1 //===- ARM64.cpp ----------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Arch/ARM64Common.h" 10 #include "InputFiles.h" 11 #include "Symbols.h" 12 #include "SyntheticSections.h" 13 #include "Target.h" 14 15 #include "lld/Common/ErrorHandler.h" 16 #include "mach-o/compact_unwind_encoding.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/BinaryFormat/MachO.h" 20 #include "llvm/Support/Endian.h" 21 #include "llvm/Support/LEB128.h" 22 #include "llvm/Support/MathExtras.h" 23 24 using namespace llvm; 25 using namespace llvm::MachO; 26 using namespace llvm::support::endian; 27 using namespace lld; 28 using namespace lld::macho; 29 30 namespace { 31 32 struct ARM64 : ARM64Common { 33 ARM64(); 34 void writeStub(uint8_t *buf, const Symbol &, uint64_t) const override; 35 void writeStubHelperHeader(uint8_t *buf) const override; 36 void writeStubHelperEntry(uint8_t *buf, const Symbol &, 37 uint64_t entryAddr) const override; 38 39 void writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr, 40 uint64_t stubOffset, uint64_t selrefsVA, 41 uint64_t selectorIndex, uint64_t gotAddr, 42 uint64_t msgSendIndex) const override; 43 void populateThunk(InputSection *thunk, Symbol *funcSym) override; 44 void applyOptimizationHints(uint8_t *, const ObjFile &) const override; 45 }; 46 47 } // namespace 48 49 // Random notes on reloc types: 50 // ADDEND always pairs with BRANCH26, PAGE21, or PAGEOFF12 51 // POINTER_TO_GOT: ld64 supports a 4-byte pc-relative form as well as an 8-byte 52 // absolute version of this relocation. The semantics of the absolute relocation 53 // are weird -- it results in the value of the GOT slot being written, instead 54 // of the address. Let's not support it unless we find a real-world use case. 55 static constexpr std::array<RelocAttrs, 11> relocAttrsArray{{ 56 #define B(x) RelocAttrBits::x 57 {"UNSIGNED", 58 B(UNSIGNED) | B(ABSOLUTE) | B(EXTERN) | B(LOCAL) | B(BYTE4) | B(BYTE8)}, 59 {"SUBTRACTOR", B(SUBTRAHEND) | B(EXTERN) | B(BYTE4) | B(BYTE8)}, 60 {"BRANCH26", B(PCREL) | B(EXTERN) | B(BRANCH) | B(BYTE4)}, 61 {"PAGE21", B(PCREL) | B(EXTERN) | B(BYTE4)}, 62 {"PAGEOFF12", B(ABSOLUTE) | B(EXTERN) | B(BYTE4)}, 63 {"GOT_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(GOT) | B(BYTE4)}, 64 {"GOT_LOAD_PAGEOFF12", 65 B(ABSOLUTE) | B(EXTERN) | B(GOT) | B(LOAD) | B(BYTE4)}, 66 {"POINTER_TO_GOT", B(PCREL) | B(EXTERN) | B(GOT) | B(POINTER) | B(BYTE4)}, 67 {"TLVP_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(TLV) | B(BYTE4)}, 68 {"TLVP_LOAD_PAGEOFF12", 69 B(ABSOLUTE) | B(EXTERN) | B(TLV) | B(LOAD) | B(BYTE4)}, 70 {"ADDEND", B(ADDEND)}, 71 #undef B 72 }}; 73 74 static constexpr uint32_t stubCode[] = { 75 0x90000010, // 00: adrp x16, __la_symbol_ptr@page 76 0xf9400210, // 04: ldr x16, [x16, __la_symbol_ptr@pageoff] 77 0xd61f0200, // 08: br x16 78 }; 79 80 void ARM64::writeStub(uint8_t *buf8, const Symbol &sym, 81 uint64_t pointerVA) const { 82 ::writeStub(buf8, stubCode, sym, pointerVA); 83 } 84 85 static constexpr uint32_t stubHelperHeaderCode[] = { 86 0x90000011, // 00: adrp x17, _dyld_private@page 87 0x91000231, // 04: add x17, x17, _dyld_private@pageoff 88 0xa9bf47f0, // 08: stp x16/x17, [sp, #-16]! 89 0x90000010, // 0c: adrp x16, dyld_stub_binder@page 90 0xf9400210, // 10: ldr x16, [x16, dyld_stub_binder@pageoff] 91 0xd61f0200, // 14: br x16 92 }; 93 94 void ARM64::writeStubHelperHeader(uint8_t *buf8) const { 95 ::writeStubHelperHeader<LP64>(buf8, stubHelperHeaderCode); 96 } 97 98 static constexpr uint32_t stubHelperEntryCode[] = { 99 0x18000050, // 00: ldr w16, l0 100 0x14000000, // 04: b stubHelperHeader 101 0x00000000, // 08: l0: .long 0 102 }; 103 104 void ARM64::writeStubHelperEntry(uint8_t *buf8, const Symbol &sym, 105 uint64_t entryVA) const { 106 ::writeStubHelperEntry(buf8, stubHelperEntryCode, sym, entryVA); 107 } 108 109 static constexpr uint32_t objcStubsFastCode[] = { 110 0x90000001, // adrp x1, __objc_selrefs@page 111 0xf9400021, // ldr x1, [x1, @selector("foo")@pageoff] 112 0x90000010, // adrp x16, _got@page 113 0xf9400210, // ldr x16, [x16, _objc_msgSend@pageoff] 114 0xd61f0200, // br x16 115 0xd4200020, // brk #0x1 116 0xd4200020, // brk #0x1 117 0xd4200020, // brk #0x1 118 }; 119 120 void ARM64::writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr, 121 uint64_t stubOffset, uint64_t selrefsVA, 122 uint64_t selectorIndex, uint64_t gotAddr, 123 uint64_t msgSendIndex) const { 124 ::writeObjCMsgSendStub<LP64>(buf, objcStubsFastCode, sym, stubsAddr, 125 stubOffset, selrefsVA, selectorIndex, gotAddr, 126 msgSendIndex); 127 } 128 129 // A thunk is the relaxed variation of stubCode. We don't need the 130 // extra indirection through a lazy pointer because the target address 131 // is known at link time. 132 static constexpr uint32_t thunkCode[] = { 133 0x90000010, // 00: adrp x16, <thunk.ptr>@page 134 0x91000210, // 04: add x16, [x16,<thunk.ptr>@pageoff] 135 0xd61f0200, // 08: br x16 136 }; 137 138 void ARM64::populateThunk(InputSection *thunk, Symbol *funcSym) { 139 thunk->align = 4; 140 thunk->data = {reinterpret_cast<const uint8_t *>(thunkCode), 141 sizeof(thunkCode)}; 142 thunk->relocs.push_back({/*type=*/ARM64_RELOC_PAGEOFF12, 143 /*pcrel=*/false, /*length=*/2, 144 /*offset=*/4, /*addend=*/0, 145 /*referent=*/funcSym}); 146 thunk->relocs.push_back({/*type=*/ARM64_RELOC_PAGE21, 147 /*pcrel=*/true, /*length=*/2, 148 /*offset=*/0, /*addend=*/0, 149 /*referent=*/funcSym}); 150 } 151 152 ARM64::ARM64() : ARM64Common(LP64()) { 153 cpuType = CPU_TYPE_ARM64; 154 cpuSubtype = CPU_SUBTYPE_ARM64_ALL; 155 156 stubSize = sizeof(stubCode); 157 thunkSize = sizeof(thunkCode); 158 159 objcStubsFastSize = sizeof(objcStubsFastCode); 160 objcStubsAlignment = 32; 161 162 // Branch immediate is two's complement 26 bits, which is implicitly 163 // multiplied by 4 (since all functions are 4-aligned: The branch range 164 // is -4*(2**(26-1))..4*(2**(26-1) - 1). 165 backwardBranchRange = 128 * 1024 * 1024; 166 forwardBranchRange = backwardBranchRange - 4; 167 168 modeDwarfEncoding = UNWIND_ARM64_MODE_DWARF; 169 subtractorRelocType = ARM64_RELOC_SUBTRACTOR; 170 unsignedRelocType = ARM64_RELOC_UNSIGNED; 171 172 stubHelperHeaderSize = sizeof(stubHelperHeaderCode); 173 stubHelperEntrySize = sizeof(stubHelperEntryCode); 174 175 relocAttrs = {relocAttrsArray.data(), relocAttrsArray.size()}; 176 } 177 178 namespace { 179 struct Adrp { 180 uint32_t destRegister; 181 int64_t addend; 182 }; 183 184 struct Add { 185 uint8_t destRegister; 186 uint8_t srcRegister; 187 uint32_t addend; 188 }; 189 190 enum ExtendType { ZeroExtend = 1, Sign64 = 2, Sign32 = 3 }; 191 192 struct Ldr { 193 uint8_t destRegister; 194 uint8_t baseRegister; 195 uint8_t p2Size; 196 bool isFloat; 197 ExtendType extendType; 198 int64_t offset; 199 }; 200 } // namespace 201 202 static bool parseAdrp(uint32_t insn, Adrp &adrp) { 203 if ((insn & 0x9f000000) != 0x90000000) 204 return false; 205 adrp.destRegister = insn & 0x1f; 206 uint64_t immHi = (insn >> 5) & 0x7ffff; 207 uint64_t immLo = (insn >> 29) & 0x3; 208 adrp.addend = SignExtend64<21>(immLo | (immHi << 2)) * 4096; 209 return true; 210 } 211 212 static bool parseAdd(uint32_t insn, Add &add) { 213 if ((insn & 0xffc00000) != 0x91000000) 214 return false; 215 add.destRegister = insn & 0x1f; 216 add.srcRegister = (insn >> 5) & 0x1f; 217 add.addend = (insn >> 10) & 0xfff; 218 return true; 219 } 220 221 static bool parseLdr(uint32_t insn, Ldr &ldr) { 222 ldr.destRegister = insn & 0x1f; 223 ldr.baseRegister = (insn >> 5) & 0x1f; 224 uint8_t size = insn >> 30; 225 uint8_t opc = (insn >> 22) & 3; 226 227 if ((insn & 0x3fc00000) == 0x39400000) { 228 // LDR (immediate), LDRB (immediate), LDRH (immediate) 229 ldr.p2Size = size; 230 ldr.extendType = ZeroExtend; 231 ldr.isFloat = false; 232 } else if ((insn & 0x3f800000) == 0x39800000) { 233 // LDRSB (immediate), LDRSH (immediate), LDRSW (immediate) 234 ldr.p2Size = size; 235 ldr.extendType = static_cast<ExtendType>(opc); 236 ldr.isFloat = false; 237 } else if ((insn & 0x3f400000) == 0x3d400000) { 238 // LDR (immediate, SIMD&FP) 239 ldr.extendType = ZeroExtend; 240 ldr.isFloat = true; 241 if (opc == 1) 242 ldr.p2Size = size; 243 else if (size == 0 && opc == 3) 244 ldr.p2Size = 4; 245 else 246 return false; 247 } else { 248 return false; 249 } 250 ldr.offset = ((insn >> 10) & 0xfff) << ldr.p2Size; 251 return true; 252 } 253 254 static bool isValidAdrOffset(int32_t delta) { return isInt<21>(delta); } 255 256 static void writeAdr(void *loc, uint32_t dest, int32_t delta) { 257 assert(isValidAdrOffset(delta)); 258 uint32_t opcode = 0x10000000; 259 uint32_t immHi = (delta & 0x001ffffc) << 3; 260 uint32_t immLo = (delta & 0x00000003) << 29; 261 write32le(loc, opcode | immHi | immLo | dest); 262 } 263 264 static void writeNop(void *loc) { write32le(loc, 0xd503201f); } 265 266 static bool isLiteralLdrEligible(const Ldr &ldr) { 267 return ldr.p2Size > 1 && isShiftedInt<19, 2>(ldr.offset); 268 } 269 270 static void writeLiteralLdr(void *loc, const Ldr &ldr) { 271 assert(isLiteralLdrEligible(ldr)); 272 uint32_t imm19 = (ldr.offset / 4 & maskTrailingOnes<uint32_t>(19)) << 5; 273 uint32_t opcode; 274 switch (ldr.p2Size) { 275 case 2: 276 if (ldr.isFloat) 277 opcode = 0x1c000000; 278 else 279 opcode = ldr.extendType == Sign64 ? 0x98000000 : 0x18000000; 280 break; 281 case 3: 282 opcode = ldr.isFloat ? 0x5c000000 : 0x58000000; 283 break; 284 case 4: 285 opcode = 0x9c000000; 286 break; 287 default: 288 llvm_unreachable("Invalid literal ldr size"); 289 } 290 write32le(loc, opcode | imm19 | ldr.destRegister); 291 } 292 293 static bool isImmediateLdrEligible(const Ldr &ldr) { 294 // Note: We deviate from ld64's behavior, which converts to immediate loads 295 // only if ldr.offset < 4096, even though the offset is divided by the load's 296 // size in the 12-bit immediate operand. Only the unsigned offset variant is 297 // supported. 298 299 uint32_t size = 1 << ldr.p2Size; 300 return ldr.offset >= 0 && (ldr.offset % size) == 0 && 301 isUInt<12>(ldr.offset >> ldr.p2Size); 302 } 303 304 static void writeImmediateLdr(void *loc, const Ldr &ldr) { 305 assert(isImmediateLdrEligible(ldr)); 306 uint32_t opcode = 0x39000000; 307 if (ldr.isFloat) { 308 opcode |= 0x04000000; 309 assert(ldr.extendType == ZeroExtend); 310 } 311 opcode |= ldr.destRegister; 312 opcode |= ldr.baseRegister << 5; 313 uint8_t size, opc; 314 if (ldr.p2Size == 4) { 315 size = 0; 316 opc = 3; 317 } else { 318 opc = ldr.extendType; 319 size = ldr.p2Size; 320 } 321 uint32_t immBits = ldr.offset >> ldr.p2Size; 322 write32le(loc, opcode | (immBits << 10) | (opc << 22) | (size << 30)); 323 } 324 325 // Transforms a pair of adrp+add instructions into an adr instruction if the 326 // target is within the +/- 1 MiB range allowed by the adr's 21 bit signed 327 // immediate offset. 328 // 329 // adrp xN, _foo@PAGE 330 // add xM, xN, _foo@PAGEOFF 331 // -> 332 // adr xM, _foo 333 // nop 334 static void applyAdrpAdd(uint8_t *buf, const ConcatInputSection *isec, 335 uint64_t offset1, uint64_t offset2) { 336 uint32_t ins1 = read32le(buf + offset1); 337 uint32_t ins2 = read32le(buf + offset2); 338 Adrp adrp; 339 Add add; 340 if (!parseAdrp(ins1, adrp) || !parseAdd(ins2, add)) 341 return; 342 if (adrp.destRegister != add.srcRegister) 343 return; 344 345 uint64_t addr1 = isec->getVA() + offset1; 346 uint64_t referent = pageBits(addr1) + adrp.addend + add.addend; 347 int64_t delta = referent - addr1; 348 if (!isValidAdrOffset(delta)) 349 return; 350 351 writeAdr(buf + offset1, add.destRegister, delta); 352 writeNop(buf + offset2); 353 } 354 355 // Transforms two adrp instructions into a single adrp if their referent 356 // addresses are located on the same 4096 byte page. 357 // 358 // adrp xN, _foo@PAGE 359 // adrp xN, _bar@PAGE 360 // -> 361 // adrp xN, _foo@PAGE 362 // nop 363 static void applyAdrpAdrp(uint8_t *buf, const ConcatInputSection *isec, 364 uint64_t offset1, uint64_t offset2) { 365 uint32_t ins1 = read32le(buf + offset1); 366 uint32_t ins2 = read32le(buf + offset2); 367 Adrp adrp1, adrp2; 368 if (!parseAdrp(ins1, adrp1) || !parseAdrp(ins2, adrp2)) 369 return; 370 if (adrp1.destRegister != adrp2.destRegister) 371 return; 372 373 uint64_t page1 = pageBits(offset1 + isec->getVA()) + adrp1.addend; 374 uint64_t page2 = pageBits(offset2 + isec->getVA()) + adrp2.addend; 375 if (page1 != page2) 376 return; 377 378 writeNop(buf + offset2); 379 } 380 381 // Transforms a pair of adrp+ldr (immediate) instructions into an ldr (literal) 382 // load from a PC-relative address if it is 4-byte aligned and within +/- 1 MiB, 383 // as ldr can encode a signed 19-bit offset that gets multiplied by 4. 384 // 385 // adrp xN, _foo@PAGE 386 // ldr xM, [xN, _foo@PAGEOFF] 387 // -> 388 // nop 389 // ldr xM, _foo 390 static void applyAdrpLdr(uint8_t *buf, const ConcatInputSection *isec, 391 uint64_t offset1, uint64_t offset2) { 392 uint32_t ins1 = read32le(buf + offset1); 393 uint32_t ins2 = read32le(buf + offset2); 394 Adrp adrp; 395 Ldr ldr; 396 if (!parseAdrp(ins1, adrp) || !parseLdr(ins2, ldr)) 397 return; 398 if (adrp.destRegister != ldr.baseRegister) 399 return; 400 401 uint64_t addr1 = isec->getVA() + offset1; 402 uint64_t addr2 = isec->getVA() + offset2; 403 uint64_t referent = pageBits(addr1) + adrp.addend + ldr.offset; 404 ldr.offset = referent - addr2; 405 if (!isLiteralLdrEligible(ldr)) 406 return; 407 408 writeNop(buf + offset1); 409 writeLiteralLdr(buf + offset2, ldr); 410 } 411 412 // GOT loads are emitted by the compiler as a pair of adrp and ldr instructions, 413 // but they may be changed to adrp+add by relaxGotLoad(). This hint performs 414 // the AdrpLdr or AdrpAdd transformation depending on whether it was relaxed. 415 static void applyAdrpLdrGot(uint8_t *buf, const ConcatInputSection *isec, 416 uint64_t offset1, uint64_t offset2) { 417 uint32_t ins2 = read32le(buf + offset2); 418 Add add; 419 Ldr ldr; 420 if (parseAdd(ins2, add)) 421 applyAdrpAdd(buf, isec, offset1, offset2); 422 else if (parseLdr(ins2, ldr)) 423 applyAdrpLdr(buf, isec, offset1, offset2); 424 } 425 426 // Optimizes an adrp+add+ldr sequence used for loading from a local symbol's 427 // address by loading directly if it's close enough, or to an adrp(p)+ldr 428 // sequence if it's not. 429 // 430 // adrp x0, _foo@PAGE 431 // add x1, x0, _foo@PAGEOFF 432 // ldr x2, [x1, #off] 433 static void applyAdrpAddLdr(uint8_t *buf, const ConcatInputSection *isec, 434 uint64_t offset1, uint64_t offset2, 435 uint64_t offset3) { 436 uint32_t ins1 = read32le(buf + offset1); 437 Adrp adrp; 438 if (!parseAdrp(ins1, adrp)) 439 return; 440 uint32_t ins2 = read32le(buf + offset2); 441 Add add; 442 if (!parseAdd(ins2, add)) 443 return; 444 uint32_t ins3 = read32le(buf + offset3); 445 Ldr ldr; 446 if (!parseLdr(ins3, ldr)) 447 return; 448 if (adrp.destRegister != add.srcRegister) 449 return; 450 if (add.destRegister != ldr.baseRegister) 451 return; 452 453 // Load from the target address directly. 454 // nop 455 // nop 456 // ldr x2, [_foo + #off] 457 uint64_t addr1 = isec->getVA() + offset1; 458 uint64_t addr3 = isec->getVA() + offset3; 459 uint64_t referent = pageBits(addr1) + adrp.addend + add.addend; 460 Ldr literalLdr = ldr; 461 literalLdr.offset += referent - addr3; 462 if (isLiteralLdrEligible(literalLdr)) { 463 writeNop(buf + offset1); 464 writeNop(buf + offset2); 465 writeLiteralLdr(buf + offset3, literalLdr); 466 return; 467 } 468 469 // Load the target address into a register and load from there indirectly. 470 // adr x1, _foo 471 // nop 472 // ldr x2, [x1, #off] 473 int64_t adrOffset = referent - addr1; 474 if (isValidAdrOffset(adrOffset)) { 475 writeAdr(buf + offset1, ldr.baseRegister, adrOffset); 476 // Note: ld64 moves the offset into the adr instruction for AdrpAddLdr, but 477 // not for AdrpLdrGotLdr. Its effect is the same either way. 478 writeNop(buf + offset2); 479 return; 480 } 481 482 // Move the target's page offset into the ldr's immediate offset. 483 // adrp x0, _foo@PAGE 484 // nop 485 // ldr x2, [x0, _foo@PAGEOFF + #off] 486 Ldr immediateLdr = ldr; 487 immediateLdr.baseRegister = adrp.destRegister; 488 immediateLdr.offset += add.addend; 489 if (isImmediateLdrEligible(immediateLdr)) { 490 writeNop(buf + offset2); 491 writeImmediateLdr(buf + offset3, immediateLdr); 492 return; 493 } 494 } 495 496 // Relaxes a GOT-indirect load. 497 // If the referenced symbol is external and its GOT entry is within +/- 1 MiB, 498 // the GOT entry can be loaded with a single literal ldr instruction. 499 // If the referenced symbol is local and thus has been relaxed to adrp+add+ldr, 500 // we perform the AdrpAddLdr transformation. 501 static void applyAdrpLdrGotLdr(uint8_t *buf, const ConcatInputSection *isec, 502 uint64_t offset1, uint64_t offset2, 503 uint64_t offset3) { 504 uint32_t ins2 = read32le(buf + offset2); 505 Add add; 506 Ldr ldr2; 507 508 if (parseAdd(ins2, add)) { 509 applyAdrpAddLdr(buf, isec, offset1, offset2, offset3); 510 } else if (parseLdr(ins2, ldr2)) { 511 // adrp x1, _foo@GOTPAGE 512 // ldr x2, [x1, _foo@GOTPAGEOFF] 513 // ldr x3, [x2, #off] 514 515 uint32_t ins1 = read32le(buf + offset1); 516 Adrp adrp; 517 if (!parseAdrp(ins1, adrp)) 518 return; 519 uint32_t ins3 = read32le(buf + offset3); 520 Ldr ldr3; 521 if (!parseLdr(ins3, ldr3)) 522 return; 523 524 if (ldr2.baseRegister != adrp.destRegister) 525 return; 526 if (ldr3.baseRegister != ldr2.destRegister) 527 return; 528 // Loads from the GOT must be pointer sized. 529 if (ldr2.p2Size != 3 || ldr2.isFloat) 530 return; 531 532 uint64_t addr1 = isec->getVA() + offset1; 533 uint64_t addr2 = isec->getVA() + offset2; 534 uint64_t referent = pageBits(addr1) + adrp.addend + ldr2.offset; 535 // Load the GOT entry's address directly. 536 // nop 537 // ldr x2, _foo@GOTPAGE + _foo@GOTPAGEOFF 538 // ldr x3, [x2, #off] 539 Ldr literalLdr = ldr2; 540 literalLdr.offset = referent - addr2; 541 if (isLiteralLdrEligible(literalLdr)) { 542 writeNop(buf + offset1); 543 writeLiteralLdr(buf + offset2, literalLdr); 544 } 545 } 546 } 547 548 static uint64_t readValue(const uint8_t *&ptr, const uint8_t *end) { 549 unsigned int n = 0; 550 uint64_t value = decodeULEB128(ptr, &n, end); 551 ptr += n; 552 return value; 553 } 554 555 template <typename Callback> 556 static void forEachHint(ArrayRef<uint8_t> data, Callback callback) { 557 std::array<uint64_t, 3> args; 558 559 for (const uint8_t *p = data.begin(), *end = data.end(); p < end;) { 560 uint64_t type = readValue(p, end); 561 if (type == 0) 562 break; 563 564 uint64_t argCount = readValue(p, end); 565 // All known LOH types as of 2022-09 have 3 or fewer arguments; skip others. 566 if (argCount > 3) { 567 for (unsigned i = 0; i < argCount; ++i) 568 readValue(p, end); 569 continue; 570 } 571 572 for (unsigned i = 0; i < argCount; ++i) 573 args[i] = readValue(p, end); 574 callback(type, ArrayRef<uint64_t>(args.data(), argCount)); 575 } 576 } 577 578 // On RISC architectures like arm64, materializing a memory address generally 579 // takes multiple instructions. If the referenced symbol is located close enough 580 // in memory, fewer instructions are needed. 581 // 582 // Linker optimization hints record where addresses are computed. After 583 // addresses have been assigned, if possible, we change them to a shorter 584 // sequence of instructions. The size of the binary is not modified; the 585 // eliminated instructions are replaced with NOPs. This still leads to faster 586 // code as the CPU can skip over NOPs quickly. 587 // 588 // LOHs are specified by the LC_LINKER_OPTIMIZATION_HINTS load command, which 589 // points to a sequence of ULEB128-encoded numbers. Each entry specifies a 590 // transformation kind, and 2 or 3 addresses where the instructions are located. 591 void ARM64::applyOptimizationHints(uint8_t *outBuf, const ObjFile &obj) const { 592 ArrayRef<uint8_t> data = obj.getOptimizationHints(); 593 if (data.empty()) 594 return; 595 596 const ConcatInputSection *section = nullptr; 597 uint64_t sectionAddr = 0; 598 uint8_t *buf = nullptr; 599 600 auto findSection = [&](uint64_t addr) { 601 if (section && addr >= sectionAddr && 602 addr < sectionAddr + section->getSize()) 603 return true; 604 605 auto secIt = std::prev(llvm::upper_bound( 606 obj.sections, addr, 607 [](uint64_t off, const Section *sec) { return off < sec->addr; })); 608 const Section *sec = *secIt; 609 610 auto subsecIt = std::prev(llvm::upper_bound( 611 sec->subsections, addr - sec->addr, 612 [](uint64_t off, Subsection subsec) { return off < subsec.offset; })); 613 const Subsection &subsec = *subsecIt; 614 const ConcatInputSection *isec = 615 dyn_cast_or_null<ConcatInputSection>(subsec.isec); 616 if (!isec || isec->shouldOmitFromOutput()) 617 return false; 618 619 section = isec; 620 sectionAddr = subsec.offset + sec->addr; 621 buf = outBuf + section->outSecOff + section->parent->fileOff; 622 return true; 623 }; 624 625 auto isValidOffset = [&](uint64_t offset) { 626 if (offset < sectionAddr || offset >= sectionAddr + section->getSize()) { 627 error(toString(&obj) + 628 ": linker optimization hint spans multiple sections"); 629 return false; 630 } 631 return true; 632 }; 633 634 bool hasAdrpAdrp = false; 635 forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) { 636 if (kind == LOH_ARM64_ADRP_ADRP) { 637 hasAdrpAdrp = true; 638 return; 639 } 640 641 if (!findSection(args[0])) 642 return; 643 switch (kind) { 644 case LOH_ARM64_ADRP_ADD: 645 if (isValidOffset(args[1])) 646 applyAdrpAdd(buf, section, args[0] - sectionAddr, 647 args[1] - sectionAddr); 648 break; 649 case LOH_ARM64_ADRP_LDR: 650 if (isValidOffset(args[1])) 651 applyAdrpLdr(buf, section, args[0] - sectionAddr, 652 args[1] - sectionAddr); 653 break; 654 case LOH_ARM64_ADRP_LDR_GOT: 655 if (isValidOffset(args[1])) 656 applyAdrpLdrGot(buf, section, args[0] - sectionAddr, 657 args[1] - sectionAddr); 658 break; 659 case LOH_ARM64_ADRP_ADD_LDR: 660 if (isValidOffset(args[1]) && isValidOffset(args[2])) 661 applyAdrpAddLdr(buf, section, args[0] - sectionAddr, 662 args[1] - sectionAddr, args[2] - sectionAddr); 663 break; 664 case LOH_ARM64_ADRP_LDR_GOT_LDR: 665 if (isValidOffset(args[1]) && isValidOffset(args[2])) 666 applyAdrpLdrGotLdr(buf, section, args[0] - sectionAddr, 667 args[1] - sectionAddr, args[2] - sectionAddr); 668 break; 669 case LOH_ARM64_ADRP_ADD_STR: 670 case LOH_ARM64_ADRP_LDR_GOT_STR: 671 // TODO: Implement these 672 break; 673 } 674 }); 675 676 if (!hasAdrpAdrp) 677 return; 678 679 // AdrpAdrp optimization hints are performed in a second pass because they 680 // might interfere with other transformations. For instance, consider the 681 // following input: 682 // 683 // adrp x0, _foo@PAGE 684 // add x1, x0, _foo@PAGEOFF 685 // adrp x0, _bar@PAGE 686 // add x2, x0, _bar@PAGEOFF 687 // 688 // If we perform the AdrpAdrp relaxation first, we get: 689 // 690 // adrp x0, _foo@PAGE 691 // add x1, x0, _foo@PAGEOFF 692 // nop 693 // add x2, x0, _bar@PAGEOFF 694 // 695 // If we then apply AdrpAdd to the first two instructions, the add will have a 696 // garbage value in x0: 697 // 698 // adr x1, _foo 699 // nop 700 // nop 701 // add x2, x0, _bar@PAGEOFF 702 forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) { 703 if (kind != LOH_ARM64_ADRP_ADRP) 704 return; 705 if (!findSection(args[0])) 706 return; 707 if (isValidOffset(args[1])) 708 applyAdrpAdrp(buf, section, args[0] - sectionAddr, args[1] - sectionAddr); 709 }); 710 } 711 712 TargetInfo *macho::createARM64TargetInfo() { 713 static ARM64 t; 714 return &t; 715 } 716