xref: /freebsd/contrib/llvm-project/lld/MachO/InputFiles.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "EhFrame.h"
49 #include "ExportTrie.h"
50 #include "InputSection.h"
51 #include "MachOStructs.h"
52 #include "ObjC.h"
53 #include "OutputSection.h"
54 #include "OutputSegment.h"
55 #include "SymbolTable.h"
56 #include "Symbols.h"
57 #include "SyntheticSections.h"
58 #include "Target.h"
59 
60 #include "lld/Common/CommonLinkerContext.h"
61 #include "lld/Common/DWARF.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/BinaryStreamReader.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/LEB128.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/TarWriter.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/TextAPI/Architecture.h"
74 #include "llvm/TextAPI/InterfaceFile.h"
75 
76 #include <optional>
77 #include <type_traits>
78 
79 using namespace llvm;
80 using namespace llvm::MachO;
81 using namespace llvm::support::endian;
82 using namespace llvm::sys;
83 using namespace lld;
84 using namespace lld::macho;
85 
86 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
87 std::string lld::toString(const InputFile *f) {
88   if (!f)
89     return "<internal>";
90 
91   // Multiple dylibs can be defined in one .tbd file.
92   if (const auto *dylibFile = dyn_cast<DylibFile>(f))
93     if (f->getName().ends_with(".tbd"))
94       return (f->getName() + "(" + dylibFile->installName + ")").str();
95 
96   if (f->archiveName.empty())
97     return std::string(f->getName());
98   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
99 }
100 
101 std::string lld::toString(const Section &sec) {
102   return (toString(sec.file) + ":(" + sec.name + ")").str();
103 }
104 
105 SetVector<InputFile *> macho::inputFiles;
106 std::unique_ptr<TarWriter> macho::tar;
107 int InputFile::idCount = 0;
108 
109 static VersionTuple decodeVersion(uint32_t version) {
110   unsigned major = version >> 16;
111   unsigned minor = (version >> 8) & 0xffu;
112   unsigned subMinor = version & 0xffu;
113   return VersionTuple(major, minor, subMinor);
114 }
115 
116 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
117   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
118     return {};
119 
120   const char *hdr = input->mb.getBufferStart();
121 
122   // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
123   std::vector<PlatformInfo> platformInfos;
124   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
125     PlatformInfo info;
126     info.target.Platform = static_cast<PlatformType>(cmd->platform);
127     info.target.MinDeployment = decodeVersion(cmd->minos);
128     platformInfos.emplace_back(std::move(info));
129   }
130   for (auto *cmd : findCommands<version_min_command>(
131            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
132            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
133     PlatformInfo info;
134     switch (cmd->cmd) {
135     case LC_VERSION_MIN_MACOSX:
136       info.target.Platform = PLATFORM_MACOS;
137       break;
138     case LC_VERSION_MIN_IPHONEOS:
139       info.target.Platform = PLATFORM_IOS;
140       break;
141     case LC_VERSION_MIN_TVOS:
142       info.target.Platform = PLATFORM_TVOS;
143       break;
144     case LC_VERSION_MIN_WATCHOS:
145       info.target.Platform = PLATFORM_WATCHOS;
146       break;
147     }
148     info.target.MinDeployment = decodeVersion(cmd->version);
149     platformInfos.emplace_back(std::move(info));
150   }
151 
152   return platformInfos;
153 }
154 
155 static bool checkCompatibility(const InputFile *input) {
156   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
157   if (platformInfos.empty())
158     return true;
159 
160   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
161     return removeSimulator(info.target.Platform) ==
162            removeSimulator(config->platform());
163   });
164   if (it == platformInfos.end()) {
165     std::string platformNames;
166     raw_string_ostream os(platformNames);
167     interleave(
168         platformInfos, os,
169         [&](const PlatformInfo &info) {
170           os << getPlatformName(info.target.Platform);
171         },
172         "/");
173     error(toString(input) + " has platform " + platformNames +
174           Twine(", which is different from target platform ") +
175           getPlatformName(config->platform()));
176     return false;
177   }
178 
179   if (it->target.MinDeployment > config->platformInfo.target.MinDeployment)
180     warn(toString(input) + " has version " +
181          it->target.MinDeployment.getAsString() +
182          ", which is newer than target minimum of " +
183          config->platformInfo.target.MinDeployment.getAsString());
184 
185   return true;
186 }
187 
188 template <class Header>
189 static bool compatWithTargetArch(const InputFile *file, const Header *hdr) {
190   uint32_t cpuType;
191   std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch());
192 
193   if (hdr->cputype != cpuType) {
194     Architecture arch =
195         getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
196     auto msg = config->errorForArchMismatch
197                    ? static_cast<void (*)(const Twine &)>(error)
198                    : warn;
199 
200     msg(toString(file) + " has architecture " + getArchitectureName(arch) +
201         " which is incompatible with target architecture " +
202         getArchitectureName(config->arch()));
203     return false;
204   }
205 
206   return checkCompatibility(file);
207 }
208 
209 // This cache mostly exists to store system libraries (and .tbds) as they're
210 // loaded, rather than the input archives, which are already cached at a higher
211 // level, and other files like the filelist that are only read once.
212 // Theoretically this caching could be more efficient by hoisting it, but that
213 // would require altering many callers to track the state.
214 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
215 // Open a given file path and return it as a memory-mapped file.
216 std::optional<MemoryBufferRef> macho::readFile(StringRef path) {
217   CachedHashStringRef key(path);
218   auto entry = cachedReads.find(key);
219   if (entry != cachedReads.end())
220     return entry->second;
221 
222   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
223   if (std::error_code ec = mbOrErr.getError()) {
224     error("cannot open " + path + ": " + ec.message());
225     return std::nullopt;
226   }
227 
228   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
229   MemoryBufferRef mbref = mb->getMemBufferRef();
230   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
231 
232   // If this is a regular non-fat file, return it.
233   const char *buf = mbref.getBufferStart();
234   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
235   if (mbref.getBufferSize() < sizeof(uint32_t) ||
236       read32be(&hdr->magic) != FAT_MAGIC) {
237     if (tar)
238       tar->append(relativeToRoot(path), mbref.getBuffer());
239     return cachedReads[key] = mbref;
240   }
241 
242   llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
243 
244   // Object files and archive files may be fat files, which contain multiple
245   // real files for different CPU ISAs. Here, we search for a file that matches
246   // with the current link target and returns it as a MemoryBufferRef.
247   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
248   auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) {
249     return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype));
250   };
251 
252   std::vector<StringRef> archs;
253   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
254     if (reinterpret_cast<const char *>(arch + i + 1) >
255         buf + mbref.getBufferSize()) {
256       error(path + ": fat_arch struct extends beyond end of file");
257       return std::nullopt;
258     }
259 
260     uint32_t cpuType = read32be(&arch[i].cputype);
261     uint32_t cpuSubtype =
262         read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK;
263 
264     // FIXME: LD64 has a more complex fallback logic here.
265     // Consider implementing that as well?
266     if (cpuType != static_cast<uint32_t>(target->cpuType) ||
267         cpuSubtype != target->cpuSubtype) {
268       archs.emplace_back(getArchName(cpuType, cpuSubtype));
269       continue;
270     }
271 
272     uint32_t offset = read32be(&arch[i].offset);
273     uint32_t size = read32be(&arch[i].size);
274     if (offset + size > mbref.getBufferSize())
275       error(path + ": slice extends beyond end of file");
276     if (tar)
277       tar->append(relativeToRoot(path), mbref.getBuffer());
278     return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
279                                               path.copy(bAlloc));
280   }
281 
282   auto targetArchName = getArchName(target->cpuType, target->cpuSubtype);
283   warn(path + ": ignoring file because it is universal (" + join(archs, ",") +
284        ") but does not contain the " + targetArchName + " architecture");
285   return std::nullopt;
286 }
287 
288 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
289     : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
290 
291 // Some sections comprise of fixed-size records, so instead of splitting them at
292 // symbol boundaries, we split them based on size. Records are distinct from
293 // literals in that they may contain references to other sections, instead of
294 // being leaf nodes in the InputSection graph.
295 //
296 // Note that "record" is a term I came up with. In contrast, "literal" is a term
297 // used by the Mach-O format.
298 static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) {
299   if (name == section_names::compactUnwind) {
300     if (segname == segment_names::ld)
301       return target->wordSize == 8 ? 32 : 20;
302   }
303   if (!config->dedupStrings)
304     return {};
305 
306   if (name == section_names::cfString && segname == segment_names::data)
307     return target->wordSize == 8 ? 32 : 16;
308 
309   if (config->icfLevel == ICFLevel::none)
310     return {};
311 
312   if (name == section_names::objcClassRefs && segname == segment_names::data)
313     return target->wordSize;
314 
315   if (name == section_names::objcSelrefs && segname == segment_names::data)
316     return target->wordSize;
317   return {};
318 }
319 
320 static Error parseCallGraph(ArrayRef<uint8_t> data,
321                             std::vector<CallGraphEntry> &callGraph) {
322   TimeTraceScope timeScope("Parsing call graph section");
323   BinaryStreamReader reader(data, llvm::endianness::little);
324   while (!reader.empty()) {
325     uint32_t fromIndex, toIndex;
326     uint64_t count;
327     if (Error err = reader.readInteger(fromIndex))
328       return err;
329     if (Error err = reader.readInteger(toIndex))
330       return err;
331     if (Error err = reader.readInteger(count))
332       return err;
333     callGraph.emplace_back(fromIndex, toIndex, count);
334   }
335   return Error::success();
336 }
337 
338 // Parse the sequence of sections within a single LC_SEGMENT(_64).
339 // Split each section into subsections.
340 template <class SectionHeader>
341 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
342   sections.reserve(sectionHeaders.size());
343   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
344 
345   for (const SectionHeader &sec : sectionHeaders) {
346     StringRef name =
347         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
348     StringRef segname =
349         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
350     sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
351     if (sec.align >= 32) {
352       error("alignment " + std::to_string(sec.align) + " of section " + name +
353             " is too large");
354       continue;
355     }
356     Section &section = *sections.back();
357     uint32_t align = 1 << sec.align;
358     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
359                                                     : buf + sec.offset,
360                               static_cast<size_t>(sec.size)};
361 
362     auto splitRecords = [&](size_t recordSize) -> void {
363       if (data.empty())
364         return;
365       Subsections &subsections = section.subsections;
366       subsections.reserve(data.size() / recordSize);
367       for (uint64_t off = 0; off < data.size(); off += recordSize) {
368         auto *isec = make<ConcatInputSection>(
369             section, data.slice(off, std::min(data.size(), recordSize)), align);
370         subsections.push_back({off, isec});
371       }
372       section.doneSplitting = true;
373     };
374 
375     if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
376       if (sec.nreloc)
377         fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
378               " contains relocations, which is unsupported");
379       bool dedupLiterals =
380           name == section_names::objcMethname || config->dedupStrings;
381       InputSection *isec =
382           make<CStringInputSection>(section, data, align, dedupLiterals);
383       // FIXME: parallelize this?
384       cast<CStringInputSection>(isec)->splitIntoPieces();
385       section.subsections.push_back({0, isec});
386     } else if (isWordLiteralSection(sec.flags)) {
387       if (sec.nreloc)
388         fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
389               " contains relocations, which is unsupported");
390       InputSection *isec = make<WordLiteralInputSection>(section, data, align);
391       section.subsections.push_back({0, isec});
392     } else if (auto recordSize = getRecordSize(segname, name)) {
393       splitRecords(*recordSize);
394     } else if (name == section_names::ehFrame &&
395                segname == segment_names::text) {
396       splitEhFrames(data, *sections.back());
397     } else if (segname == segment_names::llvm) {
398       if (config->callGraphProfileSort && name == section_names::cgProfile)
399         checkError(parseCallGraph(data, callGraph));
400       // ld64 does not appear to emit contents from sections within the __LLVM
401       // segment. Symbols within those sections point to bitcode metadata
402       // instead of actual symbols. Global symbols within those sections could
403       // have the same name without causing duplicate symbol errors. To avoid
404       // spurious duplicate symbol errors, we do not parse these sections.
405       // TODO: Evaluate whether the bitcode metadata is needed.
406     } else if (name == section_names::objCImageInfo &&
407                segname == segment_names::data) {
408       objCImageInfo = data;
409     } else {
410       if (name == section_names::addrSig)
411         addrSigSection = sections.back();
412 
413       auto *isec = make<ConcatInputSection>(section, data, align);
414       if (isDebugSection(isec->getFlags()) &&
415           isec->getSegName() == segment_names::dwarf) {
416         // Instead of emitting DWARF sections, we emit STABS symbols to the
417         // object files that contain them. We filter them out early to avoid
418         // parsing their relocations unnecessarily.
419         debugSections.push_back(isec);
420       } else {
421         section.subsections.push_back({0, isec});
422       }
423     }
424   }
425 }
426 
427 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
428   EhReader reader(this, data, /*dataOff=*/0);
429   size_t off = 0;
430   while (off < reader.size()) {
431     uint64_t frameOff = off;
432     uint64_t length = reader.readLength(&off);
433     if (length == 0)
434       break;
435     uint64_t fullLength = length + (off - frameOff);
436     off += length;
437     // We hard-code an alignment of 1 here because we don't actually want our
438     // EH frames to be aligned to the section alignment. EH frame decoders don't
439     // expect this alignment. Moreover, each EH frame must start where the
440     // previous one ends, and where it ends is indicated by the length field.
441     // Unless we update the length field (troublesome), we should keep the
442     // alignment to 1.
443     // Note that we still want to preserve the alignment of the overall section,
444     // just not of the individual EH frames.
445     ehFrameSection.subsections.push_back(
446         {frameOff, make<ConcatInputSection>(ehFrameSection,
447                                             data.slice(frameOff, fullLength),
448                                             /*align=*/1)});
449   }
450   ehFrameSection.doneSplitting = true;
451 }
452 
453 template <class T>
454 static Section *findContainingSection(const std::vector<Section *> &sections,
455                                       T *offset) {
456   static_assert(std::is_same<uint64_t, T>::value ||
457                     std::is_same<uint32_t, T>::value,
458                 "unexpected type for offset");
459   auto it = std::prev(llvm::upper_bound(
460       sections, *offset,
461       [](uint64_t value, const Section *sec) { return value < sec->addr; }));
462   *offset -= (*it)->addr;
463   return *it;
464 }
465 
466 // Find the subsection corresponding to the greatest section offset that is <=
467 // that of the given offset.
468 //
469 // offset: an offset relative to the start of the original InputSection (before
470 // any subsection splitting has occurred). It will be updated to represent the
471 // same location as an offset relative to the start of the containing
472 // subsection.
473 template <class T>
474 static InputSection *findContainingSubsection(const Section &section,
475                                               T *offset) {
476   static_assert(std::is_same<uint64_t, T>::value ||
477                     std::is_same<uint32_t, T>::value,
478                 "unexpected type for offset");
479   auto it = std::prev(llvm::upper_bound(
480       section.subsections, *offset,
481       [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
482   *offset -= it->offset;
483   return it->isec;
484 }
485 
486 // Find a symbol at offset `off` within `isec`.
487 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
488                                    uint64_t off) {
489   auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
490     return d->value < off;
491   });
492   // The offset should point at the exact address of a symbol (with no addend.)
493   if (it == isec->symbols.end() || (*it)->value != off) {
494     assert(isec->wasCoalesced);
495     return nullptr;
496   }
497   return *it;
498 }
499 
500 template <class SectionHeader>
501 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
502                                    relocation_info rel) {
503   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
504   bool valid = true;
505   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
506     valid = false;
507     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
508             std::to_string(rel.r_address) + " of " + sec.segname + "," +
509             sec.sectname + " in " + toString(file))
510         .str();
511   };
512 
513   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
514     error(message("must be extern"));
515   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
516     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
517                   "be PC-relative"));
518   if (isThreadLocalVariables(sec.flags) &&
519       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
520     error(message("not allowed in thread-local section, must be UNSIGNED"));
521   if (rel.r_length < 2 || rel.r_length > 3 ||
522       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
523     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
524     error(message("has width " + std::to_string(1 << rel.r_length) +
525                   " bytes, but must be " +
526                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
527                   " bytes"));
528   }
529   return valid;
530 }
531 
532 template <class SectionHeader>
533 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
534                                const SectionHeader &sec, Section &section) {
535   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
536   ArrayRef<relocation_info> relInfos(
537       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
538 
539   Subsections &subsections = section.subsections;
540   auto subsecIt = subsections.rbegin();
541   for (size_t i = 0; i < relInfos.size(); i++) {
542     // Paired relocations serve as Mach-O's method for attaching a
543     // supplemental datum to a primary relocation record. ELF does not
544     // need them because the *_RELOC_RELA records contain the extra
545     // addend field, vs. *_RELOC_REL which omit the addend.
546     //
547     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
548     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
549     // datum for each is a symbolic address. The result is the offset
550     // between two addresses.
551     //
552     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
553     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
554     // base symbolic address.
555     //
556     // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into
557     // the instruction stream. On X86, a relocatable address field always
558     // occupies an entire contiguous sequence of byte(s), so there is no need to
559     // merge opcode bits with address bits. Therefore, it's easy and convenient
560     // to store addends in the instruction-stream bytes that would otherwise
561     // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with
562     // address bits so that bitwise arithmetic is necessary to extract and
563     // insert them. Storing addends in the instruction stream is possible, but
564     // inconvenient and more costly at link time.
565 
566     relocation_info relInfo = relInfos[i];
567     bool isSubtrahend =
568         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
569     int64_t pairedAddend = 0;
570     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
571       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
572       relInfo = relInfos[++i];
573     }
574     assert(i < relInfos.size());
575     if (!validateRelocationInfo(this, sec, relInfo))
576       continue;
577     if (relInfo.r_address & R_SCATTERED)
578       fatal("TODO: Scattered relocations not supported");
579 
580     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
581     assert(!(embeddedAddend && pairedAddend));
582     int64_t totalAddend = pairedAddend + embeddedAddend;
583     Reloc r;
584     r.type = relInfo.r_type;
585     r.pcrel = relInfo.r_pcrel;
586     r.length = relInfo.r_length;
587     r.offset = relInfo.r_address;
588     if (relInfo.r_extern) {
589       r.referent = symbols[relInfo.r_symbolnum];
590       r.addend = isSubtrahend ? 0 : totalAddend;
591     } else {
592       assert(!isSubtrahend);
593       const SectionHeader &referentSecHead =
594           sectionHeaders[relInfo.r_symbolnum - 1];
595       uint64_t referentOffset;
596       if (relInfo.r_pcrel) {
597         // The implicit addend for pcrel section relocations is the pcrel offset
598         // in terms of the addresses in the input file. Here we adjust it so
599         // that it describes the offset from the start of the referent section.
600         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
601         // have pcrel section relocations. We may want to factor this out into
602         // the arch-specific .cpp file.
603         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
604         referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
605                          referentSecHead.addr;
606       } else {
607         // The addend for a non-pcrel relocation is its absolute address.
608         referentOffset = totalAddend - referentSecHead.addr;
609       }
610       r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
611                                             &referentOffset);
612       r.addend = referentOffset;
613     }
614 
615     // Find the subsection that this relocation belongs to.
616     // Though not required by the Mach-O format, clang and gcc seem to emit
617     // relocations in order, so let's take advantage of it. However, ld64 emits
618     // unsorted relocations (in `-r` mode), so we have a fallback for that
619     // uncommon case.
620     InputSection *subsec;
621     while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
622       ++subsecIt;
623     if (subsecIt == subsections.rend() ||
624         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
625       subsec = findContainingSubsection(section, &r.offset);
626       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
627       // for the other relocations.
628       subsecIt = subsections.rend();
629     } else {
630       subsec = subsecIt->isec;
631       r.offset -= subsecIt->offset;
632     }
633     subsec->relocs.push_back(r);
634 
635     if (isSubtrahend) {
636       relocation_info minuendInfo = relInfos[++i];
637       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
638       // attached to the same address.
639       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
640              relInfo.r_address == minuendInfo.r_address);
641       Reloc p;
642       p.type = minuendInfo.r_type;
643       if (minuendInfo.r_extern) {
644         p.referent = symbols[minuendInfo.r_symbolnum];
645         p.addend = totalAddend;
646       } else {
647         uint64_t referentOffset =
648             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
649         p.referent = findContainingSubsection(
650             *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
651         p.addend = referentOffset;
652       }
653       subsec->relocs.push_back(p);
654     }
655   }
656 }
657 
658 template <class NList>
659 static macho::Symbol *createDefined(const NList &sym, StringRef name,
660                                     InputSection *isec, uint64_t value,
661                                     uint64_t size, bool forceHidden) {
662   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
663   // N_EXT: Global symbols. These go in the symbol table during the link,
664   //        and also in the export table of the output so that the dynamic
665   //        linker sees them.
666   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
667   //                 symbol table during the link so that duplicates are
668   //                 either reported (for non-weak symbols) or merged
669   //                 (for weak symbols), but they do not go in the export
670   //                 table of the output.
671   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
672   //         object files) may produce them. LLD does not yet support -r.
673   //         These are translation-unit scoped, identical to the `0` case.
674   // 0: Translation-unit scoped. These are not in the symbol table during
675   //    link, and not in the export table of the output either.
676   bool isWeakDefCanBeHidden =
677       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
678 
679   assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
680 
681   if (sym.n_type & N_EXT) {
682     // -load_hidden makes us treat global symbols as linkage unit scoped.
683     // Duplicates are reported but the symbol does not go in the export trie.
684     bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
685 
686     // lld's behavior for merging symbols is slightly different from ld64:
687     // ld64 picks the winning symbol based on several criteria (see
688     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
689     // just merges metadata and keeps the contents of the first symbol
690     // with that name (see SymbolTable::addDefined). For:
691     // * inline function F in a TU built with -fvisibility-inlines-hidden
692     // * and inline function F in another TU built without that flag
693     // ld64 will pick the one from the file built without
694     // -fvisibility-inlines-hidden.
695     // lld will instead pick the one listed first on the link command line and
696     // give it visibility as if the function was built without
697     // -fvisibility-inlines-hidden.
698     // If both functions have the same contents, this will have the same
699     // behavior. If not, it won't, but the input had an ODR violation in
700     // that case.
701     //
702     // Similarly, merging a symbol
703     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
704     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
705     // should produce one
706     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
707     // with ld64's semantics, because it means the non-private-extern
708     // definition will continue to take priority if more private extern
709     // definitions are encountered. With lld's semantics there's no observable
710     // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
711     // that's privateExtern -- neither makes it into the dynamic symbol table,
712     // unless the autohide symbol is explicitly exported.
713     // But if a symbol is both privateExtern and autohide then it can't
714     // be exported.
715     // So we nullify the autohide flag when privateExtern is present
716     // and promote the symbol to privateExtern when it is not already.
717     if (isWeakDefCanBeHidden && isPrivateExtern)
718       isWeakDefCanBeHidden = false;
719     else if (isWeakDefCanBeHidden)
720       isPrivateExtern = true;
721     return symtab->addDefined(
722         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
723         isPrivateExtern, sym.n_desc & REFERENCED_DYNAMICALLY,
724         sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden);
725   }
726   bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec);
727   return make<Defined>(
728       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
729       /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
730       sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
731 }
732 
733 // Absolute symbols are defined symbols that do not have an associated
734 // InputSection. They cannot be weak.
735 template <class NList>
736 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
737                                      StringRef name, bool forceHidden) {
738   assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
739 
740   if (sym.n_type & N_EXT) {
741     bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
742     return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0,
743                               /*isWeakDef=*/false, isPrivateExtern,
744                               /*isReferencedDynamically=*/false,
745                               sym.n_desc & N_NO_DEAD_STRIP,
746                               /*isWeakDefCanBeHidden=*/false);
747   }
748   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
749                        /*isWeakDef=*/false,
750                        /*isExternal=*/false, /*isPrivateExtern=*/false,
751                        /*includeInSymtab=*/true,
752                        /*isReferencedDynamically=*/false,
753                        sym.n_desc & N_NO_DEAD_STRIP);
754 }
755 
756 template <class NList>
757 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
758                                               const char *strtab) {
759   StringRef name = StringRef(strtab + sym.n_strx);
760   uint8_t type = sym.n_type & N_TYPE;
761   bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
762   switch (type) {
763   case N_UNDF:
764     return sym.n_value == 0
765                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
766                : symtab->addCommon(name, this, sym.n_value,
767                                    1 << GET_COMM_ALIGN(sym.n_desc),
768                                    isPrivateExtern);
769   case N_ABS:
770     return createAbsolute(sym, this, name, forceHidden);
771   case N_INDR: {
772     // Not much point in making local aliases -- relocs in the current file can
773     // just refer to the actual symbol itself. ld64 ignores these symbols too.
774     if (!(sym.n_type & N_EXT))
775       return nullptr;
776     StringRef aliasedName = StringRef(strtab + sym.n_value);
777     // isPrivateExtern is the only symbol flag that has an impact on the final
778     // aliased symbol.
779     auto *alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern);
780     aliases.push_back(alias);
781     return alias;
782   }
783   case N_PBUD:
784     error("TODO: support symbols of type N_PBUD");
785     return nullptr;
786   case N_SECT:
787     llvm_unreachable(
788         "N_SECT symbols should not be passed to parseNonSectionSymbol");
789   default:
790     llvm_unreachable("invalid symbol type");
791   }
792 }
793 
794 template <class NList> static bool isUndef(const NList &sym) {
795   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
796 }
797 
798 template <class LP>
799 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
800                            ArrayRef<typename LP::nlist> nList,
801                            const char *strtab, bool subsectionsViaSymbols) {
802   using NList = typename LP::nlist;
803 
804   // Groups indices of the symbols by the sections that contain them.
805   std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
806   symbols.resize(nList.size());
807   SmallVector<unsigned, 32> undefineds;
808   for (uint32_t i = 0; i < nList.size(); ++i) {
809     const NList &sym = nList[i];
810 
811     // Ignore debug symbols for now.
812     // FIXME: may need special handling.
813     if (sym.n_type & N_STAB)
814       continue;
815 
816     if ((sym.n_type & N_TYPE) == N_SECT) {
817       Subsections &subsections = sections[sym.n_sect - 1]->subsections;
818       // parseSections() may have chosen not to parse this section.
819       if (subsections.empty())
820         continue;
821       symbolsBySection[sym.n_sect - 1].push_back(i);
822     } else if (isUndef(sym)) {
823       undefineds.push_back(i);
824     } else {
825       symbols[i] = parseNonSectionSymbol(sym, strtab);
826     }
827   }
828 
829   for (size_t i = 0; i < sections.size(); ++i) {
830     Subsections &subsections = sections[i]->subsections;
831     if (subsections.empty())
832       continue;
833     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
834     uint64_t sectionAddr = sectionHeaders[i].addr;
835     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
836 
837     // Some sections have already been split into subsections during
838     // parseSections(), so we simply need to match Symbols to the corresponding
839     // subsection here.
840     if (sections[i]->doneSplitting) {
841       for (size_t j = 0; j < symbolIndices.size(); ++j) {
842         const uint32_t symIndex = symbolIndices[j];
843         const NList &sym = nList[symIndex];
844         StringRef name = strtab + sym.n_strx;
845         uint64_t symbolOffset = sym.n_value - sectionAddr;
846         InputSection *isec =
847             findContainingSubsection(*sections[i], &symbolOffset);
848         if (symbolOffset != 0) {
849           error(toString(*sections[i]) + ":  symbol " + name +
850                 " at misaligned offset");
851           continue;
852         }
853         symbols[symIndex] =
854             createDefined(sym, name, isec, 0, isec->getSize(), forceHidden);
855       }
856       continue;
857     }
858     sections[i]->doneSplitting = true;
859 
860     auto getSymName = [strtab](const NList& sym) -> StringRef {
861       return StringRef(strtab + sym.n_strx);
862     };
863 
864     // Calculate symbol sizes and create subsections by splitting the sections
865     // along symbol boundaries.
866     // We populate subsections by repeatedly splitting the last (highest
867     // address) subsection.
868     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
869       // Put extern weak symbols after other symbols at the same address so
870       // that weak symbol coalescing works correctly. See
871       // SymbolTable::addDefined() for details.
872       if (nList[lhs].n_value == nList[rhs].n_value &&
873           nList[lhs].n_type & N_EXT && nList[rhs].n_type & N_EXT)
874         return !(nList[lhs].n_desc & N_WEAK_DEF) && (nList[rhs].n_desc & N_WEAK_DEF);
875       return nList[lhs].n_value < nList[rhs].n_value;
876     });
877     for (size_t j = 0; j < symbolIndices.size(); ++j) {
878       const uint32_t symIndex = symbolIndices[j];
879       const NList &sym = nList[symIndex];
880       StringRef name = getSymName(sym);
881       Subsection &subsec = subsections.back();
882       InputSection *isec = subsec.isec;
883 
884       uint64_t subsecAddr = sectionAddr + subsec.offset;
885       size_t symbolOffset = sym.n_value - subsecAddr;
886       uint64_t symbolSize =
887           j + 1 < symbolIndices.size()
888               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
889               : isec->data.size() - symbolOffset;
890       // There are 4 cases where we do not need to create a new subsection:
891       //   1. If the input file does not use subsections-via-symbols.
892       //   2. Multiple symbols at the same address only induce one subsection.
893       //      (The symbolOffset == 0 check covers both this case as well as
894       //      the first loop iteration.)
895       //   3. Alternative entry points do not induce new subsections.
896       //   4. If we have a literal section (e.g. __cstring and __literal4).
897       if (!subsectionsViaSymbols || symbolOffset == 0 ||
898           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
899         isec->hasAltEntry = symbolOffset != 0;
900         symbols[symIndex] = createDefined(sym, name, isec, symbolOffset,
901                                           symbolSize, forceHidden);
902         continue;
903       }
904       auto *concatIsec = cast<ConcatInputSection>(isec);
905 
906       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
907       nextIsec->wasCoalesced = false;
908       if (isZeroFill(isec->getFlags())) {
909         // Zero-fill sections have NULL data.data() non-zero data.size()
910         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
911         isec->data = {nullptr, symbolOffset};
912       } else {
913         nextIsec->data = isec->data.slice(symbolOffset);
914         isec->data = isec->data.slice(0, symbolOffset);
915       }
916 
917       // By construction, the symbol will be at offset zero in the new
918       // subsection.
919       symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0,
920                                         symbolSize, forceHidden);
921       // TODO: ld64 appears to preserve the original alignment as well as each
922       // subsection's offset from the last aligned address. We should consider
923       // emulating that behavior.
924       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
925       subsections.push_back({sym.n_value - sectionAddr, nextIsec});
926     }
927   }
928 
929   // Undefined symbols can trigger recursive fetch from Archives due to
930   // LazySymbols. Process defined symbols first so that the relative order
931   // between a defined symbol and an undefined symbol does not change the
932   // symbol resolution behavior. In addition, a set of interconnected symbols
933   // will all be resolved to the same file, instead of being resolved to
934   // different files.
935   for (unsigned i : undefineds)
936     symbols[i] = parseNonSectionSymbol(nList[i], strtab);
937 }
938 
939 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
940                        StringRef sectName)
941     : InputFile(OpaqueKind, mb) {
942   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
943   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
944   sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
945                                    sectName.take_front(16),
946                                    /*flags=*/0, /*addr=*/0));
947   Section &section = *sections.back();
948   ConcatInputSection *isec = make<ConcatInputSection>(section, data);
949   isec->live = true;
950   section.subsections.push_back({0, isec});
951 }
952 
953 template <class LP>
954 void ObjFile::parseLinkerOptions(SmallVectorImpl<StringRef> &LCLinkerOptions) {
955   using Header = typename LP::mach_header;
956   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
957 
958   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
959     StringRef data{reinterpret_cast<const char *>(cmd + 1),
960                    cmd->cmdsize - sizeof(linker_option_command)};
961     parseLCLinkerOption(LCLinkerOptions, this, cmd->count, data);
962   }
963 }
964 
965 SmallVector<StringRef> macho::unprocessedLCLinkerOptions;
966 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
967                  bool lazy, bool forceHidden, bool compatArch,
968                  bool builtFromBitcode)
969     : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden),
970       builtFromBitcode(builtFromBitcode) {
971   this->archiveName = std::string(archiveName);
972   this->compatArch = compatArch;
973   if (lazy) {
974     if (target->wordSize == 8)
975       parseLazy<LP64>();
976     else
977       parseLazy<ILP32>();
978   } else {
979     if (target->wordSize == 8)
980       parse<LP64>();
981     else
982       parse<ILP32>();
983   }
984 }
985 
986 template <class LP> void ObjFile::parse() {
987   using Header = typename LP::mach_header;
988   using SegmentCommand = typename LP::segment_command;
989   using SectionHeader = typename LP::section;
990   using NList = typename LP::nlist;
991 
992   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
993   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
994 
995   // If we've already checked the arch, then don't need to check again.
996   if (!compatArch)
997     return;
998   if (!(compatArch = compatWithTargetArch(this, hdr)))
999     return;
1000 
1001   // We will resolve LC linker options once all native objects are loaded after
1002   // LTO is finished.
1003   SmallVector<StringRef, 4> LCLinkerOptions;
1004   parseLinkerOptions<LP>(LCLinkerOptions);
1005   unprocessedLCLinkerOptions.append(LCLinkerOptions);
1006 
1007   ArrayRef<SectionHeader> sectionHeaders;
1008   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
1009     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
1010     sectionHeaders = ArrayRef<SectionHeader>{
1011         reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1012     parseSections(sectionHeaders);
1013   }
1014 
1015   // TODO: Error on missing LC_SYMTAB?
1016   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1017     auto *c = reinterpret_cast<const symtab_command *>(cmd);
1018     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1019                           c->nsyms);
1020     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1021     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1022     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1023   }
1024 
1025   // The relocations may refer to the symbols, so we parse them after we have
1026   // parsed all the symbols.
1027   for (size_t i = 0, n = sections.size(); i < n; ++i)
1028     if (!sections[i]->subsections.empty())
1029       parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1030 
1031   parseDebugInfo();
1032 
1033   Section *ehFrameSection = nullptr;
1034   Section *compactUnwindSection = nullptr;
1035   for (Section *sec : sections) {
1036     Section **s = StringSwitch<Section **>(sec->name)
1037                       .Case(section_names::compactUnwind, &compactUnwindSection)
1038                       .Case(section_names::ehFrame, &ehFrameSection)
1039                       .Default(nullptr);
1040     if (s)
1041       *s = sec;
1042   }
1043   if (compactUnwindSection)
1044     registerCompactUnwind(*compactUnwindSection);
1045   if (ehFrameSection)
1046     registerEhFrames(*ehFrameSection);
1047 }
1048 
1049 template <class LP> void ObjFile::parseLazy() {
1050   using Header = typename LP::mach_header;
1051   using NList = typename LP::nlist;
1052 
1053   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1054   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1055 
1056   if (!compatArch)
1057     return;
1058   if (!(compatArch = compatWithTargetArch(this, hdr)))
1059     return;
1060 
1061   const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1062   if (!cmd)
1063     return;
1064   auto *c = reinterpret_cast<const symtab_command *>(cmd);
1065   ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1066                         c->nsyms);
1067   const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1068   symbols.resize(nList.size());
1069   for (const auto &[i, sym] : llvm::enumerate(nList)) {
1070     if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1071       // TODO: Bound checking
1072       StringRef name = strtab + sym.n_strx;
1073       symbols[i] = symtab->addLazyObject(name, *this);
1074       if (!lazy)
1075         break;
1076     }
1077   }
1078 }
1079 
1080 void ObjFile::parseDebugInfo() {
1081   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1082   if (!dObj)
1083     return;
1084 
1085   // We do not re-use the context from getDwarf() here as that function
1086   // constructs an expensive DWARFCache object.
1087   auto *ctx = make<DWARFContext>(
1088       std::move(dObj), "",
1089       [&](Error err) {
1090         warn(toString(this) + ": " + toString(std::move(err)));
1091       },
1092       [&](Error warning) {
1093         warn(toString(this) + ": " + toString(std::move(warning)));
1094       });
1095 
1096   // TODO: Since object files can contain a lot of DWARF info, we should verify
1097   // that we are parsing just the info we need
1098   const DWARFContext::compile_unit_range &units = ctx->compile_units();
1099   // FIXME: There can be more than one compile unit per object file. See
1100   // PR48637.
1101   auto it = units.begin();
1102   compileUnit = it != units.end() ? it->get() : nullptr;
1103 }
1104 
1105 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1106   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1107   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1108   if (!cmd)
1109     return {};
1110   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1111   return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1112           c->datasize / sizeof(data_in_code_entry)};
1113 }
1114 
1115 ArrayRef<uint8_t> ObjFile::getOptimizationHints() const {
1116   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1117   if (auto *cmd =
1118           findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT))
1119     return {buf + cmd->dataoff, cmd->datasize};
1120   return {};
1121 }
1122 
1123 // Create pointers from symbols to their associated compact unwind entries.
1124 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1125   for (const Subsection &subsection : compactUnwindSection.subsections) {
1126     ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1127     // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
1128     // their addends in its data. Thus if ICF operated naively and compared the
1129     // entire contents of each CUE, entries with identical unwind info but e.g.
1130     // belonging to different functions would never be considered equivalent. To
1131     // work around this problem, we remove some parts of the data containing the
1132     // embedded addends. In particular, we remove the function address and LSDA
1133     // pointers.  Since these locations are at the start and end of the entry,
1134     // we can do this using a simple, efficient slice rather than performing a
1135     // copy.  We are not losing any information here because the embedded
1136     // addends have already been parsed in the corresponding Reloc structs.
1137     //
1138     // Removing these pointers would not be safe if they were pointers to
1139     // absolute symbols. In that case, there would be no corresponding
1140     // relocation. However, (AFAIK) MC cannot emit references to absolute
1141     // symbols for either the function address or the LSDA. However, it *can* do
1142     // so for the personality pointer, so we are not slicing that field away.
1143     //
1144     // Note that we do not adjust the offsets of the corresponding relocations;
1145     // instead, we rely on `relocateCompactUnwind()` to correctly handle these
1146     // truncated input sections.
1147     isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
1148     uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1149     // llvm-mc omits CU entries for functions that need DWARF encoding, but
1150     // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1151     // CU entries from the DWARF info during the output phase.
1152     if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) ==
1153         target->modeDwarfEncoding)
1154       continue;
1155 
1156     ConcatInputSection *referentIsec;
1157     for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1158       Reloc &r = *it;
1159       // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1160       if (r.offset != 0) {
1161         ++it;
1162         continue;
1163       }
1164       uint64_t add = r.addend;
1165       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1166         // Check whether the symbol defined in this file is the prevailing one.
1167         // Skip if it is e.g. a weak def that didn't prevail.
1168         if (sym->getFile() != this) {
1169           ++it;
1170           continue;
1171         }
1172         add += sym->value;
1173         referentIsec = cast<ConcatInputSection>(sym->isec());
1174       } else {
1175         referentIsec =
1176             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1177       }
1178       // Unwind info lives in __DATA, and finalization of __TEXT will occur
1179       // before finalization of __DATA. Moreover, the finalization of unwind
1180       // info depends on the exact addresses that it references. So it is safe
1181       // for compact unwind to reference addresses in __TEXT, but not addresses
1182       // in any other segment.
1183       if (referentIsec->getSegName() != segment_names::text)
1184         error(isec->getLocation(r.offset) + " references section " +
1185               referentIsec->getName() + " which is not in segment __TEXT");
1186       // The functionAddress relocations are typically section relocations.
1187       // However, unwind info operates on a per-symbol basis, so we search for
1188       // the function symbol here.
1189       Defined *d = findSymbolAtOffset(referentIsec, add);
1190       if (!d) {
1191         ++it;
1192         continue;
1193       }
1194       d->originalUnwindEntry = isec;
1195       // Now that the symbol points to the unwind entry, we can remove the reloc
1196       // that points from the unwind entry back to the symbol.
1197       //
1198       // First, the symbol keeps the unwind entry alive (and not vice versa), so
1199       // this keeps dead-stripping simple.
1200       //
1201       // Moreover, it reduces the work that ICF needs to do to figure out if
1202       // functions with unwind info are foldable.
1203       //
1204       // However, this does make it possible for ICF to fold CUEs that point to
1205       // distinct functions (if the CUEs are otherwise identical).
1206       // UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1207       // each one can hold a distinct functionAddress value.
1208       //
1209       // Given that clang emits relocations in reverse order of address, this
1210       // relocation should be at the end of the vector for most of our input
1211       // object files, so this erase() is typically an O(1) operation.
1212       it = isec->relocs.erase(it);
1213     }
1214   }
1215 }
1216 
1217 struct CIE {
1218   macho::Symbol *personalitySymbol = nullptr;
1219   bool fdesHaveAug = false;
1220   uint8_t lsdaPtrSize = 0; // 0 => no LSDA
1221   uint8_t funcPtrSize = 0;
1222 };
1223 
1224 static uint8_t pointerEncodingToSize(uint8_t enc) {
1225   switch (enc & 0xf) {
1226   case dwarf::DW_EH_PE_absptr:
1227     return target->wordSize;
1228   case dwarf::DW_EH_PE_sdata4:
1229     return 4;
1230   case dwarf::DW_EH_PE_sdata8:
1231     // ld64 doesn't actually support sdata8, but this seems simple enough...
1232     return 8;
1233   default:
1234     return 0;
1235   };
1236 }
1237 
1238 static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1239                     size_t off) {
1240   // Handling the full generality of possible DWARF encodings would be a major
1241   // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1242   // DWARF and handle just that.
1243   constexpr uint8_t expectedPersonalityEnc =
1244       dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1245 
1246   CIE cie;
1247   uint8_t version = reader.readByte(&off);
1248   if (version != 1 && version != 3)
1249     fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1250   StringRef aug = reader.readString(&off);
1251   reader.skipLeb128(&off); // skip code alignment
1252   reader.skipLeb128(&off); // skip data alignment
1253   reader.skipLeb128(&off); // skip return address register
1254   reader.skipLeb128(&off); // skip aug data length
1255   uint64_t personalityAddrOff = 0;
1256   for (char c : aug) {
1257     switch (c) {
1258     case 'z':
1259       cie.fdesHaveAug = true;
1260       break;
1261     case 'P': {
1262       uint8_t personalityEnc = reader.readByte(&off);
1263       if (personalityEnc != expectedPersonalityEnc)
1264         reader.failOn(off, "unexpected personality encoding 0x" +
1265                                Twine::utohexstr(personalityEnc));
1266       personalityAddrOff = off;
1267       off += 4;
1268       break;
1269     }
1270     case 'L': {
1271       uint8_t lsdaEnc = reader.readByte(&off);
1272       cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc);
1273       if (cie.lsdaPtrSize == 0)
1274         reader.failOn(off, "unexpected LSDA encoding 0x" +
1275                                Twine::utohexstr(lsdaEnc));
1276       break;
1277     }
1278     case 'R': {
1279       uint8_t pointerEnc = reader.readByte(&off);
1280       cie.funcPtrSize = pointerEncodingToSize(pointerEnc);
1281       if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel))
1282         reader.failOn(off, "unexpected pointer encoding 0x" +
1283                                Twine::utohexstr(pointerEnc));
1284       break;
1285     }
1286     default:
1287       break;
1288     }
1289   }
1290   if (personalityAddrOff != 0) {
1291     const auto *personalityReloc = isec->getRelocAt(personalityAddrOff);
1292     if (!personalityReloc)
1293       reader.failOn(off, "Failed to locate relocation for personality symbol");
1294     cie.personalitySymbol = personalityReloc->referent.get<macho::Symbol *>();
1295   }
1296   return cie;
1297 }
1298 
1299 // EH frame target addresses may be encoded as pcrel offsets. However, instead
1300 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1301 // This function recovers the target address from the subtractors, essentially
1302 // performing the inverse operation of EhRelocator.
1303 //
1304 // Concretely, we expect our relocations to write the value of `PC -
1305 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1306 // points to a symbol plus an addend.
1307 //
1308 // It is important that the minuend relocation point to a symbol within the
1309 // same section as the fixup value, since sections may get moved around.
1310 //
1311 // For example, for arm64, llvm-mc emits relocations for the target function
1312 // address like so:
1313 //
1314 //   ltmp:
1315 //     <CIE start>
1316 //     ...
1317 //     <CIE end>
1318 //     ... multiple FDEs ...
1319 //     <FDE start>
1320 //     <target function address - (ltmp + pcrel offset)>
1321 //     ...
1322 //
1323 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1324 // will move to an earlier address, and `ltmp + pcrel offset` will no longer
1325 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1326 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1327 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1328 //
1329 // If `Invert` is set, then we instead expect `target_addr - PC` to be written
1330 // to `PC`.
1331 template <bool Invert = false>
1332 Defined *
1333 targetSymFromCanonicalSubtractor(const InputSection *isec,
1334                                  std::vector<macho::Reloc>::iterator relocIt) {
1335   macho::Reloc &subtrahend = *relocIt;
1336   macho::Reloc &minuend = *std::next(relocIt);
1337   assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1338   assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1339   // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1340   // addend.
1341   auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1342   Defined *target =
1343       cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1344   if (!pcSym) {
1345     auto *targetIsec =
1346         cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1347     target = findSymbolAtOffset(targetIsec, minuend.addend);
1348   }
1349   if (Invert)
1350     std::swap(pcSym, target);
1351   if (pcSym->isec() == isec) {
1352     if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1353       fatal("invalid FDE relocation in __eh_frame");
1354   } else {
1355     // Ensure the pcReloc points to a symbol within the current EH frame.
1356     // HACK: we should really verify that the original relocation's semantics
1357     // are preserved. In particular, we should have
1358     // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1359     // have an easy way to access the offsets from this point in the code; some
1360     // refactoring is needed for that.
1361     macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1362     pcReloc.referent = isec->symbols[0];
1363     assert(isec->symbols[0]->value == 0);
1364     minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1365   }
1366   return target;
1367 }
1368 
1369 Defined *findSymbolAtAddress(const std::vector<Section *> &sections,
1370                              uint64_t addr) {
1371   Section *sec = findContainingSection(sections, &addr);
1372   auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1373   return findSymbolAtOffset(isec, addr);
1374 }
1375 
1376 // For symbols that don't have compact unwind info, associate them with the more
1377 // general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1378 //
1379 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1380 // description of its format.
1381 //
1382 // While parsing, we also look for what MC calls "abs-ified" relocations -- they
1383 // are relocations which are implicitly encoded as offsets in the section data.
1384 // We convert them into explicit Reloc structs so that the EH frames can be
1385 // handled just like a regular ConcatInputSection later in our output phase.
1386 //
1387 // We also need to handle the case where our input object file has explicit
1388 // relocations. This is the case when e.g. it's the output of `ld -r`. We only
1389 // look for the "abs-ified" relocation if an explicit relocation is absent.
1390 void ObjFile::registerEhFrames(Section &ehFrameSection) {
1391   DenseMap<const InputSection *, CIE> cieMap;
1392   for (const Subsection &subsec : ehFrameSection.subsections) {
1393     auto *isec = cast<ConcatInputSection>(subsec.isec);
1394     uint64_t isecOff = subsec.offset;
1395 
1396     // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1397     // that all EH frames have an associated symbol so that we can generate
1398     // subtractor relocs that reference them.
1399     if (isec->symbols.size() == 0)
1400       make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0,
1401                     isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false,
1402                     /*isPrivateExtern=*/false, /*includeInSymtab=*/false,
1403                     /*isReferencedDynamically=*/false,
1404                     /*noDeadStrip=*/false);
1405     else if (isec->symbols[0]->value != 0)
1406       fatal("found symbol at unexpected offset in __eh_frame");
1407 
1408     EhReader reader(this, isec->data, subsec.offset);
1409     size_t dataOff = 0; // Offset from the start of the EH frame.
1410     reader.skipValidLength(&dataOff); // readLength() already validated this.
1411     // cieOffOff is the offset from the start of the EH frame to the cieOff
1412     // value, which is itself an offset from the current PC to a CIE.
1413     const size_t cieOffOff = dataOff;
1414 
1415     EhRelocator ehRelocator(isec);
1416     auto cieOffRelocIt = llvm::find_if(
1417         isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1418     InputSection *cieIsec = nullptr;
1419     if (cieOffRelocIt != isec->relocs.end()) {
1420       // We already have an explicit relocation for the CIE offset.
1421       cieIsec =
1422           targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1423               ->isec();
1424       dataOff += sizeof(uint32_t);
1425     } else {
1426       // If we haven't found a relocation, then the CIE offset is most likely
1427       // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1428       // and generate a Reloc struct.
1429       uint32_t cieMinuend = reader.readU32(&dataOff);
1430       if (cieMinuend == 0) {
1431         cieIsec = isec;
1432       } else {
1433         uint32_t cieOff = isecOff + dataOff - cieMinuend;
1434         cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1435         if (cieIsec == nullptr)
1436           fatal("failed to find CIE");
1437       }
1438       if (cieIsec != isec)
1439         ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1440                                       /*length=*/2);
1441     }
1442     if (cieIsec == isec) {
1443       cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1444       continue;
1445     }
1446 
1447     assert(cieMap.count(cieIsec));
1448     const CIE &cie = cieMap[cieIsec];
1449     // Offset of the function address within the EH frame.
1450     const size_t funcAddrOff = dataOff;
1451     uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) +
1452                         ehFrameSection.addr + isecOff + funcAddrOff;
1453     uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize);
1454     size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1455     std::optional<uint64_t> lsdaAddrOpt;
1456     if (cie.fdesHaveAug) {
1457       reader.skipLeb128(&dataOff);
1458       lsdaAddrOff = dataOff;
1459       if (cie.lsdaPtrSize != 0) {
1460         uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize);
1461         if (lsdaOff != 0) // FIXME possible to test this?
1462           lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1463       }
1464     }
1465 
1466     auto funcAddrRelocIt = isec->relocs.end();
1467     auto lsdaAddrRelocIt = isec->relocs.end();
1468     for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1469       if (it->offset == funcAddrOff)
1470         funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1471       else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1472         lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1473     }
1474 
1475     Defined *funcSym;
1476     if (funcAddrRelocIt != isec->relocs.end()) {
1477       funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1478       // Canonicalize the symbol. If there are multiple symbols at the same
1479       // address, we want both `registerEhFrame` and `registerCompactUnwind`
1480       // to register the unwind entry under same symbol.
1481       // This is not particularly efficient, but we should run into this case
1482       // infrequently (only when handling the output of `ld -r`).
1483       if (funcSym->isec())
1484         funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec()),
1485                                      funcSym->value);
1486     } else {
1487       funcSym = findSymbolAtAddress(sections, funcAddr);
1488       ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1489     }
1490     // The symbol has been coalesced, or already has a compact unwind entry.
1491     if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry()) {
1492       // We must prune unused FDEs for correctness, so we cannot rely on
1493       // -dead_strip being enabled.
1494       isec->live = false;
1495       continue;
1496     }
1497 
1498     InputSection *lsdaIsec = nullptr;
1499     if (lsdaAddrRelocIt != isec->relocs.end()) {
1500       lsdaIsec =
1501           targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec();
1502     } else if (lsdaAddrOpt) {
1503       uint64_t lsdaAddr = *lsdaAddrOpt;
1504       Section *sec = findContainingSection(sections, &lsdaAddr);
1505       lsdaIsec =
1506           cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1507       ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1508     }
1509 
1510     fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1511     funcSym->originalUnwindEntry = isec;
1512     ehRelocator.commit();
1513   }
1514 
1515   // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs
1516   // are normally required to be kept alive if they reference a live symbol.
1517   // However, we've explicitly created a dependency from a symbol to its FDE, so
1518   // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only
1519   // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a
1520   // live symbol (e.g. if there were multiple weak copies). Remove this flag to
1521   // let dead-stripping proceed correctly.
1522   ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT;
1523 }
1524 
1525 std::string ObjFile::sourceFile() const {
1526   const char *unitName = compileUnit->getUnitDIE().getShortName();
1527   // DWARF allows DW_AT_name to be absolute, in which case nothing should be
1528   // prepended. As for the styles, debug info can contain paths from any OS, not
1529   // necessarily an OS we're currently running on. Moreover different
1530   // compilation units can be compiled on different operating systems and linked
1531   // together later.
1532   if (sys::path::is_absolute(unitName, llvm::sys::path::Style::posix) ||
1533       sys::path::is_absolute(unitName, llvm::sys::path::Style::windows))
1534     return unitName;
1535   SmallString<261> dir(compileUnit->getCompilationDir());
1536   StringRef sep = sys::path::get_separator();
1537   // We don't use `path::append` here because we want an empty `dir` to result
1538   // in an absolute path. `append` would give us a relative path for that case.
1539   if (!dir.ends_with(sep))
1540     dir += sep;
1541   return (dir + unitName).str();
1542 }
1543 
1544 lld::DWARFCache *ObjFile::getDwarf() {
1545   llvm::call_once(initDwarf, [this]() {
1546     auto dwObj = DwarfObject::create(this);
1547     if (!dwObj)
1548       return;
1549     dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1550         std::move(dwObj), "",
1551         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1552         [&](Error warning) {
1553           warn(getName() + ": " + toString(std::move(warning)));
1554         }));
1555   });
1556 
1557   return dwarfCache.get();
1558 }
1559 // The path can point to either a dylib or a .tbd file.
1560 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1561   std::optional<MemoryBufferRef> mbref = readFile(path);
1562   if (!mbref) {
1563     error("could not read dylib file at " + path);
1564     return nullptr;
1565   }
1566   return loadDylib(*mbref, umbrella);
1567 }
1568 
1569 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1570 // the first document storing child pointers to the rest of them. When we are
1571 // processing a given TBD file, we store that top-level document in
1572 // currentTopLevelTapi. When processing re-exports, we search its children for
1573 // potentially matching documents in the same TBD file. Note that the children
1574 // themselves don't point to further documents, i.e. this is a two-level tree.
1575 //
1576 // Re-exports can either refer to on-disk files, or to documents within .tbd
1577 // files.
1578 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1579                             const InterfaceFile *currentTopLevelTapi) {
1580   // Search order:
1581   // 1. Install name basename in -F / -L directories.
1582   {
1583     StringRef stem = path::stem(path);
1584     SmallString<128> frameworkName;
1585     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1586     bool isFramework = path.ends_with(frameworkName);
1587     if (isFramework) {
1588       for (StringRef dir : config->frameworkSearchPaths) {
1589         SmallString<128> candidate = dir;
1590         path::append(candidate, frameworkName);
1591         if (std::optional<StringRef> dylibPath =
1592                 resolveDylibPath(candidate.str()))
1593           return loadDylib(*dylibPath, umbrella);
1594       }
1595     } else if (std::optional<StringRef> dylibPath = findPathCombination(
1596                    stem, config->librarySearchPaths, {".tbd", ".dylib", ".so"}))
1597       return loadDylib(*dylibPath, umbrella);
1598   }
1599 
1600   // 2. As absolute path.
1601   if (path::is_absolute(path, path::Style::posix))
1602     for (StringRef root : config->systemLibraryRoots)
1603       if (std::optional<StringRef> dylibPath =
1604               resolveDylibPath((root + path).str()))
1605         return loadDylib(*dylibPath, umbrella);
1606 
1607   // 3. As relative path.
1608 
1609   // TODO: Handle -dylib_file
1610 
1611   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1612   SmallString<128> newPath;
1613   if (config->outputType == MH_EXECUTE &&
1614       path.consume_front("@executable_path/")) {
1615     // ld64 allows overriding this with the undocumented flag -executable_path.
1616     // lld doesn't currently implement that flag.
1617     // FIXME: Consider using finalOutput instead of outputFile.
1618     path::append(newPath, path::parent_path(config->outputFile), path);
1619     path = newPath;
1620   } else if (path.consume_front("@loader_path/")) {
1621     fs::real_path(umbrella->getName(), newPath);
1622     path::remove_filename(newPath);
1623     path::append(newPath, path);
1624     path = newPath;
1625   } else if (path.starts_with("@rpath/")) {
1626     for (StringRef rpath : umbrella->rpaths) {
1627       newPath.clear();
1628       if (rpath.consume_front("@loader_path/")) {
1629         fs::real_path(umbrella->getName(), newPath);
1630         path::remove_filename(newPath);
1631       }
1632       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1633       if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1634         return loadDylib(*dylibPath, umbrella);
1635     }
1636   }
1637 
1638   // FIXME: Should this be further up?
1639   if (currentTopLevelTapi) {
1640     for (InterfaceFile &child :
1641          make_pointee_range(currentTopLevelTapi->documents())) {
1642       assert(child.documents().empty());
1643       if (path == child.getInstallName()) {
1644         auto *file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1645                                      /*explicitlyLinked=*/false);
1646         file->parseReexports(child);
1647         return file;
1648       }
1649     }
1650   }
1651 
1652   if (std::optional<StringRef> dylibPath = resolveDylibPath(path))
1653     return loadDylib(*dylibPath, umbrella);
1654 
1655   return nullptr;
1656 }
1657 
1658 // If a re-exported dylib is public (lives in /usr/lib or
1659 // /System/Library/Frameworks), then it is considered implicitly linked: we
1660 // should bind to its symbols directly instead of via the re-exporting umbrella
1661 // library.
1662 static bool isImplicitlyLinked(StringRef path) {
1663   if (!config->implicitDylibs)
1664     return false;
1665 
1666   if (path::parent_path(path) == "/usr/lib")
1667     return true;
1668 
1669   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1670   if (path.consume_front("/System/Library/Frameworks/")) {
1671     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1672     return path::filename(path) == frameworkName;
1673   }
1674 
1675   return false;
1676 }
1677 
1678 void DylibFile::loadReexport(StringRef path, DylibFile *umbrella,
1679                          const InterfaceFile *currentTopLevelTapi) {
1680   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1681   if (!reexport)
1682     error(toString(this) + ": unable to locate re-export with install name " +
1683           path);
1684 }
1685 
1686 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1687                      bool isBundleLoader, bool explicitlyLinked)
1688     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1689       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1690   assert(!isBundleLoader || !umbrella);
1691   if (umbrella == nullptr)
1692     umbrella = this;
1693   this->umbrella = umbrella;
1694 
1695   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1696 
1697   // Initialize installName.
1698   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1699     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1700     currentVersion = read32le(&c->dylib.current_version);
1701     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1702     installName =
1703         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1704   } else if (!isBundleLoader) {
1705     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1706     // so it's OK.
1707     error(toString(this) + ": dylib missing LC_ID_DYLIB load command");
1708     return;
1709   }
1710 
1711   if (config->printEachFile)
1712     message(toString(this));
1713   inputFiles.insert(this);
1714 
1715   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1716 
1717   if (!checkCompatibility(this))
1718     return;
1719 
1720   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1721 
1722   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1723     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1724     rpaths.push_back(rpath);
1725   }
1726 
1727   // Initialize symbols.
1728   bool canBeImplicitlyLinked = findCommand(hdr, LC_SUB_CLIENT) == nullptr;
1729   exportingFile = (canBeImplicitlyLinked && isImplicitlyLinked(installName))
1730                       ? this
1731                       : this->umbrella;
1732 
1733   const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1734   const auto *exportsTrie =
1735       findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1736   if (dyldInfo && exportsTrie) {
1737     // It's unclear what should happen in this case. Maybe we should only error
1738     // out if the two load commands refer to different data?
1739     error(toString(this) +
1740           ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1741     return;
1742   }
1743 
1744   if (dyldInfo) {
1745     parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1746   } else if (exportsTrie) {
1747     parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1748   } else {
1749     error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1750           toString(this));
1751   }
1752 }
1753 
1754 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1755   struct TrieEntry {
1756     StringRef name;
1757     uint64_t flags;
1758   };
1759 
1760   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1761   std::vector<TrieEntry> entries;
1762   // Find all the $ld$* symbols to process first.
1763   parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1764     StringRef savedName = saver().save(name);
1765     if (handleLDSymbol(savedName))
1766       return;
1767     entries.push_back({savedName, flags});
1768   });
1769 
1770   // Process the "normal" symbols.
1771   for (TrieEntry &entry : entries) {
1772     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1773       continue;
1774 
1775     bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1776     bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1777 
1778     symbols.push_back(
1779         symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1780   }
1781 }
1782 
1783 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1784   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1785   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1786                      target->headerSize;
1787   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1788     auto *cmd = reinterpret_cast<const load_command *>(p);
1789     p += cmd->cmdsize;
1790 
1791     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1792         cmd->cmd == LC_REEXPORT_DYLIB) {
1793       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1794       StringRef reexportPath =
1795           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1796       loadReexport(reexportPath, exportingFile, nullptr);
1797     }
1798 
1799     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1800     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1801     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1802     if (config->namespaceKind == NamespaceKind::flat &&
1803         cmd->cmd == LC_LOAD_DYLIB) {
1804       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1805       StringRef dylibPath =
1806           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1807       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1808       if (!dylib)
1809         error(Twine("unable to locate library '") + dylibPath +
1810               "' loaded from '" + toString(this) + "' for -flat_namespace");
1811     }
1812   }
1813 }
1814 
1815 // Some versions of Xcode ship with .tbd files that don't have the right
1816 // platform settings.
1817 constexpr std::array<StringRef, 3> skipPlatformChecks{
1818     "/usr/lib/system/libsystem_kernel.dylib",
1819     "/usr/lib/system/libsystem_platform.dylib",
1820     "/usr/lib/system/libsystem_pthread.dylib"};
1821 
1822 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1823                                          bool explicitlyLinked) {
1824   // Catalyst outputs can link against implicitly linked macOS-only libraries.
1825   if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1826     return false;
1827   return is_contained(interface.targets(),
1828                       MachO::Target(config->arch(), PLATFORM_MACOS));
1829 }
1830 
1831 static bool isArchABICompatible(ArchitectureSet archSet,
1832                                 Architecture targetArch) {
1833   uint32_t cpuType;
1834   uint32_t targetCpuType;
1835   std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch);
1836 
1837   return llvm::any_of(archSet, [&](const auto &p) {
1838     std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p);
1839     return cpuType == targetCpuType;
1840   });
1841 }
1842 
1843 static bool isTargetPlatformArchCompatible(
1844     InterfaceFile::const_target_range interfaceTargets, Target target) {
1845   if (is_contained(interfaceTargets, target))
1846     return true;
1847 
1848   if (config->forceExactCpuSubtypeMatch)
1849     return false;
1850 
1851   ArchitectureSet archSet;
1852   for (const auto &p : interfaceTargets)
1853     if (p.Platform == target.Platform)
1854       archSet.set(p.Arch);
1855   if (archSet.empty())
1856     return false;
1857 
1858   return isArchABICompatible(archSet, target.Arch);
1859 }
1860 
1861 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1862                      bool isBundleLoader, bool explicitlyLinked)
1863     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1864       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1865   // FIXME: Add test for the missing TBD code path.
1866 
1867   if (umbrella == nullptr)
1868     umbrella = this;
1869   this->umbrella = umbrella;
1870 
1871   installName = saver().save(interface.getInstallName());
1872   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1873   currentVersion = interface.getCurrentVersion().rawValue();
1874 
1875   if (config->printEachFile)
1876     message(toString(this));
1877   inputFiles.insert(this);
1878 
1879   if (!is_contained(skipPlatformChecks, installName) &&
1880       !isTargetPlatformArchCompatible(interface.targets(),
1881                                       config->platformInfo.target) &&
1882       !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1883     error(toString(this) + " is incompatible with " +
1884           std::string(config->platformInfo.target));
1885     return;
1886   }
1887 
1888   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1889 
1890   bool canBeImplicitlyLinked = interface.allowableClients().size() == 0;
1891   exportingFile = (canBeImplicitlyLinked && isImplicitlyLinked(installName))
1892                       ? this
1893                       : umbrella;
1894   auto addSymbol = [&](const llvm::MachO::Symbol &symbol,
1895                        const Twine &name) -> void {
1896     StringRef savedName = saver().save(name);
1897     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1898       return;
1899 
1900     symbols.push_back(symtab->addDylib(savedName, exportingFile,
1901                                        symbol.isWeakDefined(),
1902                                        symbol.isThreadLocalValue()));
1903   };
1904 
1905   std::vector<const llvm::MachO::Symbol *> normalSymbols;
1906   normalSymbols.reserve(interface.symbolsCount());
1907   for (const auto *symbol : interface.symbols()) {
1908     if (!isArchABICompatible(symbol->getArchitectures(), config->arch()))
1909       continue;
1910     if (handleLDSymbol(symbol->getName()))
1911       continue;
1912 
1913     switch (symbol->getKind()) {
1914     case EncodeKind::GlobalSymbol:
1915     case EncodeKind::ObjectiveCClass:
1916     case EncodeKind::ObjectiveCClassEHType:
1917     case EncodeKind::ObjectiveCInstanceVariable:
1918       normalSymbols.push_back(symbol);
1919     }
1920   }
1921   // interface.symbols() order is non-deterministic.
1922   llvm::sort(normalSymbols,
1923              [](auto *l, auto *r) { return l->getName() < r->getName(); });
1924 
1925   // TODO(compnerd) filter out symbols based on the target platform
1926   for (const auto *symbol : normalSymbols) {
1927     switch (symbol->getKind()) {
1928     case EncodeKind::GlobalSymbol:
1929       addSymbol(*symbol, symbol->getName());
1930       break;
1931     case EncodeKind::ObjectiveCClass:
1932       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1933       // want to emulate that.
1934       addSymbol(*symbol, objc::symbol_names::klass + symbol->getName());
1935       addSymbol(*symbol, objc::symbol_names::metaclass + symbol->getName());
1936       break;
1937     case EncodeKind::ObjectiveCClassEHType:
1938       addSymbol(*symbol, objc::symbol_names::ehtype + symbol->getName());
1939       break;
1940     case EncodeKind::ObjectiveCInstanceVariable:
1941       addSymbol(*symbol, objc::symbol_names::ivar + symbol->getName());
1942       break;
1943     }
1944   }
1945 }
1946 
1947 DylibFile::DylibFile(DylibFile *umbrella)
1948     : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced),
1949       explicitlyLinked(false), isBundleLoader(false) {
1950   if (umbrella == nullptr)
1951     umbrella = this;
1952   this->umbrella = umbrella;
1953 }
1954 
1955 void DylibFile::parseReexports(const InterfaceFile &interface) {
1956   const InterfaceFile *topLevel =
1957       interface.getParent() == nullptr ? &interface : interface.getParent();
1958   for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1959     InterfaceFile::const_target_range targets = intfRef.targets();
1960     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1961         isTargetPlatformArchCompatible(targets, config->platformInfo.target))
1962       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1963   }
1964 }
1965 
1966 bool DylibFile::isExplicitlyLinked() const {
1967   if (!explicitlyLinked)
1968     return false;
1969 
1970   // If this dylib was explicitly linked, but at least one of the symbols
1971   // of the synthetic dylibs it created via $ld$previous symbols is
1972   // referenced, then that synthetic dylib fulfils the explicit linkedness
1973   // and we can deadstrip this dylib if it's unreferenced.
1974   for (const auto *dylib : extraDylibs)
1975     if (dylib->isReferenced())
1976       return false;
1977 
1978   return true;
1979 }
1980 
1981 DylibFile *DylibFile::getSyntheticDylib(StringRef installName,
1982                                         uint32_t currentVersion,
1983                                         uint32_t compatVersion) {
1984   for (DylibFile *dylib : extraDylibs)
1985     if (dylib->installName == installName) {
1986       // FIXME: Check what to do if different $ld$previous symbols
1987       // request the same dylib, but with different versions.
1988       return dylib;
1989     }
1990 
1991   auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella);
1992   dylib->installName = saver().save(installName);
1993   dylib->currentVersion = currentVersion;
1994   dylib->compatibilityVersion = compatVersion;
1995   extraDylibs.push_back(dylib);
1996   return dylib;
1997 }
1998 
1999 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
2000 // name, compatibility version or hide/add symbols) for specific target
2001 // versions.
2002 bool DylibFile::handleLDSymbol(StringRef originalName) {
2003   if (!originalName.starts_with("$ld$"))
2004     return false;
2005 
2006   StringRef action;
2007   StringRef name;
2008   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
2009   if (action == "previous")
2010     handleLDPreviousSymbol(name, originalName);
2011   else if (action == "install_name")
2012     handleLDInstallNameSymbol(name, originalName);
2013   else if (action == "hide")
2014     handleLDHideSymbol(name, originalName);
2015   return true;
2016 }
2017 
2018 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
2019   // originalName: $ld$ previous $ <installname> $ <compatversion> $
2020   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
2021   StringRef installName;
2022   StringRef compatVersion;
2023   StringRef platformStr;
2024   StringRef startVersion;
2025   StringRef endVersion;
2026   StringRef symbolName;
2027   StringRef rest;
2028 
2029   std::tie(installName, name) = name.split('$');
2030   std::tie(compatVersion, name) = name.split('$');
2031   std::tie(platformStr, name) = name.split('$');
2032   std::tie(startVersion, name) = name.split('$');
2033   std::tie(endVersion, name) = name.split('$');
2034   std::tie(symbolName, rest) = name.rsplit('$');
2035 
2036   // FIXME: Does this do the right thing for zippered files?
2037   unsigned platform;
2038   if (platformStr.getAsInteger(10, platform) ||
2039       platform != static_cast<unsigned>(config->platform()))
2040     return;
2041 
2042   VersionTuple start;
2043   if (start.tryParse(startVersion)) {
2044     warn(toString(this) + ": failed to parse start version, symbol '" +
2045          originalName + "' ignored");
2046     return;
2047   }
2048   VersionTuple end;
2049   if (end.tryParse(endVersion)) {
2050     warn(toString(this) + ": failed to parse end version, symbol '" +
2051          originalName + "' ignored");
2052     return;
2053   }
2054   if (config->platformInfo.target.MinDeployment < start ||
2055       config->platformInfo.target.MinDeployment >= end)
2056     return;
2057 
2058   // Initialized to compatibilityVersion for the symbolName branch below.
2059   uint32_t newCompatibilityVersion = compatibilityVersion;
2060   uint32_t newCurrentVersionForSymbol = currentVersion;
2061   if (!compatVersion.empty()) {
2062     VersionTuple cVersion;
2063     if (cVersion.tryParse(compatVersion)) {
2064       warn(toString(this) +
2065            ": failed to parse compatibility version, symbol '" + originalName +
2066            "' ignored");
2067       return;
2068     }
2069     newCompatibilityVersion = encodeVersion(cVersion);
2070     newCurrentVersionForSymbol = newCompatibilityVersion;
2071   }
2072 
2073   if (!symbolName.empty()) {
2074     // A $ld$previous$ symbol with symbol name adds a symbol with that name to
2075     // a dylib with given name and version.
2076     auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol,
2077                                     newCompatibilityVersion);
2078 
2079     // The tbd file usually contains the $ld$previous symbol for an old version,
2080     // and then the symbol itself later, for newer deployment targets, like so:
2081     //    symbols: [
2082     //      '$ld$previous$/Another$$1$3.0$14.0$_zzz$',
2083     //      _zzz,
2084     //    ]
2085     // Since the symbols are sorted, adding them to the symtab in the given
2086     // order means the $ld$previous version of _zzz will prevail, as desired.
2087     dylib->symbols.push_back(symtab->addDylib(
2088         saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false));
2089     return;
2090   }
2091 
2092   // A $ld$previous$ symbol without symbol name modifies the dylib it's in.
2093   this->installName = saver().save(installName);
2094   this->compatibilityVersion = newCompatibilityVersion;
2095 }
2096 
2097 void DylibFile::handleLDInstallNameSymbol(StringRef name,
2098                                           StringRef originalName) {
2099   // originalName: $ld$ install_name $ os<version> $ install_name
2100   StringRef condition, installName;
2101   std::tie(condition, installName) = name.split('$');
2102   VersionTuple version;
2103   if (!condition.consume_front("os") || version.tryParse(condition))
2104     warn(toString(this) + ": failed to parse os version, symbol '" +
2105          originalName + "' ignored");
2106   else if (version == config->platformInfo.target.MinDeployment)
2107     this->installName = saver().save(installName);
2108 }
2109 
2110 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2111   StringRef symbolName;
2112   bool shouldHide = true;
2113   if (name.starts_with("os")) {
2114     // If it's hidden based on versions.
2115     name = name.drop_front(2);
2116     StringRef minVersion;
2117     std::tie(minVersion, symbolName) = name.split('$');
2118     VersionTuple versionTup;
2119     if (versionTup.tryParse(minVersion)) {
2120       warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName +
2121            "` ignored.");
2122       return;
2123     }
2124     shouldHide = versionTup == config->platformInfo.target.MinDeployment;
2125   } else {
2126     symbolName = name;
2127   }
2128 
2129   if (shouldHide)
2130     exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2131 }
2132 
2133 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2134   if (config->applicationExtension && !dylibIsAppExtensionSafe)
2135     warn("using '-application_extension' with unsafe dylib: " + toString(this));
2136 }
2137 
2138 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden)
2139     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)),
2140       forceHidden(forceHidden) {}
2141 
2142 void ArchiveFile::addLazySymbols() {
2143   // Avoid calling getMemoryBufferRef() on zero-symbol archive
2144   // since that crashes.
2145   if (file->isEmpty() || file->getNumberOfSymbols() == 0)
2146     return;
2147 
2148   Error err = Error::success();
2149   auto child = file->child_begin(err);
2150   // Ignore the I/O error here - will be reported later.
2151   if (!err) {
2152     Expected<MemoryBufferRef> mbOrErr = child->getMemoryBufferRef();
2153     if (!mbOrErr) {
2154       llvm::consumeError(mbOrErr.takeError());
2155     } else {
2156       if (identify_magic(mbOrErr->getBuffer()) == file_magic::macho_object) {
2157         if (target->wordSize == 8)
2158           compatArch = compatWithTargetArch(
2159               this, reinterpret_cast<const LP64::mach_header *>(
2160                         mbOrErr->getBufferStart()));
2161         else
2162           compatArch = compatWithTargetArch(
2163               this, reinterpret_cast<const ILP32::mach_header *>(
2164                         mbOrErr->getBufferStart()));
2165         if (!compatArch)
2166           return;
2167       }
2168     }
2169   }
2170 
2171   for (const object::Archive::Symbol &sym : file->symbols())
2172     symtab->addLazyArchive(sym.getName(), this, sym);
2173 }
2174 
2175 static Expected<InputFile *>
2176 loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
2177                   uint64_t offsetInArchive, bool forceHidden, bool compatArch) {
2178   if (config->zeroModTime)
2179     modTime = 0;
2180 
2181   switch (identify_magic(mb.getBuffer())) {
2182   case file_magic::macho_object:
2183     return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden,
2184                          compatArch);
2185   case file_magic::bitcode:
2186     return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false,
2187                              forceHidden, compatArch);
2188   default:
2189     return createStringError(inconvertibleErrorCode(),
2190                              mb.getBufferIdentifier() +
2191                                  " has unhandled file type");
2192   }
2193 }
2194 
2195 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2196   if (!seen.insert(c.getChildOffset()).second)
2197     return Error::success();
2198 
2199   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2200   if (!mb)
2201     return mb.takeError();
2202 
2203   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2204   if (!modTime)
2205     return modTime.takeError();
2206 
2207   Expected<InputFile *> file =
2208       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset(),
2209                         forceHidden, compatArch);
2210 
2211   if (!file)
2212     return file.takeError();
2213 
2214   inputFiles.insert(*file);
2215   printArchiveMemberLoad(reason, *file);
2216   return Error::success();
2217 }
2218 
2219 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2220   object::Archive::Child c =
2221       CHECK(sym.getMember(), toString(this) +
2222                                  ": could not get the member defining symbol " +
2223                                  toMachOString(sym));
2224 
2225   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2226   // and become invalid after that call. Copy it to the stack so we can refer
2227   // to it later.
2228   const object::Archive::Symbol symCopy = sym;
2229 
2230   // ld64 doesn't demangle sym here even with -demangle.
2231   // Match that: intentionally don't call toMachOString().
2232   if (Error e = fetch(c, symCopy.getName()))
2233     error(toString(this) + ": could not get the member defining symbol " +
2234           toMachOString(symCopy) + ": " + toString(std::move(e)));
2235 }
2236 
2237 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2238                                           BitcodeFile &file) {
2239   StringRef name = saver().save(objSym.getName());
2240 
2241   if (objSym.isUndefined())
2242     return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2243 
2244   // TODO: Write a test demonstrating why computing isPrivateExtern before
2245   // LTO compilation is important.
2246   bool isPrivateExtern = false;
2247   switch (objSym.getVisibility()) {
2248   case GlobalValue::HiddenVisibility:
2249     isPrivateExtern = true;
2250     break;
2251   case GlobalValue::ProtectedVisibility:
2252     error(name + " has protected visibility, which is not supported by Mach-O");
2253     break;
2254   case GlobalValue::DefaultVisibility:
2255     break;
2256   }
2257   isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() ||
2258                     file.forceHidden;
2259 
2260   if (objSym.isCommon())
2261     return symtab->addCommon(name, &file, objSym.getCommonSize(),
2262                              objSym.getCommonAlignment(), isPrivateExtern);
2263 
2264   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2265                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
2266                             /*isReferencedDynamically=*/false,
2267                             /*noDeadStrip=*/false,
2268                             /*isWeakDefCanBeHidden=*/false);
2269 }
2270 
2271 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2272                          uint64_t offsetInArchive, bool lazy, bool forceHidden,
2273                          bool compatArch)
2274     : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) {
2275   this->archiveName = std::string(archiveName);
2276   this->compatArch = compatArch;
2277   std::string path = mb.getBufferIdentifier().str();
2278   if (config->thinLTOIndexOnly)
2279     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
2280 
2281   // If the parent archive already determines that the arch is not compat with
2282   // target, then just return.
2283   if (!compatArch)
2284     return;
2285 
2286   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2287   // name. If two members with the same name are provided, this causes a
2288   // collision and ThinLTO can't proceed.
2289   // So, we append the archive name to disambiguate two members with the same
2290   // name from multiple different archives, and offset within the archive to
2291   // disambiguate two members of the same name from a single archive.
2292   MemoryBufferRef mbref(mb.getBuffer(),
2293                         saver().save(archiveName.empty()
2294                                          ? path
2295                                          : archiveName + "(" +
2296                                                sys::path::filename(path) + ")" +
2297                                                utostr(offsetInArchive)));
2298   obj = check(lto::InputFile::create(mbref));
2299   if (lazy)
2300     parseLazy();
2301   else
2302     parse();
2303 }
2304 
2305 void BitcodeFile::parse() {
2306   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2307   // "winning" symbol will then be marked as Prevailing at LTO compilation
2308   // time.
2309   symbols.resize(obj->symbols().size());
2310 
2311   // Process defined symbols first. See the comment at the end of
2312   // ObjFile<>::parseSymbols.
2313   for (auto it : llvm::enumerate(obj->symbols()))
2314     if (!it.value().isUndefined())
2315       symbols[it.index()] = createBitcodeSymbol(it.value(), *this);
2316   for (auto it : llvm::enumerate(obj->symbols()))
2317     if (it.value().isUndefined())
2318       symbols[it.index()] = createBitcodeSymbol(it.value(), *this);
2319 }
2320 
2321 void BitcodeFile::parseLazy() {
2322   symbols.resize(obj->symbols().size());
2323   for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) {
2324     if (!objSym.isUndefined()) {
2325       symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this);
2326       if (!lazy)
2327         break;
2328     }
2329   }
2330 }
2331 
2332 std::string macho::replaceThinLTOSuffix(StringRef path) {
2333   auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
2334   if (path.consume_back(suffix))
2335     return (path + repl).str();
2336   return std::string(path);
2337 }
2338 
2339 void macho::extract(InputFile &file, StringRef reason) {
2340   if (!file.lazy)
2341     return;
2342   file.lazy = false;
2343 
2344   printArchiveMemberLoad(reason, &file);
2345   if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2346     bitcode->parse();
2347   } else {
2348     auto &f = cast<ObjFile>(file);
2349     if (target->wordSize == 8)
2350       f.parse<LP64>();
2351     else
2352       f.parse<ILP32>();
2353   }
2354 }
2355 
2356 template void ObjFile::parse<LP64>();
2357