1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Arrays.h" 24 #include "lld/Common/CommonLinkerContext.h" 25 #include "lld/Common/Filesystem.h" 26 #include "lld/Common/Strings.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/Support/BLAKE3.h" 29 #include "llvm/Support/Parallel.h" 30 #include "llvm/Support/RandomNumberGenerator.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void sortSections(); 59 void resolveShfLinkOrder(); 60 void finalizeAddressDependentContent(); 61 void optimizeBasicBlockJumps(); 62 void sortInputSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection &osec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool needsInterpSection() { 94 return !config->relocatable && !config->shared && 95 !config->dynamicLinker.empty() && script->needsInterpSection(); 96 } 97 98 template <class ELFT> void elf::writeResult() { 99 Writer<ELFT>().run(); 100 } 101 102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 103 auto it = std::stable_partition( 104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 105 if (p->p_type != PT_LOAD) 106 return true; 107 if (!p->firstSec) 108 return false; 109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 110 return size != 0; 111 }); 112 113 // Clear OutputSection::ptLoad for sections contained in removed 114 // segments. 115 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 116 for (OutputSection *sec : outputSections) 117 if (removed.count(sec->ptLoad)) 118 sec->ptLoad = nullptr; 119 phdrs.erase(it, phdrs.end()); 120 } 121 122 void elf::copySectionsIntoPartitions() { 123 SmallVector<InputSectionBase *, 0> newSections; 124 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 125 for (InputSectionBase *s : inputSections) { 126 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 127 continue; 128 InputSectionBase *copy; 129 if (s->type == SHT_NOTE) 130 copy = make<InputSection>(cast<InputSection>(*s)); 131 else if (auto *es = dyn_cast<EhInputSection>(s)) 132 copy = make<EhInputSection>(*es); 133 else 134 continue; 135 copy->partition = part; 136 newSections.push_back(copy); 137 } 138 } 139 140 inputSections.insert(inputSections.end(), newSections.begin(), 141 newSections.end()); 142 } 143 144 void elf::combineEhSections() { 145 llvm::TimeTraceScope timeScope("Combine EH sections"); 146 for (InputSectionBase *&s : inputSections) { 147 // Ignore dead sections and the partition end marker (.part.end), 148 // whose partition number is out of bounds. 149 if (!s->isLive() || s->partition == 255) 150 continue; 151 152 Partition &part = s->getPartition(); 153 if (auto *es = dyn_cast<EhInputSection>(s)) { 154 part.ehFrame->addSection(es); 155 s = nullptr; 156 } else if (s->kind() == SectionBase::Regular && part.armExidx && 157 part.armExidx->addSection(cast<InputSection>(s))) { 158 s = nullptr; 159 } 160 } 161 162 llvm::erase_value(inputSections, nullptr); 163 } 164 165 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 166 uint64_t val, uint8_t stOther = STV_HIDDEN) { 167 Symbol *s = symtab->find(name); 168 if (!s || s->isDefined() || s->isCommon()) 169 return nullptr; 170 171 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val, 172 /*size=*/0, sec}); 173 s->isUsedInRegularObj = true; 174 return cast<Defined>(s); 175 } 176 177 static Defined *addAbsolute(StringRef name) { 178 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 179 STT_NOTYPE, 0, 0, nullptr}); 180 sym->isUsedInRegularObj = true; 181 return cast<Defined>(sym); 182 } 183 184 // The linker is expected to define some symbols depending on 185 // the linking result. This function defines such symbols. 186 void elf::addReservedSymbols() { 187 if (config->emachine == EM_MIPS) { 188 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 189 // so that it points to an absolute address which by default is relative 190 // to GOT. Default offset is 0x7ff0. 191 // See "Global Data Symbols" in Chapter 6 in the following document: 192 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 193 ElfSym::mipsGp = addAbsolute("_gp"); 194 195 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 196 // start of function and 'gp' pointer into GOT. 197 if (symtab->find("_gp_disp")) 198 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 199 200 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 201 // pointer. This symbol is used in the code generated by .cpload pseudo-op 202 // in case of using -mno-shared option. 203 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 204 if (symtab->find("__gnu_local_gp")) 205 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 206 } else if (config->emachine == EM_PPC) { 207 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 208 // support Small Data Area, define it arbitrarily as 0. 209 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 210 } else if (config->emachine == EM_PPC64) { 211 addPPC64SaveRestore(); 212 } 213 214 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 215 // combines the typical ELF GOT with the small data sections. It commonly 216 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 217 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 218 // represent the TOC base which is offset by 0x8000 bytes from the start of 219 // the .got section. 220 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 221 // correctness of some relocations depends on its value. 222 StringRef gotSymName = 223 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 224 225 if (Symbol *s = symtab->find(gotSymName)) { 226 if (s->isDefined()) { 227 error(toString(s->file) + " cannot redefine linker defined symbol '" + 228 gotSymName + "'"); 229 return; 230 } 231 232 uint64_t gotOff = 0; 233 if (config->emachine == EM_PPC64) 234 gotOff = 0x8000; 235 236 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 237 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 238 ElfSym::globalOffsetTable = cast<Defined>(s); 239 } 240 241 // __ehdr_start is the location of ELF file headers. Note that we define 242 // this symbol unconditionally even when using a linker script, which 243 // differs from the behavior implemented by GNU linker which only define 244 // this symbol if ELF headers are in the memory mapped segment. 245 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 246 247 // __executable_start is not documented, but the expectation of at 248 // least the Android libc is that it points to the ELF header. 249 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 250 251 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 252 // each DSO. The address of the symbol doesn't matter as long as they are 253 // different in different DSOs, so we chose the start address of the DSO. 254 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 255 256 // If linker script do layout we do not need to create any standard symbols. 257 if (script->hasSectionsCommand) 258 return; 259 260 auto add = [](StringRef s, int64_t pos) { 261 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 262 }; 263 264 ElfSym::bss = add("__bss_start", 0); 265 ElfSym::end1 = add("end", -1); 266 ElfSym::end2 = add("_end", -1); 267 ElfSym::etext1 = add("etext", -1); 268 ElfSym::etext2 = add("_etext", -1); 269 ElfSym::edata1 = add("edata", -1); 270 ElfSym::edata2 = add("_edata", -1); 271 } 272 273 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 274 for (SectionCommand *cmd : script->sectionCommands) 275 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 276 if (osd->osec.name == name && osd->osec.partition == partition) 277 return &osd->osec; 278 return nullptr; 279 } 280 281 template <class ELFT> void elf::createSyntheticSections() { 282 // Initialize all pointers with NULL. This is needed because 283 // you can call lld::elf::main more than once as a library. 284 Out::tlsPhdr = nullptr; 285 Out::preinitArray = nullptr; 286 Out::initArray = nullptr; 287 Out::finiArray = nullptr; 288 289 // Add the .interp section first because it is not a SyntheticSection. 290 // The removeUnusedSyntheticSections() function relies on the 291 // SyntheticSections coming last. 292 if (needsInterpSection()) { 293 for (size_t i = 1; i <= partitions.size(); ++i) { 294 InputSection *sec = createInterpSection(); 295 sec->partition = i; 296 inputSections.push_back(sec); 297 } 298 } 299 300 auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); }; 301 302 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 303 304 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 305 Out::programHeaders->alignment = config->wordsize; 306 307 if (config->strip != StripPolicy::All) { 308 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 309 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 310 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 311 } 312 313 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 314 add(*in.bss); 315 316 // If there is a SECTIONS command and a .data.rel.ro section name use name 317 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 318 // This makes sure our relro is contiguous. 319 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 320 in.bssRelRo = std::make_unique<BssSection>( 321 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 322 add(*in.bssRelRo); 323 324 // Add MIPS-specific sections. 325 if (config->emachine == EM_MIPS) { 326 if (!config->shared && config->hasDynSymTab) { 327 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 328 add(*in.mipsRldMap); 329 } 330 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 331 add(*in.mipsAbiFlags); 332 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 333 add(*in.mipsOptions); 334 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 335 add(*in.mipsReginfo); 336 } 337 338 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 339 340 for (Partition &part : partitions) { 341 auto add = [&](SyntheticSection &sec) { 342 sec.partition = part.getNumber(); 343 inputSections.push_back(&sec); 344 }; 345 346 if (!part.name.empty()) { 347 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 348 part.elfHeader->name = part.name; 349 add(*part.elfHeader); 350 351 part.programHeaders = 352 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 353 add(*part.programHeaders); 354 } 355 356 if (config->buildId != BuildIdKind::None) { 357 part.buildId = std::make_unique<BuildIdSection>(); 358 add(*part.buildId); 359 } 360 361 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 362 part.dynSymTab = 363 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 364 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 365 366 if (config->emachine == EM_AARCH64 && 367 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) { 368 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(); 369 add(*part.memtagAndroidNote); 370 } 371 372 if (config->androidPackDynRelocs) 373 part.relaDyn = 374 std::make_unique<AndroidPackedRelocationSection<ELFT>>(relaDynName); 375 else 376 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 377 relaDynName, config->zCombreloc); 378 379 if (config->hasDynSymTab) { 380 add(*part.dynSymTab); 381 382 part.verSym = std::make_unique<VersionTableSection>(); 383 add(*part.verSym); 384 385 if (!namedVersionDefs().empty()) { 386 part.verDef = std::make_unique<VersionDefinitionSection>(); 387 add(*part.verDef); 388 } 389 390 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 391 add(*part.verNeed); 392 393 if (config->gnuHash) { 394 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 395 add(*part.gnuHashTab); 396 } 397 398 if (config->sysvHash) { 399 part.hashTab = std::make_unique<HashTableSection>(); 400 add(*part.hashTab); 401 } 402 403 add(*part.dynamic); 404 add(*part.dynStrTab); 405 add(*part.relaDyn); 406 } 407 408 if (config->relrPackDynRelocs) { 409 part.relrDyn = std::make_unique<RelrSection<ELFT>>(); 410 add(*part.relrDyn); 411 } 412 413 if (!config->relocatable) { 414 if (config->ehFrameHdr) { 415 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 416 add(*part.ehFrameHdr); 417 } 418 part.ehFrame = std::make_unique<EhFrameSection>(); 419 add(*part.ehFrame); 420 } 421 422 if (config->emachine == EM_ARM && !config->relocatable) { 423 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 424 // InputSections. 425 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 426 add(*part.armExidx); 427 } 428 } 429 430 if (partitions.size() != 1) { 431 // Create the partition end marker. This needs to be in partition number 255 432 // so that it is sorted after all other partitions. It also has other 433 // special handling (see createPhdrs() and combineEhSections()). 434 in.partEnd = 435 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 436 in.partEnd->partition = 255; 437 add(*in.partEnd); 438 439 in.partIndex = std::make_unique<PartitionIndexSection>(); 440 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 441 addOptionalRegular("__part_index_end", in.partIndex.get(), 442 in.partIndex->getSize()); 443 add(*in.partIndex); 444 } 445 446 // Add .got. MIPS' .got is so different from the other archs, 447 // it has its own class. 448 if (config->emachine == EM_MIPS) { 449 in.mipsGot = std::make_unique<MipsGotSection>(); 450 add(*in.mipsGot); 451 } else { 452 in.got = std::make_unique<GotSection>(); 453 add(*in.got); 454 } 455 456 if (config->emachine == EM_PPC) { 457 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 458 add(*in.ppc32Got2); 459 } 460 461 if (config->emachine == EM_PPC64) { 462 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 463 add(*in.ppc64LongBranchTarget); 464 } 465 466 in.gotPlt = std::make_unique<GotPltSection>(); 467 add(*in.gotPlt); 468 in.igotPlt = std::make_unique<IgotPltSection>(); 469 add(*in.igotPlt); 470 471 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 472 // it as a relocation and ensure the referenced section is created. 473 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 474 if (target->gotBaseSymInGotPlt) 475 in.gotPlt->hasGotPltOffRel = true; 476 else 477 in.got->hasGotOffRel = true; 478 } 479 480 if (config->gdbIndex) 481 add(*GdbIndexSection::create<ELFT>()); 482 483 // We always need to add rel[a].plt to output if it has entries. 484 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 485 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 486 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 487 add(*in.relaPlt); 488 489 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 490 // relocations are processed last by the dynamic loader. We cannot place the 491 // iplt section in .rel.dyn when Android relocation packing is enabled because 492 // that would cause a section type mismatch. However, because the Android 493 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 494 // behaviour by placing the iplt section in .rel.plt. 495 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 496 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 497 /*sort=*/false); 498 add(*in.relaIplt); 499 500 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 501 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 502 in.ibtPlt = std::make_unique<IBTPltSection>(); 503 add(*in.ibtPlt); 504 } 505 506 if (config->emachine == EM_PPC) 507 in.plt = std::make_unique<PPC32GlinkSection>(); 508 else 509 in.plt = std::make_unique<PltSection>(); 510 add(*in.plt); 511 in.iplt = std::make_unique<IpltSection>(); 512 add(*in.iplt); 513 514 if (config->andFeatures) 515 add(*make<GnuPropertySection>()); 516 517 // .note.GNU-stack is always added when we are creating a re-linkable 518 // object file. Other linkers are using the presence of this marker 519 // section to control the executable-ness of the stack area, but that 520 // is irrelevant these days. Stack area should always be non-executable 521 // by default. So we emit this section unconditionally. 522 if (config->relocatable) 523 add(*make<GnuStackSection>()); 524 525 if (in.symTab) 526 add(*in.symTab); 527 if (in.symTabShndx) 528 add(*in.symTabShndx); 529 add(*in.shStrTab); 530 if (in.strTab) 531 add(*in.strTab); 532 } 533 534 // The main function of the writer. 535 template <class ELFT> void Writer<ELFT>::run() { 536 copyLocalSymbols(); 537 538 if (config->copyRelocs) 539 addSectionSymbols(); 540 541 // Now that we have a complete set of output sections. This function 542 // completes section contents. For example, we need to add strings 543 // to the string table, and add entries to .got and .plt. 544 // finalizeSections does that. 545 finalizeSections(); 546 checkExecuteOnly(); 547 548 // If --compressed-debug-sections is specified, compress .debug_* sections. 549 // Do it right now because it changes the size of output sections. 550 for (OutputSection *sec : outputSections) 551 sec->maybeCompress<ELFT>(); 552 553 if (script->hasSectionsCommand) 554 script->allocateHeaders(mainPart->phdrs); 555 556 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 557 // 0 sized region. This has to be done late since only after assignAddresses 558 // we know the size of the sections. 559 for (Partition &part : partitions) 560 removeEmptyPTLoad(part.phdrs); 561 562 if (!config->oFormatBinary) 563 assignFileOffsets(); 564 else 565 assignFileOffsetsBinary(); 566 567 for (Partition &part : partitions) 568 setPhdrs(part); 569 570 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections() 571 // because the files may be useful in case checkSections() or openFile() 572 // fails, for example, due to an erroneous file size. 573 writeMapAndCref(); 574 575 if (config->checkSections) 576 checkSections(); 577 578 // It does not make sense try to open the file if we have error already. 579 if (errorCount()) 580 return; 581 582 { 583 llvm::TimeTraceScope timeScope("Write output file"); 584 // Write the result down to a file. 585 openFile(); 586 if (errorCount()) 587 return; 588 589 if (!config->oFormatBinary) { 590 if (config->zSeparate != SeparateSegmentKind::None) 591 writeTrapInstr(); 592 writeHeader(); 593 writeSections(); 594 } else { 595 writeSectionsBinary(); 596 } 597 598 // Backfill .note.gnu.build-id section content. This is done at last 599 // because the content is usually a hash value of the entire output file. 600 writeBuildId(); 601 if (errorCount()) 602 return; 603 604 if (auto e = buffer->commit()) 605 error("failed to write to the output file: " + toString(std::move(e))); 606 } 607 } 608 609 template <class ELFT, class RelTy> 610 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 611 llvm::ArrayRef<RelTy> rels) { 612 for (const RelTy &rel : rels) { 613 Symbol &sym = file->getRelocTargetSym(rel); 614 if (sym.isLocal()) 615 sym.used = true; 616 } 617 } 618 619 // The function ensures that the "used" field of local symbols reflects the fact 620 // that the symbol is used in a relocation from a live section. 621 template <class ELFT> static void markUsedLocalSymbols() { 622 // With --gc-sections, the field is already filled. 623 // See MarkLive<ELFT>::resolveReloc(). 624 if (config->gcSections) 625 return; 626 for (ELFFileBase *file : ctx->objectFiles) { 627 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 628 for (InputSectionBase *s : f->getSections()) { 629 InputSection *isec = dyn_cast_or_null<InputSection>(s); 630 if (!isec) 631 continue; 632 if (isec->type == SHT_REL) 633 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 634 else if (isec->type == SHT_RELA) 635 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 636 } 637 } 638 } 639 640 static bool shouldKeepInSymtab(const Defined &sym) { 641 if (sym.isSection()) 642 return false; 643 644 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 645 // from live sections. 646 if (sym.used && config->copyRelocs) 647 return true; 648 649 // Exclude local symbols pointing to .ARM.exidx sections. 650 // They are probably mapping symbols "$d", which are optional for these 651 // sections. After merging the .ARM.exidx sections, some of these symbols 652 // may become dangling. The easiest way to avoid the issue is not to add 653 // them to the symbol table from the beginning. 654 if (config->emachine == EM_ARM && sym.section && 655 sym.section->type == SHT_ARM_EXIDX) 656 return false; 657 658 if (config->discard == DiscardPolicy::None) 659 return true; 660 if (config->discard == DiscardPolicy::All) 661 return false; 662 663 // In ELF assembly .L symbols are normally discarded by the assembler. 664 // If the assembler fails to do so, the linker discards them if 665 // * --discard-locals is used. 666 // * The symbol is in a SHF_MERGE section, which is normally the reason for 667 // the assembler keeping the .L symbol. 668 if (sym.getName().startswith(".L") && 669 (config->discard == DiscardPolicy::Locals || 670 (sym.section && (sym.section->flags & SHF_MERGE)))) 671 return false; 672 return true; 673 } 674 675 static bool includeInSymtab(const Symbol &b) { 676 if (auto *d = dyn_cast<Defined>(&b)) { 677 // Always include absolute symbols. 678 SectionBase *sec = d->section; 679 if (!sec) 680 return true; 681 682 if (auto *s = dyn_cast<MergeInputSection>(sec)) 683 return s->getSectionPiece(d->value).live; 684 return sec->isLive(); 685 } 686 return b.used || !config->gcSections; 687 } 688 689 // Local symbols are not in the linker's symbol table. This function scans 690 // each object file's symbol table to copy local symbols to the output. 691 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 692 if (!in.symTab) 693 return; 694 llvm::TimeTraceScope timeScope("Add local symbols"); 695 if (config->copyRelocs && config->discard != DiscardPolicy::None) 696 markUsedLocalSymbols<ELFT>(); 697 for (ELFFileBase *file : ctx->objectFiles) { 698 for (Symbol *b : file->getLocalSymbols()) { 699 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 700 auto *dr = dyn_cast<Defined>(b); 701 702 // No reason to keep local undefined symbol in symtab. 703 if (!dr) 704 continue; 705 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 706 in.symTab->addSymbol(b); 707 } 708 } 709 } 710 711 // Create a section symbol for each output section so that we can represent 712 // relocations that point to the section. If we know that no relocation is 713 // referring to a section (that happens if the section is a synthetic one), we 714 // don't create a section symbol for that section. 715 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 716 for (SectionCommand *cmd : script->sectionCommands) { 717 auto *osd = dyn_cast<OutputDesc>(cmd); 718 if (!osd) 719 continue; 720 OutputSection &osec = osd->osec; 721 InputSectionBase *isec = nullptr; 722 // Iterate over all input sections and add a STT_SECTION symbol if any input 723 // section may be a relocation target. 724 for (SectionCommand *cmd : osec.commands) { 725 auto *isd = dyn_cast<InputSectionDescription>(cmd); 726 if (!isd) 727 continue; 728 for (InputSectionBase *s : isd->sections) { 729 // Relocations are not using REL[A] section symbols. 730 if (s->type == SHT_REL || s->type == SHT_RELA) 731 continue; 732 733 // Unlike other synthetic sections, mergeable output sections contain 734 // data copied from input sections, and there may be a relocation 735 // pointing to its contents if -r or --emit-reloc is given. 736 if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE)) 737 continue; 738 739 isec = s; 740 break; 741 } 742 } 743 if (!isec) 744 continue; 745 746 // Set the symbol to be relative to the output section so that its st_value 747 // equals the output section address. Note, there may be a gap between the 748 // start of the output section and isec. 749 in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, 750 STT_SECTION, 751 /*value=*/0, /*size=*/0, &osec)); 752 } 753 } 754 755 // Today's loaders have a feature to make segments read-only after 756 // processing dynamic relocations to enhance security. PT_GNU_RELRO 757 // is defined for that. 758 // 759 // This function returns true if a section needs to be put into a 760 // PT_GNU_RELRO segment. 761 static bool isRelroSection(const OutputSection *sec) { 762 if (!config->zRelro) 763 return false; 764 if (sec->relro) 765 return true; 766 767 uint64_t flags = sec->flags; 768 769 // Non-allocatable or non-writable sections don't need RELRO because 770 // they are not writable or not even mapped to memory in the first place. 771 // RELRO is for sections that are essentially read-only but need to 772 // be writable only at process startup to allow dynamic linker to 773 // apply relocations. 774 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 775 return false; 776 777 // Once initialized, TLS data segments are used as data templates 778 // for a thread-local storage. For each new thread, runtime 779 // allocates memory for a TLS and copy templates there. No thread 780 // are supposed to use templates directly. Thus, it can be in RELRO. 781 if (flags & SHF_TLS) 782 return true; 783 784 // .init_array, .preinit_array and .fini_array contain pointers to 785 // functions that are executed on process startup or exit. These 786 // pointers are set by the static linker, and they are not expected 787 // to change at runtime. But if you are an attacker, you could do 788 // interesting things by manipulating pointers in .fini_array, for 789 // example. So they are put into RELRO. 790 uint32_t type = sec->type; 791 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 792 type == SHT_PREINIT_ARRAY) 793 return true; 794 795 // .got contains pointers to external symbols. They are resolved by 796 // the dynamic linker when a module is loaded into memory, and after 797 // that they are not expected to change. So, it can be in RELRO. 798 if (in.got && sec == in.got->getParent()) 799 return true; 800 801 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 802 // through r2 register, which is reserved for that purpose. Since r2 is used 803 // for accessing .got as well, .got and .toc need to be close enough in the 804 // virtual address space. Usually, .toc comes just after .got. Since we place 805 // .got into RELRO, .toc needs to be placed into RELRO too. 806 if (sec->name.equals(".toc")) 807 return true; 808 809 // .got.plt contains pointers to external function symbols. They are 810 // by default resolved lazily, so we usually cannot put it into RELRO. 811 // However, if "-z now" is given, the lazy symbol resolution is 812 // disabled, which enables us to put it into RELRO. 813 if (sec == in.gotPlt->getParent()) 814 return config->zNow; 815 816 // .dynamic section contains data for the dynamic linker, and 817 // there's no need to write to it at runtime, so it's better to put 818 // it into RELRO. 819 if (sec->name == ".dynamic") 820 return true; 821 822 // Sections with some special names are put into RELRO. This is a 823 // bit unfortunate because section names shouldn't be significant in 824 // ELF in spirit. But in reality many linker features depend on 825 // magic section names. 826 StringRef s = sec->name; 827 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 828 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 829 s == ".fini_array" || s == ".init_array" || 830 s == ".openbsd.randomdata" || s == ".preinit_array"; 831 } 832 833 // We compute a rank for each section. The rank indicates where the 834 // section should be placed in the file. Instead of using simple 835 // numbers (0,1,2...), we use a series of flags. One for each decision 836 // point when placing the section. 837 // Using flags has two key properties: 838 // * It is easy to check if a give branch was taken. 839 // * It is easy two see how similar two ranks are (see getRankProximity). 840 enum RankFlags { 841 RF_NOT_ADDR_SET = 1 << 27, 842 RF_NOT_ALLOC = 1 << 26, 843 RF_PARTITION = 1 << 18, // Partition number (8 bits) 844 RF_NOT_PART_EHDR = 1 << 17, 845 RF_NOT_PART_PHDR = 1 << 16, 846 RF_NOT_INTERP = 1 << 15, 847 RF_NOT_NOTE = 1 << 14, 848 RF_WRITE = 1 << 13, 849 RF_EXEC_WRITE = 1 << 12, 850 RF_EXEC = 1 << 11, 851 RF_RODATA = 1 << 10, 852 RF_NOT_RELRO = 1 << 9, 853 RF_NOT_TLS = 1 << 8, 854 RF_BSS = 1 << 7, 855 RF_PPC_NOT_TOCBSS = 1 << 6, 856 RF_PPC_TOCL = 1 << 5, 857 RF_PPC_TOC = 1 << 4, 858 RF_PPC_GOT = 1 << 3, 859 RF_PPC_BRANCH_LT = 1 << 2, 860 RF_MIPS_GPREL = 1 << 1, 861 RF_MIPS_NOT_GOT = 1 << 0 862 }; 863 864 static unsigned getSectionRank(const OutputSection &osec) { 865 unsigned rank = osec.partition * RF_PARTITION; 866 867 // We want to put section specified by -T option first, so we 868 // can start assigning VA starting from them later. 869 if (config->sectionStartMap.count(osec.name)) 870 return rank; 871 rank |= RF_NOT_ADDR_SET; 872 873 // Allocatable sections go first to reduce the total PT_LOAD size and 874 // so debug info doesn't change addresses in actual code. 875 if (!(osec.flags & SHF_ALLOC)) 876 return rank | RF_NOT_ALLOC; 877 878 if (osec.type == SHT_LLVM_PART_EHDR) 879 return rank; 880 rank |= RF_NOT_PART_EHDR; 881 882 if (osec.type == SHT_LLVM_PART_PHDR) 883 return rank; 884 rank |= RF_NOT_PART_PHDR; 885 886 // Put .interp first because some loaders want to see that section 887 // on the first page of the executable file when loaded into memory. 888 if (osec.name == ".interp") 889 return rank; 890 rank |= RF_NOT_INTERP; 891 892 // Put .note sections (which make up one PT_NOTE) at the beginning so that 893 // they are likely to be included in a core file even if core file size is 894 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 895 // included in a core to match core files with executables. 896 if (osec.type == SHT_NOTE) 897 return rank; 898 rank |= RF_NOT_NOTE; 899 900 // Sort sections based on their access permission in the following 901 // order: R, RX, RWX, RW. This order is based on the following 902 // considerations: 903 // * Read-only sections come first such that they go in the 904 // PT_LOAD covering the program headers at the start of the file. 905 // * Read-only, executable sections come next. 906 // * Writable, executable sections follow such that .plt on 907 // architectures where it needs to be writable will be placed 908 // between .text and .data. 909 // * Writable sections come last, such that .bss lands at the very 910 // end of the last PT_LOAD. 911 bool isExec = osec.flags & SHF_EXECINSTR; 912 bool isWrite = osec.flags & SHF_WRITE; 913 914 if (isExec) { 915 if (isWrite) 916 rank |= RF_EXEC_WRITE; 917 else 918 rank |= RF_EXEC; 919 } else if (isWrite) { 920 rank |= RF_WRITE; 921 } else if (osec.type == SHT_PROGBITS) { 922 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 923 // .eh_frame) closer to .text. They likely contain PC or GOT relative 924 // relocations and there could be relocation overflow if other huge sections 925 // (.dynstr .dynsym) were placed in between. 926 rank |= RF_RODATA; 927 } 928 929 // Place RelRo sections first. After considering SHT_NOBITS below, the 930 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 931 // where | marks where page alignment happens. An alternative ordering is 932 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 933 // waste more bytes due to 2 alignment places. 934 if (!isRelroSection(&osec)) 935 rank |= RF_NOT_RELRO; 936 937 // If we got here we know that both A and B are in the same PT_LOAD. 938 939 // The TLS initialization block needs to be a single contiguous block in a R/W 940 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 941 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 942 // after PROGBITS. 943 if (!(osec.flags & SHF_TLS)) 944 rank |= RF_NOT_TLS; 945 946 // Within TLS sections, or within other RelRo sections, or within non-RelRo 947 // sections, place non-NOBITS sections first. 948 if (osec.type == SHT_NOBITS) 949 rank |= RF_BSS; 950 951 // Some architectures have additional ordering restrictions for sections 952 // within the same PT_LOAD. 953 if (config->emachine == EM_PPC64) { 954 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 955 // that we would like to make sure appear is a specific order to maximize 956 // their coverage by a single signed 16-bit offset from the TOC base 957 // pointer. Conversely, the special .tocbss section should be first among 958 // all SHT_NOBITS sections. This will put it next to the loaded special 959 // PPC64 sections (and, thus, within reach of the TOC base pointer). 960 StringRef name = osec.name; 961 if (name != ".tocbss") 962 rank |= RF_PPC_NOT_TOCBSS; 963 964 if (name == ".toc1") 965 rank |= RF_PPC_TOCL; 966 967 if (name == ".toc") 968 rank |= RF_PPC_TOC; 969 970 if (name == ".got") 971 rank |= RF_PPC_GOT; 972 973 if (name == ".branch_lt") 974 rank |= RF_PPC_BRANCH_LT; 975 } 976 977 if (config->emachine == EM_MIPS) { 978 // All sections with SHF_MIPS_GPREL flag should be grouped together 979 // because data in these sections is addressable with a gp relative address. 980 if (osec.flags & SHF_MIPS_GPREL) 981 rank |= RF_MIPS_GPREL; 982 983 if (osec.name != ".got") 984 rank |= RF_MIPS_NOT_GOT; 985 } 986 987 return rank; 988 } 989 990 static bool compareSections(const SectionCommand *aCmd, 991 const SectionCommand *bCmd) { 992 const OutputSection *a = &cast<OutputDesc>(aCmd)->osec; 993 const OutputSection *b = &cast<OutputDesc>(bCmd)->osec; 994 995 if (a->sortRank != b->sortRank) 996 return a->sortRank < b->sortRank; 997 998 if (!(a->sortRank & RF_NOT_ADDR_SET)) 999 return config->sectionStartMap.lookup(a->name) < 1000 config->sectionStartMap.lookup(b->name); 1001 return false; 1002 } 1003 1004 void PhdrEntry::add(OutputSection *sec) { 1005 lastSec = sec; 1006 if (!firstSec) 1007 firstSec = sec; 1008 p_align = std::max(p_align, sec->alignment); 1009 if (p_type == PT_LOAD) 1010 sec->ptLoad = this; 1011 } 1012 1013 // The beginning and the ending of .rel[a].plt section are marked 1014 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1015 // executable. The runtime needs these symbols in order to resolve 1016 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1017 // need these symbols, since IRELATIVE relocs are resolved through GOT 1018 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1019 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1020 if (config->relocatable || config->isPic) 1021 return; 1022 1023 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1024 // because .rela.plt might be empty and thus removed from output. 1025 // We'll override Out::elfHeader with In.relaIplt later when we are 1026 // sure that .rela.plt exists in output. 1027 ElfSym::relaIpltStart = addOptionalRegular( 1028 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1029 Out::elfHeader, 0, STV_HIDDEN); 1030 1031 ElfSym::relaIpltEnd = addOptionalRegular( 1032 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1033 Out::elfHeader, 0, STV_HIDDEN); 1034 } 1035 1036 // This function generates assignments for predefined symbols (e.g. _end or 1037 // _etext) and inserts them into the commands sequence to be processed at the 1038 // appropriate time. This ensures that the value is going to be correct by the 1039 // time any references to these symbols are processed and is equivalent to 1040 // defining these symbols explicitly in the linker script. 1041 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1042 if (ElfSym::globalOffsetTable) { 1043 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1044 // to the start of the .got or .got.plt section. 1045 InputSection *sec = in.gotPlt.get(); 1046 if (!target->gotBaseSymInGotPlt) 1047 sec = in.mipsGot.get() ? cast<InputSection>(in.mipsGot.get()) 1048 : cast<InputSection>(in.got.get()); 1049 ElfSym::globalOffsetTable->section = sec; 1050 } 1051 1052 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1053 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1054 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1055 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1056 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1057 } 1058 1059 PhdrEntry *last = nullptr; 1060 PhdrEntry *lastRO = nullptr; 1061 1062 for (Partition &part : partitions) { 1063 for (PhdrEntry *p : part.phdrs) { 1064 if (p->p_type != PT_LOAD) 1065 continue; 1066 last = p; 1067 if (!(p->p_flags & PF_W)) 1068 lastRO = p; 1069 } 1070 } 1071 1072 if (lastRO) { 1073 // _etext is the first location after the last read-only loadable segment. 1074 if (ElfSym::etext1) 1075 ElfSym::etext1->section = lastRO->lastSec; 1076 if (ElfSym::etext2) 1077 ElfSym::etext2->section = lastRO->lastSec; 1078 } 1079 1080 if (last) { 1081 // _edata points to the end of the last mapped initialized section. 1082 OutputSection *edata = nullptr; 1083 for (OutputSection *os : outputSections) { 1084 if (os->type != SHT_NOBITS) 1085 edata = os; 1086 if (os == last->lastSec) 1087 break; 1088 } 1089 1090 if (ElfSym::edata1) 1091 ElfSym::edata1->section = edata; 1092 if (ElfSym::edata2) 1093 ElfSym::edata2->section = edata; 1094 1095 // _end is the first location after the uninitialized data region. 1096 if (ElfSym::end1) 1097 ElfSym::end1->section = last->lastSec; 1098 if (ElfSym::end2) 1099 ElfSym::end2->section = last->lastSec; 1100 } 1101 1102 if (ElfSym::bss) 1103 ElfSym::bss->section = findSection(".bss"); 1104 1105 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1106 // be equal to the _gp symbol's value. 1107 if (ElfSym::mipsGp) { 1108 // Find GP-relative section with the lowest address 1109 // and use this address to calculate default _gp value. 1110 for (OutputSection *os : outputSections) { 1111 if (os->flags & SHF_MIPS_GPREL) { 1112 ElfSym::mipsGp->section = os; 1113 ElfSym::mipsGp->value = 0x7ff0; 1114 break; 1115 } 1116 } 1117 } 1118 } 1119 1120 // We want to find how similar two ranks are. 1121 // The more branches in getSectionRank that match, the more similar they are. 1122 // Since each branch corresponds to a bit flag, we can just use 1123 // countLeadingZeros. 1124 static int getRankProximityAux(const OutputSection &a, const OutputSection &b) { 1125 return countLeadingZeros(a.sortRank ^ b.sortRank); 1126 } 1127 1128 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1129 auto *osd = dyn_cast<OutputDesc>(b); 1130 return (osd && osd->osec.hasInputSections) 1131 ? getRankProximityAux(*a, osd->osec) 1132 : -1; 1133 } 1134 1135 // When placing orphan sections, we want to place them after symbol assignments 1136 // so that an orphan after 1137 // begin_foo = .; 1138 // foo : { *(foo) } 1139 // end_foo = .; 1140 // doesn't break the intended meaning of the begin/end symbols. 1141 // We don't want to go over sections since findOrphanPos is the 1142 // one in charge of deciding the order of the sections. 1143 // We don't want to go over changes to '.', since doing so in 1144 // rx_sec : { *(rx_sec) } 1145 // . = ALIGN(0x1000); 1146 // /* The RW PT_LOAD starts here*/ 1147 // rw_sec : { *(rw_sec) } 1148 // would mean that the RW PT_LOAD would become unaligned. 1149 static bool shouldSkip(SectionCommand *cmd) { 1150 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1151 return assign->name != "."; 1152 return false; 1153 } 1154 1155 // We want to place orphan sections so that they share as much 1156 // characteristics with their neighbors as possible. For example, if 1157 // both are rw, or both are tls. 1158 static SmallVectorImpl<SectionCommand *>::iterator 1159 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1160 SmallVectorImpl<SectionCommand *>::iterator e) { 1161 OutputSection *sec = &cast<OutputDesc>(*e)->osec; 1162 1163 // Find the first element that has as close a rank as possible. 1164 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1165 return getRankProximity(sec, a) < getRankProximity(sec, b); 1166 }); 1167 if (i == e) 1168 return e; 1169 if (!isa<OutputDesc>(*i)) 1170 return e; 1171 auto foundSec = &cast<OutputDesc>(*i)->osec; 1172 1173 // Consider all existing sections with the same proximity. 1174 int proximity = getRankProximity(sec, *i); 1175 unsigned sortRank = sec->sortRank; 1176 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1177 // Prevent the orphan section to be placed before the found section. If 1178 // custom program headers are defined, that helps to avoid adding it to a 1179 // previous segment and changing flags of that segment, for example, making 1180 // a read-only segment writable. If memory regions are defined, an orphan 1181 // section should continue the same region as the found section to better 1182 // resemble the behavior of GNU ld. 1183 sortRank = std::max(sortRank, foundSec->sortRank); 1184 for (; i != e; ++i) { 1185 auto *curSecDesc = dyn_cast<OutputDesc>(*i); 1186 if (!curSecDesc || !curSecDesc->osec.hasInputSections) 1187 continue; 1188 if (getRankProximity(sec, curSecDesc) != proximity || 1189 sortRank < curSecDesc->osec.sortRank) 1190 break; 1191 } 1192 1193 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1194 auto *osd = dyn_cast<OutputDesc>(cmd); 1195 return osd && osd->osec.hasInputSections; 1196 }; 1197 auto j = 1198 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1199 isOutputSecWithInputSections); 1200 i = j.base(); 1201 1202 // As a special case, if the orphan section is the last section, put 1203 // it at the very end, past any other commands. 1204 // This matches bfd's behavior and is convenient when the linker script fully 1205 // specifies the start of the file, but doesn't care about the end (the non 1206 // alloc sections for example). 1207 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1208 if (nextSec == e) 1209 return e; 1210 1211 while (i != e && shouldSkip(*i)) 1212 ++i; 1213 return i; 1214 } 1215 1216 // Adds random priorities to sections not already in the map. 1217 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1218 if (config->shuffleSections.empty()) 1219 return; 1220 1221 SmallVector<InputSectionBase *, 0> matched, sections = inputSections; 1222 matched.reserve(sections.size()); 1223 for (const auto &patAndSeed : config->shuffleSections) { 1224 matched.clear(); 1225 for (InputSectionBase *sec : sections) 1226 if (patAndSeed.first.match(sec->name)) 1227 matched.push_back(sec); 1228 const uint32_t seed = patAndSeed.second; 1229 if (seed == UINT32_MAX) { 1230 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1231 // section order is stable even if the number of sections changes. This is 1232 // useful to catch issues like static initialization order fiasco 1233 // reliably. 1234 std::reverse(matched.begin(), matched.end()); 1235 } else { 1236 std::mt19937 g(seed ? seed : std::random_device()()); 1237 llvm::shuffle(matched.begin(), matched.end(), g); 1238 } 1239 size_t i = 0; 1240 for (InputSectionBase *&sec : sections) 1241 if (patAndSeed.first.match(sec->name)) 1242 sec = matched[i++]; 1243 } 1244 1245 // Existing priorities are < 0, so use priorities >= 0 for the missing 1246 // sections. 1247 int prio = 0; 1248 for (InputSectionBase *sec : sections) { 1249 if (order.try_emplace(sec, prio).second) 1250 ++prio; 1251 } 1252 } 1253 1254 // Builds section order for handling --symbol-ordering-file. 1255 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1256 DenseMap<const InputSectionBase *, int> sectionOrder; 1257 // Use the rarely used option --call-graph-ordering-file to sort sections. 1258 if (!config->callGraphProfile.empty()) 1259 return computeCallGraphProfileOrder(); 1260 1261 if (config->symbolOrderingFile.empty()) 1262 return sectionOrder; 1263 1264 struct SymbolOrderEntry { 1265 int priority; 1266 bool present; 1267 }; 1268 1269 // Build a map from symbols to their priorities. Symbols that didn't 1270 // appear in the symbol ordering file have the lowest priority 0. 1271 // All explicitly mentioned symbols have negative (higher) priorities. 1272 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1273 int priority = -config->symbolOrderingFile.size(); 1274 for (StringRef s : config->symbolOrderingFile) 1275 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1276 1277 // Build a map from sections to their priorities. 1278 auto addSym = [&](Symbol &sym) { 1279 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1280 if (it == symbolOrder.end()) 1281 return; 1282 SymbolOrderEntry &ent = it->second; 1283 ent.present = true; 1284 1285 maybeWarnUnorderableSymbol(&sym); 1286 1287 if (auto *d = dyn_cast<Defined>(&sym)) { 1288 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1289 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1290 priority = std::min(priority, ent.priority); 1291 } 1292 } 1293 }; 1294 1295 // We want both global and local symbols. We get the global ones from the 1296 // symbol table and iterate the object files for the local ones. 1297 for (Symbol *sym : symtab->symbols()) 1298 addSym(*sym); 1299 1300 for (ELFFileBase *file : ctx->objectFiles) 1301 for (Symbol *sym : file->getLocalSymbols()) 1302 addSym(*sym); 1303 1304 if (config->warnSymbolOrdering) 1305 for (auto orderEntry : symbolOrder) 1306 if (!orderEntry.second.present) 1307 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1308 1309 return sectionOrder; 1310 } 1311 1312 // Sorts the sections in ISD according to the provided section order. 1313 static void 1314 sortISDBySectionOrder(InputSectionDescription *isd, 1315 const DenseMap<const InputSectionBase *, int> &order, 1316 bool executableOutputSection) { 1317 SmallVector<InputSection *, 0> unorderedSections; 1318 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1319 uint64_t unorderedSize = 0; 1320 uint64_t totalSize = 0; 1321 1322 for (InputSection *isec : isd->sections) { 1323 if (executableOutputSection) 1324 totalSize += isec->getSize(); 1325 auto i = order.find(isec); 1326 if (i == order.end()) { 1327 unorderedSections.push_back(isec); 1328 unorderedSize += isec->getSize(); 1329 continue; 1330 } 1331 orderedSections.push_back({isec, i->second}); 1332 } 1333 llvm::sort(orderedSections, llvm::less_second()); 1334 1335 // Find an insertion point for the ordered section list in the unordered 1336 // section list. On targets with limited-range branches, this is the mid-point 1337 // of the unordered section list. This decreases the likelihood that a range 1338 // extension thunk will be needed to enter or exit the ordered region. If the 1339 // ordered section list is a list of hot functions, we can generally expect 1340 // the ordered functions to be called more often than the unordered functions, 1341 // making it more likely that any particular call will be within range, and 1342 // therefore reducing the number of thunks required. 1343 // 1344 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1345 // If the layout is: 1346 // 1347 // 8MB hot 1348 // 32MB cold 1349 // 1350 // only the first 8-16MB of the cold code (depending on which hot function it 1351 // is actually calling) can call the hot code without a range extension thunk. 1352 // However, if we use this layout: 1353 // 1354 // 16MB cold 1355 // 8MB hot 1356 // 16MB cold 1357 // 1358 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1359 // of the second block of cold code can call the hot code without a thunk. So 1360 // we effectively double the amount of code that could potentially call into 1361 // the hot code without a thunk. 1362 // 1363 // The above is not necessary if total size of input sections in this "isd" 1364 // is small. Note that we assume all input sections are executable if the 1365 // output section is executable (which is not always true but supposed to 1366 // cover most cases). 1367 size_t insPt = 0; 1368 if (executableOutputSection && !orderedSections.empty() && 1369 target->getThunkSectionSpacing() && 1370 totalSize >= target->getThunkSectionSpacing()) { 1371 uint64_t unorderedPos = 0; 1372 for (; insPt != unorderedSections.size(); ++insPt) { 1373 unorderedPos += unorderedSections[insPt]->getSize(); 1374 if (unorderedPos > unorderedSize / 2) 1375 break; 1376 } 1377 } 1378 1379 isd->sections.clear(); 1380 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1381 isd->sections.push_back(isec); 1382 for (std::pair<InputSection *, int> p : orderedSections) 1383 isd->sections.push_back(p.first); 1384 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1385 isd->sections.push_back(isec); 1386 } 1387 1388 static void sortSection(OutputSection &osec, 1389 const DenseMap<const InputSectionBase *, int> &order) { 1390 StringRef name = osec.name; 1391 1392 // Never sort these. 1393 if (name == ".init" || name == ".fini") 1394 return; 1395 1396 // IRelative relocations that usually live in the .rel[a].dyn section should 1397 // be processed last by the dynamic loader. To achieve that we add synthetic 1398 // sections in the required order from the beginning so that the in.relaIplt 1399 // section is placed last in an output section. Here we just do not apply 1400 // sorting for an output section which holds the in.relaIplt section. 1401 if (in.relaIplt->getParent() == &osec) 1402 return; 1403 1404 // Sort input sections by priority using the list provided by 1405 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1406 // digit radix sort. The sections may be sorted stably again by a more 1407 // significant key. 1408 if (!order.empty()) 1409 for (SectionCommand *b : osec.commands) 1410 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1411 sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR); 1412 1413 if (script->hasSectionsCommand) 1414 return; 1415 1416 if (name == ".init_array" || name == ".fini_array") { 1417 osec.sortInitFini(); 1418 } else if (name == ".ctors" || name == ".dtors") { 1419 osec.sortCtorsDtors(); 1420 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1421 // .toc is allocated just after .got and is accessed using GOT-relative 1422 // relocations. Object files compiled with small code model have an 1423 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1424 // To reduce the risk of relocation overflow, .toc contents are sorted so 1425 // that sections having smaller relocation offsets are at beginning of .toc 1426 assert(osec.commands.size() == 1); 1427 auto *isd = cast<InputSectionDescription>(osec.commands[0]); 1428 llvm::stable_sort(isd->sections, 1429 [](const InputSection *a, const InputSection *b) -> bool { 1430 return a->file->ppc64SmallCodeModelTocRelocs && 1431 !b->file->ppc64SmallCodeModelTocRelocs; 1432 }); 1433 } 1434 } 1435 1436 // If no layout was provided by linker script, we want to apply default 1437 // sorting for special input sections. This also handles --symbol-ordering-file. 1438 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1439 // Build the order once since it is expensive. 1440 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1441 maybeShuffle(order); 1442 for (SectionCommand *cmd : script->sectionCommands) 1443 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1444 sortSection(osd->osec, order); 1445 } 1446 1447 template <class ELFT> void Writer<ELFT>::sortSections() { 1448 llvm::TimeTraceScope timeScope("Sort sections"); 1449 1450 // Don't sort if using -r. It is not necessary and we want to preserve the 1451 // relative order for SHF_LINK_ORDER sections. 1452 if (config->relocatable) { 1453 script->adjustOutputSections(); 1454 return; 1455 } 1456 1457 sortInputSections(); 1458 1459 for (SectionCommand *cmd : script->sectionCommands) 1460 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1461 osd->osec.sortRank = getSectionRank(osd->osec); 1462 if (!script->hasSectionsCommand) { 1463 // We know that all the OutputSections are contiguous in this case. 1464 auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); }; 1465 std::stable_sort( 1466 llvm::find_if(script->sectionCommands, isSection), 1467 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1468 compareSections); 1469 } 1470 1471 // Process INSERT commands and update output section attributes. From this 1472 // point onwards the order of script->sectionCommands is fixed. 1473 script->processInsertCommands(); 1474 script->adjustOutputSections(); 1475 1476 if (!script->hasSectionsCommand) 1477 return; 1478 1479 // Orphan sections are sections present in the input files which are 1480 // not explicitly placed into the output file by the linker script. 1481 // 1482 // The sections in the linker script are already in the correct 1483 // order. We have to figuere out where to insert the orphan 1484 // sections. 1485 // 1486 // The order of the sections in the script is arbitrary and may not agree with 1487 // compareSections. This means that we cannot easily define a strict weak 1488 // ordering. To see why, consider a comparison of a section in the script and 1489 // one not in the script. We have a two simple options: 1490 // * Make them equivalent (a is not less than b, and b is not less than a). 1491 // The problem is then that equivalence has to be transitive and we can 1492 // have sections a, b and c with only b in a script and a less than c 1493 // which breaks this property. 1494 // * Use compareSectionsNonScript. Given that the script order doesn't have 1495 // to match, we can end up with sections a, b, c, d where b and c are in the 1496 // script and c is compareSectionsNonScript less than b. In which case d 1497 // can be equivalent to c, a to b and d < a. As a concrete example: 1498 // .a (rx) # not in script 1499 // .b (rx) # in script 1500 // .c (ro) # in script 1501 // .d (ro) # not in script 1502 // 1503 // The way we define an order then is: 1504 // * Sort only the orphan sections. They are in the end right now. 1505 // * Move each orphan section to its preferred position. We try 1506 // to put each section in the last position where it can share 1507 // a PT_LOAD. 1508 // 1509 // There is some ambiguity as to where exactly a new entry should be 1510 // inserted, because Commands contains not only output section 1511 // commands but also other types of commands such as symbol assignment 1512 // expressions. There's no correct answer here due to the lack of the 1513 // formal specification of the linker script. We use heuristics to 1514 // determine whether a new output command should be added before or 1515 // after another commands. For the details, look at shouldSkip 1516 // function. 1517 1518 auto i = script->sectionCommands.begin(); 1519 auto e = script->sectionCommands.end(); 1520 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1521 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1522 return osd->osec.sectionIndex == UINT32_MAX; 1523 return false; 1524 }); 1525 1526 // Sort the orphan sections. 1527 std::stable_sort(nonScriptI, e, compareSections); 1528 1529 // As a horrible special case, skip the first . assignment if it is before any 1530 // section. We do this because it is common to set a load address by starting 1531 // the script with ". = 0xabcd" and the expectation is that every section is 1532 // after that. 1533 auto firstSectionOrDotAssignment = 1534 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1535 if (firstSectionOrDotAssignment != e && 1536 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1537 ++firstSectionOrDotAssignment; 1538 i = firstSectionOrDotAssignment; 1539 1540 while (nonScriptI != e) { 1541 auto pos = findOrphanPos(i, nonScriptI); 1542 OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec; 1543 1544 // As an optimization, find all sections with the same sort rank 1545 // and insert them with one rotate. 1546 unsigned rank = orphan->sortRank; 1547 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1548 return cast<OutputDesc>(cmd)->osec.sortRank != rank; 1549 }); 1550 std::rotate(pos, nonScriptI, end); 1551 nonScriptI = end; 1552 } 1553 1554 script->adjustSectionsAfterSorting(); 1555 } 1556 1557 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1558 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1559 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1560 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1561 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1562 if (!la || !lb) 1563 return la && !lb; 1564 OutputSection *aOut = la->getParent(); 1565 OutputSection *bOut = lb->getParent(); 1566 1567 if (aOut != bOut) 1568 return aOut->addr < bOut->addr; 1569 return la->outSecOff < lb->outSecOff; 1570 } 1571 1572 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1573 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1574 for (OutputSection *sec : outputSections) { 1575 if (!(sec->flags & SHF_LINK_ORDER)) 1576 continue; 1577 1578 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1579 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1580 if (!config->relocatable && config->emachine == EM_ARM && 1581 sec->type == SHT_ARM_EXIDX) 1582 continue; 1583 1584 // Link order may be distributed across several InputSectionDescriptions. 1585 // Sorting is performed separately. 1586 SmallVector<InputSection **, 0> scriptSections; 1587 SmallVector<InputSection *, 0> sections; 1588 for (SectionCommand *cmd : sec->commands) { 1589 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1590 if (!isd) 1591 continue; 1592 bool hasLinkOrder = false; 1593 scriptSections.clear(); 1594 sections.clear(); 1595 for (InputSection *&isec : isd->sections) { 1596 if (isec->flags & SHF_LINK_ORDER) { 1597 InputSection *link = isec->getLinkOrderDep(); 1598 if (link && !link->getParent()) 1599 error(toString(isec) + ": sh_link points to discarded section " + 1600 toString(link)); 1601 hasLinkOrder = true; 1602 } 1603 scriptSections.push_back(&isec); 1604 sections.push_back(isec); 1605 } 1606 if (hasLinkOrder && errorCount() == 0) { 1607 llvm::stable_sort(sections, compareByFilePosition); 1608 for (int i = 0, n = sections.size(); i != n; ++i) 1609 *scriptSections[i] = sections[i]; 1610 } 1611 } 1612 } 1613 } 1614 1615 static void finalizeSynthetic(SyntheticSection *sec) { 1616 if (sec && sec->isNeeded() && sec->getParent()) { 1617 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1618 sec->finalizeContents(); 1619 } 1620 } 1621 1622 // We need to generate and finalize the content that depends on the address of 1623 // InputSections. As the generation of the content may also alter InputSection 1624 // addresses we must converge to a fixed point. We do that here. See the comment 1625 // in Writer<ELFT>::finalizeSections(). 1626 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1627 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1628 ThunkCreator tc; 1629 AArch64Err843419Patcher a64p; 1630 ARMErr657417Patcher a32p; 1631 script->assignAddresses(); 1632 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1633 // do require the relative addresses of OutputSections because linker scripts 1634 // can assign Virtual Addresses to OutputSections that are not monotonically 1635 // increasing. 1636 for (Partition &part : partitions) 1637 finalizeSynthetic(part.armExidx.get()); 1638 resolveShfLinkOrder(); 1639 1640 // Converts call x@GDPLT to call __tls_get_addr 1641 if (config->emachine == EM_HEXAGON) 1642 hexagonTLSSymbolUpdate(outputSections); 1643 1644 uint32_t pass = 0, assignPasses = 0; 1645 for (;;) { 1646 bool changed = target->needsThunks ? tc.createThunks(pass, outputSections) 1647 : target->relaxOnce(pass); 1648 ++pass; 1649 1650 // With Thunk Size much smaller than branch range we expect to 1651 // converge quickly; if we get to 15 something has gone wrong. 1652 if (changed && pass >= 15) { 1653 error(target->needsThunks ? "thunk creation not converged" 1654 : "relaxation not converged"); 1655 break; 1656 } 1657 1658 if (config->fixCortexA53Errata843419) { 1659 if (changed) 1660 script->assignAddresses(); 1661 changed |= a64p.createFixes(); 1662 } 1663 if (config->fixCortexA8) { 1664 if (changed) 1665 script->assignAddresses(); 1666 changed |= a32p.createFixes(); 1667 } 1668 1669 if (in.mipsGot) 1670 in.mipsGot->updateAllocSize(); 1671 1672 for (Partition &part : partitions) { 1673 changed |= part.relaDyn->updateAllocSize(); 1674 if (part.relrDyn) 1675 changed |= part.relrDyn->updateAllocSize(); 1676 } 1677 1678 const Defined *changedSym = script->assignAddresses(); 1679 if (!changed) { 1680 // Some symbols may be dependent on section addresses. When we break the 1681 // loop, the symbol values are finalized because a previous 1682 // assignAddresses() finalized section addresses. 1683 if (!changedSym) 1684 break; 1685 if (++assignPasses == 5) { 1686 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1687 " does not converge"); 1688 break; 1689 } 1690 } 1691 } 1692 if (!config->relocatable && config->emachine == EM_RISCV) 1693 riscvFinalizeRelax(pass); 1694 1695 if (config->relocatable) 1696 for (OutputSection *sec : outputSections) 1697 sec->addr = 0; 1698 1699 // If addrExpr is set, the address may not be a multiple of the alignment. 1700 // Warn because this is error-prone. 1701 for (SectionCommand *cmd : script->sectionCommands) 1702 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1703 OutputSection *osec = &osd->osec; 1704 if (osec->addr % osec->alignment != 0) 1705 warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " + 1706 osec->name + " is not a multiple of alignment (" + 1707 Twine(osec->alignment) + ")"); 1708 } 1709 } 1710 1711 // If Input Sections have been shrunk (basic block sections) then 1712 // update symbol values and sizes associated with these sections. With basic 1713 // block sections, input sections can shrink when the jump instructions at 1714 // the end of the section are relaxed. 1715 static void fixSymbolsAfterShrinking() { 1716 for (InputFile *File : ctx->objectFiles) { 1717 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1718 auto *def = dyn_cast<Defined>(Sym); 1719 if (!def) 1720 return; 1721 1722 const SectionBase *sec = def->section; 1723 if (!sec) 1724 return; 1725 1726 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1727 if (!inputSec || !inputSec->bytesDropped) 1728 return; 1729 1730 const size_t OldSize = inputSec->rawData.size(); 1731 const size_t NewSize = OldSize - inputSec->bytesDropped; 1732 1733 if (def->value > NewSize && def->value <= OldSize) { 1734 LLVM_DEBUG(llvm::dbgs() 1735 << "Moving symbol " << Sym->getName() << " from " 1736 << def->value << " to " 1737 << def->value - inputSec->bytesDropped << " bytes\n"); 1738 def->value -= inputSec->bytesDropped; 1739 return; 1740 } 1741 1742 if (def->value + def->size > NewSize && def->value <= OldSize && 1743 def->value + def->size <= OldSize) { 1744 LLVM_DEBUG(llvm::dbgs() 1745 << "Shrinking symbol " << Sym->getName() << " from " 1746 << def->size << " to " << def->size - inputSec->bytesDropped 1747 << " bytes\n"); 1748 def->size -= inputSec->bytesDropped; 1749 } 1750 }); 1751 } 1752 } 1753 1754 // If basic block sections exist, there are opportunities to delete fall thru 1755 // jumps and shrink jump instructions after basic block reordering. This 1756 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1757 // option is used. 1758 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1759 assert(config->optimizeBBJumps); 1760 SmallVector<InputSection *, 0> storage; 1761 1762 script->assignAddresses(); 1763 // For every output section that has executable input sections, this 1764 // does the following: 1765 // 1. Deletes all direct jump instructions in input sections that 1766 // jump to the following section as it is not required. 1767 // 2. If there are two consecutive jump instructions, it checks 1768 // if they can be flipped and one can be deleted. 1769 for (OutputSection *osec : outputSections) { 1770 if (!(osec->flags & SHF_EXECINSTR)) 1771 continue; 1772 ArrayRef<InputSection *> sections = getInputSections(*osec, storage); 1773 size_t numDeleted = 0; 1774 // Delete all fall through jump instructions. Also, check if two 1775 // consecutive jump instructions can be flipped so that a fall 1776 // through jmp instruction can be deleted. 1777 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1778 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1779 InputSection &sec = *sections[i]; 1780 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1781 } 1782 if (numDeleted > 0) { 1783 script->assignAddresses(); 1784 LLVM_DEBUG(llvm::dbgs() 1785 << "Removing " << numDeleted << " fall through jumps\n"); 1786 } 1787 } 1788 1789 fixSymbolsAfterShrinking(); 1790 1791 for (OutputSection *osec : outputSections) 1792 for (InputSection *is : getInputSections(*osec, storage)) 1793 is->trim(); 1794 } 1795 1796 // In order to allow users to manipulate linker-synthesized sections, 1797 // we had to add synthetic sections to the input section list early, 1798 // even before we make decisions whether they are needed. This allows 1799 // users to write scripts like this: ".mygot : { .got }". 1800 // 1801 // Doing it has an unintended side effects. If it turns out that we 1802 // don't need a .got (for example) at all because there's no 1803 // relocation that needs a .got, we don't want to emit .got. 1804 // 1805 // To deal with the above problem, this function is called after 1806 // scanRelocations is called to remove synthetic sections that turn 1807 // out to be empty. 1808 static void removeUnusedSyntheticSections() { 1809 // All input synthetic sections that can be empty are placed after 1810 // all regular ones. Reverse iterate to find the first synthetic section 1811 // after a non-synthetic one which will be our starting point. 1812 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1813 [](InputSectionBase *s) { 1814 return !isa<SyntheticSection>(s); 1815 }) 1816 .base(); 1817 1818 // Remove unused synthetic sections from inputSections; 1819 DenseSet<InputSectionBase *> unused; 1820 auto end = 1821 std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) { 1822 auto *sec = cast<SyntheticSection>(s); 1823 if (sec->getParent() && sec->isNeeded()) 1824 return false; 1825 unused.insert(sec); 1826 return true; 1827 }); 1828 inputSections.erase(end, inputSections.end()); 1829 1830 // Remove unused synthetic sections from the corresponding input section 1831 // description and orphanSections. 1832 for (auto *sec : unused) 1833 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1834 for (SectionCommand *cmd : osec->commands) 1835 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1836 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1837 return unused.count(isec); 1838 }); 1839 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1840 return unused.count(sec); 1841 }); 1842 } 1843 1844 // Create output section objects and add them to OutputSections. 1845 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1846 Out::preinitArray = findSection(".preinit_array"); 1847 Out::initArray = findSection(".init_array"); 1848 Out::finiArray = findSection(".fini_array"); 1849 1850 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1851 // symbols for sections, so that the runtime can get the start and end 1852 // addresses of each section by section name. Add such symbols. 1853 if (!config->relocatable) { 1854 addStartEndSymbols(); 1855 for (SectionCommand *cmd : script->sectionCommands) 1856 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1857 addStartStopSymbols(osd->osec); 1858 } 1859 1860 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1861 // It should be okay as no one seems to care about the type. 1862 // Even the author of gold doesn't remember why gold behaves that way. 1863 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1864 if (mainPart->dynamic->parent) 1865 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1866 /*value=*/0, /*size=*/0, mainPart->dynamic.get()})->isUsedInRegularObj = true; 1867 1868 // Define __rel[a]_iplt_{start,end} symbols if needed. 1869 addRelIpltSymbols(); 1870 1871 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1872 // should only be defined in an executable. If .sdata does not exist, its 1873 // value/section does not matter but it has to be relative, so set its 1874 // st_shndx arbitrarily to 1 (Out::elfHeader). 1875 if (config->emachine == EM_RISCV && !config->shared) { 1876 OutputSection *sec = findSection(".sdata"); 1877 ElfSym::riscvGlobalPointer = 1878 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1879 0x800, STV_DEFAULT); 1880 } 1881 1882 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1883 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1884 // way that: 1885 // 1886 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1887 // computes 0. 1888 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1889 // the TLS block). 1890 // 1891 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1892 // an absolute symbol of zero. This is different from GNU linkers which 1893 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1894 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1895 if (s && s->isUndefined()) { 1896 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 1897 STT_TLS, /*value=*/0, 0, 1898 /*section=*/nullptr}); 1899 ElfSym::tlsModuleBase = cast<Defined>(s); 1900 } 1901 } 1902 1903 { 1904 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1905 // This responsible for splitting up .eh_frame section into 1906 // pieces. The relocation scan uses those pieces, so this has to be 1907 // earlier. 1908 for (Partition &part : partitions) 1909 finalizeSynthetic(part.ehFrame.get()); 1910 } 1911 1912 if (config->hasDynSymTab) { 1913 parallelForEach(symtab->symbols(), [](Symbol *sym) { 1914 sym->isPreemptible = computeIsPreemptible(*sym); 1915 }); 1916 } 1917 1918 // Change values of linker-script-defined symbols from placeholders (assigned 1919 // by declareSymbols) to actual definitions. 1920 script->processSymbolAssignments(); 1921 1922 { 1923 llvm::TimeTraceScope timeScope("Scan relocations"); 1924 // Scan relocations. This must be done after every symbol is declared so 1925 // that we can correctly decide if a dynamic relocation is needed. This is 1926 // called after processSymbolAssignments() because it needs to know whether 1927 // a linker-script-defined symbol is absolute. 1928 ppc64noTocRelax.clear(); 1929 if (!config->relocatable) { 1930 // Scan all relocations. Each relocation goes through a series of tests to 1931 // determine if it needs special treatment, such as creating GOT, PLT, 1932 // copy relocations, etc. Note that relocations for non-alloc sections are 1933 // directly processed by InputSection::relocateNonAlloc. 1934 for (InputSectionBase *sec : inputSections) 1935 if (sec->isLive() && isa<InputSection>(sec) && (sec->flags & SHF_ALLOC)) 1936 scanRelocations<ELFT>(*sec); 1937 for (Partition &part : partitions) { 1938 for (EhInputSection *sec : part.ehFrame->sections) 1939 scanRelocations<ELFT>(*sec); 1940 if (part.armExidx && part.armExidx->isLive()) 1941 for (InputSection *sec : part.armExidx->exidxSections) 1942 scanRelocations<ELFT>(*sec); 1943 } 1944 1945 reportUndefinedSymbols(); 1946 postScanRelocations(); 1947 } 1948 } 1949 1950 if (in.plt && in.plt->isNeeded()) 1951 in.plt->addSymbols(); 1952 if (in.iplt && in.iplt->isNeeded()) 1953 in.iplt->addSymbols(); 1954 1955 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1956 auto diagnose = 1957 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 1958 ? errorOrWarn 1959 : warn; 1960 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1961 // entries are seen. These cases would otherwise lead to runtime errors 1962 // reported by the dynamic linker. 1963 // 1964 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1965 // catch more cases. That is too much for us. Our approach resembles the one 1966 // used in ld.gold, achieves a good balance to be useful but not too smart. 1967 for (SharedFile *file : ctx->sharedFiles) { 1968 bool allNeededIsKnown = 1969 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1970 return symtab->soNames.count(CachedHashStringRef(needed)); 1971 }); 1972 if (!allNeededIsKnown) 1973 continue; 1974 for (Symbol *sym : file->requiredSymbols) 1975 if (sym->isUndefined() && !sym->isWeak()) 1976 diagnose("undefined reference due to --no-allow-shlib-undefined: " + 1977 toString(*sym) + "\n>>> referenced by " + toString(file)); 1978 } 1979 } 1980 1981 { 1982 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 1983 // Now that we have defined all possible global symbols including linker- 1984 // synthesized ones. Visit all symbols to give the finishing touches. 1985 for (Symbol *sym : symtab->symbols()) { 1986 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 1987 continue; 1988 if (!config->relocatable) 1989 sym->binding = sym->computeBinding(); 1990 if (in.symTab) 1991 in.symTab->addSymbol(sym); 1992 1993 if (sym->includeInDynsym()) { 1994 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1995 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1996 if (file->isNeeded && !sym->isUndefined()) 1997 addVerneed(sym); 1998 } 1999 } 2000 2001 // We also need to scan the dynamic relocation tables of the other 2002 // partitions and add any referenced symbols to the partition's dynsym. 2003 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2004 DenseSet<Symbol *> syms; 2005 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2006 syms.insert(e.sym); 2007 for (DynamicReloc &reloc : part.relaDyn->relocs) 2008 if (reloc.sym && reloc.needsDynSymIndex() && 2009 syms.insert(reloc.sym).second) 2010 part.dynSymTab->addSymbol(reloc.sym); 2011 } 2012 } 2013 2014 if (in.mipsGot) 2015 in.mipsGot->build(); 2016 2017 removeUnusedSyntheticSections(); 2018 script->diagnoseOrphanHandling(); 2019 2020 sortSections(); 2021 2022 // Create a list of OutputSections, assign sectionIndex, and populate 2023 // in.shStrTab. 2024 for (SectionCommand *cmd : script->sectionCommands) 2025 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 2026 OutputSection *osec = &osd->osec; 2027 outputSections.push_back(osec); 2028 osec->sectionIndex = outputSections.size(); 2029 osec->shName = in.shStrTab->addString(osec->name); 2030 } 2031 2032 // Prefer command line supplied address over other constraints. 2033 for (OutputSection *sec : outputSections) { 2034 auto i = config->sectionStartMap.find(sec->name); 2035 if (i != config->sectionStartMap.end()) 2036 sec->addrExpr = [=] { return i->second; }; 2037 } 2038 2039 // With the outputSections available check for GDPLT relocations 2040 // and add __tls_get_addr symbol if needed. 2041 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2042 Symbol *sym = symtab->addSymbol(Undefined{ 2043 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2044 sym->isPreemptible = true; 2045 partitions[0].dynSymTab->addSymbol(sym); 2046 } 2047 2048 // This is a bit of a hack. A value of 0 means undef, so we set it 2049 // to 1 to make __ehdr_start defined. The section number is not 2050 // particularly relevant. 2051 Out::elfHeader->sectionIndex = 1; 2052 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2053 2054 // Binary and relocatable output does not have PHDRS. 2055 // The headers have to be created before finalize as that can influence the 2056 // image base and the dynamic section on mips includes the image base. 2057 if (!config->relocatable && !config->oFormatBinary) { 2058 for (Partition &part : partitions) { 2059 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2060 : createPhdrs(part); 2061 if (config->emachine == EM_ARM) { 2062 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2063 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2064 } 2065 if (config->emachine == EM_MIPS) { 2066 // Add separate segments for MIPS-specific sections. 2067 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2068 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2069 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2070 } 2071 } 2072 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2073 2074 // Find the TLS segment. This happens before the section layout loop so that 2075 // Android relocation packing can look up TLS symbol addresses. We only need 2076 // to care about the main partition here because all TLS symbols were moved 2077 // to the main partition (see MarkLive.cpp). 2078 for (PhdrEntry *p : mainPart->phdrs) 2079 if (p->p_type == PT_TLS) 2080 Out::tlsPhdr = p; 2081 } 2082 2083 // Some symbols are defined in term of program headers. Now that we 2084 // have the headers, we can find out which sections they point to. 2085 setReservedSymbolSections(); 2086 2087 { 2088 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2089 2090 finalizeSynthetic(in.bss.get()); 2091 finalizeSynthetic(in.bssRelRo.get()); 2092 finalizeSynthetic(in.symTabShndx.get()); 2093 finalizeSynthetic(in.shStrTab.get()); 2094 finalizeSynthetic(in.strTab.get()); 2095 finalizeSynthetic(in.got.get()); 2096 finalizeSynthetic(in.mipsGot.get()); 2097 finalizeSynthetic(in.igotPlt.get()); 2098 finalizeSynthetic(in.gotPlt.get()); 2099 finalizeSynthetic(in.relaIplt.get()); 2100 finalizeSynthetic(in.relaPlt.get()); 2101 finalizeSynthetic(in.plt.get()); 2102 finalizeSynthetic(in.iplt.get()); 2103 finalizeSynthetic(in.ppc32Got2.get()); 2104 finalizeSynthetic(in.partIndex.get()); 2105 2106 // Dynamic section must be the last one in this list and dynamic 2107 // symbol table section (dynSymTab) must be the first one. 2108 for (Partition &part : partitions) { 2109 if (part.relaDyn) { 2110 // Compute DT_RELACOUNT to be used by part.dynamic. 2111 part.relaDyn->partitionRels(); 2112 finalizeSynthetic(part.relaDyn.get()); 2113 } 2114 2115 finalizeSynthetic(part.dynSymTab.get()); 2116 finalizeSynthetic(part.gnuHashTab.get()); 2117 finalizeSynthetic(part.hashTab.get()); 2118 finalizeSynthetic(part.verDef.get()); 2119 finalizeSynthetic(part.relrDyn.get()); 2120 finalizeSynthetic(part.ehFrameHdr.get()); 2121 finalizeSynthetic(part.verSym.get()); 2122 finalizeSynthetic(part.verNeed.get()); 2123 finalizeSynthetic(part.dynamic.get()); 2124 } 2125 } 2126 2127 if (!script->hasSectionsCommand && !config->relocatable) 2128 fixSectionAlignments(); 2129 2130 // This is used to: 2131 // 1) Create "thunks": 2132 // Jump instructions in many ISAs have small displacements, and therefore 2133 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2134 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2135 // responsibility to create and insert small pieces of code between 2136 // sections to extend the ranges if jump targets are out of range. Such 2137 // code pieces are called "thunks". 2138 // 2139 // We add thunks at this stage. We couldn't do this before this point 2140 // because this is the earliest point where we know sizes of sections and 2141 // their layouts (that are needed to determine if jump targets are in 2142 // range). 2143 // 2144 // 2) Update the sections. We need to generate content that depends on the 2145 // address of InputSections. For example, MIPS GOT section content or 2146 // android packed relocations sections content. 2147 // 2148 // 3) Assign the final values for the linker script symbols. Linker scripts 2149 // sometimes using forward symbol declarations. We want to set the correct 2150 // values. They also might change after adding the thunks. 2151 finalizeAddressDependentContent(); 2152 2153 // All information needed for OutputSection part of Map file is available. 2154 if (errorCount()) 2155 return; 2156 2157 { 2158 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2159 // finalizeAddressDependentContent may have added local symbols to the 2160 // static symbol table. 2161 finalizeSynthetic(in.symTab.get()); 2162 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2163 } 2164 2165 // Relaxation to delete inter-basic block jumps created by basic block 2166 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2167 // can relax jump instructions based on symbol offset. 2168 if (config->optimizeBBJumps) 2169 optimizeBasicBlockJumps(); 2170 2171 // Fill other section headers. The dynamic table is finalized 2172 // at the end because some tags like RELSZ depend on result 2173 // of finalizing other sections. 2174 for (OutputSection *sec : outputSections) 2175 sec->finalize(); 2176 } 2177 2178 // Ensure data sections are not mixed with executable sections when 2179 // --execute-only is used. --execute-only make pages executable but not 2180 // readable. 2181 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2182 if (!config->executeOnly) 2183 return; 2184 2185 SmallVector<InputSection *, 0> storage; 2186 for (OutputSection *osec : outputSections) 2187 if (osec->flags & SHF_EXECINSTR) 2188 for (InputSection *isec : getInputSections(*osec, storage)) 2189 if (!(isec->flags & SHF_EXECINSTR)) 2190 error("cannot place " + toString(isec) + " into " + 2191 toString(osec->name) + 2192 ": --execute-only does not support intermingling data and code"); 2193 } 2194 2195 // The linker is expected to define SECNAME_start and SECNAME_end 2196 // symbols for a few sections. This function defines them. 2197 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2198 // If a section does not exist, there's ambiguity as to how we 2199 // define _start and _end symbols for an init/fini section. Since 2200 // the loader assume that the symbols are always defined, we need to 2201 // always define them. But what value? The loader iterates over all 2202 // pointers between _start and _end to run global ctors/dtors, so if 2203 // the section is empty, their symbol values don't actually matter 2204 // as long as _start and _end point to the same location. 2205 // 2206 // That said, we don't want to set the symbols to 0 (which is 2207 // probably the simplest value) because that could cause some 2208 // program to fail to link due to relocation overflow, if their 2209 // program text is above 2 GiB. We use the address of the .text 2210 // section instead to prevent that failure. 2211 // 2212 // In rare situations, the .text section may not exist. If that's the 2213 // case, use the image base address as a last resort. 2214 OutputSection *Default = findSection(".text"); 2215 if (!Default) 2216 Default = Out::elfHeader; 2217 2218 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2219 if (os && !script->isDiscarded(os)) { 2220 addOptionalRegular(start, os, 0); 2221 addOptionalRegular(end, os, -1); 2222 } else { 2223 addOptionalRegular(start, Default, 0); 2224 addOptionalRegular(end, Default, 0); 2225 } 2226 }; 2227 2228 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2229 define("__init_array_start", "__init_array_end", Out::initArray); 2230 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2231 2232 if (OutputSection *sec = findSection(".ARM.exidx")) 2233 define("__exidx_start", "__exidx_end", sec); 2234 } 2235 2236 // If a section name is valid as a C identifier (which is rare because of 2237 // the leading '.'), linkers are expected to define __start_<secname> and 2238 // __stop_<secname> symbols. They are at beginning and end of the section, 2239 // respectively. This is not requested by the ELF standard, but GNU ld and 2240 // gold provide the feature, and used by many programs. 2241 template <class ELFT> 2242 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) { 2243 StringRef s = osec.name; 2244 if (!isValidCIdentifier(s)) 2245 return; 2246 addOptionalRegular(saver().save("__start_" + s), &osec, 0, 2247 config->zStartStopVisibility); 2248 addOptionalRegular(saver().save("__stop_" + s), &osec, -1, 2249 config->zStartStopVisibility); 2250 } 2251 2252 static bool needsPtLoad(OutputSection *sec) { 2253 if (!(sec->flags & SHF_ALLOC)) 2254 return false; 2255 2256 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2257 // responsible for allocating space for them, not the PT_LOAD that 2258 // contains the TLS initialization image. 2259 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2260 return false; 2261 return true; 2262 } 2263 2264 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2265 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2266 // RW. This means that there is no alignment in the RO to RX transition and we 2267 // cannot create a PT_LOAD there. 2268 static uint64_t computeFlags(uint64_t flags) { 2269 if (config->omagic) 2270 return PF_R | PF_W | PF_X; 2271 if (config->executeOnly && (flags & PF_X)) 2272 return flags & ~PF_R; 2273 if (config->singleRoRx && !(flags & PF_W)) 2274 return flags | PF_X; 2275 return flags; 2276 } 2277 2278 // Decide which program headers to create and which sections to include in each 2279 // one. 2280 template <class ELFT> 2281 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2282 SmallVector<PhdrEntry *, 0> ret; 2283 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2284 ret.push_back(make<PhdrEntry>(type, flags)); 2285 return ret.back(); 2286 }; 2287 2288 unsigned partNo = part.getNumber(); 2289 bool isMain = partNo == 1; 2290 2291 // Add the first PT_LOAD segment for regular output sections. 2292 uint64_t flags = computeFlags(PF_R); 2293 PhdrEntry *load = nullptr; 2294 2295 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2296 // PT_LOAD. 2297 if (!config->nmagic && !config->omagic) { 2298 // The first phdr entry is PT_PHDR which describes the program header 2299 // itself. 2300 if (isMain) 2301 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2302 else 2303 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2304 2305 // PT_INTERP must be the second entry if exists. 2306 if (OutputSection *cmd = findSection(".interp", partNo)) 2307 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2308 2309 // Add the headers. We will remove them if they don't fit. 2310 // In the other partitions the headers are ordinary sections, so they don't 2311 // need to be added here. 2312 if (isMain) { 2313 load = addHdr(PT_LOAD, flags); 2314 load->add(Out::elfHeader); 2315 load->add(Out::programHeaders); 2316 } 2317 } 2318 2319 // PT_GNU_RELRO includes all sections that should be marked as 2320 // read-only by dynamic linker after processing relocations. 2321 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2322 // an error message if more than one PT_GNU_RELRO PHDR is required. 2323 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2324 bool inRelroPhdr = false; 2325 OutputSection *relroEnd = nullptr; 2326 for (OutputSection *sec : outputSections) { 2327 if (sec->partition != partNo || !needsPtLoad(sec)) 2328 continue; 2329 if (isRelroSection(sec)) { 2330 inRelroPhdr = true; 2331 if (!relroEnd) 2332 relRo->add(sec); 2333 else 2334 error("section: " + sec->name + " is not contiguous with other relro" + 2335 " sections"); 2336 } else if (inRelroPhdr) { 2337 inRelroPhdr = false; 2338 relroEnd = sec; 2339 } 2340 } 2341 2342 for (OutputSection *sec : outputSections) { 2343 if (!needsPtLoad(sec)) 2344 continue; 2345 2346 // Normally, sections in partitions other than the current partition are 2347 // ignored. But partition number 255 is a special case: it contains the 2348 // partition end marker (.part.end). It needs to be added to the main 2349 // partition so that a segment is created for it in the main partition, 2350 // which will cause the dynamic loader to reserve space for the other 2351 // partitions. 2352 if (sec->partition != partNo) { 2353 if (isMain && sec->partition == 255) 2354 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2355 continue; 2356 } 2357 2358 // Segments are contiguous memory regions that has the same attributes 2359 // (e.g. executable or writable). There is one phdr for each segment. 2360 // Therefore, we need to create a new phdr when the next section has 2361 // different flags or is loaded at a discontiguous address or memory 2362 // region using AT or AT> linker script command, respectively. At the same 2363 // time, we don't want to create a separate load segment for the headers, 2364 // even if the first output section has an AT or AT> attribute. 2365 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2366 bool sameLMARegion = 2367 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2368 if (!(load && newFlags == flags && sec != relroEnd && 2369 sec->memRegion == load->firstSec->memRegion && 2370 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2371 load = addHdr(PT_LOAD, newFlags); 2372 flags = newFlags; 2373 } 2374 2375 load->add(sec); 2376 } 2377 2378 // Add a TLS segment if any. 2379 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2380 for (OutputSection *sec : outputSections) 2381 if (sec->partition == partNo && sec->flags & SHF_TLS) 2382 tlsHdr->add(sec); 2383 if (tlsHdr->firstSec) 2384 ret.push_back(tlsHdr); 2385 2386 // Add an entry for .dynamic. 2387 if (OutputSection *sec = part.dynamic->getParent()) 2388 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2389 2390 if (relRo->firstSec) 2391 ret.push_back(relRo); 2392 2393 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2394 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2395 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2396 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2397 ->add(part.ehFrameHdr->getParent()); 2398 2399 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2400 // the dynamic linker fill the segment with random data. 2401 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2402 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2403 2404 if (config->zGnustack != GnuStackKind::None) { 2405 // PT_GNU_STACK is a special section to tell the loader to make the 2406 // pages for the stack non-executable. If you really want an executable 2407 // stack, you can pass -z execstack, but that's not recommended for 2408 // security reasons. 2409 unsigned perm = PF_R | PF_W; 2410 if (config->zGnustack == GnuStackKind::Exec) 2411 perm |= PF_X; 2412 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2413 } 2414 2415 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2416 // is expected to perform W^X violations, such as calling mprotect(2) or 2417 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2418 // OpenBSD. 2419 if (config->zWxneeded) 2420 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2421 2422 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2423 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2424 2425 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2426 // same alignment. 2427 PhdrEntry *note = nullptr; 2428 for (OutputSection *sec : outputSections) { 2429 if (sec->partition != partNo) 2430 continue; 2431 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2432 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2433 note = addHdr(PT_NOTE, PF_R); 2434 note->add(sec); 2435 } else { 2436 note = nullptr; 2437 } 2438 } 2439 return ret; 2440 } 2441 2442 template <class ELFT> 2443 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2444 unsigned pType, unsigned pFlags) { 2445 unsigned partNo = part.getNumber(); 2446 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2447 return cmd->partition == partNo && cmd->type == shType; 2448 }); 2449 if (i == outputSections.end()) 2450 return; 2451 2452 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2453 entry->add(*i); 2454 part.phdrs.push_back(entry); 2455 } 2456 2457 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2458 // This is achieved by assigning an alignment expression to addrExpr of each 2459 // such section. 2460 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2461 const PhdrEntry *prev; 2462 auto pageAlign = [&](const PhdrEntry *p) { 2463 OutputSection *cmd = p->firstSec; 2464 if (!cmd) 2465 return; 2466 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2467 if (!cmd->addrExpr) { 2468 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2469 // padding in the file contents. 2470 // 2471 // When -z separate-code is used we must not have any overlap in pages 2472 // between an executable segment and a non-executable segment. We align to 2473 // the next maximum page size boundary on transitions between executable 2474 // and non-executable segments. 2475 // 2476 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2477 // sections will be extracted to a separate file. Align to the next 2478 // maximum page size boundary so that we can find the ELF header at the 2479 // start. We cannot benefit from overlapping p_offset ranges with the 2480 // previous segment anyway. 2481 if (config->zSeparate == SeparateSegmentKind::Loadable || 2482 (config->zSeparate == SeparateSegmentKind::Code && prev && 2483 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2484 cmd->type == SHT_LLVM_PART_EHDR) 2485 cmd->addrExpr = [] { 2486 return alignTo(script->getDot(), config->maxPageSize); 2487 }; 2488 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2489 // it must be the RW. Align to p_align(PT_TLS) to make sure 2490 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2491 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2492 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2493 // be congruent to 0 modulo p_align(PT_TLS). 2494 // 2495 // Technically this is not required, but as of 2019, some dynamic loaders 2496 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2497 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2498 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2499 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2500 // blocks correctly. We need to keep the workaround for a while. 2501 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2502 cmd->addrExpr = [] { 2503 return alignTo(script->getDot(), config->maxPageSize) + 2504 alignTo(script->getDot() % config->maxPageSize, 2505 Out::tlsPhdr->p_align); 2506 }; 2507 else 2508 cmd->addrExpr = [] { 2509 return alignTo(script->getDot(), config->maxPageSize) + 2510 script->getDot() % config->maxPageSize; 2511 }; 2512 } 2513 }; 2514 2515 for (Partition &part : partitions) { 2516 prev = nullptr; 2517 for (const PhdrEntry *p : part.phdrs) 2518 if (p->p_type == PT_LOAD && p->firstSec) { 2519 pageAlign(p); 2520 prev = p; 2521 } 2522 } 2523 } 2524 2525 // Compute an in-file position for a given section. The file offset must be the 2526 // same with its virtual address modulo the page size, so that the loader can 2527 // load executables without any address adjustment. 2528 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2529 // The first section in a PT_LOAD has to have congruent offset and address 2530 // modulo the maximum page size. 2531 if (os->ptLoad && os->ptLoad->firstSec == os) 2532 return alignTo(off, os->ptLoad->p_align, os->addr); 2533 2534 // File offsets are not significant for .bss sections other than the first one 2535 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2536 // increasing rather than setting to zero. 2537 if (os->type == SHT_NOBITS && 2538 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2539 return off; 2540 2541 // If the section is not in a PT_LOAD, we just have to align it. 2542 if (!os->ptLoad) 2543 return alignTo(off, os->alignment); 2544 2545 // If two sections share the same PT_LOAD the file offset is calculated 2546 // using this formula: Off2 = Off1 + (VA2 - VA1). 2547 OutputSection *first = os->ptLoad->firstSec; 2548 return first->offset + os->addr - first->addr; 2549 } 2550 2551 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2552 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2553 auto needsOffset = [](OutputSection &sec) { 2554 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2555 }; 2556 uint64_t minAddr = UINT64_MAX; 2557 for (OutputSection *sec : outputSections) 2558 if (needsOffset(*sec)) { 2559 sec->offset = sec->getLMA(); 2560 minAddr = std::min(minAddr, sec->offset); 2561 } 2562 2563 // Sections are laid out at LMA minus minAddr. 2564 fileSize = 0; 2565 for (OutputSection *sec : outputSections) 2566 if (needsOffset(*sec)) { 2567 sec->offset -= minAddr; 2568 fileSize = std::max(fileSize, sec->offset + sec->size); 2569 } 2570 } 2571 2572 static std::string rangeToString(uint64_t addr, uint64_t len) { 2573 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2574 } 2575 2576 // Assign file offsets to output sections. 2577 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2578 Out::programHeaders->offset = Out::elfHeader->size; 2579 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2580 2581 PhdrEntry *lastRX = nullptr; 2582 for (Partition &part : partitions) 2583 for (PhdrEntry *p : part.phdrs) 2584 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2585 lastRX = p; 2586 2587 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2588 // will not occupy file offsets contained by a PT_LOAD. 2589 for (OutputSection *sec : outputSections) { 2590 if (!(sec->flags & SHF_ALLOC)) 2591 continue; 2592 off = computeFileOffset(sec, off); 2593 sec->offset = off; 2594 if (sec->type != SHT_NOBITS) 2595 off += sec->size; 2596 2597 // If this is a last section of the last executable segment and that 2598 // segment is the last loadable segment, align the offset of the 2599 // following section to avoid loading non-segments parts of the file. 2600 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2601 lastRX->lastSec == sec) 2602 off = alignTo(off, config->maxPageSize); 2603 } 2604 for (OutputSection *osec : outputSections) 2605 if (!(osec->flags & SHF_ALLOC)) { 2606 osec->offset = alignTo(off, osec->alignment); 2607 off = osec->offset + osec->size; 2608 } 2609 2610 sectionHeaderOff = alignTo(off, config->wordsize); 2611 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2612 2613 // Our logic assumes that sections have rising VA within the same segment. 2614 // With use of linker scripts it is possible to violate this rule and get file 2615 // offset overlaps or overflows. That should never happen with a valid script 2616 // which does not move the location counter backwards and usually scripts do 2617 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2618 // kernel, which control segment distribution explicitly and move the counter 2619 // backwards, so we have to allow doing that to support linking them. We 2620 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2621 // we want to prevent file size overflows because it would crash the linker. 2622 for (OutputSection *sec : outputSections) { 2623 if (sec->type == SHT_NOBITS) 2624 continue; 2625 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2626 error("unable to place section " + sec->name + " at file offset " + 2627 rangeToString(sec->offset, sec->size) + 2628 "; check your linker script for overflows"); 2629 } 2630 } 2631 2632 // Finalize the program headers. We call this function after we assign 2633 // file offsets and VAs to all sections. 2634 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2635 for (PhdrEntry *p : part.phdrs) { 2636 OutputSection *first = p->firstSec; 2637 OutputSection *last = p->lastSec; 2638 2639 if (first) { 2640 p->p_filesz = last->offset - first->offset; 2641 if (last->type != SHT_NOBITS) 2642 p->p_filesz += last->size; 2643 2644 p->p_memsz = last->addr + last->size - first->addr; 2645 p->p_offset = first->offset; 2646 p->p_vaddr = first->addr; 2647 2648 // File offsets in partitions other than the main partition are relative 2649 // to the offset of the ELF headers. Perform that adjustment now. 2650 if (part.elfHeader) 2651 p->p_offset -= part.elfHeader->getParent()->offset; 2652 2653 if (!p->hasLMA) 2654 p->p_paddr = first->getLMA(); 2655 } 2656 2657 if (p->p_type == PT_GNU_RELRO) { 2658 p->p_align = 1; 2659 // musl/glibc ld.so rounds the size down, so we need to round up 2660 // to protect the last page. This is a no-op on FreeBSD which always 2661 // rounds up. 2662 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2663 p->p_offset; 2664 } 2665 } 2666 } 2667 2668 // A helper struct for checkSectionOverlap. 2669 namespace { 2670 struct SectionOffset { 2671 OutputSection *sec; 2672 uint64_t offset; 2673 }; 2674 } // namespace 2675 2676 // Check whether sections overlap for a specific address range (file offsets, 2677 // load and virtual addresses). 2678 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2679 bool isVirtualAddr) { 2680 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2681 return a.offset < b.offset; 2682 }); 2683 2684 // Finding overlap is easy given a vector is sorted by start position. 2685 // If an element starts before the end of the previous element, they overlap. 2686 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2687 SectionOffset a = sections[i - 1]; 2688 SectionOffset b = sections[i]; 2689 if (b.offset >= a.offset + a.sec->size) 2690 continue; 2691 2692 // If both sections are in OVERLAY we allow the overlapping of virtual 2693 // addresses, because it is what OVERLAY was designed for. 2694 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2695 continue; 2696 2697 errorOrWarn("section " + a.sec->name + " " + name + 2698 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2699 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2700 b.sec->name + " range is " + 2701 rangeToString(b.offset, b.sec->size)); 2702 } 2703 } 2704 2705 // Check for overlapping sections and address overflows. 2706 // 2707 // In this function we check that none of the output sections have overlapping 2708 // file offsets. For SHF_ALLOC sections we also check that the load address 2709 // ranges and the virtual address ranges don't overlap 2710 template <class ELFT> void Writer<ELFT>::checkSections() { 2711 // First, check that section's VAs fit in available address space for target. 2712 for (OutputSection *os : outputSections) 2713 if ((os->addr + os->size < os->addr) || 2714 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2715 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2716 " of size 0x" + utohexstr(os->size) + 2717 " exceeds available address space"); 2718 2719 // Check for overlapping file offsets. In this case we need to skip any 2720 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2721 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2722 // binary is specified only add SHF_ALLOC sections are added to the output 2723 // file so we skip any non-allocated sections in that case. 2724 std::vector<SectionOffset> fileOffs; 2725 for (OutputSection *sec : outputSections) 2726 if (sec->size > 0 && sec->type != SHT_NOBITS && 2727 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2728 fileOffs.push_back({sec, sec->offset}); 2729 checkOverlap("file", fileOffs, false); 2730 2731 // When linking with -r there is no need to check for overlapping virtual/load 2732 // addresses since those addresses will only be assigned when the final 2733 // executable/shared object is created. 2734 if (config->relocatable) 2735 return; 2736 2737 // Checking for overlapping virtual and load addresses only needs to take 2738 // into account SHF_ALLOC sections since others will not be loaded. 2739 // Furthermore, we also need to skip SHF_TLS sections since these will be 2740 // mapped to other addresses at runtime and can therefore have overlapping 2741 // ranges in the file. 2742 std::vector<SectionOffset> vmas; 2743 for (OutputSection *sec : outputSections) 2744 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2745 vmas.push_back({sec, sec->addr}); 2746 checkOverlap("virtual address", vmas, true); 2747 2748 // Finally, check that the load addresses don't overlap. This will usually be 2749 // the same as the virtual addresses but can be different when using a linker 2750 // script with AT(). 2751 std::vector<SectionOffset> lmas; 2752 for (OutputSection *sec : outputSections) 2753 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2754 lmas.push_back({sec, sec->getLMA()}); 2755 checkOverlap("load address", lmas, false); 2756 } 2757 2758 // The entry point address is chosen in the following ways. 2759 // 2760 // 1. the '-e' entry command-line option; 2761 // 2. the ENTRY(symbol) command in a linker control script; 2762 // 3. the value of the symbol _start, if present; 2763 // 4. the number represented by the entry symbol, if it is a number; 2764 // 5. the address 0. 2765 static uint64_t getEntryAddr() { 2766 // Case 1, 2 or 3 2767 if (Symbol *b = symtab->find(config->entry)) 2768 return b->getVA(); 2769 2770 // Case 4 2771 uint64_t addr; 2772 if (to_integer(config->entry, addr)) 2773 return addr; 2774 2775 // Case 5 2776 if (config->warnMissingEntry) 2777 warn("cannot find entry symbol " + config->entry + 2778 "; not setting start address"); 2779 return 0; 2780 } 2781 2782 static uint16_t getELFType() { 2783 if (config->isPic) 2784 return ET_DYN; 2785 if (config->relocatable) 2786 return ET_REL; 2787 return ET_EXEC; 2788 } 2789 2790 template <class ELFT> void Writer<ELFT>::writeHeader() { 2791 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2792 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2793 2794 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2795 eHdr->e_type = getELFType(); 2796 eHdr->e_entry = getEntryAddr(); 2797 eHdr->e_shoff = sectionHeaderOff; 2798 2799 // Write the section header table. 2800 // 2801 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2802 // and e_shstrndx fields. When the value of one of these fields exceeds 2803 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2804 // use fields in the section header at index 0 to store 2805 // the value. The sentinel values and fields are: 2806 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2807 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2808 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2809 size_t num = outputSections.size() + 1; 2810 if (num >= SHN_LORESERVE) 2811 sHdrs->sh_size = num; 2812 else 2813 eHdr->e_shnum = num; 2814 2815 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2816 if (strTabIndex >= SHN_LORESERVE) { 2817 sHdrs->sh_link = strTabIndex; 2818 eHdr->e_shstrndx = SHN_XINDEX; 2819 } else { 2820 eHdr->e_shstrndx = strTabIndex; 2821 } 2822 2823 for (OutputSection *sec : outputSections) 2824 sec->writeHeaderTo<ELFT>(++sHdrs); 2825 } 2826 2827 // Open a result file. 2828 template <class ELFT> void Writer<ELFT>::openFile() { 2829 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2830 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2831 std::string msg; 2832 raw_string_ostream s(msg); 2833 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2834 << "section sizes:\n"; 2835 for (OutputSection *os : outputSections) 2836 s << os->name << ' ' << os->size << "\n"; 2837 error(s.str()); 2838 return; 2839 } 2840 2841 unlinkAsync(config->outputFile); 2842 unsigned flags = 0; 2843 if (!config->relocatable) 2844 flags |= FileOutputBuffer::F_executable; 2845 if (!config->mmapOutputFile) 2846 flags |= FileOutputBuffer::F_no_mmap; 2847 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2848 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2849 2850 if (!bufferOrErr) { 2851 error("failed to open " + config->outputFile + ": " + 2852 llvm::toString(bufferOrErr.takeError())); 2853 return; 2854 } 2855 buffer = std::move(*bufferOrErr); 2856 Out::bufferStart = buffer->getBufferStart(); 2857 } 2858 2859 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2860 for (OutputSection *sec : outputSections) 2861 if (sec->flags & SHF_ALLOC) 2862 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2863 } 2864 2865 static void fillTrap(uint8_t *i, uint8_t *end) { 2866 for (; i + 4 <= end; i += 4) 2867 memcpy(i, &target->trapInstr, 4); 2868 } 2869 2870 // Fill the last page of executable segments with trap instructions 2871 // instead of leaving them as zero. Even though it is not required by any 2872 // standard, it is in general a good thing to do for security reasons. 2873 // 2874 // We'll leave other pages in segments as-is because the rest will be 2875 // overwritten by output sections. 2876 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2877 for (Partition &part : partitions) { 2878 // Fill the last page. 2879 for (PhdrEntry *p : part.phdrs) 2880 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2881 fillTrap(Out::bufferStart + 2882 alignDown(p->firstSec->offset + p->p_filesz, 4), 2883 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2884 config->maxPageSize)); 2885 2886 // Round up the file size of the last segment to the page boundary iff it is 2887 // an executable segment to ensure that other tools don't accidentally 2888 // trim the instruction padding (e.g. when stripping the file). 2889 PhdrEntry *last = nullptr; 2890 for (PhdrEntry *p : part.phdrs) 2891 if (p->p_type == PT_LOAD) 2892 last = p; 2893 2894 if (last && (last->p_flags & PF_X)) 2895 last->p_memsz = last->p_filesz = 2896 alignTo(last->p_filesz, config->maxPageSize); 2897 } 2898 } 2899 2900 // Write section contents to a mmap'ed file. 2901 template <class ELFT> void Writer<ELFT>::writeSections() { 2902 llvm::TimeTraceScope timeScope("Write sections"); 2903 2904 // In -r or --emit-relocs mode, write the relocation sections first as in 2905 // ELf_Rel targets we might find out that we need to modify the relocated 2906 // section while doing it. 2907 for (OutputSection *sec : outputSections) 2908 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2909 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2910 2911 for (OutputSection *sec : outputSections) 2912 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2913 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2914 2915 // Finally, check that all dynamic relocation addends were written correctly. 2916 if (config->checkDynamicRelocs && config->writeAddends) { 2917 for (OutputSection *sec : outputSections) 2918 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2919 sec->checkDynRelAddends(Out::bufferStart); 2920 } 2921 } 2922 2923 // Computes a hash value of Data using a given hash function. 2924 // In order to utilize multiple cores, we first split data into 1MB 2925 // chunks, compute a hash for each chunk, and then compute a hash value 2926 // of the hash values. 2927 static void 2928 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2929 llvm::ArrayRef<uint8_t> data, 2930 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2931 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2932 const size_t hashesSize = chunks.size() * hashBuf.size(); 2933 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 2934 2935 // Compute hash values. 2936 parallelFor(0, chunks.size(), [&](size_t i) { 2937 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 2938 }); 2939 2940 // Write to the final output buffer. 2941 hashFn(hashBuf.data(), makeArrayRef(hashes.get(), hashesSize)); 2942 } 2943 2944 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2945 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2946 return; 2947 2948 if (config->buildId == BuildIdKind::Hexstring) { 2949 for (Partition &part : partitions) 2950 part.buildId->writeBuildId(config->buildIdVector); 2951 return; 2952 } 2953 2954 // Compute a hash of all sections of the output file. 2955 size_t hashSize = mainPart->buildId->hashSize; 2956 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 2957 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 2958 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 2959 2960 // Fedora introduced build ID as "approximation of true uniqueness across all 2961 // binaries that might be used by overlapping sets of people". It does not 2962 // need some security goals that some hash algorithms strive to provide, e.g. 2963 // (second-)preimage and collision resistance. In practice people use 'md5' 2964 // and 'sha1' just for different lengths. Implement them with the more 2965 // efficient BLAKE3. 2966 switch (config->buildId) { 2967 case BuildIdKind::Fast: 2968 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2969 write64le(dest, xxHash64(arr)); 2970 }); 2971 break; 2972 case BuildIdKind::Md5: 2973 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2974 memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize); 2975 }); 2976 break; 2977 case BuildIdKind::Sha1: 2978 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2979 memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize); 2980 }); 2981 break; 2982 case BuildIdKind::Uuid: 2983 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 2984 error("entropy source failure: " + ec.message()); 2985 break; 2986 default: 2987 llvm_unreachable("unknown BuildIdKind"); 2988 } 2989 for (Partition &part : partitions) 2990 part.buildId->writeBuildId(output); 2991 } 2992 2993 template void elf::createSyntheticSections<ELF32LE>(); 2994 template void elf::createSyntheticSections<ELF32BE>(); 2995 template void elf::createSyntheticSections<ELF64LE>(); 2996 template void elf::createSyntheticSections<ELF64BE>(); 2997 2998 template void elf::writeResult<ELF32LE>(); 2999 template void elf::writeResult<ELF32BE>(); 3000 template void elf::writeResult<ELF64LE>(); 3001 template void elf::writeResult<ELF64BE>(); 3002