1fe6060f1SDimitry Andric //===- ICF.cpp ------------------------------------------------------------===// 2fe6060f1SDimitry Andric // 3fe6060f1SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4fe6060f1SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5fe6060f1SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6fe6060f1SDimitry Andric // 7fe6060f1SDimitry Andric //===----------------------------------------------------------------------===// 8fe6060f1SDimitry Andric 9fe6060f1SDimitry Andric #include "ICF.h" 10fe6060f1SDimitry Andric #include "ConcatOutputSection.h" 11*81ad6265SDimitry Andric #include "Config.h" 12fe6060f1SDimitry Andric #include "InputSection.h" 13*81ad6265SDimitry Andric #include "SymbolTable.h" 14fe6060f1SDimitry Andric #include "Symbols.h" 15fe6060f1SDimitry Andric #include "UnwindInfoSection.h" 16fe6060f1SDimitry Andric 17*81ad6265SDimitry Andric #include "lld/Common/CommonLinkerContext.h" 18*81ad6265SDimitry Andric #include "llvm/Support/LEB128.h" 19fe6060f1SDimitry Andric #include "llvm/Support/Parallel.h" 20fe6060f1SDimitry Andric #include "llvm/Support/TimeProfiler.h" 21*81ad6265SDimitry Andric #include "llvm/Support/xxhash.h" 22fe6060f1SDimitry Andric 23fe6060f1SDimitry Andric #include <atomic> 24fe6060f1SDimitry Andric 25fe6060f1SDimitry Andric using namespace llvm; 26fe6060f1SDimitry Andric using namespace lld; 27fe6060f1SDimitry Andric using namespace lld::macho; 28fe6060f1SDimitry Andric 29*81ad6265SDimitry Andric static constexpr bool verboseDiagnostics = false; 30*81ad6265SDimitry Andric 31fe6060f1SDimitry Andric class ICF { 32fe6060f1SDimitry Andric public: 33fe6060f1SDimitry Andric ICF(std::vector<ConcatInputSection *> &inputs); 34fe6060f1SDimitry Andric void run(); 35*81ad6265SDimitry Andric 36*81ad6265SDimitry Andric using EqualsFn = bool (ICF::*)(const ConcatInputSection *, 37*81ad6265SDimitry Andric const ConcatInputSection *); 38*81ad6265SDimitry Andric void segregate(size_t begin, size_t end, EqualsFn); 39fe6060f1SDimitry Andric size_t findBoundary(size_t begin, size_t end); 40fe6060f1SDimitry Andric void forEachClassRange(size_t begin, size_t end, 41*81ad6265SDimitry Andric llvm::function_ref<void(size_t, size_t)> func); 42*81ad6265SDimitry Andric void forEachClass(llvm::function_ref<void(size_t, size_t)> func); 43*81ad6265SDimitry Andric 44*81ad6265SDimitry Andric bool equalsConstant(const ConcatInputSection *ia, 45*81ad6265SDimitry Andric const ConcatInputSection *ib); 46*81ad6265SDimitry Andric bool equalsVariable(const ConcatInputSection *ia, 47*81ad6265SDimitry Andric const ConcatInputSection *ib); 48fe6060f1SDimitry Andric 49fe6060f1SDimitry Andric // ICF needs a copy of the inputs vector because its equivalence-class 50fe6060f1SDimitry Andric // segregation algorithm destroys the proper sequence. 51fe6060f1SDimitry Andric std::vector<ConcatInputSection *> icfInputs; 52*81ad6265SDimitry Andric 53*81ad6265SDimitry Andric unsigned icfPass = 0; 54*81ad6265SDimitry Andric std::atomic<bool> icfRepeat{false}; 55*81ad6265SDimitry Andric std::atomic<uint64_t> equalsConstantCount{0}; 56*81ad6265SDimitry Andric std::atomic<uint64_t> equalsVariableCount{0}; 57fe6060f1SDimitry Andric }; 58fe6060f1SDimitry Andric 59fe6060f1SDimitry Andric ICF::ICF(std::vector<ConcatInputSection *> &inputs) { 60fe6060f1SDimitry Andric icfInputs.assign(inputs.begin(), inputs.end()); 61fe6060f1SDimitry Andric } 62fe6060f1SDimitry Andric 63fe6060f1SDimitry Andric // ICF = Identical Code Folding 64fe6060f1SDimitry Andric // 65fe6060f1SDimitry Andric // We only fold __TEXT,__text, so this is really "code" folding, and not 66fe6060f1SDimitry Andric // "COMDAT" folding. String and scalar constant literals are deduplicated 67fe6060f1SDimitry Andric // elsewhere. 68fe6060f1SDimitry Andric // 69fe6060f1SDimitry Andric // Summary of segments & sections: 70fe6060f1SDimitry Andric // 71fe6060f1SDimitry Andric // The __TEXT segment is readonly at the MMU. Some sections are already 72fe6060f1SDimitry Andric // deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are 73fe6060f1SDimitry Andric // synthetic and inherently free of duplicates (__TEXT,__stubs & 74fe6060f1SDimitry Andric // __TEXT,__unwind_info). Note that we don't yet run ICF on __TEXT,__const, 75fe6060f1SDimitry Andric // because doing so induces many test failures. 76fe6060f1SDimitry Andric // 77fe6060f1SDimitry Andric // The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and 78fe6060f1SDimitry Andric // thus ineligible for ICF. 79fe6060f1SDimitry Andric // 80fe6060f1SDimitry Andric // The __DATA_CONST segment is read/write at the MMU, but is logically const to 81fe6060f1SDimitry Andric // the application after dyld applies fixups to pointer data. We currently 82fe6060f1SDimitry Andric // fold only the __DATA_CONST,__cfstring section. 83fe6060f1SDimitry Andric // 84fe6060f1SDimitry Andric // The __DATA segment is read/write at the MMU, and as application-writeable 85fe6060f1SDimitry Andric // data, none of its sections are eligible for ICF. 86fe6060f1SDimitry Andric // 87fe6060f1SDimitry Andric // Please see the large block comment in lld/ELF/ICF.cpp for an explanation 88fe6060f1SDimitry Andric // of the segregation algorithm. 89fe6060f1SDimitry Andric // 90fe6060f1SDimitry Andric // FIXME(gkm): implement keep-unique attributes 91fe6060f1SDimitry Andric // FIXME(gkm): implement address-significance tables for MachO object files 92fe6060f1SDimitry Andric 93fe6060f1SDimitry Andric // Compare "non-moving" parts of two ConcatInputSections, namely everything 94fe6060f1SDimitry Andric // except references to other ConcatInputSections. 95*81ad6265SDimitry Andric bool ICF::equalsConstant(const ConcatInputSection *ia, 96fe6060f1SDimitry Andric const ConcatInputSection *ib) { 97*81ad6265SDimitry Andric if (verboseDiagnostics) 98*81ad6265SDimitry Andric ++equalsConstantCount; 99fe6060f1SDimitry Andric // We can only fold within the same OutputSection. 100fe6060f1SDimitry Andric if (ia->parent != ib->parent) 101fe6060f1SDimitry Andric return false; 102fe6060f1SDimitry Andric if (ia->data.size() != ib->data.size()) 103fe6060f1SDimitry Andric return false; 104fe6060f1SDimitry Andric if (ia->data != ib->data) 105fe6060f1SDimitry Andric return false; 106fe6060f1SDimitry Andric if (ia->relocs.size() != ib->relocs.size()) 107fe6060f1SDimitry Andric return false; 108fe6060f1SDimitry Andric auto f = [](const Reloc &ra, const Reloc &rb) { 109fe6060f1SDimitry Andric if (ra.type != rb.type) 110fe6060f1SDimitry Andric return false; 111fe6060f1SDimitry Andric if (ra.pcrel != rb.pcrel) 112fe6060f1SDimitry Andric return false; 113fe6060f1SDimitry Andric if (ra.length != rb.length) 114fe6060f1SDimitry Andric return false; 115fe6060f1SDimitry Andric if (ra.offset != rb.offset) 116fe6060f1SDimitry Andric return false; 117fe6060f1SDimitry Andric if (ra.referent.is<Symbol *>() != rb.referent.is<Symbol *>()) 118fe6060f1SDimitry Andric return false; 119fe6060f1SDimitry Andric 120fe6060f1SDimitry Andric InputSection *isecA, *isecB; 121349cc55cSDimitry Andric 122349cc55cSDimitry Andric uint64_t valueA = 0; 123349cc55cSDimitry Andric uint64_t valueB = 0; 124fe6060f1SDimitry Andric if (ra.referent.is<Symbol *>()) { 125fe6060f1SDimitry Andric const auto *sa = ra.referent.get<Symbol *>(); 126fe6060f1SDimitry Andric const auto *sb = rb.referent.get<Symbol *>(); 127fe6060f1SDimitry Andric if (sa->kind() != sb->kind()) 128fe6060f1SDimitry Andric return false; 129*81ad6265SDimitry Andric // ICF runs before Undefineds are treated (and potentially converted into 130*81ad6265SDimitry Andric // DylibSymbols). 131*81ad6265SDimitry Andric if (isa<DylibSymbol>(sa) || isa<Undefined>(sa)) 132*81ad6265SDimitry Andric return sa == sb && ra.addend == rb.addend; 133*81ad6265SDimitry Andric assert(isa<Defined>(sa)); 134fe6060f1SDimitry Andric const auto *da = cast<Defined>(sa); 135fe6060f1SDimitry Andric const auto *db = cast<Defined>(sb); 136349cc55cSDimitry Andric if (!da->isec || !db->isec) { 137fe6060f1SDimitry Andric assert(da->isAbsolute() && db->isAbsolute()); 138*81ad6265SDimitry Andric return da->value + ra.addend == db->value + rb.addend; 139fe6060f1SDimitry Andric } 140349cc55cSDimitry Andric isecA = da->isec; 141349cc55cSDimitry Andric valueA = da->value; 142349cc55cSDimitry Andric isecB = db->isec; 143349cc55cSDimitry Andric valueB = db->value; 144fe6060f1SDimitry Andric } else { 145fe6060f1SDimitry Andric isecA = ra.referent.get<InputSection *>(); 146fe6060f1SDimitry Andric isecB = rb.referent.get<InputSection *>(); 147fe6060f1SDimitry Andric } 148fe6060f1SDimitry Andric 149fe6060f1SDimitry Andric if (isecA->parent != isecB->parent) 150fe6060f1SDimitry Andric return false; 151fe6060f1SDimitry Andric // Sections with identical parents should be of the same kind. 152fe6060f1SDimitry Andric assert(isecA->kind() == isecB->kind()); 153fe6060f1SDimitry Andric // We will compare ConcatInputSection contents in equalsVariable. 154fe6060f1SDimitry Andric if (isa<ConcatInputSection>(isecA)) 155*81ad6265SDimitry Andric return ra.addend == rb.addend; 156fe6060f1SDimitry Andric // Else we have two literal sections. References to them are equal iff their 157fe6060f1SDimitry Andric // offsets in the output section are equal. 158*81ad6265SDimitry Andric if (ra.referent.is<Symbol *>()) 159*81ad6265SDimitry Andric // For symbol relocs, we compare the contents at the symbol address. We 160*81ad6265SDimitry Andric // don't do `getOffset(value + addend)` because value + addend may not be 161*81ad6265SDimitry Andric // a valid offset in the literal section. 162*81ad6265SDimitry Andric return isecA->getOffset(valueA) == isecB->getOffset(valueB) && 163*81ad6265SDimitry Andric ra.addend == rb.addend; 164*81ad6265SDimitry Andric else { 165*81ad6265SDimitry Andric assert(valueA == 0 && valueB == 0); 166*81ad6265SDimitry Andric // For section relocs, we compare the content at the section offset. 167*81ad6265SDimitry Andric return isecA->getOffset(ra.addend) == isecB->getOffset(rb.addend); 168*81ad6265SDimitry Andric } 169fe6060f1SDimitry Andric }; 170fe6060f1SDimitry Andric return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), 171fe6060f1SDimitry Andric f); 172fe6060f1SDimitry Andric } 173fe6060f1SDimitry Andric 174fe6060f1SDimitry Andric // Compare the "moving" parts of two ConcatInputSections -- i.e. everything not 175fe6060f1SDimitry Andric // handled by equalsConstant(). 176*81ad6265SDimitry Andric bool ICF::equalsVariable(const ConcatInputSection *ia, 177fe6060f1SDimitry Andric const ConcatInputSection *ib) { 178*81ad6265SDimitry Andric if (verboseDiagnostics) 179*81ad6265SDimitry Andric ++equalsVariableCount; 180fe6060f1SDimitry Andric assert(ia->relocs.size() == ib->relocs.size()); 181*81ad6265SDimitry Andric auto f = [this](const Reloc &ra, const Reloc &rb) { 182fe6060f1SDimitry Andric // We already filtered out mismatching values/addends in equalsConstant. 183fe6060f1SDimitry Andric if (ra.referent == rb.referent) 184fe6060f1SDimitry Andric return true; 185fe6060f1SDimitry Andric const ConcatInputSection *isecA, *isecB; 186fe6060f1SDimitry Andric if (ra.referent.is<Symbol *>()) { 187fe6060f1SDimitry Andric // Matching DylibSymbols are already filtered out by the 188fe6060f1SDimitry Andric // identical-referent check above. Non-matching DylibSymbols were filtered 189fe6060f1SDimitry Andric // out in equalsConstant(). So we can safely cast to Defined here. 190fe6060f1SDimitry Andric const auto *da = cast<Defined>(ra.referent.get<Symbol *>()); 191fe6060f1SDimitry Andric const auto *db = cast<Defined>(rb.referent.get<Symbol *>()); 192fe6060f1SDimitry Andric if (da->isAbsolute()) 193fe6060f1SDimitry Andric return true; 194fe6060f1SDimitry Andric isecA = dyn_cast<ConcatInputSection>(da->isec); 195fe6060f1SDimitry Andric if (!isecA) 196fe6060f1SDimitry Andric return true; // literal sections were checked in equalsConstant. 197fe6060f1SDimitry Andric isecB = cast<ConcatInputSection>(db->isec); 198fe6060f1SDimitry Andric } else { 199fe6060f1SDimitry Andric const auto *sa = ra.referent.get<InputSection *>(); 200fe6060f1SDimitry Andric const auto *sb = rb.referent.get<InputSection *>(); 201fe6060f1SDimitry Andric isecA = dyn_cast<ConcatInputSection>(sa); 202fe6060f1SDimitry Andric if (!isecA) 203fe6060f1SDimitry Andric return true; 204fe6060f1SDimitry Andric isecB = cast<ConcatInputSection>(sb); 205fe6060f1SDimitry Andric } 206fe6060f1SDimitry Andric return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2]; 207fe6060f1SDimitry Andric }; 208349cc55cSDimitry Andric if (!std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), f)) 209349cc55cSDimitry Andric return false; 210349cc55cSDimitry Andric 211349cc55cSDimitry Andric // If there are symbols with associated unwind info, check that the unwind 212349cc55cSDimitry Andric // info matches. For simplicity, we only handle the case where there are only 213349cc55cSDimitry Andric // symbols at offset zero within the section (which is typically the case with 214349cc55cSDimitry Andric // .subsections_via_symbols.) 215*81ad6265SDimitry Andric auto hasUnwind = [](Defined *d) { return d->unwindEntry != nullptr; }; 216*81ad6265SDimitry Andric auto itA = std::find_if(ia->symbols.begin(), ia->symbols.end(), hasUnwind); 217*81ad6265SDimitry Andric auto itB = std::find_if(ib->symbols.begin(), ib->symbols.end(), hasUnwind); 218349cc55cSDimitry Andric if (itA == ia->symbols.end()) 219349cc55cSDimitry Andric return itB == ib->symbols.end(); 220349cc55cSDimitry Andric if (itB == ib->symbols.end()) 221349cc55cSDimitry Andric return false; 222349cc55cSDimitry Andric const Defined *da = *itA; 223349cc55cSDimitry Andric const Defined *db = *itB; 224349cc55cSDimitry Andric if (da->unwindEntry->icfEqClass[icfPass % 2] != 225349cc55cSDimitry Andric db->unwindEntry->icfEqClass[icfPass % 2] || 226349cc55cSDimitry Andric da->value != 0 || db->value != 0) 227349cc55cSDimitry Andric return false; 228349cc55cSDimitry Andric auto isZero = [](Defined *d) { return d->value == 0; }; 229349cc55cSDimitry Andric return std::find_if_not(std::next(itA), ia->symbols.end(), isZero) == 230349cc55cSDimitry Andric ia->symbols.end() && 231349cc55cSDimitry Andric std::find_if_not(std::next(itB), ib->symbols.end(), isZero) == 232349cc55cSDimitry Andric ib->symbols.end(); 233fe6060f1SDimitry Andric } 234fe6060f1SDimitry Andric 235fe6060f1SDimitry Andric // Find the first InputSection after BEGIN whose equivalence class differs 236fe6060f1SDimitry Andric size_t ICF::findBoundary(size_t begin, size_t end) { 237fe6060f1SDimitry Andric uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2]; 238fe6060f1SDimitry Andric for (size_t i = begin + 1; i < end; ++i) 239fe6060f1SDimitry Andric if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2]) 240fe6060f1SDimitry Andric return i; 241fe6060f1SDimitry Andric return end; 242fe6060f1SDimitry Andric } 243fe6060f1SDimitry Andric 244fe6060f1SDimitry Andric // Invoke FUNC on subranges with matching equivalence class 245fe6060f1SDimitry Andric void ICF::forEachClassRange(size_t begin, size_t end, 246*81ad6265SDimitry Andric llvm::function_ref<void(size_t, size_t)> func) { 247fe6060f1SDimitry Andric while (begin < end) { 248fe6060f1SDimitry Andric size_t mid = findBoundary(begin, end); 249fe6060f1SDimitry Andric func(begin, mid); 250fe6060f1SDimitry Andric begin = mid; 251fe6060f1SDimitry Andric } 252fe6060f1SDimitry Andric } 253fe6060f1SDimitry Andric 254fe6060f1SDimitry Andric // Split icfInputs into shards, then parallelize invocation of FUNC on subranges 255fe6060f1SDimitry Andric // with matching equivalence class 256*81ad6265SDimitry Andric void ICF::forEachClass(llvm::function_ref<void(size_t, size_t)> func) { 257fe6060f1SDimitry Andric // Only use threads when the benefits outweigh the overhead. 258fe6060f1SDimitry Andric const size_t threadingThreshold = 1024; 259fe6060f1SDimitry Andric if (icfInputs.size() < threadingThreshold) { 260fe6060f1SDimitry Andric forEachClassRange(0, icfInputs.size(), func); 261fe6060f1SDimitry Andric ++icfPass; 262fe6060f1SDimitry Andric return; 263fe6060f1SDimitry Andric } 264fe6060f1SDimitry Andric 265fe6060f1SDimitry Andric // Shard into non-overlapping intervals, and call FUNC in parallel. The 266fe6060f1SDimitry Andric // sharding must be completed before any calls to FUNC are made so that FUNC 267fe6060f1SDimitry Andric // can modify the InputSection in its shard without causing data races. 268fe6060f1SDimitry Andric const size_t shards = 256; 269fe6060f1SDimitry Andric size_t step = icfInputs.size() / shards; 270fe6060f1SDimitry Andric size_t boundaries[shards + 1]; 271fe6060f1SDimitry Andric boundaries[0] = 0; 272fe6060f1SDimitry Andric boundaries[shards] = icfInputs.size(); 273*81ad6265SDimitry Andric parallelFor(1, shards, [&](size_t i) { 274fe6060f1SDimitry Andric boundaries[i] = findBoundary((i - 1) * step, icfInputs.size()); 275fe6060f1SDimitry Andric }); 276*81ad6265SDimitry Andric parallelFor(1, shards + 1, [&](size_t i) { 277fe6060f1SDimitry Andric if (boundaries[i - 1] < boundaries[i]) { 278fe6060f1SDimitry Andric forEachClassRange(boundaries[i - 1], boundaries[i], func); 279fe6060f1SDimitry Andric } 280fe6060f1SDimitry Andric }); 281fe6060f1SDimitry Andric ++icfPass; 282fe6060f1SDimitry Andric } 283fe6060f1SDimitry Andric 284fe6060f1SDimitry Andric void ICF::run() { 285fe6060f1SDimitry Andric // Into each origin-section hash, combine all reloc referent section hashes. 286fe6060f1SDimitry Andric for (icfPass = 0; icfPass < 2; ++icfPass) { 287fe6060f1SDimitry Andric parallelForEach(icfInputs, [&](ConcatInputSection *isec) { 288*81ad6265SDimitry Andric uint32_t hash = isec->icfEqClass[icfPass % 2]; 289fe6060f1SDimitry Andric for (const Reloc &r : isec->relocs) { 290fe6060f1SDimitry Andric if (auto *sym = r.referent.dyn_cast<Symbol *>()) { 291*81ad6265SDimitry Andric if (auto *defined = dyn_cast<Defined>(sym)) { 292fe6060f1SDimitry Andric if (defined->isec) { 293*81ad6265SDimitry Andric if (auto referentIsec = 294*81ad6265SDimitry Andric dyn_cast<ConcatInputSection>(defined->isec)) 295*81ad6265SDimitry Andric hash += defined->value + referentIsec->icfEqClass[icfPass % 2]; 296fe6060f1SDimitry Andric else 297fe6060f1SDimitry Andric hash += defined->isec->kind() + 298fe6060f1SDimitry Andric defined->isec->getOffset(defined->value); 299fe6060f1SDimitry Andric } else { 300fe6060f1SDimitry Andric hash += defined->value; 301fe6060f1SDimitry Andric } 302*81ad6265SDimitry Andric } else { 303*81ad6265SDimitry Andric // ICF runs before Undefined diags 304*81ad6265SDimitry Andric assert(isa<Undefined>(sym) || isa<DylibSymbol>(sym)); 305*81ad6265SDimitry Andric } 306fe6060f1SDimitry Andric } 307fe6060f1SDimitry Andric } 308fe6060f1SDimitry Andric // Set MSB to 1 to avoid collisions with non-hashed classes. 309*81ad6265SDimitry Andric isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 31); 310fe6060f1SDimitry Andric }); 311fe6060f1SDimitry Andric } 312fe6060f1SDimitry Andric 313fe6060f1SDimitry Andric llvm::stable_sort( 314fe6060f1SDimitry Andric icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) { 315fe6060f1SDimitry Andric return a->icfEqClass[0] < b->icfEqClass[0]; 316fe6060f1SDimitry Andric }); 317*81ad6265SDimitry Andric forEachClass([&](size_t begin, size_t end) { 318*81ad6265SDimitry Andric segregate(begin, end, &ICF::equalsConstant); 319*81ad6265SDimitry Andric }); 320fe6060f1SDimitry Andric 321fe6060f1SDimitry Andric // Split equivalence groups by comparing relocations until convergence 322fe6060f1SDimitry Andric do { 323fe6060f1SDimitry Andric icfRepeat = false; 324fe6060f1SDimitry Andric forEachClass([&](size_t begin, size_t end) { 325*81ad6265SDimitry Andric segregate(begin, end, &ICF::equalsVariable); 326fe6060f1SDimitry Andric }); 327fe6060f1SDimitry Andric } while (icfRepeat); 328fe6060f1SDimitry Andric log("ICF needed " + Twine(icfPass) + " iterations"); 329*81ad6265SDimitry Andric if (verboseDiagnostics) { 330*81ad6265SDimitry Andric log("equalsConstant() called " + Twine(equalsConstantCount) + " times"); 331*81ad6265SDimitry Andric log("equalsVariable() called " + Twine(equalsVariableCount) + " times"); 332*81ad6265SDimitry Andric } 333fe6060f1SDimitry Andric 334fe6060f1SDimitry Andric // Fold sections within equivalence classes 335fe6060f1SDimitry Andric forEachClass([&](size_t begin, size_t end) { 336fe6060f1SDimitry Andric if (end - begin < 2) 337fe6060f1SDimitry Andric return; 338fe6060f1SDimitry Andric ConcatInputSection *beginIsec = icfInputs[begin]; 339fe6060f1SDimitry Andric for (size_t i = begin + 1; i < end; ++i) 340fe6060f1SDimitry Andric beginIsec->foldIdentical(icfInputs[i]); 341fe6060f1SDimitry Andric }); 342fe6060f1SDimitry Andric } 343fe6060f1SDimitry Andric 344fe6060f1SDimitry Andric // Split an equivalence class into smaller classes. 345*81ad6265SDimitry Andric void ICF::segregate(size_t begin, size_t end, EqualsFn equals) { 346fe6060f1SDimitry Andric while (begin < end) { 347fe6060f1SDimitry Andric // Divide [begin, end) into two. Let mid be the start index of the 348fe6060f1SDimitry Andric // second group. 349*81ad6265SDimitry Andric auto bound = std::stable_partition( 350*81ad6265SDimitry Andric icfInputs.begin() + begin + 1, icfInputs.begin() + end, 351fe6060f1SDimitry Andric [&](ConcatInputSection *isec) { 352*81ad6265SDimitry Andric return (this->*equals)(icfInputs[begin], isec); 353fe6060f1SDimitry Andric }); 354fe6060f1SDimitry Andric size_t mid = bound - icfInputs.begin(); 355fe6060f1SDimitry Andric 356fe6060f1SDimitry Andric // Split [begin, end) into [begin, mid) and [mid, end). We use mid as an 357fe6060f1SDimitry Andric // equivalence class ID because every group ends with a unique index. 358fe6060f1SDimitry Andric for (size_t i = begin; i < mid; ++i) 359fe6060f1SDimitry Andric icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid; 360fe6060f1SDimitry Andric 361fe6060f1SDimitry Andric // If we created a group, we need to iterate the main loop again. 362fe6060f1SDimitry Andric if (mid != end) 363fe6060f1SDimitry Andric icfRepeat = true; 364fe6060f1SDimitry Andric 365fe6060f1SDimitry Andric begin = mid; 366fe6060f1SDimitry Andric } 367fe6060f1SDimitry Andric } 368fe6060f1SDimitry Andric 369*81ad6265SDimitry Andric void macho::markSymAsAddrSig(Symbol *s) { 370*81ad6265SDimitry Andric if (auto *d = dyn_cast_or_null<Defined>(s)) 371*81ad6265SDimitry Andric if (d->isec) 372*81ad6265SDimitry Andric d->isec->keepUnique = true; 373*81ad6265SDimitry Andric } 374*81ad6265SDimitry Andric 375*81ad6265SDimitry Andric void macho::markAddrSigSymbols() { 376*81ad6265SDimitry Andric TimeTraceScope timeScope("Mark addrsig symbols"); 377*81ad6265SDimitry Andric for (InputFile *file : inputFiles) { 378*81ad6265SDimitry Andric ObjFile *obj = dyn_cast<ObjFile>(file); 379*81ad6265SDimitry Andric if (!obj) 380*81ad6265SDimitry Andric continue; 381*81ad6265SDimitry Andric 382*81ad6265SDimitry Andric Section *addrSigSection = obj->addrSigSection; 383*81ad6265SDimitry Andric if (!addrSigSection) 384*81ad6265SDimitry Andric continue; 385*81ad6265SDimitry Andric assert(addrSigSection->subsections.size() == 1); 386*81ad6265SDimitry Andric 387*81ad6265SDimitry Andric Subsection *subSection = &addrSigSection->subsections[0]; 388*81ad6265SDimitry Andric ArrayRef<unsigned char> &contents = subSection->isec->data; 389*81ad6265SDimitry Andric 390*81ad6265SDimitry Andric const uint8_t *pData = contents.begin(); 391*81ad6265SDimitry Andric while (pData != contents.end()) { 392*81ad6265SDimitry Andric unsigned size; 393*81ad6265SDimitry Andric const char *err; 394*81ad6265SDimitry Andric uint32_t symIndex = decodeULEB128(pData, &size, contents.end(), &err); 395*81ad6265SDimitry Andric if (err) 396*81ad6265SDimitry Andric fatal(toString(file) + ": could not decode addrsig section: " + err); 397*81ad6265SDimitry Andric markSymAsAddrSig(obj->symbols[symIndex]); 398*81ad6265SDimitry Andric pData += size; 399*81ad6265SDimitry Andric } 400*81ad6265SDimitry Andric } 401*81ad6265SDimitry Andric } 402*81ad6265SDimitry Andric 403fe6060f1SDimitry Andric void macho::foldIdenticalSections() { 404fe6060f1SDimitry Andric TimeTraceScope timeScope("Fold Identical Code Sections"); 405fe6060f1SDimitry Andric // The ICF equivalence-class segregation algorithm relies on pre-computed 406fe6060f1SDimitry Andric // hashes of InputSection::data for the ConcatOutputSection::inputs and all 407fe6060f1SDimitry Andric // sections referenced by their relocs. We could recursively traverse the 408fe6060f1SDimitry Andric // relocs to find every referenced InputSection, but that precludes easy 409fe6060f1SDimitry Andric // parallelization. Therefore, we hash every InputSection here where we have 410fe6060f1SDimitry Andric // them all accessible as simple vectors. 411fe6060f1SDimitry Andric 412fe6060f1SDimitry Andric // If an InputSection is ineligible for ICF, we give it a unique ID to force 413fe6060f1SDimitry Andric // it into an unfoldable singleton equivalence class. Begin the unique-ID 414fe6060f1SDimitry Andric // space at inputSections.size(), so that it will never intersect with 415fe6060f1SDimitry Andric // equivalence-class IDs which begin at 0. Since hashes & unique IDs never 416fe6060f1SDimitry Andric // coexist with equivalence-class IDs, this is not necessary, but might help 417fe6060f1SDimitry Andric // someone keep the numbers straight in case we ever need to debug the 418fe6060f1SDimitry Andric // ICF::segregate() 419fe6060f1SDimitry Andric std::vector<ConcatInputSection *> hashable; 420fe6060f1SDimitry Andric uint64_t icfUniqueID = inputSections.size(); 421fe6060f1SDimitry Andric for (ConcatInputSection *isec : inputSections) { 422fe6060f1SDimitry Andric // FIXME: consider non-code __text sections as hashable? 423*81ad6265SDimitry Andric bool isHashable = (isCodeSection(isec) || isCfStringSection(isec) || 424*81ad6265SDimitry Andric isClassRefsSection(isec)) && 425*81ad6265SDimitry Andric !isec->keepUnique && !isec->shouldOmitFromOutput() && 426*81ad6265SDimitry Andric sectionType(isec->getFlags()) == MachO::S_REGULAR; 427349cc55cSDimitry Andric if (isHashable) { 428fe6060f1SDimitry Andric hashable.push_back(isec); 429349cc55cSDimitry Andric for (Defined *d : isec->symbols) 430349cc55cSDimitry Andric if (d->unwindEntry) 431349cc55cSDimitry Andric hashable.push_back(d->unwindEntry); 432*81ad6265SDimitry Andric 433*81ad6265SDimitry Andric // __cfstring has embedded addends that foil ICF's hashing / equality 434*81ad6265SDimitry Andric // checks. (We can ignore embedded addends when doing ICF because the same 435*81ad6265SDimitry Andric // information gets recorded in our Reloc structs.) We therefore create a 436*81ad6265SDimitry Andric // mutable copy of the CFString and zero out the embedded addends before 437*81ad6265SDimitry Andric // performing any hashing / equality checks. 438*81ad6265SDimitry Andric if (isCfStringSection(isec) || isClassRefsSection(isec)) { 439*81ad6265SDimitry Andric // We have to do this copying serially as the BumpPtrAllocator is not 440*81ad6265SDimitry Andric // thread-safe. FIXME: Make a thread-safe allocator. 441*81ad6265SDimitry Andric MutableArrayRef<uint8_t> copy = isec->data.copy(bAlloc()); 442*81ad6265SDimitry Andric for (const Reloc &r : isec->relocs) 443*81ad6265SDimitry Andric target->relocateOne(copy.data() + r.offset, r, /*va=*/0, 444*81ad6265SDimitry Andric /*relocVA=*/0); 445*81ad6265SDimitry Andric isec->data = copy; 446*81ad6265SDimitry Andric } 447*81ad6265SDimitry Andric } else if (!isEhFrameSection(isec)) { 448*81ad6265SDimitry Andric // EH frames are gathered as hashables from unwindEntry above; give a 449*81ad6265SDimitry Andric // unique ID to everything else. 450fe6060f1SDimitry Andric isec->icfEqClass[0] = ++icfUniqueID; 451fe6060f1SDimitry Andric } 452349cc55cSDimitry Andric } 453*81ad6265SDimitry Andric parallelForEach(hashable, [](ConcatInputSection *isec) { 454*81ad6265SDimitry Andric assert(isec->icfEqClass[0] == 0); // don't overwrite a unique ID! 455*81ad6265SDimitry Andric // Turn-on the top bit to guarantee that valid hashes have no collisions 456*81ad6265SDimitry Andric // with the small-integer unique IDs for ICF-ineligible sections 457*81ad6265SDimitry Andric isec->icfEqClass[0] = xxHash64(isec->data) | (1ull << 31); 458*81ad6265SDimitry Andric }); 459fe6060f1SDimitry Andric // Now that every input section is either hashed or marked as unique, run the 460fe6060f1SDimitry Andric // segregation algorithm to detect foldable subsections. 461fe6060f1SDimitry Andric ICF(hashable).run(); 462fe6060f1SDimitry Andric } 463