LSDA 1189 uint8_t funcPtrSize = 0; 1190 }; 1191 1192 static uint8_t pointerEncodingToSize(uint8_t enc) { 1193 switch (enc & 0xf) { 1194 case dwarf::DW_EH_PE_absptr: 1195 return target->wordSize; 1196 case dwarf::DW_EH_PE_sdata4: 1197 return 4; 1198 case dwarf::DW_EH_PE_sdata8: 1199 // ld64 doesn't actually support sdata8, but this seems simple enough... 1200 return 8; 1201 default: 1202 return 0; 1203 }; 1204 } 1205 1206 static CIE parseCIE(const InputSection *isec, const EhReader &reader, 1207 size_t off) { 1208 // Handling the full generality of possible DWARF encodings would be a major 1209 // pain. We instead take advantage of our knowledge of how llvm-mc encodes 1210 // DWARF and handle just that. 1211 constexpr uint8_t expectedPersonalityEnc = 1212 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4; 1213 1214 CIE cie; 1215 uint8_t version = reader.readByte(&off); 1216 if (version != 1 && version != 3) 1217 fatal("Expected CIE version of 1 or 3, got " + Twine(version)); 1218 StringRef aug = reader.readString(&off); 1219 reader.skipLeb128(&off); // skip code alignment 1220 reader.skipLeb128(&off); // skip data alignment 1221 reader.skipLeb128(&off); // skip return address register 1222 reader.skipLeb128(&off); // skip aug data length 1223 uint64_t personalityAddrOff = 0; 1224 for (char c : aug) { 1225 switch (c) { 1226 case 'z': 1227 cie.fdesHaveAug = true; 1228 break; 1229 case 'P': { 1230 uint8_t personalityEnc = reader.readByte(&off); 1231 if (personalityEnc != expectedPersonalityEnc) 1232 reader.failOn(off, "unexpected personality encoding 0x" + 1233 Twine::utohexstr(personalityEnc)); 1234 personalityAddrOff = off; 1235 off += 4; 1236 break; 1237 } 1238 case 'L': { 1239 uint8_t lsdaEnc = reader.readByte(&off); 1240 cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc); 1241 if (cie.lsdaPtrSize == 0) 1242 reader.failOn(off, "unexpected LSDA encoding 0x" + 1243 Twine::utohexstr(lsdaEnc)); 1244 break; 1245 } 1246 case 'R': { 1247 uint8_t pointerEnc = reader.readByte(&off); 1248 cie.funcPtrSize = pointerEncodingToSize(pointerEnc); 1249 if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel)) 1250 reader.failOn(off, "unexpected pointer encoding 0x" + 1251 Twine::utohexstr(pointerEnc)); 1252 break; 1253 } 1254 default: 1255 break; 1256 } 1257 } 1258 if (personalityAddrOff != 0) { 1259 const auto *personalityReloc = isec->getRelocAt(personalityAddrOff); 1260 if (!personalityReloc) 1261 reader.failOn(off, "Failed to locate relocation for personality symbol"); 1262 cie.personalitySymbol = personalityReloc->referent.get<macho::Symbol *>(); 1263 } 1264 return cie; 1265 } 1266 1267 // EH frame target addresses may be encoded as pcrel offsets. However, instead 1268 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead. 1269 // This function recovers the target address from the subtractors, essentially 1270 // performing the inverse operation of EhRelocator. 1271 // 1272 // Concretely, we expect our relocations to write the value of `PC - 1273 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that 1274 // points to a symbol plus an addend. 1275 // 1276 // It is important that the minuend relocation point to a symbol within the 1277 // same section as the fixup value, since sections may get moved around. 1278 // 1279 // For example, for arm64, llvm-mc emits relocations for the target function 1280 // address like so: 1281 // 1282 // ltmp: 1283 // <CIE start> 1284 // ... 1285 // <CIE end> 1286 // ... multiple FDEs ... 1287 // <FDE start> 1288 // <target function address - (ltmp + pcrel offset)> 1289 // ... 1290 // 1291 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start` 1292 // will move to an earlier address, and `ltmp + pcrel offset` will no longer 1293 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize" 1294 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating 1295 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`. 1296 // 1297 // If `Invert` is set, then we instead expect `target_addr - PC` to be written 1298 // to `PC`. 1299 template <bool Invert = false> 1300 Defined * 1301 targetSymFromCanonicalSubtractor(const InputSection *isec, 1302 std::vector<macho::Reloc>::iterator relocIt) { 1303 macho::Reloc &subtrahend = *relocIt; 1304 macho::Reloc &minuend = *std::next(relocIt); 1305 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND)); 1306 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED)); 1307 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero 1308 // addend. 1309 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>()); 1310 Defined *target = 1311 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>()); 1312 if (!pcSym) { 1313 auto *targetIsec = 1314 cast<ConcatInputSection>(minuend.referent.get<InputSection *>()); 1315 target = findSymbolAtOffset(targetIsec, minuend.addend); 1316 } 1317 if (Invert) 1318 std::swap(pcSym, target); 1319 if (pcSym->isec == isec) { 1320 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset) 1321 fatal("invalid FDE relocation in __eh_frame"); 1322 } else { 1323 // Ensure the pcReloc points to a symbol within the current EH frame. 1324 // HACK: we should really verify that the original relocation's semantics 1325 // are preserved. In particular, we should have 1326 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't 1327 // have an easy way to access the offsets from this point in the code; some 1328 // refactoring is needed for that. 1329 macho::Reloc &pcReloc = Invert ? minuend : subtrahend; 1330 pcReloc.referent = isec->symbols[0]; 1331 assert(isec->symbols[0]->value == 0); 1332 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL); 1333 } 1334 return target; 1335 } 1336 1337 Defined *findSymbolAtAddress(const std::vector<Section *> §ions, 1338 uint64_t addr) { 1339 Section *sec = findContainingSection(sections, &addr); 1340 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr)); 1341 return findSymbolAtOffset(isec, addr); 1342 } 1343 1344 // For symbols that don't have compact unwind info, associate them with the more 1345 // general-purpose (and verbose) DWARF unwind info found in __eh_frame. 1346 // 1347 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a 1348 // description of its format. 1349 // 1350 // While parsing, we also look for what MC calls "abs-ified" relocations -- they 1351 // are relocations which are implicitly encoded as offsets in the section data. 1352 // We convert them into explicit Reloc structs so that the EH frames can be 1353 // handled just like a regular ConcatInputSection later in our output phase. 1354 // 1355 // We also need to handle the case where our input object file has explicit 1356 // relocations. This is the case when e.g. it's the output of `ld -r`. We only 1357 // look for the "abs-ified" relocation if an explicit relocation is absent. 1358 void ObjFile::registerEhFrames(Section &ehFrameSection) { 1359 DenseMap<const InputSection *, CIE> cieMap; 1360 for (const Subsection &subsec : ehFrameSection.subsections) { 1361 auto *isec = cast<ConcatInputSection>(subsec.isec); 1362 uint64_t isecOff = subsec.offset; 1363 1364 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure 1365 // that all EH frames have an associated symbol so that we can generate 1366 // subtractor relocs that reference them. 1367 if (isec->symbols.size() == 0) 1368 make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0, 1369 isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false, 1370 /*isPrivateExtern=*/false, /*includeInSymtab=*/false, 1371 /*isReferencedDynamically=*/false, 1372 /*noDeadStrip=*/false); 1373 else if (isec->symbols[0]->value != 0) 1374 fatal("found symbol at unexpected offset in __eh_frame"); 1375 1376 EhReader reader(this, isec->data, subsec.offset); 1377 size_t dataOff = 0; // Offset from the start of the EH frame. 1378 reader.skipValidLength(&dataOff); // readLength() already validated this. 1379 // cieOffOff is the offset from the start of the EH frame to the cieOff 1380 // value, which is itself an offset from the current PC to a CIE. 1381 const size_t cieOffOff = dataOff; 1382 1383 EhRelocator ehRelocator(isec); 1384 auto cieOffRelocIt = llvm::find_if( 1385 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; }); 1386 InputSection *cieIsec = nullptr; 1387 if (cieOffRelocIt != isec->relocs.end()) { 1388 // We already have an explicit relocation for the CIE offset. 1389 cieIsec = 1390 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt) 1391 ->isec; 1392 dataOff += sizeof(uint32_t); 1393 } else { 1394 // If we haven't found a relocation, then the CIE offset is most likely 1395 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that 1396 // and generate a Reloc struct. 1397 uint32_t cieMinuend = reader.readU32(&dataOff); 1398 if (cieMinuend == 0) { 1399 cieIsec = isec; 1400 } else { 1401 uint32_t cieOff = isecOff + dataOff - cieMinuend; 1402 cieIsec = findContainingSubsection(ehFrameSection, &cieOff); 1403 if (cieIsec == nullptr) 1404 fatal("failed to find CIE"); 1405 } 1406 if (cieIsec != isec) 1407 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0], 1408 /*length=*/2); 1409 } 1410 if (cieIsec == isec) { 1411 cieMap[cieIsec] = parseCIE(isec, reader, dataOff); 1412 continue; 1413 } 1414 1415 assert(cieMap.count(cieIsec)); 1416 const CIE &cie = cieMap[cieIsec]; 1417 // Offset of the function address within the EH frame. 1418 const size_t funcAddrOff = dataOff; 1419 uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) + 1420 ehFrameSection.addr + isecOff + funcAddrOff; 1421 uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize); 1422 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame. 1423 std::optional<uint64_t> lsdaAddrOpt; 1424 if (cie.fdesHaveAug) { 1425 reader.skipLeb128(&dataOff); 1426 lsdaAddrOff = dataOff; 1427 if (cie.lsdaPtrSize != 0) { 1428 uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize); 1429 if (lsdaOff != 0) // FIXME possible to test this? 1430 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff; 1431 } 1432 } 1433 1434 auto funcAddrRelocIt = isec->relocs.end(); 1435 auto lsdaAddrRelocIt = isec->relocs.end(); 1436 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { 1437 if (it->offset == funcAddrOff) 1438 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1439 else if (lsdaAddrOpt && it->offset == lsdaAddrOff) 1440 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1441 } 1442 1443 Defined *funcSym; 1444 if (funcAddrRelocIt != isec->relocs.end()) { 1445 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt); 1446 // Canonicalize the symbol. If there are multiple symbols at the same 1447 // address, we want both `registerEhFrame` and `registerCompactUnwind` 1448 // to register the unwind entry under same symbol. 1449 // This is not particularly efficient, but we should run into this case 1450 // infrequently (only when handling the output of `ld -r`). 1451 if (funcSym->isec) 1452 funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec), 1453 funcSym->value); 1454 } else { 1455 funcSym = findSymbolAtAddress(sections, funcAddr); 1456 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize); 1457 } 1458 // The symbol has been coalesced, or already has a compact unwind entry. 1459 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) { 1460 // We must prune unused FDEs for correctness, so we cannot rely on 1461 // -dead_strip being enabled. 1462 isec->live = false; 1463 continue; 1464 } 1465 1466 InputSection *lsdaIsec = nullptr; 1467 if (lsdaAddrRelocIt != isec->relocs.end()) { 1468 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec; 1469 } else if (lsdaAddrOpt) { 1470 uint64_t lsdaAddr = *lsdaAddrOpt; 1471 Section *sec = findContainingSection(sections, &lsdaAddr); 1472 lsdaIsec = 1473 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr)); 1474 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize); 1475 } 1476 1477 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec}; 1478 funcSym->unwindEntry = isec; 1479 ehRelocator.commit(); 1480 } 1481 1482 // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs 1483 // are normally required to be kept alive if they reference a live symbol. 1484 // However, we've explicitly created a dependency from a symbol to its FDE, so 1485 // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only 1486 // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a 1487 // live symbol (e.g. if there were multiple weak copies). Remove this flag to 1488 // let dead-stripping proceed correctly. 1489 ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT; 1490 } 1491 1492 std::string ObjFile::sourceFile() const { 1493 SmallString<261> dir(compileUnit->getCompilationDir()); 1494 StringRef sep = sys::path::get_separator(); 1495 // We don't use `path::append` here because we want an empty `dir` to result 1496 // in an absolute path. `append` would give us a relative path for that case. 1497 if (!dir.endswith(sep)) 1498 dir += sep; 1499 return (dir + compileUnit->getUnitDIE().getShortName()).str(); 1500 } 1501 1502 lld::DWARFCache *ObjFile::getDwarf() { 1503 llvm::call_once(initDwarf, [this]() { 1504 auto dwObj = DwarfObject::create(this); 1505 if (!dwObj) 1506 return; 1507 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 1508 std::move(dwObj), "", 1509 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 1510 [&](Error warning) { 1511 warn(getName() + ": " + toString(std::move(warning))); 1512 })); 1513 }); 1514 1515 return dwarfCache.get(); 1516 } 1517 // The path can point to either a dylib or a .tbd file. 1518 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1519 std::optional<MemoryBufferRef> mbref = readFile(path); 1520 if (!mbref) { 1521 error("could not read dylib file at " + path); 1522 return nullptr; 1523 } 1524 return loadDylib(*mbref, umbrella); 1525 } 1526 1527 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1528 // the first document storing child pointers to the rest of them. When we are 1529 // processing a given TBD file, we store that top-level document in 1530 // currentTopLevelTapi. When processing re-exports, we search its children for 1531 // potentially matching documents in the same TBD file. Note that the children 1532 // themselves don't point to further documents, i.e. this is a two-level tree. 1533 // 1534 // Re-exports can either refer to on-disk files, or to documents within .tbd 1535 // files. 1536 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1537 const InterfaceFile *currentTopLevelTapi) { 1538 // Search order: 1539 // 1. Install name basename in -F / -L directories. 1540 { 1541 StringRef stem = path::stem(path); 1542 SmallString<128> frameworkName; 1543 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1544 bool isFramework = path.ends_with(frameworkName); 1545 if (isFramework) { 1546 for (StringRef dir : config->frameworkSearchPaths) { 1547 SmallString<128> candidate = dir; 1548 path::append(candidate, frameworkName); 1549 if (std::optional<StringRef> dylibPath = 1550 resolveDylibPath(candidate.str())) 1551 return loadDylib(*dylibPath, umbrella); 1552 } 1553 } else if (std::optional<StringRef> dylibPath = findPathCombination( 1554 stem, config->librarySearchPaths, {".tbd", ".dylib", ".so"})) 1555 return loadDylib(*dylibPath, umbrella); 1556 } 1557 1558 // 2. As absolute path. 1559 if (path::is_absolute(path, path::Style::posix)) 1560 for (StringRef root : config->systemLibraryRoots) 1561 if (std::optional<StringRef> dylibPath = 1562 resolveDylibPath((root + path).str())) 1563 return loadDylib(*dylibPath, umbrella); 1564 1565 // 3. As relative path. 1566 1567 // TODO: Handle -dylib_file 1568 1569 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1570 SmallString<128> newPath; 1571 if (config->outputType == MH_EXECUTE && 1572 path.consume_front("@executable_path/")) { 1573 // ld64 allows overriding this with the undocumented flag -executable_path. 1574 // lld doesn't currently implement that flag. 1575 // FIXME: Consider using finalOutput instead of outputFile. 1576 path::append(newPath, path::parent_path(config->outputFile), path); 1577 path = newPath; 1578 } else if (path.consume_front("@loader_path/")) { 1579 fs::real_path(umbrella->getName(), newPath); 1580 path::remove_filename(newPath); 1581 path::append(newPath, path); 1582 path = newPath; 1583 } else if (path.starts_with("@rpath/")) { 1584 for (StringRef rpath : umbrella->rpaths) { 1585 newPath.clear(); 1586 if (rpath.consume_front("@loader_path/")) { 1587 fs::real_path(umbrella->getName(), newPath); 1588 path::remove_filename(newPath); 1589 } 1590 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1591 if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1592 return loadDylib(*dylibPath, umbrella); 1593 } 1594 } 1595 1596 // FIXME: Should this be further up? 1597 if (currentTopLevelTapi) { 1598 for (InterfaceFile &child : 1599 make_pointee_range(currentTopLevelTapi->documents())) { 1600 assert(child.documents().empty()); 1601 if (path == child.getInstallName()) { 1602 auto *file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, 1603 /*explicitlyLinked=*/false); 1604 file->parseReexports(child); 1605 return file; 1606 } 1607 } 1608 } 1609 1610 if (std::optional<StringRef> dylibPath = resolveDylibPath(path)) 1611 return loadDylib(*dylibPath, umbrella); 1612 1613 return nullptr; 1614 } 1615 1616 // If a re-exported dylib is public (lives in /usr/lib or 1617 // /System/Library/Frameworks), then it is considered implicitly linked: we 1618 // should bind to its symbols directly instead of via the re-exporting umbrella 1619 // library. 1620 static bool isImplicitlyLinked(StringRef path) { 1621 if (!config->implicitDylibs) 1622 return false; 1623 1624 if (path::parent_path(path) == "/usr/lib") 1625 return true; 1626 1627 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1628 if (path.consume_front("/System/Library/Frameworks/")) { 1629 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1630 return path::filename(path) == frameworkName; 1631 } 1632 1633 return false; 1634 } 1635 1636 void DylibFile::loadReexport(StringRef path, DylibFile *umbrella, 1637 const InterfaceFile *currentTopLevelTapi) { 1638 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1639 if (!reexport) 1640 error(toString(this) + ": unable to locate re-export with install name " + 1641 path); 1642 } 1643 1644 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1645 bool isBundleLoader, bool explicitlyLinked) 1646 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1647 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1648 assert(!isBundleLoader || !umbrella); 1649 if (umbrella == nullptr) 1650 umbrella = this; 1651 this->umbrella = umbrella; 1652 1653 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1654 1655 // Initialize installName. 1656 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1657 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1658 currentVersion = read32le(&c->dylib.current_version); 1659 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1660 installName = 1661 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1662 } else if (!isBundleLoader) { 1663 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1664 // so it's OK. 1665 error(toString(this) + ": dylib missing LC_ID_DYLIB load command"); 1666 return; 1667 } 1668 1669 if (config->printEachFile) 1670 message(toString(this)); 1671 inputFiles.insert(this); 1672 1673 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1674 1675 if (!checkCompatibility(this)) 1676 return; 1677 1678 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1679 1680 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1681 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1682 rpaths.push_back(rpath); 1683 } 1684 1685 // Initialize symbols. 1686 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1687 1688 const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY); 1689 const auto *exportsTrie = 1690 findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE); 1691 if (dyldInfo && exportsTrie) { 1692 // It's unclear what should happen in this case. Maybe we should only error 1693 // out if the two load commands refer to different data? 1694 error(toString(this) + 1695 ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE"); 1696 return; 1697 } 1698 1699 if (dyldInfo) { 1700 parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size); 1701 } else if (exportsTrie) { 1702 parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize); 1703 } else { 1704 error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " + 1705 toString(this)); 1706 } 1707 } 1708 1709 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) { 1710 struct TrieEntry { 1711 StringRef name; 1712 uint64_t flags; 1713 }; 1714 1715 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1716 std::vector<TrieEntry> entries; 1717 // Find all the $ld$* symbols to process first. 1718 parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) { 1719 StringRef savedName = saver().save(name); 1720 if (handleLDSymbol(savedName)) 1721 return; 1722 entries.push_back({savedName, flags}); 1723 }); 1724 1725 // Process the "normal" symbols. 1726 for (TrieEntry &entry : entries) { 1727 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name))) 1728 continue; 1729 1730 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1731 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1732 1733 symbols.push_back( 1734 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1735 } 1736 } 1737 1738 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1739 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1740 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1741 target->headerSize; 1742 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1743 auto *cmd = reinterpret_cast<const load_command *>(p); 1744 p += cmd->cmdsize; 1745 1746 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1747 cmd->cmd == LC_REEXPORT_DYLIB) { 1748 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1749 StringRef reexportPath = 1750 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1751 loadReexport(reexportPath, exportingFile, nullptr); 1752 } 1753 1754 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1755 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1756 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1757 if (config->namespaceKind == NamespaceKind::flat && 1758 cmd->cmd == LC_LOAD_DYLIB) { 1759 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1760 StringRef dylibPath = 1761 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1762 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1763 if (!dylib) 1764 error(Twine("unable to locate library '") + dylibPath + 1765 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1766 } 1767 } 1768 } 1769 1770 // Some versions of Xcode ship with .tbd files that don't have the right 1771 // platform settings. 1772 constexpr std::array<StringRef, 3> skipPlatformChecks{ 1773 "/usr/lib/system/libsystem_kernel.dylib", 1774 "/usr/lib/system/libsystem_platform.dylib", 1775 "/usr/lib/system/libsystem_pthread.dylib"}; 1776 1777 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, 1778 bool explicitlyLinked) { 1779 // Catalyst outputs can link against implicitly linked macOS-only libraries. 1780 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) 1781 return false; 1782 return is_contained(interface.targets(), 1783 MachO::Target(config->arch(), PLATFORM_MACOS)); 1784 } 1785 1786 static bool isArchABICompatible(ArchitectureSet archSet, 1787 Architecture targetArch) { 1788 uint32_t cpuType; 1789 uint32_t targetCpuType; 1790 std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch); 1791 1792 return llvm::any_of(archSet, [&](const auto &p) { 1793 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p); 1794 return cpuType == targetCpuType; 1795 }); 1796 } 1797 1798 static bool isTargetPlatformArchCompatible( 1799 InterfaceFile::const_target_range interfaceTargets, Target target) { 1800 if (is_contained(interfaceTargets, target)) 1801 return true; 1802 1803 if (config->forceExactCpuSubtypeMatch) 1804 return false; 1805 1806 ArchitectureSet archSet; 1807 for (const auto &p : interfaceTargets) 1808 if (p.Platform == target.Platform) 1809 archSet.set(p.Arch); 1810 if (archSet.empty()) 1811 return false; 1812 1813 return isArchABICompatible(archSet, target.Arch); 1814 } 1815 1816 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1817 bool isBundleLoader, bool explicitlyLinked) 1818 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1819 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1820 // FIXME: Add test for the missing TBD code path. 1821 1822 if (umbrella == nullptr) 1823 umbrella = this; 1824 this->umbrella = umbrella; 1825 1826 installName = saver().save(interface.getInstallName()); 1827 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1828 currentVersion = interface.getCurrentVersion().rawValue(); 1829 1830 if (config->printEachFile) 1831 message(toString(this)); 1832 inputFiles.insert(this); 1833 1834 if (!is_contained(skipPlatformChecks, installName) && 1835 !isTargetPlatformArchCompatible(interface.targets(), 1836 config->platformInfo.target) && 1837 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { 1838 error(toString(this) + " is incompatible with " + 1839 std::string(config->platformInfo.target)); 1840 return; 1841 } 1842 1843 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1844 1845 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1846 auto addSymbol = [&](const llvm::MachO::Symbol &symbol, 1847 const Twine &name) -> void { 1848 StringRef savedName = saver().save(name); 1849 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1850 return; 1851 1852 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1853 symbol.isWeakDefined(), 1854 symbol.isThreadLocalValue())); 1855 }; 1856 1857 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1858 normalSymbols.reserve(interface.symbolsCount()); 1859 for (const auto *symbol : interface.symbols()) { 1860 if (!isArchABICompatible(symbol->getArchitectures(), config->arch())) 1861 continue; 1862 if (handleLDSymbol(symbol->getName())) 1863 continue; 1864 1865 switch (symbol->getKind()) { 1866 case SymbolKind::GlobalSymbol: 1867 case SymbolKind::ObjectiveCClass: 1868 case SymbolKind::ObjectiveCClassEHType: 1869 case SymbolKind::ObjectiveCInstanceVariable: 1870 normalSymbols.push_back(symbol); 1871 } 1872 } 1873 1874 // TODO(compnerd) filter out symbols based on the target platform 1875 for (const auto *symbol : normalSymbols) { 1876 switch (symbol->getKind()) { 1877 case SymbolKind::GlobalSymbol: 1878 addSymbol(*symbol, symbol->getName()); 1879 break; 1880 case SymbolKind::ObjectiveCClass: 1881 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1882 // want to emulate that. 1883 addSymbol(*symbol, objc::klass + symbol->getName()); 1884 addSymbol(*symbol, objc::metaclass + symbol->getName()); 1885 break; 1886 case SymbolKind::ObjectiveCClassEHType: 1887 addSymbol(*symbol, objc::ehtype + symbol->getName()); 1888 break; 1889 case SymbolKind::ObjectiveCInstanceVariable: 1890 addSymbol(*symbol, objc::ivar + symbol->getName()); 1891 break; 1892 } 1893 } 1894 } 1895 1896 DylibFile::DylibFile(DylibFile *umbrella) 1897 : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced), 1898 explicitlyLinked(false), isBundleLoader(false) { 1899 if (umbrella == nullptr) 1900 umbrella = this; 1901 this->umbrella = umbrella; 1902 } 1903 1904 void DylibFile::parseReexports(const InterfaceFile &interface) { 1905 const InterfaceFile *topLevel = 1906 interface.getParent() == nullptr ? &interface : interface.getParent(); 1907 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1908 InterfaceFile::const_target_range targets = intfRef.targets(); 1909 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1910 isTargetPlatformArchCompatible(targets, config->platformInfo.target)) 1911 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1912 } 1913 } 1914 1915 bool DylibFile::isExplicitlyLinked() const { 1916 if (!explicitlyLinked) 1917 return false; 1918 1919 // If this dylib was explicitly linked, but at least one of the symbols 1920 // of the synthetic dylibs it created via $ld$previous symbols is 1921 // referenced, then that synthetic dylib fulfils the explicit linkedness 1922 // and we can deadstrip this dylib if it's unreferenced. 1923 for (const auto *dylib : extraDylibs) 1924 if (dylib->isReferenced()) 1925 return false; 1926 1927 return true; 1928 } 1929 1930 DylibFile *DylibFile::getSyntheticDylib(StringRef installName, 1931 uint32_t currentVersion, 1932 uint32_t compatVersion) { 1933 for (DylibFile *dylib : extraDylibs) 1934 if (dylib->installName == installName) { 1935 // FIXME: Check what to do if different $ld$previous symbols 1936 // request the same dylib, but with different versions. 1937 return dylib; 1938 } 1939 1940 auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella); 1941 dylib->installName = saver().save(installName); 1942 dylib->currentVersion = currentVersion; 1943 dylib->compatibilityVersion = compatVersion; 1944 extraDylibs.push_back(dylib); 1945 return dylib; 1946 } 1947 1948 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1949 // name, compatibility version or hide/add symbols) for specific target 1950 // versions. 1951 bool DylibFile::handleLDSymbol(StringRef originalName) { 1952 if (!originalName.starts_with("$ld$")) 1953 return false; 1954 1955 StringRef action; 1956 StringRef name; 1957 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1958 if (action == "previous") 1959 handleLDPreviousSymbol(name, originalName); 1960 else if (action == "install_name") 1961 handleLDInstallNameSymbol(name, originalName); 1962 else if (action == "hide") 1963 handleLDHideSymbol(name, originalName); 1964 return true; 1965 } 1966 1967 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1968 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1969 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1970 StringRef installName; 1971 StringRef compatVersion; 1972 StringRef platformStr; 1973 StringRef startVersion; 1974 StringRef endVersion; 1975 StringRef symbolName; 1976 StringRef rest; 1977 1978 std::tie(installName, name) = name.split('$'); 1979 std::tie(compatVersion, name) = name.split('$'); 1980 std::tie(platformStr, name) = name.split('$'); 1981 std::tie(startVersion, name) = name.split('$'); 1982 std::tie(endVersion, name) = name.split('$'); 1983 std::tie(symbolName, rest) = name.rsplit('$'); 1984 1985 // FIXME: Does this do the right thing for zippered files? 1986 unsigned platform; 1987 if (platformStr.getAsInteger(10, platform) || 1988 platform != static_cast<unsigned>(config->platform())) 1989 return; 1990 1991 VersionTuple start; 1992 if (start.tryParse(startVersion)) { 1993 warn(toString(this) + ": failed to parse start version, symbol '" + 1994 originalName + "' ignored"); 1995 return; 1996 } 1997 VersionTuple end; 1998 if (end.tryParse(endVersion)) { 1999 warn(toString(this) + ": failed to parse end version, symbol '" + 2000 originalName + "' ignored"); 2001 return; 2002 } 2003 if (config->platformInfo.target.MinDeployment < start || 2004 config->platformInfo.target.MinDeployment >= end) 2005 return; 2006 2007 // Initialized to compatibilityVersion for the symbolName branch below. 2008 uint32_t newCompatibilityVersion = compatibilityVersion; 2009 uint32_t newCurrentVersionForSymbol = currentVersion; 2010 if (!compatVersion.empty()) { 2011 VersionTuple cVersion; 2012 if (cVersion.tryParse(compatVersion)) { 2013 warn(toString(this) + 2014 ": failed to parse compatibility version, symbol '" + originalName + 2015 "' ignored"); 2016 return; 2017 } 2018 newCompatibilityVersion = encodeVersion(cVersion); 2019 newCurrentVersionForSymbol = newCompatibilityVersion; 2020 } 2021 2022 if (!symbolName.empty()) { 2023 // A $ld$previous$ symbol with symbol name adds a symbol with that name to 2024 // a dylib with given name and version. 2025 auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol, 2026 newCompatibilityVersion); 2027 2028 // The tbd file usually contains the $ld$previous symbol for an old version, 2029 // and then the symbol itself later, for newer deployment targets, like so: 2030 // symbols: [ 2031 // '$ld$previous$/Another$$1$3.0$14.0$_zzz$', 2032 // _zzz, 2033 // ] 2034 // Since the symbols are sorted, adding them to the symtab in the given 2035 // order means the $ld$previous version of _zzz will prevail, as desired. 2036 dylib->symbols.push_back(symtab->addDylib( 2037 saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false)); 2038 return; 2039 } 2040 2041 // A $ld$previous$ symbol without symbol name modifies the dylib it's in. 2042 this->installName = saver().save(installName); 2043 this->compatibilityVersion = newCompatibilityVersion; 2044 } 2045 2046 void DylibFile::handleLDInstallNameSymbol(StringRef name, 2047 StringRef originalName) { 2048 // originalName: $ld$ install_name $ os<version> $ install_name 2049 StringRef condition, installName; 2050 std::tie(condition, installName) = name.split('$'); 2051 VersionTuple version; 2052 if (!condition.consume_front("os") || version.tryParse(condition)) 2053 warn(toString(this) + ": failed to parse os version, symbol '" + 2054 originalName + "' ignored"); 2055 else if (version == config->platformInfo.target.MinDeployment) 2056 this->installName = saver().save(installName); 2057 } 2058 2059 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 2060 StringRef symbolName; 2061 bool shouldHide = true; 2062 if (name.starts_with("os")) { 2063 // If it's hidden based on versions. 2064 name = name.drop_front(2); 2065 StringRef minVersion; 2066 std::tie(minVersion, symbolName) = name.split('$'); 2067 VersionTuple versionTup; 2068 if (versionTup.tryParse(minVersion)) { 2069 warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName + 2070 "` ignored."); 2071 return; 2072 } 2073 shouldHide = versionTup == config->platformInfo.target.MinDeployment; 2074 } else { 2075 symbolName = name; 2076 } 2077 2078 if (shouldHide) 2079 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 2080 } 2081 2082 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 2083 if (config->applicationExtension && !dylibIsAppExtensionSafe) 2084 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 2085 } 2086 2087 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden) 2088 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)), 2089 forceHidden(forceHidden) {} 2090 2091 void ArchiveFile::addLazySymbols() { 2092 for (const object::Archive::Symbol &sym : file->symbols()) 2093 symtab->addLazyArchive(sym.getName(), this, sym); 2094 } 2095 2096 static Expected<InputFile *> 2097 loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 2098 uint64_t offsetInArchive, bool forceHidden) { 2099 if (config->zeroModTime) 2100 modTime = 0; 2101 2102 switch (identify_magic(mb.getBuffer())) { 2103 case file_magic::macho_object: 2104 return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden); 2105 case file_magic::bitcode: 2106 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false, 2107 forceHidden); 2108 default: 2109 return createStringError(inconvertibleErrorCode(), 2110 mb.getBufferIdentifier() + 2111 " has unhandled file type"); 2112 } 2113 } 2114 2115 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 2116 if (!seen.insert(c.getChildOffset()).second) 2117 return Error::success(); 2118 2119 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 2120 if (!mb) 2121 return mb.takeError(); 2122 2123 // Thin archives refer to .o files, so --reproduce needs the .o files too. 2124 if (tar && c.getParent()->isThin()) 2125 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 2126 2127 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 2128 if (!modTime) 2129 return modTime.takeError(); 2130 2131 Expected<InputFile *> file = loadArchiveMember( 2132 *mb, toTimeT(*modTime), getName(), c.getChildOffset(), forceHidden); 2133 2134 if (!file) 2135 return file.takeError(); 2136 2137 inputFiles.insert(*file); 2138 printArchiveMemberLoad(reason, *file); 2139 return Error::success(); 2140 } 2141 2142 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 2143 object::Archive::Child c = 2144 CHECK(sym.getMember(), toString(this) + 2145 ": could not get the member defining symbol " + 2146 toMachOString(sym)); 2147 2148 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 2149 // and become invalid after that call. Copy it to the stack so we can refer 2150 // to it later. 2151 const object::Archive::Symbol symCopy = sym; 2152 2153 // ld64 doesn't demangle sym here even with -demangle. 2154 // Match that: intentionally don't call toMachOString(). 2155 if (Error e = fetch(c, symCopy.getName())) 2156 error(toString(this) + ": could not get the member defining symbol " + 2157 toMachOString(symCopy) + ": " + toString(std::move(e))); 2158 } 2159 2160 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 2161 BitcodeFile &file) { 2162 StringRef name = saver().save(objSym.getName()); 2163 2164 if (objSym.isUndefined()) 2165 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 2166 2167 // TODO: Write a test demonstrating why computing isPrivateExtern before 2168 // LTO compilation is important. 2169 bool isPrivateExtern = false; 2170 switch (objSym.getVisibility()) { 2171 case GlobalValue::HiddenVisibility: 2172 isPrivateExtern = true; 2173 break; 2174 case GlobalValue::ProtectedVisibility: 2175 error(name + " has protected visibility, which is not supported by Mach-O"); 2176 break; 2177 case GlobalValue::DefaultVisibility: 2178 break; 2179 } 2180 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() || 2181 file.forceHidden; 2182 2183 if (objSym.isCommon()) 2184 return symtab->addCommon(name, &file, objSym.getCommonSize(), 2185 objSym.getCommonAlignment(), isPrivateExtern); 2186 2187 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 2188 /*size=*/0, objSym.isWeak(), isPrivateExtern, 2189 /*isReferencedDynamically=*/false, 2190 /*noDeadStrip=*/false, 2191 /*isWeakDefCanBeHidden=*/false); 2192 } 2193 2194 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 2195 uint64_t offsetInArchive, bool lazy, bool forceHidden) 2196 : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) { 2197 this->archiveName = std::string(archiveName); 2198 std::string path = mb.getBufferIdentifier().str(); 2199 if (config->thinLTOIndexOnly) 2200 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 2201 2202 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 2203 // name. If two members with the same name are provided, this causes a 2204 // collision and ThinLTO can't proceed. 2205 // So, we append the archive name to disambiguate two members with the same 2206 // name from multiple different archives, and offset within the archive to 2207 // disambiguate two members of the same name from a single archive. 2208 MemoryBufferRef mbref(mb.getBuffer(), 2209 saver().save(archiveName.empty() 2210 ? path 2211 : archiveName + "(" + 2212 sys::path::filename(path) + ")" + 2213 utostr(offsetInArchive))); 2214 obj = check(lto::InputFile::create(mbref)); 2215 if (lazy) 2216 parseLazy(); 2217 else 2218 parse(); 2219 } 2220 2221 void BitcodeFile::parse() { 2222 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 2223 // "winning" symbol will then be marked as Prevailing at LTO compilation 2224 // time. 2225 symbols.clear(); 2226 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 2227 symbols.push_back(createBitcodeSymbol(objSym, *this)); 2228 } 2229 2230 void BitcodeFile::parseLazy() { 2231 symbols.resize(obj->symbols().size()); 2232 for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) { 2233 if (!objSym.isUndefined()) { 2234 symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this); 2235 if (!lazy) 2236 break; 2237 } 2238 } 2239 } 2240 2241 std::string macho::replaceThinLTOSuffix(StringRef path) { 2242 auto [suffix, repl] = config->thinLTOObjectSuffixReplace; 2243 if (path.consume_back(suffix)) 2244 return (path + repl).str(); 2245 return std::string(path); 2246 } 2247 2248 void macho::extract(InputFile &file, StringRef reason) { 2249 if (!file.lazy) 2250 return; 2251 file.lazy = false; 2252 2253 printArchiveMemberLoad(reason, &file); 2254 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 2255 bitcode->parse(); 2256 } else { 2257 auto &f = cast<ObjFile>(file); 2258 if (target->wordSize == 8) 2259 f.parse<LP64>(); 2260 else 2261 f.parse<ILP32>(); 2262 } 2263 } 2264 2265 template void ObjFile::parse<LP64>(); 2266