1*fe6060f1SDimitry Andric //===- ICF.cpp ------------------------------------------------------------===// 2*fe6060f1SDimitry Andric // 3*fe6060f1SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*fe6060f1SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5*fe6060f1SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*fe6060f1SDimitry Andric // 7*fe6060f1SDimitry Andric //===----------------------------------------------------------------------===// 8*fe6060f1SDimitry Andric 9*fe6060f1SDimitry Andric #include "ICF.h" 10*fe6060f1SDimitry Andric #include "ConcatOutputSection.h" 11*fe6060f1SDimitry Andric #include "InputSection.h" 12*fe6060f1SDimitry Andric #include "Symbols.h" 13*fe6060f1SDimitry Andric #include "UnwindInfoSection.h" 14*fe6060f1SDimitry Andric 15*fe6060f1SDimitry Andric #include "llvm/Support/Parallel.h" 16*fe6060f1SDimitry Andric #include "llvm/Support/TimeProfiler.h" 17*fe6060f1SDimitry Andric 18*fe6060f1SDimitry Andric #include <atomic> 19*fe6060f1SDimitry Andric 20*fe6060f1SDimitry Andric using namespace llvm; 21*fe6060f1SDimitry Andric using namespace lld; 22*fe6060f1SDimitry Andric using namespace lld::macho; 23*fe6060f1SDimitry Andric 24*fe6060f1SDimitry Andric class ICF { 25*fe6060f1SDimitry Andric public: 26*fe6060f1SDimitry Andric ICF(std::vector<ConcatInputSection *> &inputs); 27*fe6060f1SDimitry Andric 28*fe6060f1SDimitry Andric void run(); 29*fe6060f1SDimitry Andric void segregate(size_t begin, size_t end, 30*fe6060f1SDimitry Andric std::function<bool(const ConcatInputSection *, 31*fe6060f1SDimitry Andric const ConcatInputSection *)> 32*fe6060f1SDimitry Andric equals); 33*fe6060f1SDimitry Andric size_t findBoundary(size_t begin, size_t end); 34*fe6060f1SDimitry Andric void forEachClassRange(size_t begin, size_t end, 35*fe6060f1SDimitry Andric std::function<void(size_t, size_t)> func); 36*fe6060f1SDimitry Andric void forEachClass(std::function<void(size_t, size_t)> func); 37*fe6060f1SDimitry Andric 38*fe6060f1SDimitry Andric // ICF needs a copy of the inputs vector because its equivalence-class 39*fe6060f1SDimitry Andric // segregation algorithm destroys the proper sequence. 40*fe6060f1SDimitry Andric std::vector<ConcatInputSection *> icfInputs; 41*fe6060f1SDimitry Andric }; 42*fe6060f1SDimitry Andric 43*fe6060f1SDimitry Andric ICF::ICF(std::vector<ConcatInputSection *> &inputs) { 44*fe6060f1SDimitry Andric icfInputs.assign(inputs.begin(), inputs.end()); 45*fe6060f1SDimitry Andric } 46*fe6060f1SDimitry Andric 47*fe6060f1SDimitry Andric // ICF = Identical Code Folding 48*fe6060f1SDimitry Andric // 49*fe6060f1SDimitry Andric // We only fold __TEXT,__text, so this is really "code" folding, and not 50*fe6060f1SDimitry Andric // "COMDAT" folding. String and scalar constant literals are deduplicated 51*fe6060f1SDimitry Andric // elsewhere. 52*fe6060f1SDimitry Andric // 53*fe6060f1SDimitry Andric // Summary of segments & sections: 54*fe6060f1SDimitry Andric // 55*fe6060f1SDimitry Andric // The __TEXT segment is readonly at the MMU. Some sections are already 56*fe6060f1SDimitry Andric // deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are 57*fe6060f1SDimitry Andric // synthetic and inherently free of duplicates (__TEXT,__stubs & 58*fe6060f1SDimitry Andric // __TEXT,__unwind_info). Note that we don't yet run ICF on __TEXT,__const, 59*fe6060f1SDimitry Andric // because doing so induces many test failures. 60*fe6060f1SDimitry Andric // 61*fe6060f1SDimitry Andric // The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and 62*fe6060f1SDimitry Andric // thus ineligible for ICF. 63*fe6060f1SDimitry Andric // 64*fe6060f1SDimitry Andric // The __DATA_CONST segment is read/write at the MMU, but is logically const to 65*fe6060f1SDimitry Andric // the application after dyld applies fixups to pointer data. We currently 66*fe6060f1SDimitry Andric // fold only the __DATA_CONST,__cfstring section. 67*fe6060f1SDimitry Andric // 68*fe6060f1SDimitry Andric // The __DATA segment is read/write at the MMU, and as application-writeable 69*fe6060f1SDimitry Andric // data, none of its sections are eligible for ICF. 70*fe6060f1SDimitry Andric // 71*fe6060f1SDimitry Andric // Please see the large block comment in lld/ELF/ICF.cpp for an explanation 72*fe6060f1SDimitry Andric // of the segregation algorithm. 73*fe6060f1SDimitry Andric // 74*fe6060f1SDimitry Andric // FIXME(gkm): implement keep-unique attributes 75*fe6060f1SDimitry Andric // FIXME(gkm): implement address-significance tables for MachO object files 76*fe6060f1SDimitry Andric 77*fe6060f1SDimitry Andric static unsigned icfPass = 0; 78*fe6060f1SDimitry Andric static std::atomic<bool> icfRepeat{false}; 79*fe6060f1SDimitry Andric 80*fe6060f1SDimitry Andric // Compare "non-moving" parts of two ConcatInputSections, namely everything 81*fe6060f1SDimitry Andric // except references to other ConcatInputSections. 82*fe6060f1SDimitry Andric static bool equalsConstant(const ConcatInputSection *ia, 83*fe6060f1SDimitry Andric const ConcatInputSection *ib) { 84*fe6060f1SDimitry Andric // We can only fold within the same OutputSection. 85*fe6060f1SDimitry Andric if (ia->parent != ib->parent) 86*fe6060f1SDimitry Andric return false; 87*fe6060f1SDimitry Andric if (ia->data.size() != ib->data.size()) 88*fe6060f1SDimitry Andric return false; 89*fe6060f1SDimitry Andric if (ia->data != ib->data) 90*fe6060f1SDimitry Andric return false; 91*fe6060f1SDimitry Andric if (ia->relocs.size() != ib->relocs.size()) 92*fe6060f1SDimitry Andric return false; 93*fe6060f1SDimitry Andric auto f = [](const Reloc &ra, const Reloc &rb) { 94*fe6060f1SDimitry Andric if (ra.type != rb.type) 95*fe6060f1SDimitry Andric return false; 96*fe6060f1SDimitry Andric if (ra.pcrel != rb.pcrel) 97*fe6060f1SDimitry Andric return false; 98*fe6060f1SDimitry Andric if (ra.length != rb.length) 99*fe6060f1SDimitry Andric return false; 100*fe6060f1SDimitry Andric if (ra.offset != rb.offset) 101*fe6060f1SDimitry Andric return false; 102*fe6060f1SDimitry Andric if (ra.addend != rb.addend) 103*fe6060f1SDimitry Andric return false; 104*fe6060f1SDimitry Andric if (ra.referent.is<Symbol *>() != rb.referent.is<Symbol *>()) 105*fe6060f1SDimitry Andric return false; 106*fe6060f1SDimitry Andric 107*fe6060f1SDimitry Andric InputSection *isecA, *isecB; 108*fe6060f1SDimitry Andric if (ra.referent.is<Symbol *>()) { 109*fe6060f1SDimitry Andric const auto *sa = ra.referent.get<Symbol *>(); 110*fe6060f1SDimitry Andric const auto *sb = rb.referent.get<Symbol *>(); 111*fe6060f1SDimitry Andric if (sa->kind() != sb->kind()) 112*fe6060f1SDimitry Andric return false; 113*fe6060f1SDimitry Andric if (isa<Defined>(sa)) { 114*fe6060f1SDimitry Andric const auto *da = cast<Defined>(sa); 115*fe6060f1SDimitry Andric const auto *db = cast<Defined>(sb); 116*fe6060f1SDimitry Andric if (da->isec && db->isec) { 117*fe6060f1SDimitry Andric isecA = da->isec; 118*fe6060f1SDimitry Andric isecB = db->isec; 119*fe6060f1SDimitry Andric } else { 120*fe6060f1SDimitry Andric assert(da->isAbsolute() && db->isAbsolute()); 121*fe6060f1SDimitry Andric return da->value == db->value; 122*fe6060f1SDimitry Andric } 123*fe6060f1SDimitry Andric } else { 124*fe6060f1SDimitry Andric assert(isa<DylibSymbol>(sa)); 125*fe6060f1SDimitry Andric return sa == sb; 126*fe6060f1SDimitry Andric } 127*fe6060f1SDimitry Andric } else { 128*fe6060f1SDimitry Andric isecA = ra.referent.get<InputSection *>(); 129*fe6060f1SDimitry Andric isecB = rb.referent.get<InputSection *>(); 130*fe6060f1SDimitry Andric } 131*fe6060f1SDimitry Andric 132*fe6060f1SDimitry Andric if (isecA->parent != isecB->parent) 133*fe6060f1SDimitry Andric return false; 134*fe6060f1SDimitry Andric // Sections with identical parents should be of the same kind. 135*fe6060f1SDimitry Andric assert(isecA->kind() == isecB->kind()); 136*fe6060f1SDimitry Andric // We will compare ConcatInputSection contents in equalsVariable. 137*fe6060f1SDimitry Andric if (isa<ConcatInputSection>(isecA)) 138*fe6060f1SDimitry Andric return true; 139*fe6060f1SDimitry Andric // Else we have two literal sections. References to them are equal iff their 140*fe6060f1SDimitry Andric // offsets in the output section are equal. 141*fe6060f1SDimitry Andric return isecA->getOffset(ra.addend) == isecB->getOffset(rb.addend); 142*fe6060f1SDimitry Andric }; 143*fe6060f1SDimitry Andric return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), 144*fe6060f1SDimitry Andric f); 145*fe6060f1SDimitry Andric } 146*fe6060f1SDimitry Andric 147*fe6060f1SDimitry Andric // Compare the "moving" parts of two ConcatInputSections -- i.e. everything not 148*fe6060f1SDimitry Andric // handled by equalsConstant(). 149*fe6060f1SDimitry Andric static bool equalsVariable(const ConcatInputSection *ia, 150*fe6060f1SDimitry Andric const ConcatInputSection *ib) { 151*fe6060f1SDimitry Andric assert(ia->relocs.size() == ib->relocs.size()); 152*fe6060f1SDimitry Andric auto f = [](const Reloc &ra, const Reloc &rb) { 153*fe6060f1SDimitry Andric // We already filtered out mismatching values/addends in equalsConstant. 154*fe6060f1SDimitry Andric if (ra.referent == rb.referent) 155*fe6060f1SDimitry Andric return true; 156*fe6060f1SDimitry Andric const ConcatInputSection *isecA, *isecB; 157*fe6060f1SDimitry Andric if (ra.referent.is<Symbol *>()) { 158*fe6060f1SDimitry Andric // Matching DylibSymbols are already filtered out by the 159*fe6060f1SDimitry Andric // identical-referent check above. Non-matching DylibSymbols were filtered 160*fe6060f1SDimitry Andric // out in equalsConstant(). So we can safely cast to Defined here. 161*fe6060f1SDimitry Andric const auto *da = cast<Defined>(ra.referent.get<Symbol *>()); 162*fe6060f1SDimitry Andric const auto *db = cast<Defined>(rb.referent.get<Symbol *>()); 163*fe6060f1SDimitry Andric if (da->isAbsolute()) 164*fe6060f1SDimitry Andric return true; 165*fe6060f1SDimitry Andric isecA = dyn_cast<ConcatInputSection>(da->isec); 166*fe6060f1SDimitry Andric if (!isecA) 167*fe6060f1SDimitry Andric return true; // literal sections were checked in equalsConstant. 168*fe6060f1SDimitry Andric isecB = cast<ConcatInputSection>(db->isec); 169*fe6060f1SDimitry Andric } else { 170*fe6060f1SDimitry Andric const auto *sa = ra.referent.get<InputSection *>(); 171*fe6060f1SDimitry Andric const auto *sb = rb.referent.get<InputSection *>(); 172*fe6060f1SDimitry Andric isecA = dyn_cast<ConcatInputSection>(sa); 173*fe6060f1SDimitry Andric if (!isecA) 174*fe6060f1SDimitry Andric return true; 175*fe6060f1SDimitry Andric isecB = cast<ConcatInputSection>(sb); 176*fe6060f1SDimitry Andric } 177*fe6060f1SDimitry Andric return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2]; 178*fe6060f1SDimitry Andric }; 179*fe6060f1SDimitry Andric return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), 180*fe6060f1SDimitry Andric f); 181*fe6060f1SDimitry Andric } 182*fe6060f1SDimitry Andric 183*fe6060f1SDimitry Andric // Find the first InputSection after BEGIN whose equivalence class differs 184*fe6060f1SDimitry Andric size_t ICF::findBoundary(size_t begin, size_t end) { 185*fe6060f1SDimitry Andric uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2]; 186*fe6060f1SDimitry Andric for (size_t i = begin + 1; i < end; ++i) 187*fe6060f1SDimitry Andric if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2]) 188*fe6060f1SDimitry Andric return i; 189*fe6060f1SDimitry Andric return end; 190*fe6060f1SDimitry Andric } 191*fe6060f1SDimitry Andric 192*fe6060f1SDimitry Andric // Invoke FUNC on subranges with matching equivalence class 193*fe6060f1SDimitry Andric void ICF::forEachClassRange(size_t begin, size_t end, 194*fe6060f1SDimitry Andric std::function<void(size_t, size_t)> func) { 195*fe6060f1SDimitry Andric while (begin < end) { 196*fe6060f1SDimitry Andric size_t mid = findBoundary(begin, end); 197*fe6060f1SDimitry Andric func(begin, mid); 198*fe6060f1SDimitry Andric begin = mid; 199*fe6060f1SDimitry Andric } 200*fe6060f1SDimitry Andric } 201*fe6060f1SDimitry Andric 202*fe6060f1SDimitry Andric // Split icfInputs into shards, then parallelize invocation of FUNC on subranges 203*fe6060f1SDimitry Andric // with matching equivalence class 204*fe6060f1SDimitry Andric void ICF::forEachClass(std::function<void(size_t, size_t)> func) { 205*fe6060f1SDimitry Andric // Only use threads when the benefits outweigh the overhead. 206*fe6060f1SDimitry Andric const size_t threadingThreshold = 1024; 207*fe6060f1SDimitry Andric if (icfInputs.size() < threadingThreshold) { 208*fe6060f1SDimitry Andric forEachClassRange(0, icfInputs.size(), func); 209*fe6060f1SDimitry Andric ++icfPass; 210*fe6060f1SDimitry Andric return; 211*fe6060f1SDimitry Andric } 212*fe6060f1SDimitry Andric 213*fe6060f1SDimitry Andric // Shard into non-overlapping intervals, and call FUNC in parallel. The 214*fe6060f1SDimitry Andric // sharding must be completed before any calls to FUNC are made so that FUNC 215*fe6060f1SDimitry Andric // can modify the InputSection in its shard without causing data races. 216*fe6060f1SDimitry Andric const size_t shards = 256; 217*fe6060f1SDimitry Andric size_t step = icfInputs.size() / shards; 218*fe6060f1SDimitry Andric size_t boundaries[shards + 1]; 219*fe6060f1SDimitry Andric boundaries[0] = 0; 220*fe6060f1SDimitry Andric boundaries[shards] = icfInputs.size(); 221*fe6060f1SDimitry Andric parallelForEachN(1, shards, [&](size_t i) { 222*fe6060f1SDimitry Andric boundaries[i] = findBoundary((i - 1) * step, icfInputs.size()); 223*fe6060f1SDimitry Andric }); 224*fe6060f1SDimitry Andric parallelForEachN(1, shards + 1, [&](size_t i) { 225*fe6060f1SDimitry Andric if (boundaries[i - 1] < boundaries[i]) { 226*fe6060f1SDimitry Andric forEachClassRange(boundaries[i - 1], boundaries[i], func); 227*fe6060f1SDimitry Andric } 228*fe6060f1SDimitry Andric }); 229*fe6060f1SDimitry Andric ++icfPass; 230*fe6060f1SDimitry Andric } 231*fe6060f1SDimitry Andric 232*fe6060f1SDimitry Andric void ICF::run() { 233*fe6060f1SDimitry Andric // Into each origin-section hash, combine all reloc referent section hashes. 234*fe6060f1SDimitry Andric for (icfPass = 0; icfPass < 2; ++icfPass) { 235*fe6060f1SDimitry Andric parallelForEach(icfInputs, [&](ConcatInputSection *isec) { 236*fe6060f1SDimitry Andric uint64_t hash = isec->icfEqClass[icfPass % 2]; 237*fe6060f1SDimitry Andric for (const Reloc &r : isec->relocs) { 238*fe6060f1SDimitry Andric if (auto *sym = r.referent.dyn_cast<Symbol *>()) { 239*fe6060f1SDimitry Andric if (auto *dylibSym = dyn_cast<DylibSymbol>(sym)) 240*fe6060f1SDimitry Andric hash += dylibSym->stubsHelperIndex; 241*fe6060f1SDimitry Andric else if (auto *defined = dyn_cast<Defined>(sym)) { 242*fe6060f1SDimitry Andric if (defined->isec) { 243*fe6060f1SDimitry Andric if (auto isec = dyn_cast<ConcatInputSection>(defined->isec)) 244*fe6060f1SDimitry Andric hash += defined->value + isec->icfEqClass[icfPass % 2]; 245*fe6060f1SDimitry Andric else 246*fe6060f1SDimitry Andric hash += defined->isec->kind() + 247*fe6060f1SDimitry Andric defined->isec->getOffset(defined->value); 248*fe6060f1SDimitry Andric } else { 249*fe6060f1SDimitry Andric hash += defined->value; 250*fe6060f1SDimitry Andric } 251*fe6060f1SDimitry Andric } else 252*fe6060f1SDimitry Andric llvm_unreachable("foldIdenticalSections symbol kind"); 253*fe6060f1SDimitry Andric } 254*fe6060f1SDimitry Andric } 255*fe6060f1SDimitry Andric // Set MSB to 1 to avoid collisions with non-hashed classes. 256*fe6060f1SDimitry Andric isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 63); 257*fe6060f1SDimitry Andric }); 258*fe6060f1SDimitry Andric } 259*fe6060f1SDimitry Andric 260*fe6060f1SDimitry Andric llvm::stable_sort( 261*fe6060f1SDimitry Andric icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) { 262*fe6060f1SDimitry Andric return a->icfEqClass[0] < b->icfEqClass[0]; 263*fe6060f1SDimitry Andric }); 264*fe6060f1SDimitry Andric forEachClass( 265*fe6060f1SDimitry Andric [&](size_t begin, size_t end) { segregate(begin, end, equalsConstant); }); 266*fe6060f1SDimitry Andric 267*fe6060f1SDimitry Andric // Split equivalence groups by comparing relocations until convergence 268*fe6060f1SDimitry Andric do { 269*fe6060f1SDimitry Andric icfRepeat = false; 270*fe6060f1SDimitry Andric forEachClass([&](size_t begin, size_t end) { 271*fe6060f1SDimitry Andric segregate(begin, end, equalsVariable); 272*fe6060f1SDimitry Andric }); 273*fe6060f1SDimitry Andric } while (icfRepeat); 274*fe6060f1SDimitry Andric log("ICF needed " + Twine(icfPass) + " iterations"); 275*fe6060f1SDimitry Andric 276*fe6060f1SDimitry Andric // Fold sections within equivalence classes 277*fe6060f1SDimitry Andric forEachClass([&](size_t begin, size_t end) { 278*fe6060f1SDimitry Andric if (end - begin < 2) 279*fe6060f1SDimitry Andric return; 280*fe6060f1SDimitry Andric ConcatInputSection *beginIsec = icfInputs[begin]; 281*fe6060f1SDimitry Andric for (size_t i = begin + 1; i < end; ++i) 282*fe6060f1SDimitry Andric beginIsec->foldIdentical(icfInputs[i]); 283*fe6060f1SDimitry Andric }); 284*fe6060f1SDimitry Andric } 285*fe6060f1SDimitry Andric 286*fe6060f1SDimitry Andric // Split an equivalence class into smaller classes. 287*fe6060f1SDimitry Andric void ICF::segregate( 288*fe6060f1SDimitry Andric size_t begin, size_t end, 289*fe6060f1SDimitry Andric std::function<bool(const ConcatInputSection *, const ConcatInputSection *)> 290*fe6060f1SDimitry Andric equals) { 291*fe6060f1SDimitry Andric while (begin < end) { 292*fe6060f1SDimitry Andric // Divide [begin, end) into two. Let mid be the start index of the 293*fe6060f1SDimitry Andric // second group. 294*fe6060f1SDimitry Andric auto bound = std::stable_partition(icfInputs.begin() + begin + 1, 295*fe6060f1SDimitry Andric icfInputs.begin() + end, 296*fe6060f1SDimitry Andric [&](ConcatInputSection *isec) { 297*fe6060f1SDimitry Andric return equals(icfInputs[begin], isec); 298*fe6060f1SDimitry Andric }); 299*fe6060f1SDimitry Andric size_t mid = bound - icfInputs.begin(); 300*fe6060f1SDimitry Andric 301*fe6060f1SDimitry Andric // Split [begin, end) into [begin, mid) and [mid, end). We use mid as an 302*fe6060f1SDimitry Andric // equivalence class ID because every group ends with a unique index. 303*fe6060f1SDimitry Andric for (size_t i = begin; i < mid; ++i) 304*fe6060f1SDimitry Andric icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid; 305*fe6060f1SDimitry Andric 306*fe6060f1SDimitry Andric // If we created a group, we need to iterate the main loop again. 307*fe6060f1SDimitry Andric if (mid != end) 308*fe6060f1SDimitry Andric icfRepeat = true; 309*fe6060f1SDimitry Andric 310*fe6060f1SDimitry Andric begin = mid; 311*fe6060f1SDimitry Andric } 312*fe6060f1SDimitry Andric } 313*fe6060f1SDimitry Andric 314*fe6060f1SDimitry Andric template <class Ptr> 315*fe6060f1SDimitry Andric DenseSet<const InputSection *> findFunctionsWithUnwindInfo() { 316*fe6060f1SDimitry Andric DenseSet<const InputSection *> result; 317*fe6060f1SDimitry Andric for (ConcatInputSection *isec : in.unwindInfo->getInputs()) { 318*fe6060f1SDimitry Andric for (size_t i = 0; i < isec->relocs.size(); ++i) { 319*fe6060f1SDimitry Andric Reloc &r = isec->relocs[i]; 320*fe6060f1SDimitry Andric assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED)); 321*fe6060f1SDimitry Andric if (r.offset % sizeof(CompactUnwindEntry<Ptr>) != 322*fe6060f1SDimitry Andric offsetof(CompactUnwindEntry<Ptr>, functionAddress)) 323*fe6060f1SDimitry Andric continue; 324*fe6060f1SDimitry Andric result.insert(r.referent.get<InputSection *>()); 325*fe6060f1SDimitry Andric } 326*fe6060f1SDimitry Andric } 327*fe6060f1SDimitry Andric return result; 328*fe6060f1SDimitry Andric } 329*fe6060f1SDimitry Andric 330*fe6060f1SDimitry Andric void macho::foldIdenticalSections() { 331*fe6060f1SDimitry Andric TimeTraceScope timeScope("Fold Identical Code Sections"); 332*fe6060f1SDimitry Andric // The ICF equivalence-class segregation algorithm relies on pre-computed 333*fe6060f1SDimitry Andric // hashes of InputSection::data for the ConcatOutputSection::inputs and all 334*fe6060f1SDimitry Andric // sections referenced by their relocs. We could recursively traverse the 335*fe6060f1SDimitry Andric // relocs to find every referenced InputSection, but that precludes easy 336*fe6060f1SDimitry Andric // parallelization. Therefore, we hash every InputSection here where we have 337*fe6060f1SDimitry Andric // them all accessible as simple vectors. 338*fe6060f1SDimitry Andric 339*fe6060f1SDimitry Andric // ICF can't fold functions with unwind info 340*fe6060f1SDimitry Andric DenseSet<const InputSection *> functionsWithUnwindInfo = 341*fe6060f1SDimitry Andric target->wordSize == 8 ? findFunctionsWithUnwindInfo<uint64_t>() 342*fe6060f1SDimitry Andric : findFunctionsWithUnwindInfo<uint32_t>(); 343*fe6060f1SDimitry Andric 344*fe6060f1SDimitry Andric // If an InputSection is ineligible for ICF, we give it a unique ID to force 345*fe6060f1SDimitry Andric // it into an unfoldable singleton equivalence class. Begin the unique-ID 346*fe6060f1SDimitry Andric // space at inputSections.size(), so that it will never intersect with 347*fe6060f1SDimitry Andric // equivalence-class IDs which begin at 0. Since hashes & unique IDs never 348*fe6060f1SDimitry Andric // coexist with equivalence-class IDs, this is not necessary, but might help 349*fe6060f1SDimitry Andric // someone keep the numbers straight in case we ever need to debug the 350*fe6060f1SDimitry Andric // ICF::segregate() 351*fe6060f1SDimitry Andric std::vector<ConcatInputSection *> hashable; 352*fe6060f1SDimitry Andric uint64_t icfUniqueID = inputSections.size(); 353*fe6060f1SDimitry Andric for (ConcatInputSection *isec : inputSections) { 354*fe6060f1SDimitry Andric // FIXME: consider non-code __text sections as hashable? 355*fe6060f1SDimitry Andric bool isHashable = (isCodeSection(isec) || isCfStringSection(isec)) && 356*fe6060f1SDimitry Andric !isec->shouldOmitFromOutput() && 357*fe6060f1SDimitry Andric !functionsWithUnwindInfo.contains(isec) && 358*fe6060f1SDimitry Andric isec->isHashableForICF(); 359*fe6060f1SDimitry Andric if (isHashable) 360*fe6060f1SDimitry Andric hashable.push_back(isec); 361*fe6060f1SDimitry Andric else 362*fe6060f1SDimitry Andric isec->icfEqClass[0] = ++icfUniqueID; 363*fe6060f1SDimitry Andric } 364*fe6060f1SDimitry Andric parallelForEach(hashable, 365*fe6060f1SDimitry Andric [](ConcatInputSection *isec) { isec->hashForICF(); }); 366*fe6060f1SDimitry Andric // Now that every input section is either hashed or marked as unique, run the 367*fe6060f1SDimitry Andric // segregation algorithm to detect foldable subsections. 368*fe6060f1SDimitry Andric ICF(hashable).run(); 369*fe6060f1SDimitry Andric } 370