1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Arrays.h" 24 #include "lld/Common/CommonLinkerContext.h" 25 #include "lld/Common/Filesystem.h" 26 #include "lld/Common/Strings.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/Support/BLAKE3.h" 29 #include "llvm/Support/Parallel.h" 30 #include "llvm/Support/RandomNumberGenerator.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void addSectionSymbols(); 57 void sortSections(); 58 void resolveShfLinkOrder(); 59 void finalizeAddressDependentContent(); 60 void optimizeBasicBlockJumps(); 61 void sortInputSections(); 62 void sortOrphanSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection &osec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool needsInterpSection() { 94 return !config->relocatable && !config->shared && 95 !config->dynamicLinker.empty() && script->needsInterpSection(); 96 } 97 98 template <class ELFT> void elf::writeResult() { 99 Writer<ELFT>().run(); 100 } 101 102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 103 auto it = std::stable_partition( 104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 105 if (p->p_type != PT_LOAD) 106 return true; 107 if (!p->firstSec) 108 return false; 109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 110 return size != 0; 111 }); 112 113 // Clear OutputSection::ptLoad for sections contained in removed 114 // segments. 115 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 116 for (OutputSection *sec : outputSections) 117 if (removed.count(sec->ptLoad)) 118 sec->ptLoad = nullptr; 119 phdrs.erase(it, phdrs.end()); 120 } 121 122 void elf::copySectionsIntoPartitions() { 123 SmallVector<InputSectionBase *, 0> newSections; 124 const size_t ehSize = ctx.ehInputSections.size(); 125 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 126 for (InputSectionBase *s : ctx.inputSections) { 127 if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE) 128 continue; 129 auto *copy = make<InputSection>(cast<InputSection>(*s)); 130 copy->partition = part; 131 newSections.push_back(copy); 132 } 133 for (size_t i = 0; i != ehSize; ++i) { 134 assert(ctx.ehInputSections[i]->isLive()); 135 auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]); 136 copy->partition = part; 137 ctx.ehInputSections.push_back(copy); 138 } 139 } 140 141 ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(), 142 newSections.end()); 143 } 144 145 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 146 uint64_t val, uint8_t stOther = STV_HIDDEN) { 147 Symbol *s = symtab.find(name); 148 if (!s || s->isDefined() || s->isCommon()) 149 return nullptr; 150 151 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val, 152 /*size=*/0, sec}); 153 s->isUsedInRegularObj = true; 154 return cast<Defined>(s); 155 } 156 157 static Defined *addAbsolute(StringRef name) { 158 Symbol *sym = symtab.addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 159 STT_NOTYPE, 0, 0, nullptr}); 160 sym->isUsedInRegularObj = true; 161 return cast<Defined>(sym); 162 } 163 164 // The linker is expected to define some symbols depending on 165 // the linking result. This function defines such symbols. 166 void elf::addReservedSymbols() { 167 if (config->emachine == EM_MIPS) { 168 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 169 // so that it points to an absolute address which by default is relative 170 // to GOT. Default offset is 0x7ff0. 171 // See "Global Data Symbols" in Chapter 6 in the following document: 172 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 173 ElfSym::mipsGp = addAbsolute("_gp"); 174 175 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 176 // start of function and 'gp' pointer into GOT. 177 if (symtab.find("_gp_disp")) 178 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 179 180 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 181 // pointer. This symbol is used in the code generated by .cpload pseudo-op 182 // in case of using -mno-shared option. 183 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 184 if (symtab.find("__gnu_local_gp")) 185 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 186 } else if (config->emachine == EM_PPC) { 187 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 188 // support Small Data Area, define it arbitrarily as 0. 189 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 190 } else if (config->emachine == EM_PPC64) { 191 addPPC64SaveRestore(); 192 } 193 194 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 195 // combines the typical ELF GOT with the small data sections. It commonly 196 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 197 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 198 // represent the TOC base which is offset by 0x8000 bytes from the start of 199 // the .got section. 200 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 201 // correctness of some relocations depends on its value. 202 StringRef gotSymName = 203 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 204 205 if (Symbol *s = symtab.find(gotSymName)) { 206 if (s->isDefined()) { 207 error(toString(s->file) + " cannot redefine linker defined symbol '" + 208 gotSymName + "'"); 209 return; 210 } 211 212 uint64_t gotOff = 0; 213 if (config->emachine == EM_PPC64) 214 gotOff = 0x8000; 215 216 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 217 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 218 ElfSym::globalOffsetTable = cast<Defined>(s); 219 } 220 221 // __ehdr_start is the location of ELF file headers. Note that we define 222 // this symbol unconditionally even when using a linker script, which 223 // differs from the behavior implemented by GNU linker which only define 224 // this symbol if ELF headers are in the memory mapped segment. 225 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 226 227 // __executable_start is not documented, but the expectation of at 228 // least the Android libc is that it points to the ELF header. 229 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 230 231 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 232 // each DSO. The address of the symbol doesn't matter as long as they are 233 // different in different DSOs, so we chose the start address of the DSO. 234 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 235 236 // If linker script do layout we do not need to create any standard symbols. 237 if (script->hasSectionsCommand) 238 return; 239 240 auto add = [](StringRef s, int64_t pos) { 241 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 242 }; 243 244 ElfSym::bss = add("__bss_start", 0); 245 ElfSym::end1 = add("end", -1); 246 ElfSym::end2 = add("_end", -1); 247 ElfSym::etext1 = add("etext", -1); 248 ElfSym::etext2 = add("_etext", -1); 249 ElfSym::edata1 = add("edata", -1); 250 ElfSym::edata2 = add("_edata", -1); 251 } 252 253 static void demoteDefined(Defined &sym, DenseMap<SectionBase *, size_t> &map) { 254 if (map.empty()) 255 for (auto [i, sec] : llvm::enumerate(sym.file->getSections())) 256 map.try_emplace(sec, i); 257 // Change WEAK to GLOBAL so that if a scanned relocation references sym, 258 // maybeReportUndefined will report an error. 259 uint8_t binding = sym.isWeak() ? uint8_t(STB_GLOBAL) : sym.binding; 260 Undefined(sym.file, sym.getName(), binding, sym.stOther, sym.type, 261 /*discardedSecIdx=*/map.lookup(sym.section)) 262 .overwrite(sym); 263 } 264 265 // If all references to a DSO happen to be weak, the DSO is not added to 266 // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid 267 // dangling references to an unneeded DSO. Use a weak binding to avoid 268 // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols. 269 // 270 // In addition, demote symbols defined in discarded sections, so that 271 // references to /DISCARD/ discarded symbols will lead to errors. 272 static void demoteSymbolsAndComputeIsPreemptible() { 273 llvm::TimeTraceScope timeScope("Demote symbols"); 274 DenseMap<InputFile *, DenseMap<SectionBase *, size_t>> sectionIndexMap; 275 for (Symbol *sym : symtab.getSymbols()) { 276 if (auto *d = dyn_cast<Defined>(sym)) { 277 if (d->section && !d->section->isLive()) 278 demoteDefined(*d, sectionIndexMap[d->file]); 279 } else { 280 auto *s = dyn_cast<SharedSymbol>(sym); 281 if (sym->isLazy() || (s && !cast<SharedFile>(s->file)->isNeeded)) { 282 uint8_t binding = sym->isLazy() ? sym->binding : uint8_t(STB_WEAK); 283 Undefined(nullptr, sym->getName(), binding, sym->stOther, sym->type) 284 .overwrite(*sym); 285 sym->versionId = VER_NDX_GLOBAL; 286 } 287 } 288 289 if (config->hasDynSymTab) 290 sym->isPreemptible = computeIsPreemptible(*sym); 291 } 292 } 293 294 // Fully static executables don't support MTE globals at this point in time, as 295 // we currently rely on: 296 // - A dynamic loader to process relocations, and 297 // - Dynamic entries. 298 // This restriction could be removed in future by re-using some of the ideas 299 // that ifuncs use in fully static executables. 300 bool elf::canHaveMemtagGlobals() { 301 return config->emachine == EM_AARCH64 && 302 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE && 303 (config->relocatable || config->shared || needsInterpSection()); 304 } 305 306 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 307 for (SectionCommand *cmd : script->sectionCommands) 308 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 309 if (osd->osec.name == name && osd->osec.partition == partition) 310 return &osd->osec; 311 return nullptr; 312 } 313 314 template <class ELFT> void elf::createSyntheticSections() { 315 // Initialize all pointers with NULL. This is needed because 316 // you can call lld::elf::main more than once as a library. 317 Out::tlsPhdr = nullptr; 318 Out::preinitArray = nullptr; 319 Out::initArray = nullptr; 320 Out::finiArray = nullptr; 321 322 // Add the .interp section first because it is not a SyntheticSection. 323 // The removeUnusedSyntheticSections() function relies on the 324 // SyntheticSections coming last. 325 if (needsInterpSection()) { 326 for (size_t i = 1; i <= partitions.size(); ++i) { 327 InputSection *sec = createInterpSection(); 328 sec->partition = i; 329 ctx.inputSections.push_back(sec); 330 } 331 } 332 333 auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); }; 334 335 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 336 337 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 338 Out::programHeaders->addralign = config->wordsize; 339 340 if (config->strip != StripPolicy::All) { 341 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 342 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 343 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 344 } 345 346 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 347 add(*in.bss); 348 349 // If there is a SECTIONS command and a .data.rel.ro section name use name 350 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 351 // This makes sure our relro is contiguous. 352 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 353 in.bssRelRo = std::make_unique<BssSection>( 354 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 355 add(*in.bssRelRo); 356 357 // Add MIPS-specific sections. 358 if (config->emachine == EM_MIPS) { 359 if (!config->shared && config->hasDynSymTab) { 360 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 361 add(*in.mipsRldMap); 362 } 363 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 364 add(*in.mipsAbiFlags); 365 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 366 add(*in.mipsOptions); 367 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 368 add(*in.mipsReginfo); 369 } 370 371 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 372 373 const unsigned threadCount = config->threadCount; 374 for (Partition &part : partitions) { 375 auto add = [&](SyntheticSection &sec) { 376 sec.partition = part.getNumber(); 377 ctx.inputSections.push_back(&sec); 378 }; 379 380 if (!part.name.empty()) { 381 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 382 part.elfHeader->name = part.name; 383 add(*part.elfHeader); 384 385 part.programHeaders = 386 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 387 add(*part.programHeaders); 388 } 389 390 if (config->buildId != BuildIdKind::None) { 391 part.buildId = std::make_unique<BuildIdSection>(); 392 add(*part.buildId); 393 } 394 395 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 396 part.dynSymTab = 397 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 398 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 399 400 if (canHaveMemtagGlobals()) { 401 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(); 402 add(*part.memtagAndroidNote); 403 part.memtagDescriptors = std::make_unique<MemtagDescriptors>(); 404 add(*part.memtagDescriptors); 405 } 406 407 if (config->androidPackDynRelocs) 408 part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>( 409 relaDynName, threadCount); 410 else 411 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 412 relaDynName, config->zCombreloc, threadCount); 413 414 if (config->hasDynSymTab) { 415 add(*part.dynSymTab); 416 417 part.verSym = std::make_unique<VersionTableSection>(); 418 add(*part.verSym); 419 420 if (!namedVersionDefs().empty()) { 421 part.verDef = std::make_unique<VersionDefinitionSection>(); 422 add(*part.verDef); 423 } 424 425 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 426 add(*part.verNeed); 427 428 if (config->gnuHash) { 429 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 430 add(*part.gnuHashTab); 431 } 432 433 if (config->sysvHash) { 434 part.hashTab = std::make_unique<HashTableSection>(); 435 add(*part.hashTab); 436 } 437 438 add(*part.dynamic); 439 add(*part.dynStrTab); 440 add(*part.relaDyn); 441 } 442 443 if (config->relrPackDynRelocs) { 444 part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount); 445 add(*part.relrDyn); 446 } 447 448 if (!config->relocatable) { 449 if (config->ehFrameHdr) { 450 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 451 add(*part.ehFrameHdr); 452 } 453 part.ehFrame = std::make_unique<EhFrameSection>(); 454 add(*part.ehFrame); 455 456 if (config->emachine == EM_ARM) { 457 // This section replaces all the individual .ARM.exidx InputSections. 458 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 459 add(*part.armExidx); 460 } 461 } 462 463 if (!config->packageMetadata.empty()) { 464 part.packageMetadataNote = std::make_unique<PackageMetadataNote>(); 465 add(*part.packageMetadataNote); 466 } 467 } 468 469 if (partitions.size() != 1) { 470 // Create the partition end marker. This needs to be in partition number 255 471 // so that it is sorted after all other partitions. It also has other 472 // special handling (see createPhdrs() and combineEhSections()). 473 in.partEnd = 474 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 475 in.partEnd->partition = 255; 476 add(*in.partEnd); 477 478 in.partIndex = std::make_unique<PartitionIndexSection>(); 479 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 480 addOptionalRegular("__part_index_end", in.partIndex.get(), 481 in.partIndex->getSize()); 482 add(*in.partIndex); 483 } 484 485 // Add .got. MIPS' .got is so different from the other archs, 486 // it has its own class. 487 if (config->emachine == EM_MIPS) { 488 in.mipsGot = std::make_unique<MipsGotSection>(); 489 add(*in.mipsGot); 490 } else { 491 in.got = std::make_unique<GotSection>(); 492 add(*in.got); 493 } 494 495 if (config->emachine == EM_PPC) { 496 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 497 add(*in.ppc32Got2); 498 } 499 500 if (config->emachine == EM_PPC64) { 501 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 502 add(*in.ppc64LongBranchTarget); 503 } 504 505 in.gotPlt = std::make_unique<GotPltSection>(); 506 add(*in.gotPlt); 507 in.igotPlt = std::make_unique<IgotPltSection>(); 508 add(*in.igotPlt); 509 // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the 510 // section in the absence of PHDRS/SECTIONS commands. 511 if (config->zRelro && ((script->phdrsCommands.empty() && 512 !script->hasSectionsCommand) || script->seenRelroEnd)) { 513 in.relroPadding = std::make_unique<RelroPaddingSection>(); 514 add(*in.relroPadding); 515 } 516 517 if (config->emachine == EM_ARM) { 518 in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(); 519 add(*in.armCmseSGSection); 520 } 521 522 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 523 // it as a relocation and ensure the referenced section is created. 524 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 525 if (target->gotBaseSymInGotPlt) 526 in.gotPlt->hasGotPltOffRel = true; 527 else 528 in.got->hasGotOffRel = true; 529 } 530 531 if (config->gdbIndex) 532 add(*GdbIndexSection::create<ELFT>()); 533 534 // We always need to add rel[a].plt to output if it has entries. 535 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 536 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 537 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false, 538 /*threadCount=*/1); 539 add(*in.relaPlt); 540 541 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 542 // relocations are processed last by the dynamic loader. We cannot place the 543 // iplt section in .rel.dyn when Android relocation packing is enabled because 544 // that would cause a section type mismatch. However, because the Android 545 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 546 // behaviour by placing the iplt section in .rel.plt. 547 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 548 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 549 /*sort=*/false, /*threadCount=*/1); 550 add(*in.relaIplt); 551 552 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 553 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 554 in.ibtPlt = std::make_unique<IBTPltSection>(); 555 add(*in.ibtPlt); 556 } 557 558 if (config->emachine == EM_PPC) 559 in.plt = std::make_unique<PPC32GlinkSection>(); 560 else 561 in.plt = std::make_unique<PltSection>(); 562 add(*in.plt); 563 in.iplt = std::make_unique<IpltSection>(); 564 add(*in.iplt); 565 566 if (config->andFeatures) 567 add(*make<GnuPropertySection>()); 568 569 // .note.GNU-stack is always added when we are creating a re-linkable 570 // object file. Other linkers are using the presence of this marker 571 // section to control the executable-ness of the stack area, but that 572 // is irrelevant these days. Stack area should always be non-executable 573 // by default. So we emit this section unconditionally. 574 if (config->relocatable) 575 add(*make<GnuStackSection>()); 576 577 if (in.symTab) 578 add(*in.symTab); 579 if (in.symTabShndx) 580 add(*in.symTabShndx); 581 add(*in.shStrTab); 582 if (in.strTab) 583 add(*in.strTab); 584 } 585 586 // The main function of the writer. 587 template <class ELFT> void Writer<ELFT>::run() { 588 // Now that we have a complete set of output sections. This function 589 // completes section contents. For example, we need to add strings 590 // to the string table, and add entries to .got and .plt. 591 // finalizeSections does that. 592 finalizeSections(); 593 checkExecuteOnly(); 594 595 // If --compressed-debug-sections is specified, compress .debug_* sections. 596 // Do it right now because it changes the size of output sections. 597 for (OutputSection *sec : outputSections) 598 sec->maybeCompress<ELFT>(); 599 600 if (script->hasSectionsCommand) 601 script->allocateHeaders(mainPart->phdrs); 602 603 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 604 // 0 sized region. This has to be done late since only after assignAddresses 605 // we know the size of the sections. 606 for (Partition &part : partitions) 607 removeEmptyPTLoad(part.phdrs); 608 609 if (!config->oFormatBinary) 610 assignFileOffsets(); 611 else 612 assignFileOffsetsBinary(); 613 614 for (Partition &part : partitions) 615 setPhdrs(part); 616 617 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections() 618 // because the files may be useful in case checkSections() or openFile() 619 // fails, for example, due to an erroneous file size. 620 writeMapAndCref(); 621 622 // Handle --print-memory-usage option. 623 if (config->printMemoryUsage) 624 script->printMemoryUsage(lld::outs()); 625 626 if (config->checkSections) 627 checkSections(); 628 629 // It does not make sense try to open the file if we have error already. 630 if (errorCount()) 631 return; 632 633 { 634 llvm::TimeTraceScope timeScope("Write output file"); 635 // Write the result down to a file. 636 openFile(); 637 if (errorCount()) 638 return; 639 640 if (!config->oFormatBinary) { 641 if (config->zSeparate != SeparateSegmentKind::None) 642 writeTrapInstr(); 643 writeHeader(); 644 writeSections(); 645 } else { 646 writeSectionsBinary(); 647 } 648 649 // Backfill .note.gnu.build-id section content. This is done at last 650 // because the content is usually a hash value of the entire output file. 651 writeBuildId(); 652 if (errorCount()) 653 return; 654 655 if (auto e = buffer->commit()) 656 fatal("failed to write output '" + buffer->getPath() + 657 "': " + toString(std::move(e))); 658 659 if (!config->cmseOutputLib.empty()) 660 writeARMCmseImportLib<ELFT>(); 661 } 662 } 663 664 template <class ELFT, class RelTy> 665 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 666 llvm::ArrayRef<RelTy> rels) { 667 for (const RelTy &rel : rels) { 668 Symbol &sym = file->getRelocTargetSym(rel); 669 if (sym.isLocal()) 670 sym.used = true; 671 } 672 } 673 674 // The function ensures that the "used" field of local symbols reflects the fact 675 // that the symbol is used in a relocation from a live section. 676 template <class ELFT> static void markUsedLocalSymbols() { 677 // With --gc-sections, the field is already filled. 678 // See MarkLive<ELFT>::resolveReloc(). 679 if (config->gcSections) 680 return; 681 for (ELFFileBase *file : ctx.objectFiles) { 682 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 683 for (InputSectionBase *s : f->getSections()) { 684 InputSection *isec = dyn_cast_or_null<InputSection>(s); 685 if (!isec) 686 continue; 687 if (isec->type == SHT_REL) 688 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 689 else if (isec->type == SHT_RELA) 690 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 691 } 692 } 693 } 694 695 static bool shouldKeepInSymtab(const Defined &sym) { 696 if (sym.isSection()) 697 return false; 698 699 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 700 // from live sections. 701 if (sym.used && config->copyRelocs) 702 return true; 703 704 // Exclude local symbols pointing to .ARM.exidx sections. 705 // They are probably mapping symbols "$d", which are optional for these 706 // sections. After merging the .ARM.exidx sections, some of these symbols 707 // may become dangling. The easiest way to avoid the issue is not to add 708 // them to the symbol table from the beginning. 709 if (config->emachine == EM_ARM && sym.section && 710 sym.section->type == SHT_ARM_EXIDX) 711 return false; 712 713 if (config->discard == DiscardPolicy::None) 714 return true; 715 if (config->discard == DiscardPolicy::All) 716 return false; 717 718 // In ELF assembly .L symbols are normally discarded by the assembler. 719 // If the assembler fails to do so, the linker discards them if 720 // * --discard-locals is used. 721 // * The symbol is in a SHF_MERGE section, which is normally the reason for 722 // the assembler keeping the .L symbol. 723 if (sym.getName().starts_with(".L") && 724 (config->discard == DiscardPolicy::Locals || 725 (sym.section && (sym.section->flags & SHF_MERGE)))) 726 return false; 727 return true; 728 } 729 730 bool lld::elf::includeInSymtab(const Symbol &b) { 731 if (auto *d = dyn_cast<Defined>(&b)) { 732 // Always include absolute symbols. 733 SectionBase *sec = d->section; 734 if (!sec) 735 return true; 736 assert(sec->isLive()); 737 738 if (auto *s = dyn_cast<MergeInputSection>(sec)) 739 return s->getSectionPiece(d->value).live; 740 return true; 741 } 742 return b.used || !config->gcSections; 743 } 744 745 // Scan local symbols to: 746 // 747 // - demote symbols defined relative to /DISCARD/ discarded input sections so 748 // that relocations referencing them will lead to errors. 749 // - copy eligible symbols to .symTab 750 static void demoteAndCopyLocalSymbols() { 751 llvm::TimeTraceScope timeScope("Add local symbols"); 752 for (ELFFileBase *file : ctx.objectFiles) { 753 DenseMap<SectionBase *, size_t> sectionIndexMap; 754 for (Symbol *b : file->getLocalSymbols()) { 755 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 756 auto *dr = dyn_cast<Defined>(b); 757 if (!dr) 758 continue; 759 760 if (dr->section && !dr->section->isLive()) 761 demoteDefined(*dr, sectionIndexMap); 762 else if (in.symTab && includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 763 in.symTab->addSymbol(b); 764 } 765 } 766 } 767 768 // Create a section symbol for each output section so that we can represent 769 // relocations that point to the section. If we know that no relocation is 770 // referring to a section (that happens if the section is a synthetic one), we 771 // don't create a section symbol for that section. 772 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 773 for (SectionCommand *cmd : script->sectionCommands) { 774 auto *osd = dyn_cast<OutputDesc>(cmd); 775 if (!osd) 776 continue; 777 OutputSection &osec = osd->osec; 778 InputSectionBase *isec = nullptr; 779 // Iterate over all input sections and add a STT_SECTION symbol if any input 780 // section may be a relocation target. 781 for (SectionCommand *cmd : osec.commands) { 782 auto *isd = dyn_cast<InputSectionDescription>(cmd); 783 if (!isd) 784 continue; 785 for (InputSectionBase *s : isd->sections) { 786 // Relocations are not using REL[A] section symbols. 787 if (s->type == SHT_REL || s->type == SHT_RELA) 788 continue; 789 790 // Unlike other synthetic sections, mergeable output sections contain 791 // data copied from input sections, and there may be a relocation 792 // pointing to its contents if -r or --emit-reloc is given. 793 if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE)) 794 continue; 795 796 isec = s; 797 break; 798 } 799 } 800 if (!isec) 801 continue; 802 803 // Set the symbol to be relative to the output section so that its st_value 804 // equals the output section address. Note, there may be a gap between the 805 // start of the output section and isec. 806 in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, 807 STT_SECTION, 808 /*value=*/0, /*size=*/0, &osec)); 809 } 810 } 811 812 // Today's loaders have a feature to make segments read-only after 813 // processing dynamic relocations to enhance security. PT_GNU_RELRO 814 // is defined for that. 815 // 816 // This function returns true if a section needs to be put into a 817 // PT_GNU_RELRO segment. 818 static bool isRelroSection(const OutputSection *sec) { 819 if (!config->zRelro) 820 return false; 821 if (sec->relro) 822 return true; 823 824 uint64_t flags = sec->flags; 825 826 // Non-allocatable or non-writable sections don't need RELRO because 827 // they are not writable or not even mapped to memory in the first place. 828 // RELRO is for sections that are essentially read-only but need to 829 // be writable only at process startup to allow dynamic linker to 830 // apply relocations. 831 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 832 return false; 833 834 // Once initialized, TLS data segments are used as data templates 835 // for a thread-local storage. For each new thread, runtime 836 // allocates memory for a TLS and copy templates there. No thread 837 // are supposed to use templates directly. Thus, it can be in RELRO. 838 if (flags & SHF_TLS) 839 return true; 840 841 // .init_array, .preinit_array and .fini_array contain pointers to 842 // functions that are executed on process startup or exit. These 843 // pointers are set by the static linker, and they are not expected 844 // to change at runtime. But if you are an attacker, you could do 845 // interesting things by manipulating pointers in .fini_array, for 846 // example. So they are put into RELRO. 847 uint32_t type = sec->type; 848 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 849 type == SHT_PREINIT_ARRAY) 850 return true; 851 852 // .got contains pointers to external symbols. They are resolved by 853 // the dynamic linker when a module is loaded into memory, and after 854 // that they are not expected to change. So, it can be in RELRO. 855 if (in.got && sec == in.got->getParent()) 856 return true; 857 858 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 859 // through r2 register, which is reserved for that purpose. Since r2 is used 860 // for accessing .got as well, .got and .toc need to be close enough in the 861 // virtual address space. Usually, .toc comes just after .got. Since we place 862 // .got into RELRO, .toc needs to be placed into RELRO too. 863 if (sec->name.equals(".toc")) 864 return true; 865 866 // .got.plt contains pointers to external function symbols. They are 867 // by default resolved lazily, so we usually cannot put it into RELRO. 868 // However, if "-z now" is given, the lazy symbol resolution is 869 // disabled, which enables us to put it into RELRO. 870 if (sec == in.gotPlt->getParent()) 871 return config->zNow; 872 873 if (in.relroPadding && sec == in.relroPadding->getParent()) 874 return true; 875 876 // .dynamic section contains data for the dynamic linker, and 877 // there's no need to write to it at runtime, so it's better to put 878 // it into RELRO. 879 if (sec->name == ".dynamic") 880 return true; 881 882 // Sections with some special names are put into RELRO. This is a 883 // bit unfortunate because section names shouldn't be significant in 884 // ELF in spirit. But in reality many linker features depend on 885 // magic section names. 886 StringRef s = sec->name; 887 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 888 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 889 s == ".fini_array" || s == ".init_array" || 890 s == ".openbsd.randomdata" || s == ".preinit_array"; 891 } 892 893 // We compute a rank for each section. The rank indicates where the 894 // section should be placed in the file. Instead of using simple 895 // numbers (0,1,2...), we use a series of flags. One for each decision 896 // point when placing the section. 897 // Using flags has two key properties: 898 // * It is easy to check if a give branch was taken. 899 // * It is easy two see how similar two ranks are (see getRankProximity). 900 enum RankFlags { 901 RF_NOT_ADDR_SET = 1 << 27, 902 RF_NOT_ALLOC = 1 << 26, 903 RF_PARTITION = 1 << 18, // Partition number (8 bits) 904 RF_NOT_SPECIAL = 1 << 17, 905 RF_WRITE = 1 << 16, 906 RF_EXEC_WRITE = 1 << 15, 907 RF_EXEC = 1 << 14, 908 RF_RODATA = 1 << 13, 909 RF_LARGE = 1 << 12, 910 RF_NOT_RELRO = 1 << 9, 911 RF_NOT_TLS = 1 << 8, 912 RF_BSS = 1 << 7, 913 }; 914 915 static unsigned getSectionRank(OutputSection &osec) { 916 unsigned rank = osec.partition * RF_PARTITION; 917 918 // We want to put section specified by -T option first, so we 919 // can start assigning VA starting from them later. 920 if (config->sectionStartMap.count(osec.name)) 921 return rank; 922 rank |= RF_NOT_ADDR_SET; 923 924 // Allocatable sections go first to reduce the total PT_LOAD size and 925 // so debug info doesn't change addresses in actual code. 926 if (!(osec.flags & SHF_ALLOC)) 927 return rank | RF_NOT_ALLOC; 928 929 if (osec.type == SHT_LLVM_PART_EHDR) 930 return rank; 931 if (osec.type == SHT_LLVM_PART_PHDR) 932 return rank | 1; 933 934 // Put .interp first because some loaders want to see that section 935 // on the first page of the executable file when loaded into memory. 936 if (osec.name == ".interp") 937 return rank | 2; 938 939 // Put .note sections at the beginning so that they are likely to be included 940 // in a truncate core file. In particular, .note.gnu.build-id, if available, 941 // can identify the object file. 942 if (osec.type == SHT_NOTE) 943 return rank | 3; 944 945 rank |= RF_NOT_SPECIAL; 946 947 // Sort sections based on their access permission in the following 948 // order: R, RX, RXW, RW(RELRO), RW(non-RELRO). 949 // 950 // Read-only sections come first such that they go in the PT_LOAD covering the 951 // program headers at the start of the file. 952 // 953 // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro 954 // .bss.rel.ro) | .data .bss), where | marks where page alignment happens. 955 // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro 956 // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment 957 // places. 958 bool isExec = osec.flags & SHF_EXECINSTR; 959 bool isWrite = osec.flags & SHF_WRITE; 960 961 if (!isWrite && !isExec) { 962 // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to 963 // alleviate relocation overflow pressure. Large special sections such as 964 // .dynstr and .dynsym can be away from .text. 965 if (osec.type == SHT_PROGBITS) 966 rank |= RF_RODATA; 967 // Among PROGBITS sections, place .lrodata further from .text. 968 if (!(osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64)) 969 rank |= RF_LARGE; 970 } else if (isExec) { 971 rank |= isWrite ? RF_EXEC_WRITE : RF_EXEC; 972 } else { 973 rank |= RF_WRITE; 974 // The TLS initialization block needs to be a single contiguous block. Place 975 // TLS sections directly before the other RELRO sections. 976 if (!(osec.flags & SHF_TLS)) 977 rank |= RF_NOT_TLS; 978 if (isRelroSection(&osec)) 979 osec.relro = true; 980 else 981 rank |= RF_NOT_RELRO; 982 // Place .ldata and .lbss after .bss. Making .bss closer to .text alleviates 983 // relocation overflow pressure. 984 if (osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64) 985 rank |= RF_LARGE; 986 } 987 988 // Within TLS sections, or within other RelRo sections, or within non-RelRo 989 // sections, place non-NOBITS sections first. 990 if (osec.type == SHT_NOBITS) 991 rank |= RF_BSS; 992 993 // Some architectures have additional ordering restrictions for sections 994 // within the same PT_LOAD. 995 if (config->emachine == EM_PPC64) { 996 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 997 // that we would like to make sure appear is a specific order to maximize 998 // their coverage by a single signed 16-bit offset from the TOC base 999 // pointer. 1000 StringRef name = osec.name; 1001 if (name == ".got") 1002 rank |= 1; 1003 else if (name == ".toc") 1004 rank |= 2; 1005 } 1006 1007 if (config->emachine == EM_MIPS) { 1008 if (osec.name != ".got") 1009 rank |= 1; 1010 // All sections with SHF_MIPS_GPREL flag should be grouped together 1011 // because data in these sections is addressable with a gp relative address. 1012 if (osec.flags & SHF_MIPS_GPREL) 1013 rank |= 2; 1014 } 1015 1016 if (config->emachine == EM_RISCV) { 1017 // .sdata and .sbss are placed closer to make GP relaxation more profitable 1018 // and match GNU ld. 1019 StringRef name = osec.name; 1020 if (name == ".sdata" || (osec.type == SHT_NOBITS && name != ".sbss")) 1021 rank |= 1; 1022 } 1023 1024 return rank; 1025 } 1026 1027 static bool compareSections(const SectionCommand *aCmd, 1028 const SectionCommand *bCmd) { 1029 const OutputSection *a = &cast<OutputDesc>(aCmd)->osec; 1030 const OutputSection *b = &cast<OutputDesc>(bCmd)->osec; 1031 1032 if (a->sortRank != b->sortRank) 1033 return a->sortRank < b->sortRank; 1034 1035 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1036 return config->sectionStartMap.lookup(a->name) < 1037 config->sectionStartMap.lookup(b->name); 1038 return false; 1039 } 1040 1041 void PhdrEntry::add(OutputSection *sec) { 1042 lastSec = sec; 1043 if (!firstSec) 1044 firstSec = sec; 1045 p_align = std::max(p_align, sec->addralign); 1046 if (p_type == PT_LOAD) 1047 sec->ptLoad = this; 1048 } 1049 1050 // The beginning and the ending of .rel[a].plt section are marked 1051 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1052 // executable. The runtime needs these symbols in order to resolve 1053 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1054 // need these symbols, since IRELATIVE relocs are resolved through GOT 1055 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1056 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1057 if (config->isPic) 1058 return; 1059 1060 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1061 // because .rela.plt might be empty and thus removed from output. 1062 // We'll override Out::elfHeader with In.relaIplt later when we are 1063 // sure that .rela.plt exists in output. 1064 ElfSym::relaIpltStart = addOptionalRegular( 1065 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1066 Out::elfHeader, 0, STV_HIDDEN); 1067 1068 ElfSym::relaIpltEnd = addOptionalRegular( 1069 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1070 Out::elfHeader, 0, STV_HIDDEN); 1071 } 1072 1073 // This function generates assignments for predefined symbols (e.g. _end or 1074 // _etext) and inserts them into the commands sequence to be processed at the 1075 // appropriate time. This ensures that the value is going to be correct by the 1076 // time any references to these symbols are processed and is equivalent to 1077 // defining these symbols explicitly in the linker script. 1078 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1079 if (ElfSym::globalOffsetTable) { 1080 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1081 // to the start of the .got or .got.plt section. 1082 InputSection *sec = in.gotPlt.get(); 1083 if (!target->gotBaseSymInGotPlt) 1084 sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get()) 1085 : cast<InputSection>(in.got.get()); 1086 ElfSym::globalOffsetTable->section = sec; 1087 } 1088 1089 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1090 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1091 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1092 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1093 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1094 } 1095 1096 PhdrEntry *last = nullptr; 1097 PhdrEntry *lastRO = nullptr; 1098 1099 for (Partition &part : partitions) { 1100 for (PhdrEntry *p : part.phdrs) { 1101 if (p->p_type != PT_LOAD) 1102 continue; 1103 last = p; 1104 if (!(p->p_flags & PF_W)) 1105 lastRO = p; 1106 } 1107 } 1108 1109 if (lastRO) { 1110 // _etext is the first location after the last read-only loadable segment. 1111 if (ElfSym::etext1) 1112 ElfSym::etext1->section = lastRO->lastSec; 1113 if (ElfSym::etext2) 1114 ElfSym::etext2->section = lastRO->lastSec; 1115 } 1116 1117 if (last) { 1118 // _edata points to the end of the last mapped initialized section. 1119 OutputSection *edata = nullptr; 1120 for (OutputSection *os : outputSections) { 1121 if (os->type != SHT_NOBITS) 1122 edata = os; 1123 if (os == last->lastSec) 1124 break; 1125 } 1126 1127 if (ElfSym::edata1) 1128 ElfSym::edata1->section = edata; 1129 if (ElfSym::edata2) 1130 ElfSym::edata2->section = edata; 1131 1132 // _end is the first location after the uninitialized data region. 1133 if (ElfSym::end1) 1134 ElfSym::end1->section = last->lastSec; 1135 if (ElfSym::end2) 1136 ElfSym::end2->section = last->lastSec; 1137 } 1138 1139 if (ElfSym::bss) { 1140 // On RISC-V, set __bss_start to the start of .sbss if present. 1141 OutputSection *sbss = 1142 config->emachine == EM_RISCV ? findSection(".sbss") : nullptr; 1143 ElfSym::bss->section = sbss ? sbss : findSection(".bss"); 1144 } 1145 1146 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1147 // be equal to the _gp symbol's value. 1148 if (ElfSym::mipsGp) { 1149 // Find GP-relative section with the lowest address 1150 // and use this address to calculate default _gp value. 1151 for (OutputSection *os : outputSections) { 1152 if (os->flags & SHF_MIPS_GPREL) { 1153 ElfSym::mipsGp->section = os; 1154 ElfSym::mipsGp->value = 0x7ff0; 1155 break; 1156 } 1157 } 1158 } 1159 } 1160 1161 // We want to find how similar two ranks are. 1162 // The more branches in getSectionRank that match, the more similar they are. 1163 // Since each branch corresponds to a bit flag, we can just use 1164 // countLeadingZeros. 1165 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1166 auto *osd = dyn_cast<OutputDesc>(b); 1167 return (osd && osd->osec.hasInputSections) 1168 ? llvm::countl_zero(a->sortRank ^ osd->osec.sortRank) 1169 : -1; 1170 } 1171 1172 // When placing orphan sections, we want to place them after symbol assignments 1173 // so that an orphan after 1174 // begin_foo = .; 1175 // foo : { *(foo) } 1176 // end_foo = .; 1177 // doesn't break the intended meaning of the begin/end symbols. 1178 // We don't want to go over sections since findOrphanPos is the 1179 // one in charge of deciding the order of the sections. 1180 // We don't want to go over changes to '.', since doing so in 1181 // rx_sec : { *(rx_sec) } 1182 // . = ALIGN(0x1000); 1183 // /* The RW PT_LOAD starts here*/ 1184 // rw_sec : { *(rw_sec) } 1185 // would mean that the RW PT_LOAD would become unaligned. 1186 static bool shouldSkip(SectionCommand *cmd) { 1187 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1188 return assign->name != "."; 1189 return false; 1190 } 1191 1192 // We want to place orphan sections so that they share as much 1193 // characteristics with their neighbors as possible. For example, if 1194 // both are rw, or both are tls. 1195 static SmallVectorImpl<SectionCommand *>::iterator 1196 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1197 SmallVectorImpl<SectionCommand *>::iterator e) { 1198 OutputSection *sec = &cast<OutputDesc>(*e)->osec; 1199 1200 // As a special case, place .relro_padding before the SymbolAssignment using 1201 // DATA_SEGMENT_RELRO_END, if present. 1202 if (in.relroPadding && sec == in.relroPadding->getParent()) { 1203 auto i = std::find_if(b, e, [=](SectionCommand *a) { 1204 if (auto *assign = dyn_cast<SymbolAssignment>(a)) 1205 return assign->dataSegmentRelroEnd; 1206 return false; 1207 }); 1208 if (i != e) 1209 return i; 1210 } 1211 1212 // Find the first element that has as close a rank as possible. 1213 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1214 return getRankProximity(sec, a) < getRankProximity(sec, b); 1215 }); 1216 if (i == e) 1217 return e; 1218 if (!isa<OutputDesc>(*i)) 1219 return e; 1220 auto foundSec = &cast<OutputDesc>(*i)->osec; 1221 1222 // Consider all existing sections with the same proximity. 1223 int proximity = getRankProximity(sec, *i); 1224 unsigned sortRank = sec->sortRank; 1225 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1226 // Prevent the orphan section to be placed before the found section. If 1227 // custom program headers are defined, that helps to avoid adding it to a 1228 // previous segment and changing flags of that segment, for example, making 1229 // a read-only segment writable. If memory regions are defined, an orphan 1230 // section should continue the same region as the found section to better 1231 // resemble the behavior of GNU ld. 1232 sortRank = std::max(sortRank, foundSec->sortRank); 1233 for (; i != e; ++i) { 1234 auto *curSecDesc = dyn_cast<OutputDesc>(*i); 1235 if (!curSecDesc || !curSecDesc->osec.hasInputSections) 1236 continue; 1237 if (getRankProximity(sec, curSecDesc) != proximity || 1238 sortRank < curSecDesc->osec.sortRank) 1239 break; 1240 } 1241 1242 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1243 auto *osd = dyn_cast<OutputDesc>(cmd); 1244 return osd && osd->osec.hasInputSections; 1245 }; 1246 auto j = 1247 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1248 isOutputSecWithInputSections); 1249 i = j.base(); 1250 1251 // As a special case, if the orphan section is the last section, put 1252 // it at the very end, past any other commands. 1253 // This matches bfd's behavior and is convenient when the linker script fully 1254 // specifies the start of the file, but doesn't care about the end (the non 1255 // alloc sections for example). 1256 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1257 if (nextSec == e) 1258 return e; 1259 1260 while (i != e && shouldSkip(*i)) 1261 ++i; 1262 return i; 1263 } 1264 1265 // Adds random priorities to sections not already in the map. 1266 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1267 if (config->shuffleSections.empty()) 1268 return; 1269 1270 SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections; 1271 matched.reserve(sections.size()); 1272 for (const auto &patAndSeed : config->shuffleSections) { 1273 matched.clear(); 1274 for (InputSectionBase *sec : sections) 1275 if (patAndSeed.first.match(sec->name)) 1276 matched.push_back(sec); 1277 const uint32_t seed = patAndSeed.second; 1278 if (seed == UINT32_MAX) { 1279 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1280 // section order is stable even if the number of sections changes. This is 1281 // useful to catch issues like static initialization order fiasco 1282 // reliably. 1283 std::reverse(matched.begin(), matched.end()); 1284 } else { 1285 std::mt19937 g(seed ? seed : std::random_device()()); 1286 llvm::shuffle(matched.begin(), matched.end(), g); 1287 } 1288 size_t i = 0; 1289 for (InputSectionBase *&sec : sections) 1290 if (patAndSeed.first.match(sec->name)) 1291 sec = matched[i++]; 1292 } 1293 1294 // Existing priorities are < 0, so use priorities >= 0 for the missing 1295 // sections. 1296 int prio = 0; 1297 for (InputSectionBase *sec : sections) { 1298 if (order.try_emplace(sec, prio).second) 1299 ++prio; 1300 } 1301 } 1302 1303 // Builds section order for handling --symbol-ordering-file. 1304 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1305 DenseMap<const InputSectionBase *, int> sectionOrder; 1306 // Use the rarely used option --call-graph-ordering-file to sort sections. 1307 if (!config->callGraphProfile.empty()) 1308 return computeCallGraphProfileOrder(); 1309 1310 if (config->symbolOrderingFile.empty()) 1311 return sectionOrder; 1312 1313 struct SymbolOrderEntry { 1314 int priority; 1315 bool present; 1316 }; 1317 1318 // Build a map from symbols to their priorities. Symbols that didn't 1319 // appear in the symbol ordering file have the lowest priority 0. 1320 // All explicitly mentioned symbols have negative (higher) priorities. 1321 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1322 int priority = -config->symbolOrderingFile.size(); 1323 for (StringRef s : config->symbolOrderingFile) 1324 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1325 1326 // Build a map from sections to their priorities. 1327 auto addSym = [&](Symbol &sym) { 1328 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1329 if (it == symbolOrder.end()) 1330 return; 1331 SymbolOrderEntry &ent = it->second; 1332 ent.present = true; 1333 1334 maybeWarnUnorderableSymbol(&sym); 1335 1336 if (auto *d = dyn_cast<Defined>(&sym)) { 1337 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1338 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1339 priority = std::min(priority, ent.priority); 1340 } 1341 } 1342 }; 1343 1344 // We want both global and local symbols. We get the global ones from the 1345 // symbol table and iterate the object files for the local ones. 1346 for (Symbol *sym : symtab.getSymbols()) 1347 addSym(*sym); 1348 1349 for (ELFFileBase *file : ctx.objectFiles) 1350 for (Symbol *sym : file->getLocalSymbols()) 1351 addSym(*sym); 1352 1353 if (config->warnSymbolOrdering) 1354 for (auto orderEntry : symbolOrder) 1355 if (!orderEntry.second.present) 1356 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1357 1358 return sectionOrder; 1359 } 1360 1361 // Sorts the sections in ISD according to the provided section order. 1362 static void 1363 sortISDBySectionOrder(InputSectionDescription *isd, 1364 const DenseMap<const InputSectionBase *, int> &order, 1365 bool executableOutputSection) { 1366 SmallVector<InputSection *, 0> unorderedSections; 1367 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1368 uint64_t unorderedSize = 0; 1369 uint64_t totalSize = 0; 1370 1371 for (InputSection *isec : isd->sections) { 1372 if (executableOutputSection) 1373 totalSize += isec->getSize(); 1374 auto i = order.find(isec); 1375 if (i == order.end()) { 1376 unorderedSections.push_back(isec); 1377 unorderedSize += isec->getSize(); 1378 continue; 1379 } 1380 orderedSections.push_back({isec, i->second}); 1381 } 1382 llvm::sort(orderedSections, llvm::less_second()); 1383 1384 // Find an insertion point for the ordered section list in the unordered 1385 // section list. On targets with limited-range branches, this is the mid-point 1386 // of the unordered section list. This decreases the likelihood that a range 1387 // extension thunk will be needed to enter or exit the ordered region. If the 1388 // ordered section list is a list of hot functions, we can generally expect 1389 // the ordered functions to be called more often than the unordered functions, 1390 // making it more likely that any particular call will be within range, and 1391 // therefore reducing the number of thunks required. 1392 // 1393 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1394 // If the layout is: 1395 // 1396 // 8MB hot 1397 // 32MB cold 1398 // 1399 // only the first 8-16MB of the cold code (depending on which hot function it 1400 // is actually calling) can call the hot code without a range extension thunk. 1401 // However, if we use this layout: 1402 // 1403 // 16MB cold 1404 // 8MB hot 1405 // 16MB cold 1406 // 1407 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1408 // of the second block of cold code can call the hot code without a thunk. So 1409 // we effectively double the amount of code that could potentially call into 1410 // the hot code without a thunk. 1411 // 1412 // The above is not necessary if total size of input sections in this "isd" 1413 // is small. Note that we assume all input sections are executable if the 1414 // output section is executable (which is not always true but supposed to 1415 // cover most cases). 1416 size_t insPt = 0; 1417 if (executableOutputSection && !orderedSections.empty() && 1418 target->getThunkSectionSpacing() && 1419 totalSize >= target->getThunkSectionSpacing()) { 1420 uint64_t unorderedPos = 0; 1421 for (; insPt != unorderedSections.size(); ++insPt) { 1422 unorderedPos += unorderedSections[insPt]->getSize(); 1423 if (unorderedPos > unorderedSize / 2) 1424 break; 1425 } 1426 } 1427 1428 isd->sections.clear(); 1429 for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt)) 1430 isd->sections.push_back(isec); 1431 for (std::pair<InputSection *, int> p : orderedSections) 1432 isd->sections.push_back(p.first); 1433 for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt)) 1434 isd->sections.push_back(isec); 1435 } 1436 1437 static void sortSection(OutputSection &osec, 1438 const DenseMap<const InputSectionBase *, int> &order) { 1439 StringRef name = osec.name; 1440 1441 // Never sort these. 1442 if (name == ".init" || name == ".fini") 1443 return; 1444 1445 // IRelative relocations that usually live in the .rel[a].dyn section should 1446 // be processed last by the dynamic loader. To achieve that we add synthetic 1447 // sections in the required order from the beginning so that the in.relaIplt 1448 // section is placed last in an output section. Here we just do not apply 1449 // sorting for an output section which holds the in.relaIplt section. 1450 if (in.relaIplt->getParent() == &osec) 1451 return; 1452 1453 // Sort input sections by priority using the list provided by 1454 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1455 // digit radix sort. The sections may be sorted stably again by a more 1456 // significant key. 1457 if (!order.empty()) 1458 for (SectionCommand *b : osec.commands) 1459 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1460 sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR); 1461 1462 if (script->hasSectionsCommand) 1463 return; 1464 1465 if (name == ".init_array" || name == ".fini_array") { 1466 osec.sortInitFini(); 1467 } else if (name == ".ctors" || name == ".dtors") { 1468 osec.sortCtorsDtors(); 1469 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1470 // .toc is allocated just after .got and is accessed using GOT-relative 1471 // relocations. Object files compiled with small code model have an 1472 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1473 // To reduce the risk of relocation overflow, .toc contents are sorted so 1474 // that sections having smaller relocation offsets are at beginning of .toc 1475 assert(osec.commands.size() == 1); 1476 auto *isd = cast<InputSectionDescription>(osec.commands[0]); 1477 llvm::stable_sort(isd->sections, 1478 [](const InputSection *a, const InputSection *b) -> bool { 1479 return a->file->ppc64SmallCodeModelTocRelocs && 1480 !b->file->ppc64SmallCodeModelTocRelocs; 1481 }); 1482 } 1483 } 1484 1485 // If no layout was provided by linker script, we want to apply default 1486 // sorting for special input sections. This also handles --symbol-ordering-file. 1487 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1488 // Build the order once since it is expensive. 1489 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1490 maybeShuffle(order); 1491 for (SectionCommand *cmd : script->sectionCommands) 1492 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1493 sortSection(osd->osec, order); 1494 } 1495 1496 template <class ELFT> void Writer<ELFT>::sortSections() { 1497 llvm::TimeTraceScope timeScope("Sort sections"); 1498 1499 // Don't sort if using -r. It is not necessary and we want to preserve the 1500 // relative order for SHF_LINK_ORDER sections. 1501 if (config->relocatable) { 1502 script->adjustOutputSections(); 1503 return; 1504 } 1505 1506 sortInputSections(); 1507 1508 for (SectionCommand *cmd : script->sectionCommands) 1509 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1510 osd->osec.sortRank = getSectionRank(osd->osec); 1511 if (!script->hasSectionsCommand) { 1512 // We know that all the OutputSections are contiguous in this case. 1513 auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); }; 1514 std::stable_sort( 1515 llvm::find_if(script->sectionCommands, isSection), 1516 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1517 compareSections); 1518 } 1519 1520 // Process INSERT commands and update output section attributes. From this 1521 // point onwards the order of script->sectionCommands is fixed. 1522 script->processInsertCommands(); 1523 script->adjustOutputSections(); 1524 1525 if (script->hasSectionsCommand) 1526 sortOrphanSections(); 1527 1528 script->adjustSectionsAfterSorting(); 1529 } 1530 1531 template <class ELFT> void Writer<ELFT>::sortOrphanSections() { 1532 // Orphan sections are sections present in the input files which are 1533 // not explicitly placed into the output file by the linker script. 1534 // 1535 // The sections in the linker script are already in the correct 1536 // order. We have to figuere out where to insert the orphan 1537 // sections. 1538 // 1539 // The order of the sections in the script is arbitrary and may not agree with 1540 // compareSections. This means that we cannot easily define a strict weak 1541 // ordering. To see why, consider a comparison of a section in the script and 1542 // one not in the script. We have a two simple options: 1543 // * Make them equivalent (a is not less than b, and b is not less than a). 1544 // The problem is then that equivalence has to be transitive and we can 1545 // have sections a, b and c with only b in a script and a less than c 1546 // which breaks this property. 1547 // * Use compareSectionsNonScript. Given that the script order doesn't have 1548 // to match, we can end up with sections a, b, c, d where b and c are in the 1549 // script and c is compareSectionsNonScript less than b. In which case d 1550 // can be equivalent to c, a to b and d < a. As a concrete example: 1551 // .a (rx) # not in script 1552 // .b (rx) # in script 1553 // .c (ro) # in script 1554 // .d (ro) # not in script 1555 // 1556 // The way we define an order then is: 1557 // * Sort only the orphan sections. They are in the end right now. 1558 // * Move each orphan section to its preferred position. We try 1559 // to put each section in the last position where it can share 1560 // a PT_LOAD. 1561 // 1562 // There is some ambiguity as to where exactly a new entry should be 1563 // inserted, because Commands contains not only output section 1564 // commands but also other types of commands such as symbol assignment 1565 // expressions. There's no correct answer here due to the lack of the 1566 // formal specification of the linker script. We use heuristics to 1567 // determine whether a new output command should be added before or 1568 // after another commands. For the details, look at shouldSkip 1569 // function. 1570 1571 auto i = script->sectionCommands.begin(); 1572 auto e = script->sectionCommands.end(); 1573 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1574 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1575 return osd->osec.sectionIndex == UINT32_MAX; 1576 return false; 1577 }); 1578 1579 // Sort the orphan sections. 1580 std::stable_sort(nonScriptI, e, compareSections); 1581 1582 // As a horrible special case, skip the first . assignment if it is before any 1583 // section. We do this because it is common to set a load address by starting 1584 // the script with ". = 0xabcd" and the expectation is that every section is 1585 // after that. 1586 auto firstSectionOrDotAssignment = 1587 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1588 if (firstSectionOrDotAssignment != e && 1589 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1590 ++firstSectionOrDotAssignment; 1591 i = firstSectionOrDotAssignment; 1592 1593 while (nonScriptI != e) { 1594 auto pos = findOrphanPos(i, nonScriptI); 1595 OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec; 1596 1597 // As an optimization, find all sections with the same sort rank 1598 // and insert them with one rotate. 1599 unsigned rank = orphan->sortRank; 1600 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1601 return cast<OutputDesc>(cmd)->osec.sortRank != rank; 1602 }); 1603 std::rotate(pos, nonScriptI, end); 1604 nonScriptI = end; 1605 } 1606 } 1607 1608 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1609 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1610 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1611 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1612 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1613 if (!la || !lb) 1614 return la && !lb; 1615 OutputSection *aOut = la->getParent(); 1616 OutputSection *bOut = lb->getParent(); 1617 1618 if (aOut != bOut) 1619 return aOut->addr < bOut->addr; 1620 return la->outSecOff < lb->outSecOff; 1621 } 1622 1623 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1624 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1625 for (OutputSection *sec : outputSections) { 1626 if (!(sec->flags & SHF_LINK_ORDER)) 1627 continue; 1628 1629 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1630 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1631 if (!config->relocatable && config->emachine == EM_ARM && 1632 sec->type == SHT_ARM_EXIDX) 1633 continue; 1634 1635 // Link order may be distributed across several InputSectionDescriptions. 1636 // Sorting is performed separately. 1637 SmallVector<InputSection **, 0> scriptSections; 1638 SmallVector<InputSection *, 0> sections; 1639 for (SectionCommand *cmd : sec->commands) { 1640 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1641 if (!isd) 1642 continue; 1643 bool hasLinkOrder = false; 1644 scriptSections.clear(); 1645 sections.clear(); 1646 for (InputSection *&isec : isd->sections) { 1647 if (isec->flags & SHF_LINK_ORDER) { 1648 InputSection *link = isec->getLinkOrderDep(); 1649 if (link && !link->getParent()) 1650 error(toString(isec) + ": sh_link points to discarded section " + 1651 toString(link)); 1652 hasLinkOrder = true; 1653 } 1654 scriptSections.push_back(&isec); 1655 sections.push_back(isec); 1656 } 1657 if (hasLinkOrder && errorCount() == 0) { 1658 llvm::stable_sort(sections, compareByFilePosition); 1659 for (int i = 0, n = sections.size(); i != n; ++i) 1660 *scriptSections[i] = sections[i]; 1661 } 1662 } 1663 } 1664 } 1665 1666 static void finalizeSynthetic(SyntheticSection *sec) { 1667 if (sec && sec->isNeeded() && sec->getParent()) { 1668 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1669 sec->finalizeContents(); 1670 } 1671 } 1672 1673 // We need to generate and finalize the content that depends on the address of 1674 // InputSections. As the generation of the content may also alter InputSection 1675 // addresses we must converge to a fixed point. We do that here. See the comment 1676 // in Writer<ELFT>::finalizeSections(). 1677 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1678 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1679 ThunkCreator tc; 1680 AArch64Err843419Patcher a64p; 1681 ARMErr657417Patcher a32p; 1682 script->assignAddresses(); 1683 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1684 // do require the relative addresses of OutputSections because linker scripts 1685 // can assign Virtual Addresses to OutputSections that are not monotonically 1686 // increasing. 1687 for (Partition &part : partitions) 1688 finalizeSynthetic(part.armExidx.get()); 1689 resolveShfLinkOrder(); 1690 1691 // Converts call x@GDPLT to call __tls_get_addr 1692 if (config->emachine == EM_HEXAGON) 1693 hexagonTLSSymbolUpdate(outputSections); 1694 1695 uint32_t pass = 0, assignPasses = 0; 1696 for (;;) { 1697 bool changed = target->needsThunks ? tc.createThunks(pass, outputSections) 1698 : target->relaxOnce(pass); 1699 ++pass; 1700 1701 // With Thunk Size much smaller than branch range we expect to 1702 // converge quickly; if we get to 30 something has gone wrong. 1703 if (changed && pass >= 30) { 1704 error(target->needsThunks ? "thunk creation not converged" 1705 : "relaxation not converged"); 1706 break; 1707 } 1708 1709 if (config->fixCortexA53Errata843419) { 1710 if (changed) 1711 script->assignAddresses(); 1712 changed |= a64p.createFixes(); 1713 } 1714 if (config->fixCortexA8) { 1715 if (changed) 1716 script->assignAddresses(); 1717 changed |= a32p.createFixes(); 1718 } 1719 1720 finalizeSynthetic(in.got.get()); 1721 if (in.mipsGot) 1722 in.mipsGot->updateAllocSize(); 1723 1724 for (Partition &part : partitions) { 1725 changed |= part.relaDyn->updateAllocSize(); 1726 if (part.relrDyn) 1727 changed |= part.relrDyn->updateAllocSize(); 1728 if (part.memtagDescriptors) 1729 changed |= part.memtagDescriptors->updateAllocSize(); 1730 } 1731 1732 const Defined *changedSym = script->assignAddresses(); 1733 if (!changed) { 1734 // Some symbols may be dependent on section addresses. When we break the 1735 // loop, the symbol values are finalized because a previous 1736 // assignAddresses() finalized section addresses. 1737 if (!changedSym) 1738 break; 1739 if (++assignPasses == 5) { 1740 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1741 " does not converge"); 1742 break; 1743 } 1744 } 1745 } 1746 if (!config->relocatable && config->emachine == EM_RISCV) 1747 riscvFinalizeRelax(pass); 1748 1749 if (config->relocatable) 1750 for (OutputSection *sec : outputSections) 1751 sec->addr = 0; 1752 1753 // If addrExpr is set, the address may not be a multiple of the alignment. 1754 // Warn because this is error-prone. 1755 for (SectionCommand *cmd : script->sectionCommands) 1756 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1757 OutputSection *osec = &osd->osec; 1758 if (osec->addr % osec->addralign != 0) 1759 warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " + 1760 osec->name + " is not a multiple of alignment (" + 1761 Twine(osec->addralign) + ")"); 1762 } 1763 } 1764 1765 // If Input Sections have been shrunk (basic block sections) then 1766 // update symbol values and sizes associated with these sections. With basic 1767 // block sections, input sections can shrink when the jump instructions at 1768 // the end of the section are relaxed. 1769 static void fixSymbolsAfterShrinking() { 1770 for (InputFile *File : ctx.objectFiles) { 1771 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1772 auto *def = dyn_cast<Defined>(Sym); 1773 if (!def) 1774 return; 1775 1776 const SectionBase *sec = def->section; 1777 if (!sec) 1778 return; 1779 1780 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1781 if (!inputSec || !inputSec->bytesDropped) 1782 return; 1783 1784 const size_t OldSize = inputSec->content().size(); 1785 const size_t NewSize = OldSize - inputSec->bytesDropped; 1786 1787 if (def->value > NewSize && def->value <= OldSize) { 1788 LLVM_DEBUG(llvm::dbgs() 1789 << "Moving symbol " << Sym->getName() << " from " 1790 << def->value << " to " 1791 << def->value - inputSec->bytesDropped << " bytes\n"); 1792 def->value -= inputSec->bytesDropped; 1793 return; 1794 } 1795 1796 if (def->value + def->size > NewSize && def->value <= OldSize && 1797 def->value + def->size <= OldSize) { 1798 LLVM_DEBUG(llvm::dbgs() 1799 << "Shrinking symbol " << Sym->getName() << " from " 1800 << def->size << " to " << def->size - inputSec->bytesDropped 1801 << " bytes\n"); 1802 def->size -= inputSec->bytesDropped; 1803 } 1804 }); 1805 } 1806 } 1807 1808 // If basic block sections exist, there are opportunities to delete fall thru 1809 // jumps and shrink jump instructions after basic block reordering. This 1810 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1811 // option is used. 1812 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1813 assert(config->optimizeBBJumps); 1814 SmallVector<InputSection *, 0> storage; 1815 1816 script->assignAddresses(); 1817 // For every output section that has executable input sections, this 1818 // does the following: 1819 // 1. Deletes all direct jump instructions in input sections that 1820 // jump to the following section as it is not required. 1821 // 2. If there are two consecutive jump instructions, it checks 1822 // if they can be flipped and one can be deleted. 1823 for (OutputSection *osec : outputSections) { 1824 if (!(osec->flags & SHF_EXECINSTR)) 1825 continue; 1826 ArrayRef<InputSection *> sections = getInputSections(*osec, storage); 1827 size_t numDeleted = 0; 1828 // Delete all fall through jump instructions. Also, check if two 1829 // consecutive jump instructions can be flipped so that a fall 1830 // through jmp instruction can be deleted. 1831 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1832 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1833 InputSection &sec = *sections[i]; 1834 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1835 } 1836 if (numDeleted > 0) { 1837 script->assignAddresses(); 1838 LLVM_DEBUG(llvm::dbgs() 1839 << "Removing " << numDeleted << " fall through jumps\n"); 1840 } 1841 } 1842 1843 fixSymbolsAfterShrinking(); 1844 1845 for (OutputSection *osec : outputSections) 1846 for (InputSection *is : getInputSections(*osec, storage)) 1847 is->trim(); 1848 } 1849 1850 // In order to allow users to manipulate linker-synthesized sections, 1851 // we had to add synthetic sections to the input section list early, 1852 // even before we make decisions whether they are needed. This allows 1853 // users to write scripts like this: ".mygot : { .got }". 1854 // 1855 // Doing it has an unintended side effects. If it turns out that we 1856 // don't need a .got (for example) at all because there's no 1857 // relocation that needs a .got, we don't want to emit .got. 1858 // 1859 // To deal with the above problem, this function is called after 1860 // scanRelocations is called to remove synthetic sections that turn 1861 // out to be empty. 1862 static void removeUnusedSyntheticSections() { 1863 // All input synthetic sections that can be empty are placed after 1864 // all regular ones. Reverse iterate to find the first synthetic section 1865 // after a non-synthetic one which will be our starting point. 1866 auto start = 1867 llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) { 1868 return !isa<SyntheticSection>(s); 1869 }).base(); 1870 1871 // Remove unused synthetic sections from ctx.inputSections; 1872 DenseSet<InputSectionBase *> unused; 1873 auto end = 1874 std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) { 1875 auto *sec = cast<SyntheticSection>(s); 1876 if (sec->getParent() && sec->isNeeded()) 1877 return false; 1878 unused.insert(sec); 1879 return true; 1880 }); 1881 ctx.inputSections.erase(end, ctx.inputSections.end()); 1882 1883 // Remove unused synthetic sections from the corresponding input section 1884 // description and orphanSections. 1885 for (auto *sec : unused) 1886 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1887 for (SectionCommand *cmd : osec->commands) 1888 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1889 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1890 return unused.count(isec); 1891 }); 1892 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1893 return unused.count(sec); 1894 }); 1895 } 1896 1897 // Create output section objects and add them to OutputSections. 1898 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1899 if (!config->relocatable) { 1900 Out::preinitArray = findSection(".preinit_array"); 1901 Out::initArray = findSection(".init_array"); 1902 Out::finiArray = findSection(".fini_array"); 1903 1904 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1905 // symbols for sections, so that the runtime can get the start and end 1906 // addresses of each section by section name. Add such symbols. 1907 addStartEndSymbols(); 1908 for (SectionCommand *cmd : script->sectionCommands) 1909 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1910 addStartStopSymbols(osd->osec); 1911 1912 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1913 // It should be okay as no one seems to care about the type. 1914 // Even the author of gold doesn't remember why gold behaves that way. 1915 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1916 if (mainPart->dynamic->parent) { 1917 Symbol *s = symtab.addSymbol(Defined{ 1918 /*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1919 /*value=*/0, /*size=*/0, mainPart->dynamic.get()}); 1920 s->isUsedInRegularObj = true; 1921 } 1922 1923 // Define __rel[a]_iplt_{start,end} symbols if needed. 1924 addRelIpltSymbols(); 1925 1926 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1927 // should only be defined in an executable. If .sdata does not exist, its 1928 // value/section does not matter but it has to be relative, so set its 1929 // st_shndx arbitrarily to 1 (Out::elfHeader). 1930 if (config->emachine == EM_RISCV) { 1931 ElfSym::riscvGlobalPointer = nullptr; 1932 if (!config->shared) { 1933 OutputSection *sec = findSection(".sdata"); 1934 addOptionalRegular( 1935 "__global_pointer$", sec ? sec : Out::elfHeader, 0x800, STV_DEFAULT); 1936 // Set riscvGlobalPointer to be used by the optional global pointer 1937 // relaxation. 1938 if (config->relaxGP) { 1939 Symbol *s = symtab.find("__global_pointer$"); 1940 if (s && s->isDefined()) 1941 ElfSym::riscvGlobalPointer = cast<Defined>(s); 1942 } 1943 } 1944 } 1945 1946 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1947 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1948 // way that: 1949 // 1950 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1951 // computes 0. 1952 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address 1953 // in the TLS block). 1954 // 1955 // 2) is special cased in @tpoff computation. To satisfy 1), we define it 1956 // as an absolute symbol of zero. This is different from GNU linkers which 1957 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1958 Symbol *s = symtab.find("_TLS_MODULE_BASE_"); 1959 if (s && s->isUndefined()) { 1960 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, 1961 STV_HIDDEN, STT_TLS, /*value=*/0, 0, 1962 /*section=*/nullptr}); 1963 ElfSym::tlsModuleBase = cast<Defined>(s); 1964 } 1965 } 1966 1967 // This responsible for splitting up .eh_frame section into 1968 // pieces. The relocation scan uses those pieces, so this has to be 1969 // earlier. 1970 { 1971 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1972 for (Partition &part : partitions) 1973 finalizeSynthetic(part.ehFrame.get()); 1974 } 1975 } 1976 1977 demoteSymbolsAndComputeIsPreemptible(); 1978 1979 if (config->copyRelocs && config->discard != DiscardPolicy::None) 1980 markUsedLocalSymbols<ELFT>(); 1981 demoteAndCopyLocalSymbols(); 1982 1983 if (config->copyRelocs) 1984 addSectionSymbols(); 1985 1986 // Change values of linker-script-defined symbols from placeholders (assigned 1987 // by declareSymbols) to actual definitions. 1988 script->processSymbolAssignments(); 1989 1990 if (!config->relocatable) { 1991 llvm::TimeTraceScope timeScope("Scan relocations"); 1992 // Scan relocations. This must be done after every symbol is declared so 1993 // that we can correctly decide if a dynamic relocation is needed. This is 1994 // called after processSymbolAssignments() because it needs to know whether 1995 // a linker-script-defined symbol is absolute. 1996 ppc64noTocRelax.clear(); 1997 scanRelocations<ELFT>(); 1998 reportUndefinedSymbols(); 1999 postScanRelocations(); 2000 2001 if (in.plt && in.plt->isNeeded()) 2002 in.plt->addSymbols(); 2003 if (in.iplt && in.iplt->isNeeded()) 2004 in.iplt->addSymbols(); 2005 2006 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 2007 auto diagnose = 2008 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 2009 ? errorOrWarn 2010 : warn; 2011 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 2012 // entries are seen. These cases would otherwise lead to runtime errors 2013 // reported by the dynamic linker. 2014 // 2015 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker 2016 // to catch more cases. That is too much for us. Our approach resembles 2017 // the one used in ld.gold, achieves a good balance to be useful but not 2018 // too smart. 2019 for (SharedFile *file : ctx.sharedFiles) { 2020 bool allNeededIsKnown = 2021 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2022 return symtab.soNames.count(CachedHashStringRef(needed)); 2023 }); 2024 if (!allNeededIsKnown) 2025 continue; 2026 for (Symbol *sym : file->requiredSymbols) { 2027 if (sym->isUndefined() && !sym->isWeak()) { 2028 diagnose("undefined reference due to --no-allow-shlib-undefined: " + 2029 toString(*sym) + "\n>>> referenced by " + toString(file)); 2030 } else if (sym->isDefined() && sym->computeBinding() == STB_LOCAL) { 2031 diagnose("non-exported symbol '" + toString(*sym) + "' in '" + 2032 toString(sym->file) + "' is referenced by DSO '" + 2033 toString(file) + "'"); 2034 } 2035 } 2036 } 2037 } 2038 } 2039 2040 { 2041 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2042 // Now that we have defined all possible global symbols including linker- 2043 // synthesized ones. Visit all symbols to give the finishing touches. 2044 for (Symbol *sym : symtab.getSymbols()) { 2045 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 2046 continue; 2047 if (!config->relocatable) 2048 sym->binding = sym->computeBinding(); 2049 if (in.symTab) 2050 in.symTab->addSymbol(sym); 2051 2052 if (sym->includeInDynsym()) { 2053 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2054 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2055 if (file->isNeeded && !sym->isUndefined()) 2056 addVerneed(sym); 2057 } 2058 } 2059 2060 // We also need to scan the dynamic relocation tables of the other 2061 // partitions and add any referenced symbols to the partition's dynsym. 2062 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2063 DenseSet<Symbol *> syms; 2064 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2065 syms.insert(e.sym); 2066 for (DynamicReloc &reloc : part.relaDyn->relocs) 2067 if (reloc.sym && reloc.needsDynSymIndex() && 2068 syms.insert(reloc.sym).second) 2069 part.dynSymTab->addSymbol(reloc.sym); 2070 } 2071 } 2072 2073 if (in.mipsGot) 2074 in.mipsGot->build(); 2075 2076 removeUnusedSyntheticSections(); 2077 script->diagnoseOrphanHandling(); 2078 script->diagnoseMissingSGSectionAddress(); 2079 2080 sortSections(); 2081 2082 // Create a list of OutputSections, assign sectionIndex, and populate 2083 // in.shStrTab. 2084 for (SectionCommand *cmd : script->sectionCommands) 2085 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 2086 OutputSection *osec = &osd->osec; 2087 outputSections.push_back(osec); 2088 osec->sectionIndex = outputSections.size(); 2089 osec->shName = in.shStrTab->addString(osec->name); 2090 } 2091 2092 // Prefer command line supplied address over other constraints. 2093 for (OutputSection *sec : outputSections) { 2094 auto i = config->sectionStartMap.find(sec->name); 2095 if (i != config->sectionStartMap.end()) 2096 sec->addrExpr = [=] { return i->second; }; 2097 } 2098 2099 // With the outputSections available check for GDPLT relocations 2100 // and add __tls_get_addr symbol if needed. 2101 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2102 Symbol *sym = symtab.addSymbol(Undefined{ 2103 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2104 sym->isPreemptible = true; 2105 partitions[0].dynSymTab->addSymbol(sym); 2106 } 2107 2108 // This is a bit of a hack. A value of 0 means undef, so we set it 2109 // to 1 to make __ehdr_start defined. The section number is not 2110 // particularly relevant. 2111 Out::elfHeader->sectionIndex = 1; 2112 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2113 2114 // Binary and relocatable output does not have PHDRS. 2115 // The headers have to be created before finalize as that can influence the 2116 // image base and the dynamic section on mips includes the image base. 2117 if (!config->relocatable && !config->oFormatBinary) { 2118 for (Partition &part : partitions) { 2119 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2120 : createPhdrs(part); 2121 if (config->emachine == EM_ARM) { 2122 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2123 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2124 } 2125 if (config->emachine == EM_MIPS) { 2126 // Add separate segments for MIPS-specific sections. 2127 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2128 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2129 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2130 } 2131 if (config->emachine == EM_RISCV) 2132 addPhdrForSection(part, SHT_RISCV_ATTRIBUTES, PT_RISCV_ATTRIBUTES, 2133 PF_R); 2134 } 2135 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2136 2137 // Find the TLS segment. This happens before the section layout loop so that 2138 // Android relocation packing can look up TLS symbol addresses. We only need 2139 // to care about the main partition here because all TLS symbols were moved 2140 // to the main partition (see MarkLive.cpp). 2141 for (PhdrEntry *p : mainPart->phdrs) 2142 if (p->p_type == PT_TLS) 2143 Out::tlsPhdr = p; 2144 } 2145 2146 // Some symbols are defined in term of program headers. Now that we 2147 // have the headers, we can find out which sections they point to. 2148 setReservedSymbolSections(); 2149 2150 { 2151 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2152 2153 finalizeSynthetic(in.bss.get()); 2154 finalizeSynthetic(in.bssRelRo.get()); 2155 finalizeSynthetic(in.symTabShndx.get()); 2156 finalizeSynthetic(in.shStrTab.get()); 2157 finalizeSynthetic(in.strTab.get()); 2158 finalizeSynthetic(in.got.get()); 2159 finalizeSynthetic(in.mipsGot.get()); 2160 finalizeSynthetic(in.igotPlt.get()); 2161 finalizeSynthetic(in.gotPlt.get()); 2162 finalizeSynthetic(in.relaIplt.get()); 2163 finalizeSynthetic(in.relaPlt.get()); 2164 finalizeSynthetic(in.plt.get()); 2165 finalizeSynthetic(in.iplt.get()); 2166 finalizeSynthetic(in.ppc32Got2.get()); 2167 finalizeSynthetic(in.partIndex.get()); 2168 2169 // Dynamic section must be the last one in this list and dynamic 2170 // symbol table section (dynSymTab) must be the first one. 2171 for (Partition &part : partitions) { 2172 if (part.relaDyn) { 2173 part.relaDyn->mergeRels(); 2174 // Compute DT_RELACOUNT to be used by part.dynamic. 2175 part.relaDyn->partitionRels(); 2176 finalizeSynthetic(part.relaDyn.get()); 2177 } 2178 if (part.relrDyn) { 2179 part.relrDyn->mergeRels(); 2180 finalizeSynthetic(part.relrDyn.get()); 2181 } 2182 2183 finalizeSynthetic(part.dynSymTab.get()); 2184 finalizeSynthetic(part.gnuHashTab.get()); 2185 finalizeSynthetic(part.hashTab.get()); 2186 finalizeSynthetic(part.verDef.get()); 2187 finalizeSynthetic(part.ehFrameHdr.get()); 2188 finalizeSynthetic(part.verSym.get()); 2189 finalizeSynthetic(part.verNeed.get()); 2190 finalizeSynthetic(part.dynamic.get()); 2191 } 2192 } 2193 2194 if (!script->hasSectionsCommand && !config->relocatable) 2195 fixSectionAlignments(); 2196 2197 // This is used to: 2198 // 1) Create "thunks": 2199 // Jump instructions in many ISAs have small displacements, and therefore 2200 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2201 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2202 // responsibility to create and insert small pieces of code between 2203 // sections to extend the ranges if jump targets are out of range. Such 2204 // code pieces are called "thunks". 2205 // 2206 // We add thunks at this stage. We couldn't do this before this point 2207 // because this is the earliest point where we know sizes of sections and 2208 // their layouts (that are needed to determine if jump targets are in 2209 // range). 2210 // 2211 // 2) Update the sections. We need to generate content that depends on the 2212 // address of InputSections. For example, MIPS GOT section content or 2213 // android packed relocations sections content. 2214 // 2215 // 3) Assign the final values for the linker script symbols. Linker scripts 2216 // sometimes using forward symbol declarations. We want to set the correct 2217 // values. They also might change after adding the thunks. 2218 finalizeAddressDependentContent(); 2219 2220 // All information needed for OutputSection part of Map file is available. 2221 if (errorCount()) 2222 return; 2223 2224 { 2225 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2226 // finalizeAddressDependentContent may have added local symbols to the 2227 // static symbol table. 2228 finalizeSynthetic(in.symTab.get()); 2229 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2230 finalizeSynthetic(in.armCmseSGSection.get()); 2231 } 2232 2233 // Relaxation to delete inter-basic block jumps created by basic block 2234 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2235 // can relax jump instructions based on symbol offset. 2236 if (config->optimizeBBJumps) 2237 optimizeBasicBlockJumps(); 2238 2239 // Fill other section headers. The dynamic table is finalized 2240 // at the end because some tags like RELSZ depend on result 2241 // of finalizing other sections. 2242 for (OutputSection *sec : outputSections) 2243 sec->finalize(); 2244 2245 script->checkFinalScriptConditions(); 2246 2247 if (config->emachine == EM_ARM && !config->isLE && config->armBe8) { 2248 addArmInputSectionMappingSymbols(); 2249 sortArmMappingSymbols(); 2250 } 2251 } 2252 2253 // Ensure data sections are not mixed with executable sections when 2254 // --execute-only is used. --execute-only make pages executable but not 2255 // readable. 2256 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2257 if (!config->executeOnly) 2258 return; 2259 2260 SmallVector<InputSection *, 0> storage; 2261 for (OutputSection *osec : outputSections) 2262 if (osec->flags & SHF_EXECINSTR) 2263 for (InputSection *isec : getInputSections(*osec, storage)) 2264 if (!(isec->flags & SHF_EXECINSTR)) 2265 error("cannot place " + toString(isec) + " into " + 2266 toString(osec->name) + 2267 ": --execute-only does not support intermingling data and code"); 2268 } 2269 2270 // The linker is expected to define SECNAME_start and SECNAME_end 2271 // symbols for a few sections. This function defines them. 2272 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2273 // If a section does not exist, there's ambiguity as to how we 2274 // define _start and _end symbols for an init/fini section. Since 2275 // the loader assume that the symbols are always defined, we need to 2276 // always define them. But what value? The loader iterates over all 2277 // pointers between _start and _end to run global ctors/dtors, so if 2278 // the section is empty, their symbol values don't actually matter 2279 // as long as _start and _end point to the same location. 2280 // 2281 // That said, we don't want to set the symbols to 0 (which is 2282 // probably the simplest value) because that could cause some 2283 // program to fail to link due to relocation overflow, if their 2284 // program text is above 2 GiB. We use the address of the .text 2285 // section instead to prevent that failure. 2286 // 2287 // In rare situations, the .text section may not exist. If that's the 2288 // case, use the image base address as a last resort. 2289 OutputSection *Default = findSection(".text"); 2290 if (!Default) 2291 Default = Out::elfHeader; 2292 2293 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2294 if (os && !script->isDiscarded(os)) { 2295 addOptionalRegular(start, os, 0); 2296 addOptionalRegular(end, os, -1); 2297 } else { 2298 addOptionalRegular(start, Default, 0); 2299 addOptionalRegular(end, Default, 0); 2300 } 2301 }; 2302 2303 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2304 define("__init_array_start", "__init_array_end", Out::initArray); 2305 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2306 2307 if (OutputSection *sec = findSection(".ARM.exidx")) 2308 define("__exidx_start", "__exidx_end", sec); 2309 } 2310 2311 // If a section name is valid as a C identifier (which is rare because of 2312 // the leading '.'), linkers are expected to define __start_<secname> and 2313 // __stop_<secname> symbols. They are at beginning and end of the section, 2314 // respectively. This is not requested by the ELF standard, but GNU ld and 2315 // gold provide the feature, and used by many programs. 2316 template <class ELFT> 2317 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) { 2318 StringRef s = osec.name; 2319 if (!isValidCIdentifier(s)) 2320 return; 2321 addOptionalRegular(saver().save("__start_" + s), &osec, 0, 2322 config->zStartStopVisibility); 2323 addOptionalRegular(saver().save("__stop_" + s), &osec, -1, 2324 config->zStartStopVisibility); 2325 } 2326 2327 static bool needsPtLoad(OutputSection *sec) { 2328 if (!(sec->flags & SHF_ALLOC)) 2329 return false; 2330 2331 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2332 // responsible for allocating space for them, not the PT_LOAD that 2333 // contains the TLS initialization image. 2334 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2335 return false; 2336 return true; 2337 } 2338 2339 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2340 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2341 // RW. This means that there is no alignment in the RO to RX transition and we 2342 // cannot create a PT_LOAD there. 2343 static uint64_t computeFlags(uint64_t flags) { 2344 if (config->omagic) 2345 return PF_R | PF_W | PF_X; 2346 if (config->executeOnly && (flags & PF_X)) 2347 return flags & ~PF_R; 2348 if (config->singleRoRx && !(flags & PF_W)) 2349 return flags | PF_X; 2350 return flags; 2351 } 2352 2353 // Decide which program headers to create and which sections to include in each 2354 // one. 2355 template <class ELFT> 2356 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2357 SmallVector<PhdrEntry *, 0> ret; 2358 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2359 ret.push_back(make<PhdrEntry>(type, flags)); 2360 return ret.back(); 2361 }; 2362 2363 unsigned partNo = part.getNumber(); 2364 bool isMain = partNo == 1; 2365 2366 // Add the first PT_LOAD segment for regular output sections. 2367 uint64_t flags = computeFlags(PF_R); 2368 PhdrEntry *load = nullptr; 2369 2370 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2371 // PT_LOAD. 2372 if (!config->nmagic && !config->omagic) { 2373 // The first phdr entry is PT_PHDR which describes the program header 2374 // itself. 2375 if (isMain) 2376 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2377 else 2378 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2379 2380 // PT_INTERP must be the second entry if exists. 2381 if (OutputSection *cmd = findSection(".interp", partNo)) 2382 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2383 2384 // Add the headers. We will remove them if they don't fit. 2385 // In the other partitions the headers are ordinary sections, so they don't 2386 // need to be added here. 2387 if (isMain) { 2388 load = addHdr(PT_LOAD, flags); 2389 load->add(Out::elfHeader); 2390 load->add(Out::programHeaders); 2391 } 2392 } 2393 2394 // PT_GNU_RELRO includes all sections that should be marked as 2395 // read-only by dynamic linker after processing relocations. 2396 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2397 // an error message if more than one PT_GNU_RELRO PHDR is required. 2398 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2399 bool inRelroPhdr = false; 2400 OutputSection *relroEnd = nullptr; 2401 for (OutputSection *sec : outputSections) { 2402 if (sec->partition != partNo || !needsPtLoad(sec)) 2403 continue; 2404 if (isRelroSection(sec)) { 2405 inRelroPhdr = true; 2406 if (!relroEnd) 2407 relRo->add(sec); 2408 else 2409 error("section: " + sec->name + " is not contiguous with other relro" + 2410 " sections"); 2411 } else if (inRelroPhdr) { 2412 inRelroPhdr = false; 2413 relroEnd = sec; 2414 } 2415 } 2416 relRo->p_align = 1; 2417 2418 for (OutputSection *sec : outputSections) { 2419 if (!needsPtLoad(sec)) 2420 continue; 2421 2422 // Normally, sections in partitions other than the current partition are 2423 // ignored. But partition number 255 is a special case: it contains the 2424 // partition end marker (.part.end). It needs to be added to the main 2425 // partition so that a segment is created for it in the main partition, 2426 // which will cause the dynamic loader to reserve space for the other 2427 // partitions. 2428 if (sec->partition != partNo) { 2429 if (isMain && sec->partition == 255) 2430 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2431 continue; 2432 } 2433 2434 // Segments are contiguous memory regions that has the same attributes 2435 // (e.g. executable or writable). There is one phdr for each segment. 2436 // Therefore, we need to create a new phdr when the next section has 2437 // different flags or is loaded at a discontiguous address or memory region 2438 // using AT or AT> linker script command, respectively. 2439 // 2440 // As an exception, we don't create a separate load segment for the ELF 2441 // headers, even if the first "real" output has an AT or AT> attribute. 2442 // 2443 // In addition, NOBITS sections should only be placed at the end of a LOAD 2444 // segment (since it's represented as p_filesz < p_memsz). If we have a 2445 // not-NOBITS section after a NOBITS, we create a new LOAD for the latter 2446 // even if flags match, so as not to require actually writing the 2447 // supposed-to-be-NOBITS section to the output file. (However, we cannot do 2448 // so when hasSectionsCommand, since we cannot introduce the extra alignment 2449 // needed to create a new LOAD) 2450 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2451 bool sameLMARegion = 2452 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2453 if (!(load && newFlags == flags && sec != relroEnd && 2454 sec->memRegion == load->firstSec->memRegion && 2455 (sameLMARegion || load->lastSec == Out::programHeaders) && 2456 (script->hasSectionsCommand || sec->type == SHT_NOBITS || 2457 load->lastSec->type != SHT_NOBITS))) { 2458 load = addHdr(PT_LOAD, newFlags); 2459 flags = newFlags; 2460 } 2461 2462 load->add(sec); 2463 } 2464 2465 // Add a TLS segment if any. 2466 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2467 for (OutputSection *sec : outputSections) 2468 if (sec->partition == partNo && sec->flags & SHF_TLS) 2469 tlsHdr->add(sec); 2470 if (tlsHdr->firstSec) 2471 ret.push_back(tlsHdr); 2472 2473 // Add an entry for .dynamic. 2474 if (OutputSection *sec = part.dynamic->getParent()) 2475 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2476 2477 if (relRo->firstSec) 2478 ret.push_back(relRo); 2479 2480 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2481 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2482 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2483 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2484 ->add(part.ehFrameHdr->getParent()); 2485 2486 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2487 // the dynamic linker fill the segment with random data. 2488 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2489 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2490 2491 if (config->zGnustack != GnuStackKind::None) { 2492 // PT_GNU_STACK is a special section to tell the loader to make the 2493 // pages for the stack non-executable. If you really want an executable 2494 // stack, you can pass -z execstack, but that's not recommended for 2495 // security reasons. 2496 unsigned perm = PF_R | PF_W; 2497 if (config->zGnustack == GnuStackKind::Exec) 2498 perm |= PF_X; 2499 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2500 } 2501 2502 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2503 // is expected to perform W^X violations, such as calling mprotect(2) or 2504 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2505 // OpenBSD. 2506 if (config->zWxneeded) 2507 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2508 2509 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2510 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2511 2512 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2513 // same alignment. 2514 PhdrEntry *note = nullptr; 2515 for (OutputSection *sec : outputSections) { 2516 if (sec->partition != partNo) 2517 continue; 2518 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2519 if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign) 2520 note = addHdr(PT_NOTE, PF_R); 2521 note->add(sec); 2522 } else { 2523 note = nullptr; 2524 } 2525 } 2526 return ret; 2527 } 2528 2529 template <class ELFT> 2530 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2531 unsigned pType, unsigned pFlags) { 2532 unsigned partNo = part.getNumber(); 2533 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2534 return cmd->partition == partNo && cmd->type == shType; 2535 }); 2536 if (i == outputSections.end()) 2537 return; 2538 2539 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2540 entry->add(*i); 2541 part.phdrs.push_back(entry); 2542 } 2543 2544 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2545 // This is achieved by assigning an alignment expression to addrExpr of each 2546 // such section. 2547 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2548 const PhdrEntry *prev; 2549 auto pageAlign = [&](const PhdrEntry *p) { 2550 OutputSection *cmd = p->firstSec; 2551 if (!cmd) 2552 return; 2553 cmd->alignExpr = [align = cmd->addralign]() { return align; }; 2554 if (!cmd->addrExpr) { 2555 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2556 // padding in the file contents. 2557 // 2558 // When -z separate-code is used we must not have any overlap in pages 2559 // between an executable segment and a non-executable segment. We align to 2560 // the next maximum page size boundary on transitions between executable 2561 // and non-executable segments. 2562 // 2563 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2564 // sections will be extracted to a separate file. Align to the next 2565 // maximum page size boundary so that we can find the ELF header at the 2566 // start. We cannot benefit from overlapping p_offset ranges with the 2567 // previous segment anyway. 2568 if (config->zSeparate == SeparateSegmentKind::Loadable || 2569 (config->zSeparate == SeparateSegmentKind::Code && prev && 2570 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2571 cmd->type == SHT_LLVM_PART_EHDR) 2572 cmd->addrExpr = [] { 2573 return alignToPowerOf2(script->getDot(), config->maxPageSize); 2574 }; 2575 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2576 // it must be the RW. Align to p_align(PT_TLS) to make sure 2577 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2578 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2579 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2580 // be congruent to 0 modulo p_align(PT_TLS). 2581 // 2582 // Technically this is not required, but as of 2019, some dynamic loaders 2583 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2584 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2585 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2586 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2587 // blocks correctly. We need to keep the workaround for a while. 2588 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2589 cmd->addrExpr = [] { 2590 return alignToPowerOf2(script->getDot(), config->maxPageSize) + 2591 alignToPowerOf2(script->getDot() % config->maxPageSize, 2592 Out::tlsPhdr->p_align); 2593 }; 2594 else 2595 cmd->addrExpr = [] { 2596 return alignToPowerOf2(script->getDot(), config->maxPageSize) + 2597 script->getDot() % config->maxPageSize; 2598 }; 2599 } 2600 }; 2601 2602 for (Partition &part : partitions) { 2603 prev = nullptr; 2604 for (const PhdrEntry *p : part.phdrs) 2605 if (p->p_type == PT_LOAD && p->firstSec) { 2606 pageAlign(p); 2607 prev = p; 2608 } 2609 } 2610 } 2611 2612 // Compute an in-file position for a given section. The file offset must be the 2613 // same with its virtual address modulo the page size, so that the loader can 2614 // load executables without any address adjustment. 2615 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2616 // The first section in a PT_LOAD has to have congruent offset and address 2617 // modulo the maximum page size. 2618 if (os->ptLoad && os->ptLoad->firstSec == os) 2619 return alignTo(off, os->ptLoad->p_align, os->addr); 2620 2621 // File offsets are not significant for .bss sections other than the first one 2622 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2623 // increasing rather than setting to zero. 2624 if (os->type == SHT_NOBITS && 2625 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2626 return off; 2627 2628 // If the section is not in a PT_LOAD, we just have to align it. 2629 if (!os->ptLoad) 2630 return alignToPowerOf2(off, os->addralign); 2631 2632 // If two sections share the same PT_LOAD the file offset is calculated 2633 // using this formula: Off2 = Off1 + (VA2 - VA1). 2634 OutputSection *first = os->ptLoad->firstSec; 2635 return first->offset + os->addr - first->addr; 2636 } 2637 2638 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2639 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2640 auto needsOffset = [](OutputSection &sec) { 2641 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2642 }; 2643 uint64_t minAddr = UINT64_MAX; 2644 for (OutputSection *sec : outputSections) 2645 if (needsOffset(*sec)) { 2646 sec->offset = sec->getLMA(); 2647 minAddr = std::min(minAddr, sec->offset); 2648 } 2649 2650 // Sections are laid out at LMA minus minAddr. 2651 fileSize = 0; 2652 for (OutputSection *sec : outputSections) 2653 if (needsOffset(*sec)) { 2654 sec->offset -= minAddr; 2655 fileSize = std::max(fileSize, sec->offset + sec->size); 2656 } 2657 } 2658 2659 static std::string rangeToString(uint64_t addr, uint64_t len) { 2660 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2661 } 2662 2663 // Assign file offsets to output sections. 2664 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2665 Out::programHeaders->offset = Out::elfHeader->size; 2666 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2667 2668 PhdrEntry *lastRX = nullptr; 2669 for (Partition &part : partitions) 2670 for (PhdrEntry *p : part.phdrs) 2671 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2672 lastRX = p; 2673 2674 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2675 // will not occupy file offsets contained by a PT_LOAD. 2676 for (OutputSection *sec : outputSections) { 2677 if (!(sec->flags & SHF_ALLOC)) 2678 continue; 2679 off = computeFileOffset(sec, off); 2680 sec->offset = off; 2681 if (sec->type != SHT_NOBITS) 2682 off += sec->size; 2683 2684 // If this is a last section of the last executable segment and that 2685 // segment is the last loadable segment, align the offset of the 2686 // following section to avoid loading non-segments parts of the file. 2687 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2688 lastRX->lastSec == sec) 2689 off = alignToPowerOf2(off, config->maxPageSize); 2690 } 2691 for (OutputSection *osec : outputSections) 2692 if (!(osec->flags & SHF_ALLOC)) { 2693 osec->offset = alignToPowerOf2(off, osec->addralign); 2694 off = osec->offset + osec->size; 2695 } 2696 2697 sectionHeaderOff = alignToPowerOf2(off, config->wordsize); 2698 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2699 2700 // Our logic assumes that sections have rising VA within the same segment. 2701 // With use of linker scripts it is possible to violate this rule and get file 2702 // offset overlaps or overflows. That should never happen with a valid script 2703 // which does not move the location counter backwards and usually scripts do 2704 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2705 // kernel, which control segment distribution explicitly and move the counter 2706 // backwards, so we have to allow doing that to support linking them. We 2707 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2708 // we want to prevent file size overflows because it would crash the linker. 2709 for (OutputSection *sec : outputSections) { 2710 if (sec->type == SHT_NOBITS) 2711 continue; 2712 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2713 error("unable to place section " + sec->name + " at file offset " + 2714 rangeToString(sec->offset, sec->size) + 2715 "; check your linker script for overflows"); 2716 } 2717 } 2718 2719 // Finalize the program headers. We call this function after we assign 2720 // file offsets and VAs to all sections. 2721 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2722 for (PhdrEntry *p : part.phdrs) { 2723 OutputSection *first = p->firstSec; 2724 OutputSection *last = p->lastSec; 2725 2726 // .ARM.exidx sections may not be within a single .ARM.exidx 2727 // output section. We always want to describe just the 2728 // SyntheticSection. 2729 if (part.armExidx && p->p_type == PT_ARM_EXIDX) { 2730 p->p_filesz = part.armExidx->getSize(); 2731 p->p_memsz = part.armExidx->getSize(); 2732 p->p_offset = first->offset + part.armExidx->outSecOff; 2733 p->p_vaddr = first->addr + part.armExidx->outSecOff; 2734 p->p_align = part.armExidx->addralign; 2735 if (part.elfHeader) 2736 p->p_offset -= part.elfHeader->getParent()->offset; 2737 2738 if (!p->hasLMA) 2739 p->p_paddr = first->getLMA() + part.armExidx->outSecOff; 2740 return; 2741 } 2742 2743 if (first) { 2744 p->p_filesz = last->offset - first->offset; 2745 if (last->type != SHT_NOBITS) 2746 p->p_filesz += last->size; 2747 2748 p->p_memsz = last->addr + last->size - first->addr; 2749 p->p_offset = first->offset; 2750 p->p_vaddr = first->addr; 2751 2752 // File offsets in partitions other than the main partition are relative 2753 // to the offset of the ELF headers. Perform that adjustment now. 2754 if (part.elfHeader) 2755 p->p_offset -= part.elfHeader->getParent()->offset; 2756 2757 if (!p->hasLMA) 2758 p->p_paddr = first->getLMA(); 2759 } 2760 } 2761 } 2762 2763 // A helper struct for checkSectionOverlap. 2764 namespace { 2765 struct SectionOffset { 2766 OutputSection *sec; 2767 uint64_t offset; 2768 }; 2769 } // namespace 2770 2771 // Check whether sections overlap for a specific address range (file offsets, 2772 // load and virtual addresses). 2773 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2774 bool isVirtualAddr) { 2775 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2776 return a.offset < b.offset; 2777 }); 2778 2779 // Finding overlap is easy given a vector is sorted by start position. 2780 // If an element starts before the end of the previous element, they overlap. 2781 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2782 SectionOffset a = sections[i - 1]; 2783 SectionOffset b = sections[i]; 2784 if (b.offset >= a.offset + a.sec->size) 2785 continue; 2786 2787 // If both sections are in OVERLAY we allow the overlapping of virtual 2788 // addresses, because it is what OVERLAY was designed for. 2789 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2790 continue; 2791 2792 errorOrWarn("section " + a.sec->name + " " + name + 2793 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2794 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2795 b.sec->name + " range is " + 2796 rangeToString(b.offset, b.sec->size)); 2797 } 2798 } 2799 2800 // Check for overlapping sections and address overflows. 2801 // 2802 // In this function we check that none of the output sections have overlapping 2803 // file offsets. For SHF_ALLOC sections we also check that the load address 2804 // ranges and the virtual address ranges don't overlap 2805 template <class ELFT> void Writer<ELFT>::checkSections() { 2806 // First, check that section's VAs fit in available address space for target. 2807 for (OutputSection *os : outputSections) 2808 if ((os->addr + os->size < os->addr) || 2809 (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1)) 2810 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2811 " of size 0x" + utohexstr(os->size) + 2812 " exceeds available address space"); 2813 2814 // Check for overlapping file offsets. In this case we need to skip any 2815 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2816 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2817 // binary is specified only add SHF_ALLOC sections are added to the output 2818 // file so we skip any non-allocated sections in that case. 2819 std::vector<SectionOffset> fileOffs; 2820 for (OutputSection *sec : outputSections) 2821 if (sec->size > 0 && sec->type != SHT_NOBITS && 2822 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2823 fileOffs.push_back({sec, sec->offset}); 2824 checkOverlap("file", fileOffs, false); 2825 2826 // When linking with -r there is no need to check for overlapping virtual/load 2827 // addresses since those addresses will only be assigned when the final 2828 // executable/shared object is created. 2829 if (config->relocatable) 2830 return; 2831 2832 // Checking for overlapping virtual and load addresses only needs to take 2833 // into account SHF_ALLOC sections since others will not be loaded. 2834 // Furthermore, we also need to skip SHF_TLS sections since these will be 2835 // mapped to other addresses at runtime and can therefore have overlapping 2836 // ranges in the file. 2837 std::vector<SectionOffset> vmas; 2838 for (OutputSection *sec : outputSections) 2839 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2840 vmas.push_back({sec, sec->addr}); 2841 checkOverlap("virtual address", vmas, true); 2842 2843 // Finally, check that the load addresses don't overlap. This will usually be 2844 // the same as the virtual addresses but can be different when using a linker 2845 // script with AT(). 2846 std::vector<SectionOffset> lmas; 2847 for (OutputSection *sec : outputSections) 2848 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2849 lmas.push_back({sec, sec->getLMA()}); 2850 checkOverlap("load address", lmas, false); 2851 } 2852 2853 // The entry point address is chosen in the following ways. 2854 // 2855 // 1. the '-e' entry command-line option; 2856 // 2. the ENTRY(symbol) command in a linker control script; 2857 // 3. the value of the symbol _start, if present; 2858 // 4. the number represented by the entry symbol, if it is a number; 2859 // 5. the address 0. 2860 static uint64_t getEntryAddr() { 2861 // Case 1, 2 or 3 2862 if (Symbol *b = symtab.find(config->entry)) 2863 return b->getVA(); 2864 2865 // Case 4 2866 uint64_t addr; 2867 if (to_integer(config->entry, addr)) 2868 return addr; 2869 2870 // Case 5 2871 if (config->warnMissingEntry) 2872 warn("cannot find entry symbol " + config->entry + 2873 "; not setting start address"); 2874 return 0; 2875 } 2876 2877 static uint16_t getELFType() { 2878 if (config->isPic) 2879 return ET_DYN; 2880 if (config->relocatable) 2881 return ET_REL; 2882 return ET_EXEC; 2883 } 2884 2885 template <class ELFT> void Writer<ELFT>::writeHeader() { 2886 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2887 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2888 2889 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2890 eHdr->e_type = getELFType(); 2891 eHdr->e_entry = getEntryAddr(); 2892 eHdr->e_shoff = sectionHeaderOff; 2893 2894 // Write the section header table. 2895 // 2896 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2897 // and e_shstrndx fields. When the value of one of these fields exceeds 2898 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2899 // use fields in the section header at index 0 to store 2900 // the value. The sentinel values and fields are: 2901 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2902 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2903 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2904 size_t num = outputSections.size() + 1; 2905 if (num >= SHN_LORESERVE) 2906 sHdrs->sh_size = num; 2907 else 2908 eHdr->e_shnum = num; 2909 2910 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2911 if (strTabIndex >= SHN_LORESERVE) { 2912 sHdrs->sh_link = strTabIndex; 2913 eHdr->e_shstrndx = SHN_XINDEX; 2914 } else { 2915 eHdr->e_shstrndx = strTabIndex; 2916 } 2917 2918 for (OutputSection *sec : outputSections) 2919 sec->writeHeaderTo<ELFT>(++sHdrs); 2920 } 2921 2922 // Open a result file. 2923 template <class ELFT> void Writer<ELFT>::openFile() { 2924 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2925 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2926 std::string msg; 2927 raw_string_ostream s(msg); 2928 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2929 << "section sizes:\n"; 2930 for (OutputSection *os : outputSections) 2931 s << os->name << ' ' << os->size << "\n"; 2932 error(s.str()); 2933 return; 2934 } 2935 2936 unlinkAsync(config->outputFile); 2937 unsigned flags = 0; 2938 if (!config->relocatable) 2939 flags |= FileOutputBuffer::F_executable; 2940 if (!config->mmapOutputFile) 2941 flags |= FileOutputBuffer::F_no_mmap; 2942 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2943 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2944 2945 if (!bufferOrErr) { 2946 error("failed to open " + config->outputFile + ": " + 2947 llvm::toString(bufferOrErr.takeError())); 2948 return; 2949 } 2950 buffer = std::move(*bufferOrErr); 2951 Out::bufferStart = buffer->getBufferStart(); 2952 } 2953 2954 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2955 parallel::TaskGroup tg; 2956 for (OutputSection *sec : outputSections) 2957 if (sec->flags & SHF_ALLOC) 2958 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); 2959 } 2960 2961 static void fillTrap(uint8_t *i, uint8_t *end) { 2962 for (; i + 4 <= end; i += 4) 2963 memcpy(i, &target->trapInstr, 4); 2964 } 2965 2966 // Fill the last page of executable segments with trap instructions 2967 // instead of leaving them as zero. Even though it is not required by any 2968 // standard, it is in general a good thing to do for security reasons. 2969 // 2970 // We'll leave other pages in segments as-is because the rest will be 2971 // overwritten by output sections. 2972 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2973 for (Partition &part : partitions) { 2974 // Fill the last page. 2975 for (PhdrEntry *p : part.phdrs) 2976 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2977 fillTrap(Out::bufferStart + 2978 alignDown(p->firstSec->offset + p->p_filesz, 4), 2979 Out::bufferStart + 2980 alignToPowerOf2(p->firstSec->offset + p->p_filesz, 2981 config->maxPageSize)); 2982 2983 // Round up the file size of the last segment to the page boundary iff it is 2984 // an executable segment to ensure that other tools don't accidentally 2985 // trim the instruction padding (e.g. when stripping the file). 2986 PhdrEntry *last = nullptr; 2987 for (PhdrEntry *p : part.phdrs) 2988 if (p->p_type == PT_LOAD) 2989 last = p; 2990 2991 if (last && (last->p_flags & PF_X)) 2992 last->p_memsz = last->p_filesz = 2993 alignToPowerOf2(last->p_filesz, config->maxPageSize); 2994 } 2995 } 2996 2997 // Write section contents to a mmap'ed file. 2998 template <class ELFT> void Writer<ELFT>::writeSections() { 2999 llvm::TimeTraceScope timeScope("Write sections"); 3000 3001 { 3002 // In -r or --emit-relocs mode, write the relocation sections first as in 3003 // ELf_Rel targets we might find out that we need to modify the relocated 3004 // section while doing it. 3005 parallel::TaskGroup tg; 3006 for (OutputSection *sec : outputSections) 3007 if (sec->type == SHT_REL || sec->type == SHT_RELA) 3008 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); 3009 } 3010 { 3011 parallel::TaskGroup tg; 3012 for (OutputSection *sec : outputSections) 3013 if (sec->type != SHT_REL && sec->type != SHT_RELA) 3014 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); 3015 } 3016 3017 // Finally, check that all dynamic relocation addends were written correctly. 3018 if (config->checkDynamicRelocs && config->writeAddends) { 3019 for (OutputSection *sec : outputSections) 3020 if (sec->type == SHT_REL || sec->type == SHT_RELA) 3021 sec->checkDynRelAddends(Out::bufferStart); 3022 } 3023 } 3024 3025 // Computes a hash value of Data using a given hash function. 3026 // In order to utilize multiple cores, we first split data into 1MB 3027 // chunks, compute a hash for each chunk, and then compute a hash value 3028 // of the hash values. 3029 static void 3030 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 3031 llvm::ArrayRef<uint8_t> data, 3032 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 3033 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 3034 const size_t hashesSize = chunks.size() * hashBuf.size(); 3035 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 3036 3037 // Compute hash values. 3038 parallelFor(0, chunks.size(), [&](size_t i) { 3039 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 3040 }); 3041 3042 // Write to the final output buffer. 3043 hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize)); 3044 } 3045 3046 template <class ELFT> void Writer<ELFT>::writeBuildId() { 3047 if (!mainPart->buildId || !mainPart->buildId->getParent()) 3048 return; 3049 3050 if (config->buildId == BuildIdKind::Hexstring) { 3051 for (Partition &part : partitions) 3052 part.buildId->writeBuildId(config->buildIdVector); 3053 return; 3054 } 3055 3056 // Compute a hash of all sections of the output file. 3057 size_t hashSize = mainPart->buildId->hashSize; 3058 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 3059 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 3060 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 3061 3062 // Fedora introduced build ID as "approximation of true uniqueness across all 3063 // binaries that might be used by overlapping sets of people". It does not 3064 // need some security goals that some hash algorithms strive to provide, e.g. 3065 // (second-)preimage and collision resistance. In practice people use 'md5' 3066 // and 'sha1' just for different lengths. Implement them with the more 3067 // efficient BLAKE3. 3068 switch (config->buildId) { 3069 case BuildIdKind::Fast: 3070 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3071 write64le(dest, xxh3_64bits(arr)); 3072 }); 3073 break; 3074 case BuildIdKind::Md5: 3075 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3076 memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize); 3077 }); 3078 break; 3079 case BuildIdKind::Sha1: 3080 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3081 memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize); 3082 }); 3083 break; 3084 case BuildIdKind::Uuid: 3085 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 3086 error("entropy source failure: " + ec.message()); 3087 break; 3088 default: 3089 llvm_unreachable("unknown BuildIdKind"); 3090 } 3091 for (Partition &part : partitions) 3092 part.buildId->writeBuildId(output); 3093 } 3094 3095 template void elf::createSyntheticSections<ELF32LE>(); 3096 template void elf::createSyntheticSections<ELF32BE>(); 3097 template void elf::createSyntheticSections<ELF64LE>(); 3098 template void elf::createSyntheticSections<ELF64BE>(); 3099 3100 template void elf::writeResult<ELF32LE>(); 3101 template void elf::writeResult<ELF32BE>(); 3102 template void elf::writeResult<ELF64LE>(); 3103 template void elf::writeResult<ELF64BE>(); 3104