1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Arrays.h" 24 #include "lld/Common/CommonLinkerContext.h" 25 #include "lld/Common/Filesystem.h" 26 #include "lld/Common/Strings.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/Support/BLAKE3.h" 29 #include "llvm/Support/Parallel.h" 30 #include "llvm/Support/RandomNumberGenerator.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void sortSections(); 59 void resolveShfLinkOrder(); 60 void finalizeAddressDependentContent(); 61 void optimizeBasicBlockJumps(); 62 void sortInputSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection &osec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool needsInterpSection() { 94 return !config->relocatable && !config->shared && 95 !config->dynamicLinker.empty() && script->needsInterpSection(); 96 } 97 98 template <class ELFT> void elf::writeResult() { 99 Writer<ELFT>().run(); 100 } 101 102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 103 auto it = std::stable_partition( 104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 105 if (p->p_type != PT_LOAD) 106 return true; 107 if (!p->firstSec) 108 return false; 109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 110 return size != 0; 111 }); 112 113 // Clear OutputSection::ptLoad for sections contained in removed 114 // segments. 115 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 116 for (OutputSection *sec : outputSections) 117 if (removed.count(sec->ptLoad)) 118 sec->ptLoad = nullptr; 119 phdrs.erase(it, phdrs.end()); 120 } 121 122 void elf::copySectionsIntoPartitions() { 123 SmallVector<InputSectionBase *, 0> newSections; 124 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 125 for (InputSectionBase *s : inputSections) { 126 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 127 continue; 128 InputSectionBase *copy; 129 if (s->type == SHT_NOTE) 130 copy = make<InputSection>(cast<InputSection>(*s)); 131 else if (auto *es = dyn_cast<EhInputSection>(s)) 132 copy = make<EhInputSection>(*es); 133 else 134 continue; 135 copy->partition = part; 136 newSections.push_back(copy); 137 } 138 } 139 140 inputSections.insert(inputSections.end(), newSections.begin(), 141 newSections.end()); 142 } 143 144 void elf::combineEhSections() { 145 llvm::TimeTraceScope timeScope("Combine EH sections"); 146 for (InputSectionBase *&s : inputSections) { 147 // Ignore dead sections and the partition end marker (.part.end), 148 // whose partition number is out of bounds. 149 if (!s->isLive() || s->partition == 255) 150 continue; 151 152 Partition &part = s->getPartition(); 153 if (auto *es = dyn_cast<EhInputSection>(s)) { 154 part.ehFrame->addSection(es); 155 s = nullptr; 156 } else if (s->kind() == SectionBase::Regular && part.armExidx && 157 part.armExidx->addSection(cast<InputSection>(s))) { 158 s = nullptr; 159 } 160 } 161 162 llvm::erase_value(inputSections, nullptr); 163 } 164 165 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 166 uint64_t val, uint8_t stOther = STV_HIDDEN) { 167 Symbol *s = symtab->find(name); 168 if (!s || s->isDefined() || s->isCommon()) 169 return nullptr; 170 171 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val, 172 /*size=*/0, sec}); 173 s->isUsedInRegularObj = true; 174 return cast<Defined>(s); 175 } 176 177 static Defined *addAbsolute(StringRef name) { 178 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 179 STT_NOTYPE, 0, 0, nullptr}); 180 sym->isUsedInRegularObj = true; 181 return cast<Defined>(sym); 182 } 183 184 // The linker is expected to define some symbols depending on 185 // the linking result. This function defines such symbols. 186 void elf::addReservedSymbols() { 187 if (config->emachine == EM_MIPS) { 188 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 189 // so that it points to an absolute address which by default is relative 190 // to GOT. Default offset is 0x7ff0. 191 // See "Global Data Symbols" in Chapter 6 in the following document: 192 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 193 ElfSym::mipsGp = addAbsolute("_gp"); 194 195 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 196 // start of function and 'gp' pointer into GOT. 197 if (symtab->find("_gp_disp")) 198 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 199 200 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 201 // pointer. This symbol is used in the code generated by .cpload pseudo-op 202 // in case of using -mno-shared option. 203 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 204 if (symtab->find("__gnu_local_gp")) 205 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 206 } else if (config->emachine == EM_PPC) { 207 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 208 // support Small Data Area, define it arbitrarily as 0. 209 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 210 } else if (config->emachine == EM_PPC64) { 211 addPPC64SaveRestore(); 212 } 213 214 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 215 // combines the typical ELF GOT with the small data sections. It commonly 216 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 217 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 218 // represent the TOC base which is offset by 0x8000 bytes from the start of 219 // the .got section. 220 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 221 // correctness of some relocations depends on its value. 222 StringRef gotSymName = 223 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 224 225 if (Symbol *s = symtab->find(gotSymName)) { 226 if (s->isDefined()) { 227 error(toString(s->file) + " cannot redefine linker defined symbol '" + 228 gotSymName + "'"); 229 return; 230 } 231 232 uint64_t gotOff = 0; 233 if (config->emachine == EM_PPC64) 234 gotOff = 0x8000; 235 236 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 237 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 238 ElfSym::globalOffsetTable = cast<Defined>(s); 239 } 240 241 // __ehdr_start is the location of ELF file headers. Note that we define 242 // this symbol unconditionally even when using a linker script, which 243 // differs from the behavior implemented by GNU linker which only define 244 // this symbol if ELF headers are in the memory mapped segment. 245 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 246 247 // __executable_start is not documented, but the expectation of at 248 // least the Android libc is that it points to the ELF header. 249 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 250 251 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 252 // each DSO. The address of the symbol doesn't matter as long as they are 253 // different in different DSOs, so we chose the start address of the DSO. 254 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 255 256 // If linker script do layout we do not need to create any standard symbols. 257 if (script->hasSectionsCommand) 258 return; 259 260 auto add = [](StringRef s, int64_t pos) { 261 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 262 }; 263 264 ElfSym::bss = add("__bss_start", 0); 265 ElfSym::end1 = add("end", -1); 266 ElfSym::end2 = add("_end", -1); 267 ElfSym::etext1 = add("etext", -1); 268 ElfSym::etext2 = add("_etext", -1); 269 ElfSym::edata1 = add("edata", -1); 270 ElfSym::edata2 = add("_edata", -1); 271 } 272 273 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 274 for (SectionCommand *cmd : script->sectionCommands) 275 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 276 if (osd->osec.name == name && osd->osec.partition == partition) 277 return &osd->osec; 278 return nullptr; 279 } 280 281 template <class ELFT> void elf::createSyntheticSections() { 282 // Initialize all pointers with NULL. This is needed because 283 // you can call lld::elf::main more than once as a library. 284 Out::tlsPhdr = nullptr; 285 Out::preinitArray = nullptr; 286 Out::initArray = nullptr; 287 Out::finiArray = nullptr; 288 289 // Add the .interp section first because it is not a SyntheticSection. 290 // The removeUnusedSyntheticSections() function relies on the 291 // SyntheticSections coming last. 292 if (needsInterpSection()) { 293 for (size_t i = 1; i <= partitions.size(); ++i) { 294 InputSection *sec = createInterpSection(); 295 sec->partition = i; 296 inputSections.push_back(sec); 297 } 298 } 299 300 auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); }; 301 302 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 303 304 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 305 Out::programHeaders->alignment = config->wordsize; 306 307 if (config->strip != StripPolicy::All) { 308 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 309 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 310 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 311 } 312 313 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 314 add(*in.bss); 315 316 // If there is a SECTIONS command and a .data.rel.ro section name use name 317 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 318 // This makes sure our relro is contiguous. 319 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 320 in.bssRelRo = std::make_unique<BssSection>( 321 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 322 add(*in.bssRelRo); 323 324 // Add MIPS-specific sections. 325 if (config->emachine == EM_MIPS) { 326 if (!config->shared && config->hasDynSymTab) { 327 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 328 add(*in.mipsRldMap); 329 } 330 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 331 add(*in.mipsAbiFlags); 332 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 333 add(*in.mipsOptions); 334 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 335 add(*in.mipsReginfo); 336 } 337 338 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 339 340 for (Partition &part : partitions) { 341 auto add = [&](SyntheticSection &sec) { 342 sec.partition = part.getNumber(); 343 inputSections.push_back(&sec); 344 }; 345 346 if (!part.name.empty()) { 347 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 348 part.elfHeader->name = part.name; 349 add(*part.elfHeader); 350 351 part.programHeaders = 352 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 353 add(*part.programHeaders); 354 } 355 356 if (config->buildId != BuildIdKind::None) { 357 part.buildId = std::make_unique<BuildIdSection>(); 358 add(*part.buildId); 359 } 360 361 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 362 part.dynSymTab = 363 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 364 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 365 366 if (config->emachine == EM_AARCH64 && 367 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) { 368 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(); 369 add(*part.memtagAndroidNote); 370 } 371 372 if (config->androidPackDynRelocs) 373 part.relaDyn = 374 std::make_unique<AndroidPackedRelocationSection<ELFT>>(relaDynName); 375 else 376 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 377 relaDynName, config->zCombreloc); 378 379 if (config->hasDynSymTab) { 380 add(*part.dynSymTab); 381 382 part.verSym = std::make_unique<VersionTableSection>(); 383 add(*part.verSym); 384 385 if (!namedVersionDefs().empty()) { 386 part.verDef = std::make_unique<VersionDefinitionSection>(); 387 add(*part.verDef); 388 } 389 390 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 391 add(*part.verNeed); 392 393 if (config->gnuHash) { 394 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 395 add(*part.gnuHashTab); 396 } 397 398 if (config->sysvHash) { 399 part.hashTab = std::make_unique<HashTableSection>(); 400 add(*part.hashTab); 401 } 402 403 add(*part.dynamic); 404 add(*part.dynStrTab); 405 add(*part.relaDyn); 406 } 407 408 if (config->relrPackDynRelocs) { 409 part.relrDyn = std::make_unique<RelrSection<ELFT>>(); 410 add(*part.relrDyn); 411 } 412 413 if (!config->relocatable) { 414 if (config->ehFrameHdr) { 415 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 416 add(*part.ehFrameHdr); 417 } 418 part.ehFrame = std::make_unique<EhFrameSection>(); 419 add(*part.ehFrame); 420 } 421 422 if (config->emachine == EM_ARM && !config->relocatable) { 423 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 424 // InputSections. 425 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 426 add(*part.armExidx); 427 } 428 429 if (!config->packageMetadata.empty()) { 430 part.packageMetadataNote = std::make_unique<PackageMetadataNote>(); 431 add(*part.packageMetadataNote); 432 } 433 } 434 435 if (partitions.size() != 1) { 436 // Create the partition end marker. This needs to be in partition number 255 437 // so that it is sorted after all other partitions. It also has other 438 // special handling (see createPhdrs() and combineEhSections()). 439 in.partEnd = 440 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 441 in.partEnd->partition = 255; 442 add(*in.partEnd); 443 444 in.partIndex = std::make_unique<PartitionIndexSection>(); 445 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 446 addOptionalRegular("__part_index_end", in.partIndex.get(), 447 in.partIndex->getSize()); 448 add(*in.partIndex); 449 } 450 451 // Add .got. MIPS' .got is so different from the other archs, 452 // it has its own class. 453 if (config->emachine == EM_MIPS) { 454 in.mipsGot = std::make_unique<MipsGotSection>(); 455 add(*in.mipsGot); 456 } else { 457 in.got = std::make_unique<GotSection>(); 458 add(*in.got); 459 } 460 461 if (config->emachine == EM_PPC) { 462 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 463 add(*in.ppc32Got2); 464 } 465 466 if (config->emachine == EM_PPC64) { 467 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 468 add(*in.ppc64LongBranchTarget); 469 } 470 471 in.gotPlt = std::make_unique<GotPltSection>(); 472 add(*in.gotPlt); 473 in.igotPlt = std::make_unique<IgotPltSection>(); 474 add(*in.igotPlt); 475 476 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 477 // it as a relocation and ensure the referenced section is created. 478 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 479 if (target->gotBaseSymInGotPlt) 480 in.gotPlt->hasGotPltOffRel = true; 481 else 482 in.got->hasGotOffRel = true; 483 } 484 485 if (config->gdbIndex) 486 add(*GdbIndexSection::create<ELFT>()); 487 488 // We always need to add rel[a].plt to output if it has entries. 489 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 490 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 491 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 492 add(*in.relaPlt); 493 494 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 495 // relocations are processed last by the dynamic loader. We cannot place the 496 // iplt section in .rel.dyn when Android relocation packing is enabled because 497 // that would cause a section type mismatch. However, because the Android 498 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 499 // behaviour by placing the iplt section in .rel.plt. 500 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 501 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 502 /*sort=*/false); 503 add(*in.relaIplt); 504 505 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 506 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 507 in.ibtPlt = std::make_unique<IBTPltSection>(); 508 add(*in.ibtPlt); 509 } 510 511 if (config->emachine == EM_PPC) 512 in.plt = std::make_unique<PPC32GlinkSection>(); 513 else 514 in.plt = std::make_unique<PltSection>(); 515 add(*in.plt); 516 in.iplt = std::make_unique<IpltSection>(); 517 add(*in.iplt); 518 519 if (config->andFeatures) 520 add(*make<GnuPropertySection>()); 521 522 // .note.GNU-stack is always added when we are creating a re-linkable 523 // object file. Other linkers are using the presence of this marker 524 // section to control the executable-ness of the stack area, but that 525 // is irrelevant these days. Stack area should always be non-executable 526 // by default. So we emit this section unconditionally. 527 if (config->relocatable) 528 add(*make<GnuStackSection>()); 529 530 if (in.symTab) 531 add(*in.symTab); 532 if (in.symTabShndx) 533 add(*in.symTabShndx); 534 add(*in.shStrTab); 535 if (in.strTab) 536 add(*in.strTab); 537 } 538 539 // The main function of the writer. 540 template <class ELFT> void Writer<ELFT>::run() { 541 copyLocalSymbols(); 542 543 if (config->copyRelocs) 544 addSectionSymbols(); 545 546 // Now that we have a complete set of output sections. This function 547 // completes section contents. For example, we need to add strings 548 // to the string table, and add entries to .got and .plt. 549 // finalizeSections does that. 550 finalizeSections(); 551 checkExecuteOnly(); 552 553 // If --compressed-debug-sections is specified, compress .debug_* sections. 554 // Do it right now because it changes the size of output sections. 555 for (OutputSection *sec : outputSections) 556 sec->maybeCompress<ELFT>(); 557 558 if (script->hasSectionsCommand) 559 script->allocateHeaders(mainPart->phdrs); 560 561 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 562 // 0 sized region. This has to be done late since only after assignAddresses 563 // we know the size of the sections. 564 for (Partition &part : partitions) 565 removeEmptyPTLoad(part.phdrs); 566 567 if (!config->oFormatBinary) 568 assignFileOffsets(); 569 else 570 assignFileOffsetsBinary(); 571 572 for (Partition &part : partitions) 573 setPhdrs(part); 574 575 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections() 576 // because the files may be useful in case checkSections() or openFile() 577 // fails, for example, due to an erroneous file size. 578 writeMapAndCref(); 579 580 if (config->checkSections) 581 checkSections(); 582 583 // It does not make sense try to open the file if we have error already. 584 if (errorCount()) 585 return; 586 587 { 588 llvm::TimeTraceScope timeScope("Write output file"); 589 // Write the result down to a file. 590 openFile(); 591 if (errorCount()) 592 return; 593 594 if (!config->oFormatBinary) { 595 if (config->zSeparate != SeparateSegmentKind::None) 596 writeTrapInstr(); 597 writeHeader(); 598 writeSections(); 599 } else { 600 writeSectionsBinary(); 601 } 602 603 // Backfill .note.gnu.build-id section content. This is done at last 604 // because the content is usually a hash value of the entire output file. 605 writeBuildId(); 606 if (errorCount()) 607 return; 608 609 if (auto e = buffer->commit()) 610 error("failed to write to the output file: " + toString(std::move(e))); 611 } 612 } 613 614 template <class ELFT, class RelTy> 615 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 616 llvm::ArrayRef<RelTy> rels) { 617 for (const RelTy &rel : rels) { 618 Symbol &sym = file->getRelocTargetSym(rel); 619 if (sym.isLocal()) 620 sym.used = true; 621 } 622 } 623 624 // The function ensures that the "used" field of local symbols reflects the fact 625 // that the symbol is used in a relocation from a live section. 626 template <class ELFT> static void markUsedLocalSymbols() { 627 // With --gc-sections, the field is already filled. 628 // See MarkLive<ELFT>::resolveReloc(). 629 if (config->gcSections) 630 return; 631 for (ELFFileBase *file : ctx->objectFiles) { 632 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 633 for (InputSectionBase *s : f->getSections()) { 634 InputSection *isec = dyn_cast_or_null<InputSection>(s); 635 if (!isec) 636 continue; 637 if (isec->type == SHT_REL) 638 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 639 else if (isec->type == SHT_RELA) 640 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 641 } 642 } 643 } 644 645 static bool shouldKeepInSymtab(const Defined &sym) { 646 if (sym.isSection()) 647 return false; 648 649 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 650 // from live sections. 651 if (sym.used && config->copyRelocs) 652 return true; 653 654 // Exclude local symbols pointing to .ARM.exidx sections. 655 // They are probably mapping symbols "$d", which are optional for these 656 // sections. After merging the .ARM.exidx sections, some of these symbols 657 // may become dangling. The easiest way to avoid the issue is not to add 658 // them to the symbol table from the beginning. 659 if (config->emachine == EM_ARM && sym.section && 660 sym.section->type == SHT_ARM_EXIDX) 661 return false; 662 663 if (config->discard == DiscardPolicy::None) 664 return true; 665 if (config->discard == DiscardPolicy::All) 666 return false; 667 668 // In ELF assembly .L symbols are normally discarded by the assembler. 669 // If the assembler fails to do so, the linker discards them if 670 // * --discard-locals is used. 671 // * The symbol is in a SHF_MERGE section, which is normally the reason for 672 // the assembler keeping the .L symbol. 673 if (sym.getName().startswith(".L") && 674 (config->discard == DiscardPolicy::Locals || 675 (sym.section && (sym.section->flags & SHF_MERGE)))) 676 return false; 677 return true; 678 } 679 680 static bool includeInSymtab(const Symbol &b) { 681 if (auto *d = dyn_cast<Defined>(&b)) { 682 // Always include absolute symbols. 683 SectionBase *sec = d->section; 684 if (!sec) 685 return true; 686 687 if (auto *s = dyn_cast<MergeInputSection>(sec)) 688 return s->getSectionPiece(d->value).live; 689 return sec->isLive(); 690 } 691 return b.used || !config->gcSections; 692 } 693 694 // Local symbols are not in the linker's symbol table. This function scans 695 // each object file's symbol table to copy local symbols to the output. 696 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 697 if (!in.symTab) 698 return; 699 llvm::TimeTraceScope timeScope("Add local symbols"); 700 if (config->copyRelocs && config->discard != DiscardPolicy::None) 701 markUsedLocalSymbols<ELFT>(); 702 for (ELFFileBase *file : ctx->objectFiles) { 703 for (Symbol *b : file->getLocalSymbols()) { 704 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 705 auto *dr = dyn_cast<Defined>(b); 706 707 // No reason to keep local undefined symbol in symtab. 708 if (!dr) 709 continue; 710 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 711 in.symTab->addSymbol(b); 712 } 713 } 714 } 715 716 // Create a section symbol for each output section so that we can represent 717 // relocations that point to the section. If we know that no relocation is 718 // referring to a section (that happens if the section is a synthetic one), we 719 // don't create a section symbol for that section. 720 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 721 for (SectionCommand *cmd : script->sectionCommands) { 722 auto *osd = dyn_cast<OutputDesc>(cmd); 723 if (!osd) 724 continue; 725 OutputSection &osec = osd->osec; 726 InputSectionBase *isec = nullptr; 727 // Iterate over all input sections and add a STT_SECTION symbol if any input 728 // section may be a relocation target. 729 for (SectionCommand *cmd : osec.commands) { 730 auto *isd = dyn_cast<InputSectionDescription>(cmd); 731 if (!isd) 732 continue; 733 for (InputSectionBase *s : isd->sections) { 734 // Relocations are not using REL[A] section symbols. 735 if (s->type == SHT_REL || s->type == SHT_RELA) 736 continue; 737 738 // Unlike other synthetic sections, mergeable output sections contain 739 // data copied from input sections, and there may be a relocation 740 // pointing to its contents if -r or --emit-reloc is given. 741 if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE)) 742 continue; 743 744 isec = s; 745 break; 746 } 747 } 748 if (!isec) 749 continue; 750 751 // Set the symbol to be relative to the output section so that its st_value 752 // equals the output section address. Note, there may be a gap between the 753 // start of the output section and isec. 754 in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, 755 STT_SECTION, 756 /*value=*/0, /*size=*/0, &osec)); 757 } 758 } 759 760 // Today's loaders have a feature to make segments read-only after 761 // processing dynamic relocations to enhance security. PT_GNU_RELRO 762 // is defined for that. 763 // 764 // This function returns true if a section needs to be put into a 765 // PT_GNU_RELRO segment. 766 static bool isRelroSection(const OutputSection *sec) { 767 if (!config->zRelro) 768 return false; 769 if (sec->relro) 770 return true; 771 772 uint64_t flags = sec->flags; 773 774 // Non-allocatable or non-writable sections don't need RELRO because 775 // they are not writable or not even mapped to memory in the first place. 776 // RELRO is for sections that are essentially read-only but need to 777 // be writable only at process startup to allow dynamic linker to 778 // apply relocations. 779 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 780 return false; 781 782 // Once initialized, TLS data segments are used as data templates 783 // for a thread-local storage. For each new thread, runtime 784 // allocates memory for a TLS and copy templates there. No thread 785 // are supposed to use templates directly. Thus, it can be in RELRO. 786 if (flags & SHF_TLS) 787 return true; 788 789 // .init_array, .preinit_array and .fini_array contain pointers to 790 // functions that are executed on process startup or exit. These 791 // pointers are set by the static linker, and they are not expected 792 // to change at runtime. But if you are an attacker, you could do 793 // interesting things by manipulating pointers in .fini_array, for 794 // example. So they are put into RELRO. 795 uint32_t type = sec->type; 796 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 797 type == SHT_PREINIT_ARRAY) 798 return true; 799 800 // .got contains pointers to external symbols. They are resolved by 801 // the dynamic linker when a module is loaded into memory, and after 802 // that they are not expected to change. So, it can be in RELRO. 803 if (in.got && sec == in.got->getParent()) 804 return true; 805 806 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 807 // through r2 register, which is reserved for that purpose. Since r2 is used 808 // for accessing .got as well, .got and .toc need to be close enough in the 809 // virtual address space. Usually, .toc comes just after .got. Since we place 810 // .got into RELRO, .toc needs to be placed into RELRO too. 811 if (sec->name.equals(".toc")) 812 return true; 813 814 // .got.plt contains pointers to external function symbols. They are 815 // by default resolved lazily, so we usually cannot put it into RELRO. 816 // However, if "-z now" is given, the lazy symbol resolution is 817 // disabled, which enables us to put it into RELRO. 818 if (sec == in.gotPlt->getParent()) 819 return config->zNow; 820 821 // .dynamic section contains data for the dynamic linker, and 822 // there's no need to write to it at runtime, so it's better to put 823 // it into RELRO. 824 if (sec->name == ".dynamic") 825 return true; 826 827 // Sections with some special names are put into RELRO. This is a 828 // bit unfortunate because section names shouldn't be significant in 829 // ELF in spirit. But in reality many linker features depend on 830 // magic section names. 831 StringRef s = sec->name; 832 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 833 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 834 s == ".fini_array" || s == ".init_array" || 835 s == ".openbsd.randomdata" || s == ".preinit_array"; 836 } 837 838 // We compute a rank for each section. The rank indicates where the 839 // section should be placed in the file. Instead of using simple 840 // numbers (0,1,2...), we use a series of flags. One for each decision 841 // point when placing the section. 842 // Using flags has two key properties: 843 // * It is easy to check if a give branch was taken. 844 // * It is easy two see how similar two ranks are (see getRankProximity). 845 enum RankFlags { 846 RF_NOT_ADDR_SET = 1 << 27, 847 RF_NOT_ALLOC = 1 << 26, 848 RF_PARTITION = 1 << 18, // Partition number (8 bits) 849 RF_NOT_PART_EHDR = 1 << 17, 850 RF_NOT_PART_PHDR = 1 << 16, 851 RF_NOT_INTERP = 1 << 15, 852 RF_NOT_NOTE = 1 << 14, 853 RF_WRITE = 1 << 13, 854 RF_EXEC_WRITE = 1 << 12, 855 RF_EXEC = 1 << 11, 856 RF_RODATA = 1 << 10, 857 RF_NOT_RELRO = 1 << 9, 858 RF_NOT_TLS = 1 << 8, 859 RF_BSS = 1 << 7, 860 RF_PPC_NOT_TOCBSS = 1 << 6, 861 RF_PPC_TOCL = 1 << 5, 862 RF_PPC_TOC = 1 << 4, 863 RF_PPC_GOT = 1 << 3, 864 RF_PPC_BRANCH_LT = 1 << 2, 865 RF_MIPS_GPREL = 1 << 1, 866 RF_MIPS_NOT_GOT = 1 << 0 867 }; 868 869 static unsigned getSectionRank(const OutputSection &osec) { 870 unsigned rank = osec.partition * RF_PARTITION; 871 872 // We want to put section specified by -T option first, so we 873 // can start assigning VA starting from them later. 874 if (config->sectionStartMap.count(osec.name)) 875 return rank; 876 rank |= RF_NOT_ADDR_SET; 877 878 // Allocatable sections go first to reduce the total PT_LOAD size and 879 // so debug info doesn't change addresses in actual code. 880 if (!(osec.flags & SHF_ALLOC)) 881 return rank | RF_NOT_ALLOC; 882 883 if (osec.type == SHT_LLVM_PART_EHDR) 884 return rank; 885 rank |= RF_NOT_PART_EHDR; 886 887 if (osec.type == SHT_LLVM_PART_PHDR) 888 return rank; 889 rank |= RF_NOT_PART_PHDR; 890 891 // Put .interp first because some loaders want to see that section 892 // on the first page of the executable file when loaded into memory. 893 if (osec.name == ".interp") 894 return rank; 895 rank |= RF_NOT_INTERP; 896 897 // Put .note sections (which make up one PT_NOTE) at the beginning so that 898 // they are likely to be included in a core file even if core file size is 899 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 900 // included in a core to match core files with executables. 901 if (osec.type == SHT_NOTE) 902 return rank; 903 rank |= RF_NOT_NOTE; 904 905 // Sort sections based on their access permission in the following 906 // order: R, RX, RWX, RW. This order is based on the following 907 // considerations: 908 // * Read-only sections come first such that they go in the 909 // PT_LOAD covering the program headers at the start of the file. 910 // * Read-only, executable sections come next. 911 // * Writable, executable sections follow such that .plt on 912 // architectures where it needs to be writable will be placed 913 // between .text and .data. 914 // * Writable sections come last, such that .bss lands at the very 915 // end of the last PT_LOAD. 916 bool isExec = osec.flags & SHF_EXECINSTR; 917 bool isWrite = osec.flags & SHF_WRITE; 918 919 if (isExec) { 920 if (isWrite) 921 rank |= RF_EXEC_WRITE; 922 else 923 rank |= RF_EXEC; 924 } else if (isWrite) { 925 rank |= RF_WRITE; 926 } else if (osec.type == SHT_PROGBITS) { 927 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 928 // .eh_frame) closer to .text. They likely contain PC or GOT relative 929 // relocations and there could be relocation overflow if other huge sections 930 // (.dynstr .dynsym) were placed in between. 931 rank |= RF_RODATA; 932 } 933 934 // Place RelRo sections first. After considering SHT_NOBITS below, the 935 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 936 // where | marks where page alignment happens. An alternative ordering is 937 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 938 // waste more bytes due to 2 alignment places. 939 if (!isRelroSection(&osec)) 940 rank |= RF_NOT_RELRO; 941 942 // If we got here we know that both A and B are in the same PT_LOAD. 943 944 // The TLS initialization block needs to be a single contiguous block in a R/W 945 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 946 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 947 // after PROGBITS. 948 if (!(osec.flags & SHF_TLS)) 949 rank |= RF_NOT_TLS; 950 951 // Within TLS sections, or within other RelRo sections, or within non-RelRo 952 // sections, place non-NOBITS sections first. 953 if (osec.type == SHT_NOBITS) 954 rank |= RF_BSS; 955 956 // Some architectures have additional ordering restrictions for sections 957 // within the same PT_LOAD. 958 if (config->emachine == EM_PPC64) { 959 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 960 // that we would like to make sure appear is a specific order to maximize 961 // their coverage by a single signed 16-bit offset from the TOC base 962 // pointer. Conversely, the special .tocbss section should be first among 963 // all SHT_NOBITS sections. This will put it next to the loaded special 964 // PPC64 sections (and, thus, within reach of the TOC base pointer). 965 StringRef name = osec.name; 966 if (name != ".tocbss") 967 rank |= RF_PPC_NOT_TOCBSS; 968 969 if (name == ".toc1") 970 rank |= RF_PPC_TOCL; 971 972 if (name == ".toc") 973 rank |= RF_PPC_TOC; 974 975 if (name == ".got") 976 rank |= RF_PPC_GOT; 977 978 if (name == ".branch_lt") 979 rank |= RF_PPC_BRANCH_LT; 980 } 981 982 if (config->emachine == EM_MIPS) { 983 // All sections with SHF_MIPS_GPREL flag should be grouped together 984 // because data in these sections is addressable with a gp relative address. 985 if (osec.flags & SHF_MIPS_GPREL) 986 rank |= RF_MIPS_GPREL; 987 988 if (osec.name != ".got") 989 rank |= RF_MIPS_NOT_GOT; 990 } 991 992 return rank; 993 } 994 995 static bool compareSections(const SectionCommand *aCmd, 996 const SectionCommand *bCmd) { 997 const OutputSection *a = &cast<OutputDesc>(aCmd)->osec; 998 const OutputSection *b = &cast<OutputDesc>(bCmd)->osec; 999 1000 if (a->sortRank != b->sortRank) 1001 return a->sortRank < b->sortRank; 1002 1003 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1004 return config->sectionStartMap.lookup(a->name) < 1005 config->sectionStartMap.lookup(b->name); 1006 return false; 1007 } 1008 1009 void PhdrEntry::add(OutputSection *sec) { 1010 lastSec = sec; 1011 if (!firstSec) 1012 firstSec = sec; 1013 p_align = std::max(p_align, sec->alignment); 1014 if (p_type == PT_LOAD) 1015 sec->ptLoad = this; 1016 } 1017 1018 // The beginning and the ending of .rel[a].plt section are marked 1019 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1020 // executable. The runtime needs these symbols in order to resolve 1021 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1022 // need these symbols, since IRELATIVE relocs are resolved through GOT 1023 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1024 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1025 if (config->relocatable || config->isPic) 1026 return; 1027 1028 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1029 // because .rela.plt might be empty and thus removed from output. 1030 // We'll override Out::elfHeader with In.relaIplt later when we are 1031 // sure that .rela.plt exists in output. 1032 ElfSym::relaIpltStart = addOptionalRegular( 1033 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1034 Out::elfHeader, 0, STV_HIDDEN); 1035 1036 ElfSym::relaIpltEnd = addOptionalRegular( 1037 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1038 Out::elfHeader, 0, STV_HIDDEN); 1039 } 1040 1041 // This function generates assignments for predefined symbols (e.g. _end or 1042 // _etext) and inserts them into the commands sequence to be processed at the 1043 // appropriate time. This ensures that the value is going to be correct by the 1044 // time any references to these symbols are processed and is equivalent to 1045 // defining these symbols explicitly in the linker script. 1046 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1047 if (ElfSym::globalOffsetTable) { 1048 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1049 // to the start of the .got or .got.plt section. 1050 InputSection *sec = in.gotPlt.get(); 1051 if (!target->gotBaseSymInGotPlt) 1052 sec = in.mipsGot.get() ? cast<InputSection>(in.mipsGot.get()) 1053 : cast<InputSection>(in.got.get()); 1054 ElfSym::globalOffsetTable->section = sec; 1055 } 1056 1057 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1058 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1059 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1060 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1061 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1062 } 1063 1064 PhdrEntry *last = nullptr; 1065 PhdrEntry *lastRO = nullptr; 1066 1067 for (Partition &part : partitions) { 1068 for (PhdrEntry *p : part.phdrs) { 1069 if (p->p_type != PT_LOAD) 1070 continue; 1071 last = p; 1072 if (!(p->p_flags & PF_W)) 1073 lastRO = p; 1074 } 1075 } 1076 1077 if (lastRO) { 1078 // _etext is the first location after the last read-only loadable segment. 1079 if (ElfSym::etext1) 1080 ElfSym::etext1->section = lastRO->lastSec; 1081 if (ElfSym::etext2) 1082 ElfSym::etext2->section = lastRO->lastSec; 1083 } 1084 1085 if (last) { 1086 // _edata points to the end of the last mapped initialized section. 1087 OutputSection *edata = nullptr; 1088 for (OutputSection *os : outputSections) { 1089 if (os->type != SHT_NOBITS) 1090 edata = os; 1091 if (os == last->lastSec) 1092 break; 1093 } 1094 1095 if (ElfSym::edata1) 1096 ElfSym::edata1->section = edata; 1097 if (ElfSym::edata2) 1098 ElfSym::edata2->section = edata; 1099 1100 // _end is the first location after the uninitialized data region. 1101 if (ElfSym::end1) 1102 ElfSym::end1->section = last->lastSec; 1103 if (ElfSym::end2) 1104 ElfSym::end2->section = last->lastSec; 1105 } 1106 1107 if (ElfSym::bss) 1108 ElfSym::bss->section = findSection(".bss"); 1109 1110 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1111 // be equal to the _gp symbol's value. 1112 if (ElfSym::mipsGp) { 1113 // Find GP-relative section with the lowest address 1114 // and use this address to calculate default _gp value. 1115 for (OutputSection *os : outputSections) { 1116 if (os->flags & SHF_MIPS_GPREL) { 1117 ElfSym::mipsGp->section = os; 1118 ElfSym::mipsGp->value = 0x7ff0; 1119 break; 1120 } 1121 } 1122 } 1123 } 1124 1125 // We want to find how similar two ranks are. 1126 // The more branches in getSectionRank that match, the more similar they are. 1127 // Since each branch corresponds to a bit flag, we can just use 1128 // countLeadingZeros. 1129 static int getRankProximityAux(const OutputSection &a, const OutputSection &b) { 1130 return countLeadingZeros(a.sortRank ^ b.sortRank); 1131 } 1132 1133 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1134 auto *osd = dyn_cast<OutputDesc>(b); 1135 return (osd && osd->osec.hasInputSections) 1136 ? getRankProximityAux(*a, osd->osec) 1137 : -1; 1138 } 1139 1140 // When placing orphan sections, we want to place them after symbol assignments 1141 // so that an orphan after 1142 // begin_foo = .; 1143 // foo : { *(foo) } 1144 // end_foo = .; 1145 // doesn't break the intended meaning of the begin/end symbols. 1146 // We don't want to go over sections since findOrphanPos is the 1147 // one in charge of deciding the order of the sections. 1148 // We don't want to go over changes to '.', since doing so in 1149 // rx_sec : { *(rx_sec) } 1150 // . = ALIGN(0x1000); 1151 // /* The RW PT_LOAD starts here*/ 1152 // rw_sec : { *(rw_sec) } 1153 // would mean that the RW PT_LOAD would become unaligned. 1154 static bool shouldSkip(SectionCommand *cmd) { 1155 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1156 return assign->name != "."; 1157 return false; 1158 } 1159 1160 // We want to place orphan sections so that they share as much 1161 // characteristics with their neighbors as possible. For example, if 1162 // both are rw, or both are tls. 1163 static SmallVectorImpl<SectionCommand *>::iterator 1164 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1165 SmallVectorImpl<SectionCommand *>::iterator e) { 1166 OutputSection *sec = &cast<OutputDesc>(*e)->osec; 1167 1168 // Find the first element that has as close a rank as possible. 1169 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1170 return getRankProximity(sec, a) < getRankProximity(sec, b); 1171 }); 1172 if (i == e) 1173 return e; 1174 if (!isa<OutputDesc>(*i)) 1175 return e; 1176 auto foundSec = &cast<OutputDesc>(*i)->osec; 1177 1178 // Consider all existing sections with the same proximity. 1179 int proximity = getRankProximity(sec, *i); 1180 unsigned sortRank = sec->sortRank; 1181 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1182 // Prevent the orphan section to be placed before the found section. If 1183 // custom program headers are defined, that helps to avoid adding it to a 1184 // previous segment and changing flags of that segment, for example, making 1185 // a read-only segment writable. If memory regions are defined, an orphan 1186 // section should continue the same region as the found section to better 1187 // resemble the behavior of GNU ld. 1188 sortRank = std::max(sortRank, foundSec->sortRank); 1189 for (; i != e; ++i) { 1190 auto *curSecDesc = dyn_cast<OutputDesc>(*i); 1191 if (!curSecDesc || !curSecDesc->osec.hasInputSections) 1192 continue; 1193 if (getRankProximity(sec, curSecDesc) != proximity || 1194 sortRank < curSecDesc->osec.sortRank) 1195 break; 1196 } 1197 1198 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1199 auto *osd = dyn_cast<OutputDesc>(cmd); 1200 return osd && osd->osec.hasInputSections; 1201 }; 1202 auto j = 1203 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1204 isOutputSecWithInputSections); 1205 i = j.base(); 1206 1207 // As a special case, if the orphan section is the last section, put 1208 // it at the very end, past any other commands. 1209 // This matches bfd's behavior and is convenient when the linker script fully 1210 // specifies the start of the file, but doesn't care about the end (the non 1211 // alloc sections for example). 1212 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1213 if (nextSec == e) 1214 return e; 1215 1216 while (i != e && shouldSkip(*i)) 1217 ++i; 1218 return i; 1219 } 1220 1221 // Adds random priorities to sections not already in the map. 1222 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1223 if (config->shuffleSections.empty()) 1224 return; 1225 1226 SmallVector<InputSectionBase *, 0> matched, sections = inputSections; 1227 matched.reserve(sections.size()); 1228 for (const auto &patAndSeed : config->shuffleSections) { 1229 matched.clear(); 1230 for (InputSectionBase *sec : sections) 1231 if (patAndSeed.first.match(sec->name)) 1232 matched.push_back(sec); 1233 const uint32_t seed = patAndSeed.second; 1234 if (seed == UINT32_MAX) { 1235 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1236 // section order is stable even if the number of sections changes. This is 1237 // useful to catch issues like static initialization order fiasco 1238 // reliably. 1239 std::reverse(matched.begin(), matched.end()); 1240 } else { 1241 std::mt19937 g(seed ? seed : std::random_device()()); 1242 llvm::shuffle(matched.begin(), matched.end(), g); 1243 } 1244 size_t i = 0; 1245 for (InputSectionBase *&sec : sections) 1246 if (patAndSeed.first.match(sec->name)) 1247 sec = matched[i++]; 1248 } 1249 1250 // Existing priorities are < 0, so use priorities >= 0 for the missing 1251 // sections. 1252 int prio = 0; 1253 for (InputSectionBase *sec : sections) { 1254 if (order.try_emplace(sec, prio).second) 1255 ++prio; 1256 } 1257 } 1258 1259 // Builds section order for handling --symbol-ordering-file. 1260 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1261 DenseMap<const InputSectionBase *, int> sectionOrder; 1262 // Use the rarely used option --call-graph-ordering-file to sort sections. 1263 if (!config->callGraphProfile.empty()) 1264 return computeCallGraphProfileOrder(); 1265 1266 if (config->symbolOrderingFile.empty()) 1267 return sectionOrder; 1268 1269 struct SymbolOrderEntry { 1270 int priority; 1271 bool present; 1272 }; 1273 1274 // Build a map from symbols to their priorities. Symbols that didn't 1275 // appear in the symbol ordering file have the lowest priority 0. 1276 // All explicitly mentioned symbols have negative (higher) priorities. 1277 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1278 int priority = -config->symbolOrderingFile.size(); 1279 for (StringRef s : config->symbolOrderingFile) 1280 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1281 1282 // Build a map from sections to their priorities. 1283 auto addSym = [&](Symbol &sym) { 1284 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1285 if (it == symbolOrder.end()) 1286 return; 1287 SymbolOrderEntry &ent = it->second; 1288 ent.present = true; 1289 1290 maybeWarnUnorderableSymbol(&sym); 1291 1292 if (auto *d = dyn_cast<Defined>(&sym)) { 1293 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1294 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1295 priority = std::min(priority, ent.priority); 1296 } 1297 } 1298 }; 1299 1300 // We want both global and local symbols. We get the global ones from the 1301 // symbol table and iterate the object files for the local ones. 1302 for (Symbol *sym : symtab->symbols()) 1303 addSym(*sym); 1304 1305 for (ELFFileBase *file : ctx->objectFiles) 1306 for (Symbol *sym : file->getLocalSymbols()) 1307 addSym(*sym); 1308 1309 if (config->warnSymbolOrdering) 1310 for (auto orderEntry : symbolOrder) 1311 if (!orderEntry.second.present) 1312 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1313 1314 return sectionOrder; 1315 } 1316 1317 // Sorts the sections in ISD according to the provided section order. 1318 static void 1319 sortISDBySectionOrder(InputSectionDescription *isd, 1320 const DenseMap<const InputSectionBase *, int> &order, 1321 bool executableOutputSection) { 1322 SmallVector<InputSection *, 0> unorderedSections; 1323 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1324 uint64_t unorderedSize = 0; 1325 uint64_t totalSize = 0; 1326 1327 for (InputSection *isec : isd->sections) { 1328 if (executableOutputSection) 1329 totalSize += isec->getSize(); 1330 auto i = order.find(isec); 1331 if (i == order.end()) { 1332 unorderedSections.push_back(isec); 1333 unorderedSize += isec->getSize(); 1334 continue; 1335 } 1336 orderedSections.push_back({isec, i->second}); 1337 } 1338 llvm::sort(orderedSections, llvm::less_second()); 1339 1340 // Find an insertion point for the ordered section list in the unordered 1341 // section list. On targets with limited-range branches, this is the mid-point 1342 // of the unordered section list. This decreases the likelihood that a range 1343 // extension thunk will be needed to enter or exit the ordered region. If the 1344 // ordered section list is a list of hot functions, we can generally expect 1345 // the ordered functions to be called more often than the unordered functions, 1346 // making it more likely that any particular call will be within range, and 1347 // therefore reducing the number of thunks required. 1348 // 1349 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1350 // If the layout is: 1351 // 1352 // 8MB hot 1353 // 32MB cold 1354 // 1355 // only the first 8-16MB of the cold code (depending on which hot function it 1356 // is actually calling) can call the hot code without a range extension thunk. 1357 // However, if we use this layout: 1358 // 1359 // 16MB cold 1360 // 8MB hot 1361 // 16MB cold 1362 // 1363 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1364 // of the second block of cold code can call the hot code without a thunk. So 1365 // we effectively double the amount of code that could potentially call into 1366 // the hot code without a thunk. 1367 // 1368 // The above is not necessary if total size of input sections in this "isd" 1369 // is small. Note that we assume all input sections are executable if the 1370 // output section is executable (which is not always true but supposed to 1371 // cover most cases). 1372 size_t insPt = 0; 1373 if (executableOutputSection && !orderedSections.empty() && 1374 target->getThunkSectionSpacing() && 1375 totalSize >= target->getThunkSectionSpacing()) { 1376 uint64_t unorderedPos = 0; 1377 for (; insPt != unorderedSections.size(); ++insPt) { 1378 unorderedPos += unorderedSections[insPt]->getSize(); 1379 if (unorderedPos > unorderedSize / 2) 1380 break; 1381 } 1382 } 1383 1384 isd->sections.clear(); 1385 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1386 isd->sections.push_back(isec); 1387 for (std::pair<InputSection *, int> p : orderedSections) 1388 isd->sections.push_back(p.first); 1389 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1390 isd->sections.push_back(isec); 1391 } 1392 1393 static void sortSection(OutputSection &osec, 1394 const DenseMap<const InputSectionBase *, int> &order) { 1395 StringRef name = osec.name; 1396 1397 // Never sort these. 1398 if (name == ".init" || name == ".fini") 1399 return; 1400 1401 // IRelative relocations that usually live in the .rel[a].dyn section should 1402 // be processed last by the dynamic loader. To achieve that we add synthetic 1403 // sections in the required order from the beginning so that the in.relaIplt 1404 // section is placed last in an output section. Here we just do not apply 1405 // sorting for an output section which holds the in.relaIplt section. 1406 if (in.relaIplt->getParent() == &osec) 1407 return; 1408 1409 // Sort input sections by priority using the list provided by 1410 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1411 // digit radix sort. The sections may be sorted stably again by a more 1412 // significant key. 1413 if (!order.empty()) 1414 for (SectionCommand *b : osec.commands) 1415 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1416 sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR); 1417 1418 if (script->hasSectionsCommand) 1419 return; 1420 1421 if (name == ".init_array" || name == ".fini_array") { 1422 osec.sortInitFini(); 1423 } else if (name == ".ctors" || name == ".dtors") { 1424 osec.sortCtorsDtors(); 1425 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1426 // .toc is allocated just after .got and is accessed using GOT-relative 1427 // relocations. Object files compiled with small code model have an 1428 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1429 // To reduce the risk of relocation overflow, .toc contents are sorted so 1430 // that sections having smaller relocation offsets are at beginning of .toc 1431 assert(osec.commands.size() == 1); 1432 auto *isd = cast<InputSectionDescription>(osec.commands[0]); 1433 llvm::stable_sort(isd->sections, 1434 [](const InputSection *a, const InputSection *b) -> bool { 1435 return a->file->ppc64SmallCodeModelTocRelocs && 1436 !b->file->ppc64SmallCodeModelTocRelocs; 1437 }); 1438 } 1439 } 1440 1441 // If no layout was provided by linker script, we want to apply default 1442 // sorting for special input sections. This also handles --symbol-ordering-file. 1443 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1444 // Build the order once since it is expensive. 1445 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1446 maybeShuffle(order); 1447 for (SectionCommand *cmd : script->sectionCommands) 1448 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1449 sortSection(osd->osec, order); 1450 } 1451 1452 template <class ELFT> void Writer<ELFT>::sortSections() { 1453 llvm::TimeTraceScope timeScope("Sort sections"); 1454 1455 // Don't sort if using -r. It is not necessary and we want to preserve the 1456 // relative order for SHF_LINK_ORDER sections. 1457 if (config->relocatable) { 1458 script->adjustOutputSections(); 1459 return; 1460 } 1461 1462 sortInputSections(); 1463 1464 for (SectionCommand *cmd : script->sectionCommands) 1465 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1466 osd->osec.sortRank = getSectionRank(osd->osec); 1467 if (!script->hasSectionsCommand) { 1468 // We know that all the OutputSections are contiguous in this case. 1469 auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); }; 1470 std::stable_sort( 1471 llvm::find_if(script->sectionCommands, isSection), 1472 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1473 compareSections); 1474 } 1475 1476 // Process INSERT commands and update output section attributes. From this 1477 // point onwards the order of script->sectionCommands is fixed. 1478 script->processInsertCommands(); 1479 script->adjustOutputSections(); 1480 1481 if (!script->hasSectionsCommand) 1482 return; 1483 1484 // Orphan sections are sections present in the input files which are 1485 // not explicitly placed into the output file by the linker script. 1486 // 1487 // The sections in the linker script are already in the correct 1488 // order. We have to figuere out where to insert the orphan 1489 // sections. 1490 // 1491 // The order of the sections in the script is arbitrary and may not agree with 1492 // compareSections. This means that we cannot easily define a strict weak 1493 // ordering. To see why, consider a comparison of a section in the script and 1494 // one not in the script. We have a two simple options: 1495 // * Make them equivalent (a is not less than b, and b is not less than a). 1496 // The problem is then that equivalence has to be transitive and we can 1497 // have sections a, b and c with only b in a script and a less than c 1498 // which breaks this property. 1499 // * Use compareSectionsNonScript. Given that the script order doesn't have 1500 // to match, we can end up with sections a, b, c, d where b and c are in the 1501 // script and c is compareSectionsNonScript less than b. In which case d 1502 // can be equivalent to c, a to b and d < a. As a concrete example: 1503 // .a (rx) # not in script 1504 // .b (rx) # in script 1505 // .c (ro) # in script 1506 // .d (ro) # not in script 1507 // 1508 // The way we define an order then is: 1509 // * Sort only the orphan sections. They are in the end right now. 1510 // * Move each orphan section to its preferred position. We try 1511 // to put each section in the last position where it can share 1512 // a PT_LOAD. 1513 // 1514 // There is some ambiguity as to where exactly a new entry should be 1515 // inserted, because Commands contains not only output section 1516 // commands but also other types of commands such as symbol assignment 1517 // expressions. There's no correct answer here due to the lack of the 1518 // formal specification of the linker script. We use heuristics to 1519 // determine whether a new output command should be added before or 1520 // after another commands. For the details, look at shouldSkip 1521 // function. 1522 1523 auto i = script->sectionCommands.begin(); 1524 auto e = script->sectionCommands.end(); 1525 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1526 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1527 return osd->osec.sectionIndex == UINT32_MAX; 1528 return false; 1529 }); 1530 1531 // Sort the orphan sections. 1532 std::stable_sort(nonScriptI, e, compareSections); 1533 1534 // As a horrible special case, skip the first . assignment if it is before any 1535 // section. We do this because it is common to set a load address by starting 1536 // the script with ". = 0xabcd" and the expectation is that every section is 1537 // after that. 1538 auto firstSectionOrDotAssignment = 1539 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1540 if (firstSectionOrDotAssignment != e && 1541 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1542 ++firstSectionOrDotAssignment; 1543 i = firstSectionOrDotAssignment; 1544 1545 while (nonScriptI != e) { 1546 auto pos = findOrphanPos(i, nonScriptI); 1547 OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec; 1548 1549 // As an optimization, find all sections with the same sort rank 1550 // and insert them with one rotate. 1551 unsigned rank = orphan->sortRank; 1552 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1553 return cast<OutputDesc>(cmd)->osec.sortRank != rank; 1554 }); 1555 std::rotate(pos, nonScriptI, end); 1556 nonScriptI = end; 1557 } 1558 1559 script->adjustSectionsAfterSorting(); 1560 } 1561 1562 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1563 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1564 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1565 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1566 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1567 if (!la || !lb) 1568 return la && !lb; 1569 OutputSection *aOut = la->getParent(); 1570 OutputSection *bOut = lb->getParent(); 1571 1572 if (aOut != bOut) 1573 return aOut->addr < bOut->addr; 1574 return la->outSecOff < lb->outSecOff; 1575 } 1576 1577 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1578 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1579 for (OutputSection *sec : outputSections) { 1580 if (!(sec->flags & SHF_LINK_ORDER)) 1581 continue; 1582 1583 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1584 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1585 if (!config->relocatable && config->emachine == EM_ARM && 1586 sec->type == SHT_ARM_EXIDX) 1587 continue; 1588 1589 // Link order may be distributed across several InputSectionDescriptions. 1590 // Sorting is performed separately. 1591 SmallVector<InputSection **, 0> scriptSections; 1592 SmallVector<InputSection *, 0> sections; 1593 for (SectionCommand *cmd : sec->commands) { 1594 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1595 if (!isd) 1596 continue; 1597 bool hasLinkOrder = false; 1598 scriptSections.clear(); 1599 sections.clear(); 1600 for (InputSection *&isec : isd->sections) { 1601 if (isec->flags & SHF_LINK_ORDER) { 1602 InputSection *link = isec->getLinkOrderDep(); 1603 if (link && !link->getParent()) 1604 error(toString(isec) + ": sh_link points to discarded section " + 1605 toString(link)); 1606 hasLinkOrder = true; 1607 } 1608 scriptSections.push_back(&isec); 1609 sections.push_back(isec); 1610 } 1611 if (hasLinkOrder && errorCount() == 0) { 1612 llvm::stable_sort(sections, compareByFilePosition); 1613 for (int i = 0, n = sections.size(); i != n; ++i) 1614 *scriptSections[i] = sections[i]; 1615 } 1616 } 1617 } 1618 } 1619 1620 static void finalizeSynthetic(SyntheticSection *sec) { 1621 if (sec && sec->isNeeded() && sec->getParent()) { 1622 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1623 sec->finalizeContents(); 1624 } 1625 } 1626 1627 // We need to generate and finalize the content that depends on the address of 1628 // InputSections. As the generation of the content may also alter InputSection 1629 // addresses we must converge to a fixed point. We do that here. See the comment 1630 // in Writer<ELFT>::finalizeSections(). 1631 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1632 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1633 ThunkCreator tc; 1634 AArch64Err843419Patcher a64p; 1635 ARMErr657417Patcher a32p; 1636 script->assignAddresses(); 1637 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1638 // do require the relative addresses of OutputSections because linker scripts 1639 // can assign Virtual Addresses to OutputSections that are not monotonically 1640 // increasing. 1641 for (Partition &part : partitions) 1642 finalizeSynthetic(part.armExidx.get()); 1643 resolveShfLinkOrder(); 1644 1645 // Converts call x@GDPLT to call __tls_get_addr 1646 if (config->emachine == EM_HEXAGON) 1647 hexagonTLSSymbolUpdate(outputSections); 1648 1649 uint32_t pass = 0, assignPasses = 0; 1650 for (;;) { 1651 bool changed = target->needsThunks ? tc.createThunks(pass, outputSections) 1652 : target->relaxOnce(pass); 1653 ++pass; 1654 1655 // With Thunk Size much smaller than branch range we expect to 1656 // converge quickly; if we get to 15 something has gone wrong. 1657 if (changed && pass >= 15) { 1658 error(target->needsThunks ? "thunk creation not converged" 1659 : "relaxation not converged"); 1660 break; 1661 } 1662 1663 if (config->fixCortexA53Errata843419) { 1664 if (changed) 1665 script->assignAddresses(); 1666 changed |= a64p.createFixes(); 1667 } 1668 if (config->fixCortexA8) { 1669 if (changed) 1670 script->assignAddresses(); 1671 changed |= a32p.createFixes(); 1672 } 1673 1674 if (in.mipsGot) 1675 in.mipsGot->updateAllocSize(); 1676 1677 for (Partition &part : partitions) { 1678 changed |= part.relaDyn->updateAllocSize(); 1679 if (part.relrDyn) 1680 changed |= part.relrDyn->updateAllocSize(); 1681 } 1682 1683 const Defined *changedSym = script->assignAddresses(); 1684 if (!changed) { 1685 // Some symbols may be dependent on section addresses. When we break the 1686 // loop, the symbol values are finalized because a previous 1687 // assignAddresses() finalized section addresses. 1688 if (!changedSym) 1689 break; 1690 if (++assignPasses == 5) { 1691 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1692 " does not converge"); 1693 break; 1694 } 1695 } 1696 } 1697 if (!config->relocatable && config->emachine == EM_RISCV) 1698 riscvFinalizeRelax(pass); 1699 1700 if (config->relocatable) 1701 for (OutputSection *sec : outputSections) 1702 sec->addr = 0; 1703 1704 // If addrExpr is set, the address may not be a multiple of the alignment. 1705 // Warn because this is error-prone. 1706 for (SectionCommand *cmd : script->sectionCommands) 1707 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1708 OutputSection *osec = &osd->osec; 1709 if (osec->addr % osec->alignment != 0) 1710 warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " + 1711 osec->name + " is not a multiple of alignment (" + 1712 Twine(osec->alignment) + ")"); 1713 } 1714 } 1715 1716 // If Input Sections have been shrunk (basic block sections) then 1717 // update symbol values and sizes associated with these sections. With basic 1718 // block sections, input sections can shrink when the jump instructions at 1719 // the end of the section are relaxed. 1720 static void fixSymbolsAfterShrinking() { 1721 for (InputFile *File : ctx->objectFiles) { 1722 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1723 auto *def = dyn_cast<Defined>(Sym); 1724 if (!def) 1725 return; 1726 1727 const SectionBase *sec = def->section; 1728 if (!sec) 1729 return; 1730 1731 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1732 if (!inputSec || !inputSec->bytesDropped) 1733 return; 1734 1735 const size_t OldSize = inputSec->rawData.size(); 1736 const size_t NewSize = OldSize - inputSec->bytesDropped; 1737 1738 if (def->value > NewSize && def->value <= OldSize) { 1739 LLVM_DEBUG(llvm::dbgs() 1740 << "Moving symbol " << Sym->getName() << " from " 1741 << def->value << " to " 1742 << def->value - inputSec->bytesDropped << " bytes\n"); 1743 def->value -= inputSec->bytesDropped; 1744 return; 1745 } 1746 1747 if (def->value + def->size > NewSize && def->value <= OldSize && 1748 def->value + def->size <= OldSize) { 1749 LLVM_DEBUG(llvm::dbgs() 1750 << "Shrinking symbol " << Sym->getName() << " from " 1751 << def->size << " to " << def->size - inputSec->bytesDropped 1752 << " bytes\n"); 1753 def->size -= inputSec->bytesDropped; 1754 } 1755 }); 1756 } 1757 } 1758 1759 // If basic block sections exist, there are opportunities to delete fall thru 1760 // jumps and shrink jump instructions after basic block reordering. This 1761 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1762 // option is used. 1763 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1764 assert(config->optimizeBBJumps); 1765 SmallVector<InputSection *, 0> storage; 1766 1767 script->assignAddresses(); 1768 // For every output section that has executable input sections, this 1769 // does the following: 1770 // 1. Deletes all direct jump instructions in input sections that 1771 // jump to the following section as it is not required. 1772 // 2. If there are two consecutive jump instructions, it checks 1773 // if they can be flipped and one can be deleted. 1774 for (OutputSection *osec : outputSections) { 1775 if (!(osec->flags & SHF_EXECINSTR)) 1776 continue; 1777 ArrayRef<InputSection *> sections = getInputSections(*osec, storage); 1778 size_t numDeleted = 0; 1779 // Delete all fall through jump instructions. Also, check if two 1780 // consecutive jump instructions can be flipped so that a fall 1781 // through jmp instruction can be deleted. 1782 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1783 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1784 InputSection &sec = *sections[i]; 1785 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1786 } 1787 if (numDeleted > 0) { 1788 script->assignAddresses(); 1789 LLVM_DEBUG(llvm::dbgs() 1790 << "Removing " << numDeleted << " fall through jumps\n"); 1791 } 1792 } 1793 1794 fixSymbolsAfterShrinking(); 1795 1796 for (OutputSection *osec : outputSections) 1797 for (InputSection *is : getInputSections(*osec, storage)) 1798 is->trim(); 1799 } 1800 1801 // In order to allow users to manipulate linker-synthesized sections, 1802 // we had to add synthetic sections to the input section list early, 1803 // even before we make decisions whether they are needed. This allows 1804 // users to write scripts like this: ".mygot : { .got }". 1805 // 1806 // Doing it has an unintended side effects. If it turns out that we 1807 // don't need a .got (for example) at all because there's no 1808 // relocation that needs a .got, we don't want to emit .got. 1809 // 1810 // To deal with the above problem, this function is called after 1811 // scanRelocations is called to remove synthetic sections that turn 1812 // out to be empty. 1813 static void removeUnusedSyntheticSections() { 1814 // All input synthetic sections that can be empty are placed after 1815 // all regular ones. Reverse iterate to find the first synthetic section 1816 // after a non-synthetic one which will be our starting point. 1817 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1818 [](InputSectionBase *s) { 1819 return !isa<SyntheticSection>(s); 1820 }) 1821 .base(); 1822 1823 // Remove unused synthetic sections from inputSections; 1824 DenseSet<InputSectionBase *> unused; 1825 auto end = 1826 std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) { 1827 auto *sec = cast<SyntheticSection>(s); 1828 if (sec->getParent() && sec->isNeeded()) 1829 return false; 1830 unused.insert(sec); 1831 return true; 1832 }); 1833 inputSections.erase(end, inputSections.end()); 1834 1835 // Remove unused synthetic sections from the corresponding input section 1836 // description and orphanSections. 1837 for (auto *sec : unused) 1838 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1839 for (SectionCommand *cmd : osec->commands) 1840 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1841 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1842 return unused.count(isec); 1843 }); 1844 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1845 return unused.count(sec); 1846 }); 1847 } 1848 1849 // Create output section objects and add them to OutputSections. 1850 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1851 Out::preinitArray = findSection(".preinit_array"); 1852 Out::initArray = findSection(".init_array"); 1853 Out::finiArray = findSection(".fini_array"); 1854 1855 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1856 // symbols for sections, so that the runtime can get the start and end 1857 // addresses of each section by section name. Add such symbols. 1858 if (!config->relocatable) { 1859 addStartEndSymbols(); 1860 for (SectionCommand *cmd : script->sectionCommands) 1861 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1862 addStartStopSymbols(osd->osec); 1863 } 1864 1865 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1866 // It should be okay as no one seems to care about the type. 1867 // Even the author of gold doesn't remember why gold behaves that way. 1868 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1869 if (mainPart->dynamic->parent) 1870 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1871 /*value=*/0, /*size=*/0, mainPart->dynamic.get()})->isUsedInRegularObj = true; 1872 1873 // Define __rel[a]_iplt_{start,end} symbols if needed. 1874 addRelIpltSymbols(); 1875 1876 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1877 // should only be defined in an executable. If .sdata does not exist, its 1878 // value/section does not matter but it has to be relative, so set its 1879 // st_shndx arbitrarily to 1 (Out::elfHeader). 1880 if (config->emachine == EM_RISCV && !config->shared) { 1881 OutputSection *sec = findSection(".sdata"); 1882 ElfSym::riscvGlobalPointer = 1883 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1884 0x800, STV_DEFAULT); 1885 } 1886 1887 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1888 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1889 // way that: 1890 // 1891 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1892 // computes 0. 1893 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1894 // the TLS block). 1895 // 1896 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1897 // an absolute symbol of zero. This is different from GNU linkers which 1898 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1899 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1900 if (s && s->isUndefined()) { 1901 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 1902 STT_TLS, /*value=*/0, 0, 1903 /*section=*/nullptr}); 1904 ElfSym::tlsModuleBase = cast<Defined>(s); 1905 } 1906 } 1907 1908 { 1909 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1910 // This responsible for splitting up .eh_frame section into 1911 // pieces. The relocation scan uses those pieces, so this has to be 1912 // earlier. 1913 for (Partition &part : partitions) 1914 finalizeSynthetic(part.ehFrame.get()); 1915 } 1916 1917 if (config->hasDynSymTab) { 1918 parallelForEach(symtab->symbols(), [](Symbol *sym) { 1919 sym->isPreemptible = computeIsPreemptible(*sym); 1920 }); 1921 } 1922 1923 // Change values of linker-script-defined symbols from placeholders (assigned 1924 // by declareSymbols) to actual definitions. 1925 script->processSymbolAssignments(); 1926 1927 { 1928 llvm::TimeTraceScope timeScope("Scan relocations"); 1929 // Scan relocations. This must be done after every symbol is declared so 1930 // that we can correctly decide if a dynamic relocation is needed. This is 1931 // called after processSymbolAssignments() because it needs to know whether 1932 // a linker-script-defined symbol is absolute. 1933 ppc64noTocRelax.clear(); 1934 if (!config->relocatable) { 1935 // Scan all relocations. Each relocation goes through a series of tests to 1936 // determine if it needs special treatment, such as creating GOT, PLT, 1937 // copy relocations, etc. Note that relocations for non-alloc sections are 1938 // directly processed by InputSection::relocateNonAlloc. 1939 for (InputSectionBase *sec : inputSections) 1940 if (sec->isLive() && isa<InputSection>(sec) && (sec->flags & SHF_ALLOC)) 1941 scanRelocations<ELFT>(*sec); 1942 for (Partition &part : partitions) { 1943 for (EhInputSection *sec : part.ehFrame->sections) 1944 scanRelocations<ELFT>(*sec); 1945 if (part.armExidx && part.armExidx->isLive()) 1946 for (InputSection *sec : part.armExidx->exidxSections) 1947 scanRelocations<ELFT>(*sec); 1948 } 1949 1950 reportUndefinedSymbols(); 1951 postScanRelocations(); 1952 } 1953 } 1954 1955 if (in.plt && in.plt->isNeeded()) 1956 in.plt->addSymbols(); 1957 if (in.iplt && in.iplt->isNeeded()) 1958 in.iplt->addSymbols(); 1959 1960 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1961 auto diagnose = 1962 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 1963 ? errorOrWarn 1964 : warn; 1965 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1966 // entries are seen. These cases would otherwise lead to runtime errors 1967 // reported by the dynamic linker. 1968 // 1969 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1970 // catch more cases. That is too much for us. Our approach resembles the one 1971 // used in ld.gold, achieves a good balance to be useful but not too smart. 1972 for (SharedFile *file : ctx->sharedFiles) { 1973 bool allNeededIsKnown = 1974 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1975 return symtab->soNames.count(CachedHashStringRef(needed)); 1976 }); 1977 if (!allNeededIsKnown) 1978 continue; 1979 for (Symbol *sym : file->requiredSymbols) 1980 if (sym->isUndefined() && !sym->isWeak()) 1981 diagnose("undefined reference due to --no-allow-shlib-undefined: " + 1982 toString(*sym) + "\n>>> referenced by " + toString(file)); 1983 } 1984 } 1985 1986 { 1987 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 1988 // Now that we have defined all possible global symbols including linker- 1989 // synthesized ones. Visit all symbols to give the finishing touches. 1990 for (Symbol *sym : symtab->symbols()) { 1991 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 1992 continue; 1993 if (!config->relocatable) 1994 sym->binding = sym->computeBinding(); 1995 if (in.symTab) 1996 in.symTab->addSymbol(sym); 1997 1998 if (sym->includeInDynsym()) { 1999 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2000 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2001 if (file->isNeeded && !sym->isUndefined()) 2002 addVerneed(sym); 2003 } 2004 } 2005 2006 // We also need to scan the dynamic relocation tables of the other 2007 // partitions and add any referenced symbols to the partition's dynsym. 2008 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2009 DenseSet<Symbol *> syms; 2010 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2011 syms.insert(e.sym); 2012 for (DynamicReloc &reloc : part.relaDyn->relocs) 2013 if (reloc.sym && reloc.needsDynSymIndex() && 2014 syms.insert(reloc.sym).second) 2015 part.dynSymTab->addSymbol(reloc.sym); 2016 } 2017 } 2018 2019 if (in.mipsGot) 2020 in.mipsGot->build(); 2021 2022 removeUnusedSyntheticSections(); 2023 script->diagnoseOrphanHandling(); 2024 2025 sortSections(); 2026 2027 // Create a list of OutputSections, assign sectionIndex, and populate 2028 // in.shStrTab. 2029 for (SectionCommand *cmd : script->sectionCommands) 2030 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 2031 OutputSection *osec = &osd->osec; 2032 outputSections.push_back(osec); 2033 osec->sectionIndex = outputSections.size(); 2034 osec->shName = in.shStrTab->addString(osec->name); 2035 } 2036 2037 // Prefer command line supplied address over other constraints. 2038 for (OutputSection *sec : outputSections) { 2039 auto i = config->sectionStartMap.find(sec->name); 2040 if (i != config->sectionStartMap.end()) 2041 sec->addrExpr = [=] { return i->second; }; 2042 } 2043 2044 // With the outputSections available check for GDPLT relocations 2045 // and add __tls_get_addr symbol if needed. 2046 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2047 Symbol *sym = symtab->addSymbol(Undefined{ 2048 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2049 sym->isPreemptible = true; 2050 partitions[0].dynSymTab->addSymbol(sym); 2051 } 2052 2053 // This is a bit of a hack. A value of 0 means undef, so we set it 2054 // to 1 to make __ehdr_start defined. The section number is not 2055 // particularly relevant. 2056 Out::elfHeader->sectionIndex = 1; 2057 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2058 2059 // Binary and relocatable output does not have PHDRS. 2060 // The headers have to be created before finalize as that can influence the 2061 // image base and the dynamic section on mips includes the image base. 2062 if (!config->relocatable && !config->oFormatBinary) { 2063 for (Partition &part : partitions) { 2064 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2065 : createPhdrs(part); 2066 if (config->emachine == EM_ARM) { 2067 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2068 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2069 } 2070 if (config->emachine == EM_MIPS) { 2071 // Add separate segments for MIPS-specific sections. 2072 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2073 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2074 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2075 } 2076 } 2077 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2078 2079 // Find the TLS segment. This happens before the section layout loop so that 2080 // Android relocation packing can look up TLS symbol addresses. We only need 2081 // to care about the main partition here because all TLS symbols were moved 2082 // to the main partition (see MarkLive.cpp). 2083 for (PhdrEntry *p : mainPart->phdrs) 2084 if (p->p_type == PT_TLS) 2085 Out::tlsPhdr = p; 2086 } 2087 2088 // Some symbols are defined in term of program headers. Now that we 2089 // have the headers, we can find out which sections they point to. 2090 setReservedSymbolSections(); 2091 2092 { 2093 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2094 2095 finalizeSynthetic(in.bss.get()); 2096 finalizeSynthetic(in.bssRelRo.get()); 2097 finalizeSynthetic(in.symTabShndx.get()); 2098 finalizeSynthetic(in.shStrTab.get()); 2099 finalizeSynthetic(in.strTab.get()); 2100 finalizeSynthetic(in.got.get()); 2101 finalizeSynthetic(in.mipsGot.get()); 2102 finalizeSynthetic(in.igotPlt.get()); 2103 finalizeSynthetic(in.gotPlt.get()); 2104 finalizeSynthetic(in.relaIplt.get()); 2105 finalizeSynthetic(in.relaPlt.get()); 2106 finalizeSynthetic(in.plt.get()); 2107 finalizeSynthetic(in.iplt.get()); 2108 finalizeSynthetic(in.ppc32Got2.get()); 2109 finalizeSynthetic(in.partIndex.get()); 2110 2111 // Dynamic section must be the last one in this list and dynamic 2112 // symbol table section (dynSymTab) must be the first one. 2113 for (Partition &part : partitions) { 2114 if (part.relaDyn) { 2115 // Compute DT_RELACOUNT to be used by part.dynamic. 2116 part.relaDyn->partitionRels(); 2117 finalizeSynthetic(part.relaDyn.get()); 2118 } 2119 2120 finalizeSynthetic(part.dynSymTab.get()); 2121 finalizeSynthetic(part.gnuHashTab.get()); 2122 finalizeSynthetic(part.hashTab.get()); 2123 finalizeSynthetic(part.verDef.get()); 2124 finalizeSynthetic(part.relrDyn.get()); 2125 finalizeSynthetic(part.ehFrameHdr.get()); 2126 finalizeSynthetic(part.verSym.get()); 2127 finalizeSynthetic(part.verNeed.get()); 2128 finalizeSynthetic(part.dynamic.get()); 2129 } 2130 } 2131 2132 if (!script->hasSectionsCommand && !config->relocatable) 2133 fixSectionAlignments(); 2134 2135 // This is used to: 2136 // 1) Create "thunks": 2137 // Jump instructions in many ISAs have small displacements, and therefore 2138 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2139 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2140 // responsibility to create and insert small pieces of code between 2141 // sections to extend the ranges if jump targets are out of range. Such 2142 // code pieces are called "thunks". 2143 // 2144 // We add thunks at this stage. We couldn't do this before this point 2145 // because this is the earliest point where we know sizes of sections and 2146 // their layouts (that are needed to determine if jump targets are in 2147 // range). 2148 // 2149 // 2) Update the sections. We need to generate content that depends on the 2150 // address of InputSections. For example, MIPS GOT section content or 2151 // android packed relocations sections content. 2152 // 2153 // 3) Assign the final values for the linker script symbols. Linker scripts 2154 // sometimes using forward symbol declarations. We want to set the correct 2155 // values. They also might change after adding the thunks. 2156 finalizeAddressDependentContent(); 2157 2158 // All information needed for OutputSection part of Map file is available. 2159 if (errorCount()) 2160 return; 2161 2162 { 2163 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2164 // finalizeAddressDependentContent may have added local symbols to the 2165 // static symbol table. 2166 finalizeSynthetic(in.symTab.get()); 2167 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2168 } 2169 2170 // Relaxation to delete inter-basic block jumps created by basic block 2171 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2172 // can relax jump instructions based on symbol offset. 2173 if (config->optimizeBBJumps) 2174 optimizeBasicBlockJumps(); 2175 2176 // Fill other section headers. The dynamic table is finalized 2177 // at the end because some tags like RELSZ depend on result 2178 // of finalizing other sections. 2179 for (OutputSection *sec : outputSections) 2180 sec->finalize(); 2181 } 2182 2183 // Ensure data sections are not mixed with executable sections when 2184 // --execute-only is used. --execute-only make pages executable but not 2185 // readable. 2186 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2187 if (!config->executeOnly) 2188 return; 2189 2190 SmallVector<InputSection *, 0> storage; 2191 for (OutputSection *osec : outputSections) 2192 if (osec->flags & SHF_EXECINSTR) 2193 for (InputSection *isec : getInputSections(*osec, storage)) 2194 if (!(isec->flags & SHF_EXECINSTR)) 2195 error("cannot place " + toString(isec) + " into " + 2196 toString(osec->name) + 2197 ": --execute-only does not support intermingling data and code"); 2198 } 2199 2200 // The linker is expected to define SECNAME_start and SECNAME_end 2201 // symbols for a few sections. This function defines them. 2202 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2203 // If a section does not exist, there's ambiguity as to how we 2204 // define _start and _end symbols for an init/fini section. Since 2205 // the loader assume that the symbols are always defined, we need to 2206 // always define them. But what value? The loader iterates over all 2207 // pointers between _start and _end to run global ctors/dtors, so if 2208 // the section is empty, their symbol values don't actually matter 2209 // as long as _start and _end point to the same location. 2210 // 2211 // That said, we don't want to set the symbols to 0 (which is 2212 // probably the simplest value) because that could cause some 2213 // program to fail to link due to relocation overflow, if their 2214 // program text is above 2 GiB. We use the address of the .text 2215 // section instead to prevent that failure. 2216 // 2217 // In rare situations, the .text section may not exist. If that's the 2218 // case, use the image base address as a last resort. 2219 OutputSection *Default = findSection(".text"); 2220 if (!Default) 2221 Default = Out::elfHeader; 2222 2223 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2224 if (os && !script->isDiscarded(os)) { 2225 addOptionalRegular(start, os, 0); 2226 addOptionalRegular(end, os, -1); 2227 } else { 2228 addOptionalRegular(start, Default, 0); 2229 addOptionalRegular(end, Default, 0); 2230 } 2231 }; 2232 2233 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2234 define("__init_array_start", "__init_array_end", Out::initArray); 2235 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2236 2237 if (OutputSection *sec = findSection(".ARM.exidx")) 2238 define("__exidx_start", "__exidx_end", sec); 2239 } 2240 2241 // If a section name is valid as a C identifier (which is rare because of 2242 // the leading '.'), linkers are expected to define __start_<secname> and 2243 // __stop_<secname> symbols. They are at beginning and end of the section, 2244 // respectively. This is not requested by the ELF standard, but GNU ld and 2245 // gold provide the feature, and used by many programs. 2246 template <class ELFT> 2247 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) { 2248 StringRef s = osec.name; 2249 if (!isValidCIdentifier(s)) 2250 return; 2251 addOptionalRegular(saver().save("__start_" + s), &osec, 0, 2252 config->zStartStopVisibility); 2253 addOptionalRegular(saver().save("__stop_" + s), &osec, -1, 2254 config->zStartStopVisibility); 2255 } 2256 2257 static bool needsPtLoad(OutputSection *sec) { 2258 if (!(sec->flags & SHF_ALLOC)) 2259 return false; 2260 2261 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2262 // responsible for allocating space for them, not the PT_LOAD that 2263 // contains the TLS initialization image. 2264 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2265 return false; 2266 return true; 2267 } 2268 2269 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2270 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2271 // RW. This means that there is no alignment in the RO to RX transition and we 2272 // cannot create a PT_LOAD there. 2273 static uint64_t computeFlags(uint64_t flags) { 2274 if (config->omagic) 2275 return PF_R | PF_W | PF_X; 2276 if (config->executeOnly && (flags & PF_X)) 2277 return flags & ~PF_R; 2278 if (config->singleRoRx && !(flags & PF_W)) 2279 return flags | PF_X; 2280 return flags; 2281 } 2282 2283 // Decide which program headers to create and which sections to include in each 2284 // one. 2285 template <class ELFT> 2286 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2287 SmallVector<PhdrEntry *, 0> ret; 2288 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2289 ret.push_back(make<PhdrEntry>(type, flags)); 2290 return ret.back(); 2291 }; 2292 2293 unsigned partNo = part.getNumber(); 2294 bool isMain = partNo == 1; 2295 2296 // Add the first PT_LOAD segment for regular output sections. 2297 uint64_t flags = computeFlags(PF_R); 2298 PhdrEntry *load = nullptr; 2299 2300 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2301 // PT_LOAD. 2302 if (!config->nmagic && !config->omagic) { 2303 // The first phdr entry is PT_PHDR which describes the program header 2304 // itself. 2305 if (isMain) 2306 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2307 else 2308 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2309 2310 // PT_INTERP must be the second entry if exists. 2311 if (OutputSection *cmd = findSection(".interp", partNo)) 2312 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2313 2314 // Add the headers. We will remove them if they don't fit. 2315 // In the other partitions the headers are ordinary sections, so they don't 2316 // need to be added here. 2317 if (isMain) { 2318 load = addHdr(PT_LOAD, flags); 2319 load->add(Out::elfHeader); 2320 load->add(Out::programHeaders); 2321 } 2322 } 2323 2324 // PT_GNU_RELRO includes all sections that should be marked as 2325 // read-only by dynamic linker after processing relocations. 2326 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2327 // an error message if more than one PT_GNU_RELRO PHDR is required. 2328 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2329 bool inRelroPhdr = false; 2330 OutputSection *relroEnd = nullptr; 2331 for (OutputSection *sec : outputSections) { 2332 if (sec->partition != partNo || !needsPtLoad(sec)) 2333 continue; 2334 if (isRelroSection(sec)) { 2335 inRelroPhdr = true; 2336 if (!relroEnd) 2337 relRo->add(sec); 2338 else 2339 error("section: " + sec->name + " is not contiguous with other relro" + 2340 " sections"); 2341 } else if (inRelroPhdr) { 2342 inRelroPhdr = false; 2343 relroEnd = sec; 2344 } 2345 } 2346 2347 for (OutputSection *sec : outputSections) { 2348 if (!needsPtLoad(sec)) 2349 continue; 2350 2351 // Normally, sections in partitions other than the current partition are 2352 // ignored. But partition number 255 is a special case: it contains the 2353 // partition end marker (.part.end). It needs to be added to the main 2354 // partition so that a segment is created for it in the main partition, 2355 // which will cause the dynamic loader to reserve space for the other 2356 // partitions. 2357 if (sec->partition != partNo) { 2358 if (isMain && sec->partition == 255) 2359 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2360 continue; 2361 } 2362 2363 // Segments are contiguous memory regions that has the same attributes 2364 // (e.g. executable or writable). There is one phdr for each segment. 2365 // Therefore, we need to create a new phdr when the next section has 2366 // different flags or is loaded at a discontiguous address or memory 2367 // region using AT or AT> linker script command, respectively. At the same 2368 // time, we don't want to create a separate load segment for the headers, 2369 // even if the first output section has an AT or AT> attribute. 2370 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2371 bool sameLMARegion = 2372 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2373 if (!(load && newFlags == flags && sec != relroEnd && 2374 sec->memRegion == load->firstSec->memRegion && 2375 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2376 load = addHdr(PT_LOAD, newFlags); 2377 flags = newFlags; 2378 } 2379 2380 load->add(sec); 2381 } 2382 2383 // Add a TLS segment if any. 2384 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2385 for (OutputSection *sec : outputSections) 2386 if (sec->partition == partNo && sec->flags & SHF_TLS) 2387 tlsHdr->add(sec); 2388 if (tlsHdr->firstSec) 2389 ret.push_back(tlsHdr); 2390 2391 // Add an entry for .dynamic. 2392 if (OutputSection *sec = part.dynamic->getParent()) 2393 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2394 2395 if (relRo->firstSec) 2396 ret.push_back(relRo); 2397 2398 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2399 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2400 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2401 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2402 ->add(part.ehFrameHdr->getParent()); 2403 2404 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2405 // the dynamic linker fill the segment with random data. 2406 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2407 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2408 2409 if (config->zGnustack != GnuStackKind::None) { 2410 // PT_GNU_STACK is a special section to tell the loader to make the 2411 // pages for the stack non-executable. If you really want an executable 2412 // stack, you can pass -z execstack, but that's not recommended for 2413 // security reasons. 2414 unsigned perm = PF_R | PF_W; 2415 if (config->zGnustack == GnuStackKind::Exec) 2416 perm |= PF_X; 2417 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2418 } 2419 2420 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2421 // is expected to perform W^X violations, such as calling mprotect(2) or 2422 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2423 // OpenBSD. 2424 if (config->zWxneeded) 2425 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2426 2427 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2428 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2429 2430 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2431 // same alignment. 2432 PhdrEntry *note = nullptr; 2433 for (OutputSection *sec : outputSections) { 2434 if (sec->partition != partNo) 2435 continue; 2436 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2437 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2438 note = addHdr(PT_NOTE, PF_R); 2439 note->add(sec); 2440 } else { 2441 note = nullptr; 2442 } 2443 } 2444 return ret; 2445 } 2446 2447 template <class ELFT> 2448 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2449 unsigned pType, unsigned pFlags) { 2450 unsigned partNo = part.getNumber(); 2451 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2452 return cmd->partition == partNo && cmd->type == shType; 2453 }); 2454 if (i == outputSections.end()) 2455 return; 2456 2457 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2458 entry->add(*i); 2459 part.phdrs.push_back(entry); 2460 } 2461 2462 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2463 // This is achieved by assigning an alignment expression to addrExpr of each 2464 // such section. 2465 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2466 const PhdrEntry *prev; 2467 auto pageAlign = [&](const PhdrEntry *p) { 2468 OutputSection *cmd = p->firstSec; 2469 if (!cmd) 2470 return; 2471 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2472 if (!cmd->addrExpr) { 2473 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2474 // padding in the file contents. 2475 // 2476 // When -z separate-code is used we must not have any overlap in pages 2477 // between an executable segment and a non-executable segment. We align to 2478 // the next maximum page size boundary on transitions between executable 2479 // and non-executable segments. 2480 // 2481 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2482 // sections will be extracted to a separate file. Align to the next 2483 // maximum page size boundary so that we can find the ELF header at the 2484 // start. We cannot benefit from overlapping p_offset ranges with the 2485 // previous segment anyway. 2486 if (config->zSeparate == SeparateSegmentKind::Loadable || 2487 (config->zSeparate == SeparateSegmentKind::Code && prev && 2488 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2489 cmd->type == SHT_LLVM_PART_EHDR) 2490 cmd->addrExpr = [] { 2491 return alignToPowerOf2(script->getDot(), config->maxPageSize); 2492 }; 2493 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2494 // it must be the RW. Align to p_align(PT_TLS) to make sure 2495 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2496 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2497 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2498 // be congruent to 0 modulo p_align(PT_TLS). 2499 // 2500 // Technically this is not required, but as of 2019, some dynamic loaders 2501 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2502 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2503 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2504 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2505 // blocks correctly. We need to keep the workaround for a while. 2506 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2507 cmd->addrExpr = [] { 2508 return alignToPowerOf2(script->getDot(), config->maxPageSize) + 2509 alignToPowerOf2(script->getDot() % config->maxPageSize, 2510 Out::tlsPhdr->p_align); 2511 }; 2512 else 2513 cmd->addrExpr = [] { 2514 return alignToPowerOf2(script->getDot(), config->maxPageSize) + 2515 script->getDot() % config->maxPageSize; 2516 }; 2517 } 2518 }; 2519 2520 for (Partition &part : partitions) { 2521 prev = nullptr; 2522 for (const PhdrEntry *p : part.phdrs) 2523 if (p->p_type == PT_LOAD && p->firstSec) { 2524 pageAlign(p); 2525 prev = p; 2526 } 2527 } 2528 } 2529 2530 // Compute an in-file position for a given section. The file offset must be the 2531 // same with its virtual address modulo the page size, so that the loader can 2532 // load executables without any address adjustment. 2533 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2534 // The first section in a PT_LOAD has to have congruent offset and address 2535 // modulo the maximum page size. 2536 if (os->ptLoad && os->ptLoad->firstSec == os) 2537 return alignTo(off, os->ptLoad->p_align, os->addr); 2538 2539 // File offsets are not significant for .bss sections other than the first one 2540 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2541 // increasing rather than setting to zero. 2542 if (os->type == SHT_NOBITS && 2543 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2544 return off; 2545 2546 // If the section is not in a PT_LOAD, we just have to align it. 2547 if (!os->ptLoad) 2548 return alignToPowerOf2(off, os->alignment); 2549 2550 // If two sections share the same PT_LOAD the file offset is calculated 2551 // using this formula: Off2 = Off1 + (VA2 - VA1). 2552 OutputSection *first = os->ptLoad->firstSec; 2553 return first->offset + os->addr - first->addr; 2554 } 2555 2556 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2557 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2558 auto needsOffset = [](OutputSection &sec) { 2559 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2560 }; 2561 uint64_t minAddr = UINT64_MAX; 2562 for (OutputSection *sec : outputSections) 2563 if (needsOffset(*sec)) { 2564 sec->offset = sec->getLMA(); 2565 minAddr = std::min(minAddr, sec->offset); 2566 } 2567 2568 // Sections are laid out at LMA minus minAddr. 2569 fileSize = 0; 2570 for (OutputSection *sec : outputSections) 2571 if (needsOffset(*sec)) { 2572 sec->offset -= minAddr; 2573 fileSize = std::max(fileSize, sec->offset + sec->size); 2574 } 2575 } 2576 2577 static std::string rangeToString(uint64_t addr, uint64_t len) { 2578 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2579 } 2580 2581 // Assign file offsets to output sections. 2582 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2583 Out::programHeaders->offset = Out::elfHeader->size; 2584 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2585 2586 PhdrEntry *lastRX = nullptr; 2587 for (Partition &part : partitions) 2588 for (PhdrEntry *p : part.phdrs) 2589 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2590 lastRX = p; 2591 2592 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2593 // will not occupy file offsets contained by a PT_LOAD. 2594 for (OutputSection *sec : outputSections) { 2595 if (!(sec->flags & SHF_ALLOC)) 2596 continue; 2597 off = computeFileOffset(sec, off); 2598 sec->offset = off; 2599 if (sec->type != SHT_NOBITS) 2600 off += sec->size; 2601 2602 // If this is a last section of the last executable segment and that 2603 // segment is the last loadable segment, align the offset of the 2604 // following section to avoid loading non-segments parts of the file. 2605 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2606 lastRX->lastSec == sec) 2607 off = alignToPowerOf2(off, config->maxPageSize); 2608 } 2609 for (OutputSection *osec : outputSections) 2610 if (!(osec->flags & SHF_ALLOC)) { 2611 osec->offset = alignToPowerOf2(off, osec->alignment); 2612 off = osec->offset + osec->size; 2613 } 2614 2615 sectionHeaderOff = alignToPowerOf2(off, config->wordsize); 2616 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2617 2618 // Our logic assumes that sections have rising VA within the same segment. 2619 // With use of linker scripts it is possible to violate this rule and get file 2620 // offset overlaps or overflows. That should never happen with a valid script 2621 // which does not move the location counter backwards and usually scripts do 2622 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2623 // kernel, which control segment distribution explicitly and move the counter 2624 // backwards, so we have to allow doing that to support linking them. We 2625 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2626 // we want to prevent file size overflows because it would crash the linker. 2627 for (OutputSection *sec : outputSections) { 2628 if (sec->type == SHT_NOBITS) 2629 continue; 2630 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2631 error("unable to place section " + sec->name + " at file offset " + 2632 rangeToString(sec->offset, sec->size) + 2633 "; check your linker script for overflows"); 2634 } 2635 } 2636 2637 // Finalize the program headers. We call this function after we assign 2638 // file offsets and VAs to all sections. 2639 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2640 for (PhdrEntry *p : part.phdrs) { 2641 OutputSection *first = p->firstSec; 2642 OutputSection *last = p->lastSec; 2643 2644 if (first) { 2645 p->p_filesz = last->offset - first->offset; 2646 if (last->type != SHT_NOBITS) 2647 p->p_filesz += last->size; 2648 2649 p->p_memsz = last->addr + last->size - first->addr; 2650 p->p_offset = first->offset; 2651 p->p_vaddr = first->addr; 2652 2653 // File offsets in partitions other than the main partition are relative 2654 // to the offset of the ELF headers. Perform that adjustment now. 2655 if (part.elfHeader) 2656 p->p_offset -= part.elfHeader->getParent()->offset; 2657 2658 if (!p->hasLMA) 2659 p->p_paddr = first->getLMA(); 2660 } 2661 2662 if (p->p_type == PT_GNU_RELRO) { 2663 p->p_align = 1; 2664 // musl/glibc ld.so rounds the size down, so we need to round up 2665 // to protect the last page. This is a no-op on FreeBSD which always 2666 // rounds up. 2667 p->p_memsz = 2668 alignToPowerOf2(p->p_offset + p->p_memsz, config->commonPageSize) - 2669 p->p_offset; 2670 } 2671 } 2672 } 2673 2674 // A helper struct for checkSectionOverlap. 2675 namespace { 2676 struct SectionOffset { 2677 OutputSection *sec; 2678 uint64_t offset; 2679 }; 2680 } // namespace 2681 2682 // Check whether sections overlap for a specific address range (file offsets, 2683 // load and virtual addresses). 2684 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2685 bool isVirtualAddr) { 2686 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2687 return a.offset < b.offset; 2688 }); 2689 2690 // Finding overlap is easy given a vector is sorted by start position. 2691 // If an element starts before the end of the previous element, they overlap. 2692 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2693 SectionOffset a = sections[i - 1]; 2694 SectionOffset b = sections[i]; 2695 if (b.offset >= a.offset + a.sec->size) 2696 continue; 2697 2698 // If both sections are in OVERLAY we allow the overlapping of virtual 2699 // addresses, because it is what OVERLAY was designed for. 2700 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2701 continue; 2702 2703 errorOrWarn("section " + a.sec->name + " " + name + 2704 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2705 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2706 b.sec->name + " range is " + 2707 rangeToString(b.offset, b.sec->size)); 2708 } 2709 } 2710 2711 // Check for overlapping sections and address overflows. 2712 // 2713 // In this function we check that none of the output sections have overlapping 2714 // file offsets. For SHF_ALLOC sections we also check that the load address 2715 // ranges and the virtual address ranges don't overlap 2716 template <class ELFT> void Writer<ELFT>::checkSections() { 2717 // First, check that section's VAs fit in available address space for target. 2718 for (OutputSection *os : outputSections) 2719 if ((os->addr + os->size < os->addr) || 2720 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2721 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2722 " of size 0x" + utohexstr(os->size) + 2723 " exceeds available address space"); 2724 2725 // Check for overlapping file offsets. In this case we need to skip any 2726 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2727 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2728 // binary is specified only add SHF_ALLOC sections are added to the output 2729 // file so we skip any non-allocated sections in that case. 2730 std::vector<SectionOffset> fileOffs; 2731 for (OutputSection *sec : outputSections) 2732 if (sec->size > 0 && sec->type != SHT_NOBITS && 2733 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2734 fileOffs.push_back({sec, sec->offset}); 2735 checkOverlap("file", fileOffs, false); 2736 2737 // When linking with -r there is no need to check for overlapping virtual/load 2738 // addresses since those addresses will only be assigned when the final 2739 // executable/shared object is created. 2740 if (config->relocatable) 2741 return; 2742 2743 // Checking for overlapping virtual and load addresses only needs to take 2744 // into account SHF_ALLOC sections since others will not be loaded. 2745 // Furthermore, we also need to skip SHF_TLS sections since these will be 2746 // mapped to other addresses at runtime and can therefore have overlapping 2747 // ranges in the file. 2748 std::vector<SectionOffset> vmas; 2749 for (OutputSection *sec : outputSections) 2750 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2751 vmas.push_back({sec, sec->addr}); 2752 checkOverlap("virtual address", vmas, true); 2753 2754 // Finally, check that the load addresses don't overlap. This will usually be 2755 // the same as the virtual addresses but can be different when using a linker 2756 // script with AT(). 2757 std::vector<SectionOffset> lmas; 2758 for (OutputSection *sec : outputSections) 2759 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2760 lmas.push_back({sec, sec->getLMA()}); 2761 checkOverlap("load address", lmas, false); 2762 } 2763 2764 // The entry point address is chosen in the following ways. 2765 // 2766 // 1. the '-e' entry command-line option; 2767 // 2. the ENTRY(symbol) command in a linker control script; 2768 // 3. the value of the symbol _start, if present; 2769 // 4. the number represented by the entry symbol, if it is a number; 2770 // 5. the address 0. 2771 static uint64_t getEntryAddr() { 2772 // Case 1, 2 or 3 2773 if (Symbol *b = symtab->find(config->entry)) 2774 return b->getVA(); 2775 2776 // Case 4 2777 uint64_t addr; 2778 if (to_integer(config->entry, addr)) 2779 return addr; 2780 2781 // Case 5 2782 if (config->warnMissingEntry) 2783 warn("cannot find entry symbol " + config->entry + 2784 "; not setting start address"); 2785 return 0; 2786 } 2787 2788 static uint16_t getELFType() { 2789 if (config->isPic) 2790 return ET_DYN; 2791 if (config->relocatable) 2792 return ET_REL; 2793 return ET_EXEC; 2794 } 2795 2796 template <class ELFT> void Writer<ELFT>::writeHeader() { 2797 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2798 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2799 2800 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2801 eHdr->e_type = getELFType(); 2802 eHdr->e_entry = getEntryAddr(); 2803 eHdr->e_shoff = sectionHeaderOff; 2804 2805 // Write the section header table. 2806 // 2807 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2808 // and e_shstrndx fields. When the value of one of these fields exceeds 2809 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2810 // use fields in the section header at index 0 to store 2811 // the value. The sentinel values and fields are: 2812 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2813 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2814 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2815 size_t num = outputSections.size() + 1; 2816 if (num >= SHN_LORESERVE) 2817 sHdrs->sh_size = num; 2818 else 2819 eHdr->e_shnum = num; 2820 2821 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2822 if (strTabIndex >= SHN_LORESERVE) { 2823 sHdrs->sh_link = strTabIndex; 2824 eHdr->e_shstrndx = SHN_XINDEX; 2825 } else { 2826 eHdr->e_shstrndx = strTabIndex; 2827 } 2828 2829 for (OutputSection *sec : outputSections) 2830 sec->writeHeaderTo<ELFT>(++sHdrs); 2831 } 2832 2833 // Open a result file. 2834 template <class ELFT> void Writer<ELFT>::openFile() { 2835 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2836 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2837 std::string msg; 2838 raw_string_ostream s(msg); 2839 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2840 << "section sizes:\n"; 2841 for (OutputSection *os : outputSections) 2842 s << os->name << ' ' << os->size << "\n"; 2843 error(s.str()); 2844 return; 2845 } 2846 2847 unlinkAsync(config->outputFile); 2848 unsigned flags = 0; 2849 if (!config->relocatable) 2850 flags |= FileOutputBuffer::F_executable; 2851 if (!config->mmapOutputFile) 2852 flags |= FileOutputBuffer::F_no_mmap; 2853 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2854 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2855 2856 if (!bufferOrErr) { 2857 error("failed to open " + config->outputFile + ": " + 2858 llvm::toString(bufferOrErr.takeError())); 2859 return; 2860 } 2861 buffer = std::move(*bufferOrErr); 2862 Out::bufferStart = buffer->getBufferStart(); 2863 } 2864 2865 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2866 for (OutputSection *sec : outputSections) 2867 if (sec->flags & SHF_ALLOC) 2868 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2869 } 2870 2871 static void fillTrap(uint8_t *i, uint8_t *end) { 2872 for (; i + 4 <= end; i += 4) 2873 memcpy(i, &target->trapInstr, 4); 2874 } 2875 2876 // Fill the last page of executable segments with trap instructions 2877 // instead of leaving them as zero. Even though it is not required by any 2878 // standard, it is in general a good thing to do for security reasons. 2879 // 2880 // We'll leave other pages in segments as-is because the rest will be 2881 // overwritten by output sections. 2882 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2883 for (Partition &part : partitions) { 2884 // Fill the last page. 2885 for (PhdrEntry *p : part.phdrs) 2886 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2887 fillTrap(Out::bufferStart + 2888 alignDown(p->firstSec->offset + p->p_filesz, 4), 2889 Out::bufferStart + 2890 alignToPowerOf2(p->firstSec->offset + p->p_filesz, 2891 config->maxPageSize)); 2892 2893 // Round up the file size of the last segment to the page boundary iff it is 2894 // an executable segment to ensure that other tools don't accidentally 2895 // trim the instruction padding (e.g. when stripping the file). 2896 PhdrEntry *last = nullptr; 2897 for (PhdrEntry *p : part.phdrs) 2898 if (p->p_type == PT_LOAD) 2899 last = p; 2900 2901 if (last && (last->p_flags & PF_X)) 2902 last->p_memsz = last->p_filesz = 2903 alignToPowerOf2(last->p_filesz, config->maxPageSize); 2904 } 2905 } 2906 2907 // Write section contents to a mmap'ed file. 2908 template <class ELFT> void Writer<ELFT>::writeSections() { 2909 llvm::TimeTraceScope timeScope("Write sections"); 2910 2911 // In -r or --emit-relocs mode, write the relocation sections first as in 2912 // ELf_Rel targets we might find out that we need to modify the relocated 2913 // section while doing it. 2914 for (OutputSection *sec : outputSections) 2915 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2916 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2917 2918 for (OutputSection *sec : outputSections) 2919 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2920 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2921 2922 // Finally, check that all dynamic relocation addends were written correctly. 2923 if (config->checkDynamicRelocs && config->writeAddends) { 2924 for (OutputSection *sec : outputSections) 2925 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2926 sec->checkDynRelAddends(Out::bufferStart); 2927 } 2928 } 2929 2930 // Computes a hash value of Data using a given hash function. 2931 // In order to utilize multiple cores, we first split data into 1MB 2932 // chunks, compute a hash for each chunk, and then compute a hash value 2933 // of the hash values. 2934 static void 2935 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2936 llvm::ArrayRef<uint8_t> data, 2937 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2938 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2939 const size_t hashesSize = chunks.size() * hashBuf.size(); 2940 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 2941 2942 // Compute hash values. 2943 parallelFor(0, chunks.size(), [&](size_t i) { 2944 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 2945 }); 2946 2947 // Write to the final output buffer. 2948 hashFn(hashBuf.data(), makeArrayRef(hashes.get(), hashesSize)); 2949 } 2950 2951 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2952 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2953 return; 2954 2955 if (config->buildId == BuildIdKind::Hexstring) { 2956 for (Partition &part : partitions) 2957 part.buildId->writeBuildId(config->buildIdVector); 2958 return; 2959 } 2960 2961 // Compute a hash of all sections of the output file. 2962 size_t hashSize = mainPart->buildId->hashSize; 2963 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 2964 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 2965 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 2966 2967 // Fedora introduced build ID as "approximation of true uniqueness across all 2968 // binaries that might be used by overlapping sets of people". It does not 2969 // need some security goals that some hash algorithms strive to provide, e.g. 2970 // (second-)preimage and collision resistance. In practice people use 'md5' 2971 // and 'sha1' just for different lengths. Implement them with the more 2972 // efficient BLAKE3. 2973 switch (config->buildId) { 2974 case BuildIdKind::Fast: 2975 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2976 write64le(dest, xxHash64(arr)); 2977 }); 2978 break; 2979 case BuildIdKind::Md5: 2980 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2981 memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize); 2982 }); 2983 break; 2984 case BuildIdKind::Sha1: 2985 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2986 memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize); 2987 }); 2988 break; 2989 case BuildIdKind::Uuid: 2990 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 2991 error("entropy source failure: " + ec.message()); 2992 break; 2993 default: 2994 llvm_unreachable("unknown BuildIdKind"); 2995 } 2996 for (Partition &part : partitions) 2997 part.buildId->writeBuildId(output); 2998 } 2999 3000 template void elf::createSyntheticSections<ELF32LE>(); 3001 template void elf::createSyntheticSections<ELF32BE>(); 3002 template void elf::createSyntheticSections<ELF64LE>(); 3003 template void elf::createSyntheticSections<ELF64BE>(); 3004 3005 template void elf::writeResult<ELF32LE>(); 3006 template void elf::writeResult<ELF32BE>(); 3007 template void elf::writeResult<ELF64LE>(); 3008 template void elf::writeResult<ELF64BE>(); 3009