1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/xxhash.h" 31 #include <climits> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 39 namespace lld { 40 namespace elf { 41 namespace { 42 // The writer writes a SymbolTable result to a file. 43 template <class ELFT> class Writer { 44 public: 45 Writer() : buffer(errorHandler().outputBuffer) {} 46 using Elf_Shdr = typename ELFT::Shdr; 47 using Elf_Ehdr = typename ELFT::Ehdr; 48 using Elf_Phdr = typename ELFT::Phdr; 49 50 void run(); 51 52 private: 53 void copyLocalSymbols(); 54 void addSectionSymbols(); 55 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 56 void sortSections(); 57 void resolveShfLinkOrder(); 58 void finalizeAddressDependentContent(); 59 void sortInputSections(); 60 void finalizeSections(); 61 void checkExecuteOnly(); 62 void setReservedSymbolSections(); 63 64 std::vector<PhdrEntry *> createPhdrs(Partition &part); 65 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 66 unsigned pFlags); 67 void assignFileOffsets(); 68 void assignFileOffsetsBinary(); 69 void setPhdrs(Partition &part); 70 void checkSections(); 71 void fixSectionAlignments(); 72 void openFile(); 73 void writeTrapInstr(); 74 void writeHeader(); 75 void writeSections(); 76 void writeSectionsBinary(); 77 void writeBuildId(); 78 79 std::unique_ptr<FileOutputBuffer> &buffer; 80 81 void addRelIpltSymbols(); 82 void addStartEndSymbols(); 83 void addStartStopSymbols(OutputSection *sec); 84 85 uint64_t fileSize; 86 uint64_t sectionHeaderOff; 87 }; 88 } // anonymous namespace 89 90 static bool isSectionPrefix(StringRef prefix, StringRef name) { 91 return name.startswith(prefix) || name == prefix.drop_back(); 92 } 93 94 StringRef getOutputSectionName(const InputSectionBase *s) { 95 if (config->relocatable) 96 return s->name; 97 98 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 99 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 100 // technically required, but not doing it is odd). This code guarantees that. 101 if (auto *isec = dyn_cast<InputSection>(s)) { 102 if (InputSectionBase *rel = isec->getRelocatedSection()) { 103 OutputSection *out = rel->getOutputSection(); 104 if (s->type == SHT_RELA) 105 return saver.save(".rela" + out->name); 106 return saver.save(".rel" + out->name); 107 } 108 } 109 110 // This check is for -z keep-text-section-prefix. This option separates text 111 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 112 // ".text.exit". 113 // When enabled, this allows identifying the hot code region (.text.hot) in 114 // the final binary which can be selectively mapped to huge pages or mlocked, 115 // for instance. 116 if (config->zKeepTextSectionPrefix) 117 for (StringRef v : 118 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 119 if (isSectionPrefix(v, s->name)) 120 return v.drop_back(); 121 122 for (StringRef v : 123 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 124 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 125 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 126 if (isSectionPrefix(v, s->name)) 127 return v.drop_back(); 128 129 // CommonSection is identified as "COMMON" in linker scripts. 130 // By default, it should go to .bss section. 131 if (s->name == "COMMON") 132 return ".bss"; 133 134 return s->name; 135 } 136 137 static bool needsInterpSection() { 138 return !config->relocatable && !config->shared && 139 !config->dynamicLinker.empty() && script->needsInterpSection(); 140 } 141 142 template <class ELFT> void writeResult() { Writer<ELFT>().run(); } 143 144 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 145 llvm::erase_if(phdrs, [&](const PhdrEntry *p) { 146 if (p->p_type != PT_LOAD) 147 return false; 148 if (!p->firstSec) 149 return true; 150 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 151 return size == 0; 152 }); 153 } 154 155 void copySectionsIntoPartitions() { 156 std::vector<InputSectionBase *> newSections; 157 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 158 for (InputSectionBase *s : inputSections) { 159 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 160 continue; 161 InputSectionBase *copy; 162 if (s->type == SHT_NOTE) 163 copy = make<InputSection>(cast<InputSection>(*s)); 164 else if (auto *es = dyn_cast<EhInputSection>(s)) 165 copy = make<EhInputSection>(*es); 166 else 167 continue; 168 copy->partition = part; 169 newSections.push_back(copy); 170 } 171 } 172 173 inputSections.insert(inputSections.end(), newSections.begin(), 174 newSections.end()); 175 } 176 177 void combineEhSections() { 178 for (InputSectionBase *&s : inputSections) { 179 // Ignore dead sections and the partition end marker (.part.end), 180 // whose partition number is out of bounds. 181 if (!s->isLive() || s->partition == 255) 182 continue; 183 184 Partition &part = s->getPartition(); 185 if (auto *es = dyn_cast<EhInputSection>(s)) { 186 part.ehFrame->addSection(es); 187 s = nullptr; 188 } else if (s->kind() == SectionBase::Regular && part.armExidx && 189 part.armExidx->addSection(cast<InputSection>(s))) { 190 s = nullptr; 191 } 192 } 193 194 std::vector<InputSectionBase *> &v = inputSections; 195 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 196 } 197 198 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 199 uint64_t val, uint8_t stOther = STV_HIDDEN, 200 uint8_t binding = STB_GLOBAL) { 201 Symbol *s = symtab->find(name); 202 if (!s || s->isDefined()) 203 return nullptr; 204 205 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 206 /*size=*/0, sec}); 207 return cast<Defined>(s); 208 } 209 210 static Defined *addAbsolute(StringRef name) { 211 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 212 STT_NOTYPE, 0, 0, nullptr}); 213 return cast<Defined>(sym); 214 } 215 216 // The linker is expected to define some symbols depending on 217 // the linking result. This function defines such symbols. 218 void addReservedSymbols() { 219 if (config->emachine == EM_MIPS) { 220 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 221 // so that it points to an absolute address which by default is relative 222 // to GOT. Default offset is 0x7ff0. 223 // See "Global Data Symbols" in Chapter 6 in the following document: 224 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 225 ElfSym::mipsGp = addAbsolute("_gp"); 226 227 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 228 // start of function and 'gp' pointer into GOT. 229 if (symtab->find("_gp_disp")) 230 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 231 232 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 233 // pointer. This symbol is used in the code generated by .cpload pseudo-op 234 // in case of using -mno-shared option. 235 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 236 if (symtab->find("__gnu_local_gp")) 237 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 238 } else if (config->emachine == EM_PPC) { 239 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 240 // support Small Data Area, define it arbitrarily as 0. 241 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 242 } 243 244 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 245 // combines the typical ELF GOT with the small data sections. It commonly 246 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 247 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 248 // represent the TOC base which is offset by 0x8000 bytes from the start of 249 // the .got section. 250 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 251 // correctness of some relocations depends on its value. 252 StringRef gotSymName = 253 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 254 255 if (Symbol *s = symtab->find(gotSymName)) { 256 if (s->isDefined()) { 257 error(toString(s->file) + " cannot redefine linker defined symbol '" + 258 gotSymName + "'"); 259 return; 260 } 261 262 uint64_t gotOff = 0; 263 if (config->emachine == EM_PPC64) 264 gotOff = 0x8000; 265 266 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 267 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 268 ElfSym::globalOffsetTable = cast<Defined>(s); 269 } 270 271 // __ehdr_start is the location of ELF file headers. Note that we define 272 // this symbol unconditionally even when using a linker script, which 273 // differs from the behavior implemented by GNU linker which only define 274 // this symbol if ELF headers are in the memory mapped segment. 275 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 276 277 // __executable_start is not documented, but the expectation of at 278 // least the Android libc is that it points to the ELF header. 279 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 280 281 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 282 // each DSO. The address of the symbol doesn't matter as long as they are 283 // different in different DSOs, so we chose the start address of the DSO. 284 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 285 286 // If linker script do layout we do not need to create any standard symbols. 287 if (script->hasSectionsCommand) 288 return; 289 290 auto add = [](StringRef s, int64_t pos) { 291 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 292 }; 293 294 ElfSym::bss = add("__bss_start", 0); 295 ElfSym::end1 = add("end", -1); 296 ElfSym::end2 = add("_end", -1); 297 ElfSym::etext1 = add("etext", -1); 298 ElfSym::etext2 = add("_etext", -1); 299 ElfSym::edata1 = add("edata", -1); 300 ElfSym::edata2 = add("_edata", -1); 301 } 302 303 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 304 for (BaseCommand *base : script->sectionCommands) 305 if (auto *sec = dyn_cast<OutputSection>(base)) 306 if (sec->name == name && sec->partition == partition) 307 return sec; 308 return nullptr; 309 } 310 311 template <class ELFT> void createSyntheticSections() { 312 // Initialize all pointers with NULL. This is needed because 313 // you can call lld::elf::main more than once as a library. 314 memset(&Out::first, 0, sizeof(Out)); 315 316 // Add the .interp section first because it is not a SyntheticSection. 317 // The removeUnusedSyntheticSections() function relies on the 318 // SyntheticSections coming last. 319 if (needsInterpSection()) { 320 for (size_t i = 1; i <= partitions.size(); ++i) { 321 InputSection *sec = createInterpSection(); 322 sec->partition = i; 323 inputSections.push_back(sec); 324 } 325 } 326 327 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 328 329 in.shStrTab = make<StringTableSection>(".shstrtab", false); 330 331 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 332 Out::programHeaders->alignment = config->wordsize; 333 334 if (config->strip != StripPolicy::All) { 335 in.strTab = make<StringTableSection>(".strtab", false); 336 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 337 in.symTabShndx = make<SymtabShndxSection>(); 338 } 339 340 in.bss = make<BssSection>(".bss", 0, 1); 341 add(in.bss); 342 343 // If there is a SECTIONS command and a .data.rel.ro section name use name 344 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 345 // This makes sure our relro is contiguous. 346 bool hasDataRelRo = 347 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 348 in.bssRelRo = 349 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 350 add(in.bssRelRo); 351 352 // Add MIPS-specific sections. 353 if (config->emachine == EM_MIPS) { 354 if (!config->shared && config->hasDynSymTab) { 355 in.mipsRldMap = make<MipsRldMapSection>(); 356 add(in.mipsRldMap); 357 } 358 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 359 add(sec); 360 if (auto *sec = MipsOptionsSection<ELFT>::create()) 361 add(sec); 362 if (auto *sec = MipsReginfoSection<ELFT>::create()) 363 add(sec); 364 } 365 366 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 367 368 for (Partition &part : partitions) { 369 auto add = [&](SyntheticSection *sec) { 370 sec->partition = part.getNumber(); 371 inputSections.push_back(sec); 372 }; 373 374 if (!part.name.empty()) { 375 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 376 part.elfHeader->name = part.name; 377 add(part.elfHeader); 378 379 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 380 add(part.programHeaders); 381 } 382 383 if (config->buildId != BuildIdKind::None) { 384 part.buildId = make<BuildIdSection>(); 385 add(part.buildId); 386 } 387 388 part.dynStrTab = make<StringTableSection>(".dynstr", true); 389 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 390 part.dynamic = make<DynamicSection<ELFT>>(); 391 if (config->androidPackDynRelocs) 392 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 393 else 394 part.relaDyn = 395 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 396 397 if (config->hasDynSymTab) { 398 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 399 add(part.dynSymTab); 400 401 part.verSym = make<VersionTableSection>(); 402 add(part.verSym); 403 404 if (!namedVersionDefs().empty()) { 405 part.verDef = make<VersionDefinitionSection>(); 406 add(part.verDef); 407 } 408 409 part.verNeed = make<VersionNeedSection<ELFT>>(); 410 add(part.verNeed); 411 412 if (config->gnuHash) { 413 part.gnuHashTab = make<GnuHashTableSection>(); 414 add(part.gnuHashTab); 415 } 416 417 if (config->sysvHash) { 418 part.hashTab = make<HashTableSection>(); 419 add(part.hashTab); 420 } 421 422 add(part.dynamic); 423 add(part.dynStrTab); 424 add(part.relaDyn); 425 } 426 427 if (config->relrPackDynRelocs) { 428 part.relrDyn = make<RelrSection<ELFT>>(); 429 add(part.relrDyn); 430 } 431 432 if (!config->relocatable) { 433 if (config->ehFrameHdr) { 434 part.ehFrameHdr = make<EhFrameHeader>(); 435 add(part.ehFrameHdr); 436 } 437 part.ehFrame = make<EhFrameSection>(); 438 add(part.ehFrame); 439 } 440 441 if (config->emachine == EM_ARM && !config->relocatable) { 442 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 443 // InputSections. 444 part.armExidx = make<ARMExidxSyntheticSection>(); 445 add(part.armExidx); 446 } 447 } 448 449 if (partitions.size() != 1) { 450 // Create the partition end marker. This needs to be in partition number 255 451 // so that it is sorted after all other partitions. It also has other 452 // special handling (see createPhdrs() and combineEhSections()). 453 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 454 in.partEnd->partition = 255; 455 add(in.partEnd); 456 457 in.partIndex = make<PartitionIndexSection>(); 458 addOptionalRegular("__part_index_begin", in.partIndex, 0); 459 addOptionalRegular("__part_index_end", in.partIndex, 460 in.partIndex->getSize()); 461 add(in.partIndex); 462 } 463 464 // Add .got. MIPS' .got is so different from the other archs, 465 // it has its own class. 466 if (config->emachine == EM_MIPS) { 467 in.mipsGot = make<MipsGotSection>(); 468 add(in.mipsGot); 469 } else { 470 in.got = make<GotSection>(); 471 add(in.got); 472 } 473 474 if (config->emachine == EM_PPC) { 475 in.ppc32Got2 = make<PPC32Got2Section>(); 476 add(in.ppc32Got2); 477 } 478 479 if (config->emachine == EM_PPC64) { 480 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 481 add(in.ppc64LongBranchTarget); 482 } 483 484 in.gotPlt = make<GotPltSection>(); 485 add(in.gotPlt); 486 in.igotPlt = make<IgotPltSection>(); 487 add(in.igotPlt); 488 489 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 490 // it as a relocation and ensure the referenced section is created. 491 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 492 if (target->gotBaseSymInGotPlt) 493 in.gotPlt->hasGotPltOffRel = true; 494 else 495 in.got->hasGotOffRel = true; 496 } 497 498 if (config->gdbIndex) 499 add(GdbIndexSection::create<ELFT>()); 500 501 // We always need to add rel[a].plt to output if it has entries. 502 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 503 in.relaPlt = make<RelocationSection<ELFT>>( 504 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 505 add(in.relaPlt); 506 507 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 508 // relocations are processed last by the dynamic loader. We cannot place the 509 // iplt section in .rel.dyn when Android relocation packing is enabled because 510 // that would cause a section type mismatch. However, because the Android 511 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 512 // behaviour by placing the iplt section in .rel.plt. 513 in.relaIplt = make<RelocationSection<ELFT>>( 514 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 515 /*sort=*/false); 516 add(in.relaIplt); 517 518 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 519 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 520 in.ibtPlt = make<IBTPltSection>(); 521 add(in.ibtPlt); 522 } 523 524 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 525 : make<PltSection>(); 526 add(in.plt); 527 in.iplt = make<IpltSection>(); 528 add(in.iplt); 529 530 if (config->andFeatures) 531 add(make<GnuPropertySection>()); 532 533 // .note.GNU-stack is always added when we are creating a re-linkable 534 // object file. Other linkers are using the presence of this marker 535 // section to control the executable-ness of the stack area, but that 536 // is irrelevant these days. Stack area should always be non-executable 537 // by default. So we emit this section unconditionally. 538 if (config->relocatable) 539 add(make<GnuStackSection>()); 540 541 if (in.symTab) 542 add(in.symTab); 543 if (in.symTabShndx) 544 add(in.symTabShndx); 545 add(in.shStrTab); 546 if (in.strTab) 547 add(in.strTab); 548 } 549 550 // The main function of the writer. 551 template <class ELFT> void Writer<ELFT>::run() { 552 if (config->discard != DiscardPolicy::All) 553 copyLocalSymbols(); 554 555 if (config->copyRelocs) 556 addSectionSymbols(); 557 558 // Now that we have a complete set of output sections. This function 559 // completes section contents. For example, we need to add strings 560 // to the string table, and add entries to .got and .plt. 561 // finalizeSections does that. 562 finalizeSections(); 563 checkExecuteOnly(); 564 if (errorCount()) 565 return; 566 567 // If -compressed-debug-sections is specified, we need to compress 568 // .debug_* sections. Do it right now because it changes the size of 569 // output sections. 570 for (OutputSection *sec : outputSections) 571 sec->maybeCompress<ELFT>(); 572 573 if (script->hasSectionsCommand) 574 script->allocateHeaders(mainPart->phdrs); 575 576 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 577 // 0 sized region. This has to be done late since only after assignAddresses 578 // we know the size of the sections. 579 for (Partition &part : partitions) 580 removeEmptyPTLoad(part.phdrs); 581 582 if (!config->oFormatBinary) 583 assignFileOffsets(); 584 else 585 assignFileOffsetsBinary(); 586 587 for (Partition &part : partitions) 588 setPhdrs(part); 589 590 if (config->relocatable) 591 for (OutputSection *sec : outputSections) 592 sec->addr = 0; 593 594 if (config->checkSections) 595 checkSections(); 596 597 // It does not make sense try to open the file if we have error already. 598 if (errorCount()) 599 return; 600 // Write the result down to a file. 601 openFile(); 602 if (errorCount()) 603 return; 604 605 if (!config->oFormatBinary) { 606 if (config->zSeparate != SeparateSegmentKind::None) 607 writeTrapInstr(); 608 writeHeader(); 609 writeSections(); 610 } else { 611 writeSectionsBinary(); 612 } 613 614 // Backfill .note.gnu.build-id section content. This is done at last 615 // because the content is usually a hash value of the entire output file. 616 writeBuildId(); 617 if (errorCount()) 618 return; 619 620 // Handle -Map and -cref options. 621 writeMapFile(); 622 writeCrossReferenceTable(); 623 if (errorCount()) 624 return; 625 626 if (auto e = buffer->commit()) 627 error("failed to write to the output file: " + toString(std::move(e))); 628 } 629 630 static bool shouldKeepInSymtab(const Defined &sym) { 631 if (sym.isSection()) 632 return false; 633 634 if (config->discard == DiscardPolicy::None) 635 return true; 636 637 // If -emit-reloc is given, all symbols including local ones need to be 638 // copied because they may be referenced by relocations. 639 if (config->emitRelocs) 640 return true; 641 642 // In ELF assembly .L symbols are normally discarded by the assembler. 643 // If the assembler fails to do so, the linker discards them if 644 // * --discard-locals is used. 645 // * The symbol is in a SHF_MERGE section, which is normally the reason for 646 // the assembler keeping the .L symbol. 647 StringRef name = sym.getName(); 648 bool isLocal = name.startswith(".L") || name.empty(); 649 if (!isLocal) 650 return true; 651 652 if (config->discard == DiscardPolicy::Locals) 653 return false; 654 655 SectionBase *sec = sym.section; 656 return !sec || !(sec->flags & SHF_MERGE); 657 } 658 659 static bool includeInSymtab(const Symbol &b) { 660 if (!b.isLocal() && !b.isUsedInRegularObj) 661 return false; 662 663 if (auto *d = dyn_cast<Defined>(&b)) { 664 // Always include absolute symbols. 665 SectionBase *sec = d->section; 666 if (!sec) 667 return true; 668 sec = sec->repl; 669 670 // Exclude symbols pointing to garbage-collected sections. 671 if (isa<InputSectionBase>(sec) && !sec->isLive()) 672 return false; 673 674 if (auto *s = dyn_cast<MergeInputSection>(sec)) 675 if (!s->getSectionPiece(d->value)->live) 676 return false; 677 return true; 678 } 679 return b.used; 680 } 681 682 // Local symbols are not in the linker's symbol table. This function scans 683 // each object file's symbol table to copy local symbols to the output. 684 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 685 if (!in.symTab) 686 return; 687 for (InputFile *file : objectFiles) { 688 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 689 for (Symbol *b : f->getLocalSymbols()) { 690 if (!b->isLocal()) 691 fatal(toString(f) + 692 ": broken object: getLocalSymbols returns a non-local symbol"); 693 auto *dr = dyn_cast<Defined>(b); 694 695 // No reason to keep local undefined symbol in symtab. 696 if (!dr) 697 continue; 698 if (!includeInSymtab(*b)) 699 continue; 700 if (!shouldKeepInSymtab(*dr)) 701 continue; 702 in.symTab->addSymbol(b); 703 } 704 } 705 } 706 707 // Create a section symbol for each output section so that we can represent 708 // relocations that point to the section. If we know that no relocation is 709 // referring to a section (that happens if the section is a synthetic one), we 710 // don't create a section symbol for that section. 711 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 712 for (BaseCommand *base : script->sectionCommands) { 713 auto *sec = dyn_cast<OutputSection>(base); 714 if (!sec) 715 continue; 716 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 717 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 718 return !isd->sections.empty(); 719 return false; 720 }); 721 if (i == sec->sectionCommands.end()) 722 continue; 723 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 724 725 // Relocations are not using REL[A] section symbols. 726 if (isec->type == SHT_REL || isec->type == SHT_RELA) 727 continue; 728 729 // Unlike other synthetic sections, mergeable output sections contain data 730 // copied from input sections, and there may be a relocation pointing to its 731 // contents if -r or -emit-reloc are given. 732 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 733 continue; 734 735 auto *sym = 736 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 737 /*value=*/0, /*size=*/0, isec); 738 in.symTab->addSymbol(sym); 739 } 740 } 741 742 // Today's loaders have a feature to make segments read-only after 743 // processing dynamic relocations to enhance security. PT_GNU_RELRO 744 // is defined for that. 745 // 746 // This function returns true if a section needs to be put into a 747 // PT_GNU_RELRO segment. 748 static bool isRelroSection(const OutputSection *sec) { 749 if (!config->zRelro) 750 return false; 751 752 uint64_t flags = sec->flags; 753 754 // Non-allocatable or non-writable sections don't need RELRO because 755 // they are not writable or not even mapped to memory in the first place. 756 // RELRO is for sections that are essentially read-only but need to 757 // be writable only at process startup to allow dynamic linker to 758 // apply relocations. 759 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 760 return false; 761 762 // Once initialized, TLS data segments are used as data templates 763 // for a thread-local storage. For each new thread, runtime 764 // allocates memory for a TLS and copy templates there. No thread 765 // are supposed to use templates directly. Thus, it can be in RELRO. 766 if (flags & SHF_TLS) 767 return true; 768 769 // .init_array, .preinit_array and .fini_array contain pointers to 770 // functions that are executed on process startup or exit. These 771 // pointers are set by the static linker, and they are not expected 772 // to change at runtime. But if you are an attacker, you could do 773 // interesting things by manipulating pointers in .fini_array, for 774 // example. So they are put into RELRO. 775 uint32_t type = sec->type; 776 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 777 type == SHT_PREINIT_ARRAY) 778 return true; 779 780 // .got contains pointers to external symbols. They are resolved by 781 // the dynamic linker when a module is loaded into memory, and after 782 // that they are not expected to change. So, it can be in RELRO. 783 if (in.got && sec == in.got->getParent()) 784 return true; 785 786 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 787 // through r2 register, which is reserved for that purpose. Since r2 is used 788 // for accessing .got as well, .got and .toc need to be close enough in the 789 // virtual address space. Usually, .toc comes just after .got. Since we place 790 // .got into RELRO, .toc needs to be placed into RELRO too. 791 if (sec->name.equals(".toc")) 792 return true; 793 794 // .got.plt contains pointers to external function symbols. They are 795 // by default resolved lazily, so we usually cannot put it into RELRO. 796 // However, if "-z now" is given, the lazy symbol resolution is 797 // disabled, which enables us to put it into RELRO. 798 if (sec == in.gotPlt->getParent()) 799 return config->zNow; 800 801 // .dynamic section contains data for the dynamic linker, and 802 // there's no need to write to it at runtime, so it's better to put 803 // it into RELRO. 804 if (sec->name == ".dynamic") 805 return true; 806 807 // Sections with some special names are put into RELRO. This is a 808 // bit unfortunate because section names shouldn't be significant in 809 // ELF in spirit. But in reality many linker features depend on 810 // magic section names. 811 StringRef s = sec->name; 812 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 813 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 814 s == ".openbsd.randomdata"; 815 } 816 817 // We compute a rank for each section. The rank indicates where the 818 // section should be placed in the file. Instead of using simple 819 // numbers (0,1,2...), we use a series of flags. One for each decision 820 // point when placing the section. 821 // Using flags has two key properties: 822 // * It is easy to check if a give branch was taken. 823 // * It is easy two see how similar two ranks are (see getRankProximity). 824 enum RankFlags { 825 RF_NOT_ADDR_SET = 1 << 27, 826 RF_NOT_ALLOC = 1 << 26, 827 RF_PARTITION = 1 << 18, // Partition number (8 bits) 828 RF_NOT_PART_EHDR = 1 << 17, 829 RF_NOT_PART_PHDR = 1 << 16, 830 RF_NOT_INTERP = 1 << 15, 831 RF_NOT_NOTE = 1 << 14, 832 RF_WRITE = 1 << 13, 833 RF_EXEC_WRITE = 1 << 12, 834 RF_EXEC = 1 << 11, 835 RF_RODATA = 1 << 10, 836 RF_NOT_RELRO = 1 << 9, 837 RF_NOT_TLS = 1 << 8, 838 RF_BSS = 1 << 7, 839 RF_PPC_NOT_TOCBSS = 1 << 6, 840 RF_PPC_TOCL = 1 << 5, 841 RF_PPC_TOC = 1 << 4, 842 RF_PPC_GOT = 1 << 3, 843 RF_PPC_BRANCH_LT = 1 << 2, 844 RF_MIPS_GPREL = 1 << 1, 845 RF_MIPS_NOT_GOT = 1 << 0 846 }; 847 848 static unsigned getSectionRank(const OutputSection *sec) { 849 unsigned rank = sec->partition * RF_PARTITION; 850 851 // We want to put section specified by -T option first, so we 852 // can start assigning VA starting from them later. 853 if (config->sectionStartMap.count(sec->name)) 854 return rank; 855 rank |= RF_NOT_ADDR_SET; 856 857 // Allocatable sections go first to reduce the total PT_LOAD size and 858 // so debug info doesn't change addresses in actual code. 859 if (!(sec->flags & SHF_ALLOC)) 860 return rank | RF_NOT_ALLOC; 861 862 if (sec->type == SHT_LLVM_PART_EHDR) 863 return rank; 864 rank |= RF_NOT_PART_EHDR; 865 866 if (sec->type == SHT_LLVM_PART_PHDR) 867 return rank; 868 rank |= RF_NOT_PART_PHDR; 869 870 // Put .interp first because some loaders want to see that section 871 // on the first page of the executable file when loaded into memory. 872 if (sec->name == ".interp") 873 return rank; 874 rank |= RF_NOT_INTERP; 875 876 // Put .note sections (which make up one PT_NOTE) at the beginning so that 877 // they are likely to be included in a core file even if core file size is 878 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 879 // included in a core to match core files with executables. 880 if (sec->type == SHT_NOTE) 881 return rank; 882 rank |= RF_NOT_NOTE; 883 884 // Sort sections based on their access permission in the following 885 // order: R, RX, RWX, RW. This order is based on the following 886 // considerations: 887 // * Read-only sections come first such that they go in the 888 // PT_LOAD covering the program headers at the start of the file. 889 // * Read-only, executable sections come next. 890 // * Writable, executable sections follow such that .plt on 891 // architectures where it needs to be writable will be placed 892 // between .text and .data. 893 // * Writable sections come last, such that .bss lands at the very 894 // end of the last PT_LOAD. 895 bool isExec = sec->flags & SHF_EXECINSTR; 896 bool isWrite = sec->flags & SHF_WRITE; 897 898 if (isExec) { 899 if (isWrite) 900 rank |= RF_EXEC_WRITE; 901 else 902 rank |= RF_EXEC; 903 } else if (isWrite) { 904 rank |= RF_WRITE; 905 } else if (sec->type == SHT_PROGBITS) { 906 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 907 // .eh_frame) closer to .text. They likely contain PC or GOT relative 908 // relocations and there could be relocation overflow if other huge sections 909 // (.dynstr .dynsym) were placed in between. 910 rank |= RF_RODATA; 911 } 912 913 // Place RelRo sections first. After considering SHT_NOBITS below, the 914 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 915 // where | marks where page alignment happens. An alternative ordering is 916 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 917 // waste more bytes due to 2 alignment places. 918 if (!isRelroSection(sec)) 919 rank |= RF_NOT_RELRO; 920 921 // If we got here we know that both A and B are in the same PT_LOAD. 922 923 // The TLS initialization block needs to be a single contiguous block in a R/W 924 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 925 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 926 // after PROGBITS. 927 if (!(sec->flags & SHF_TLS)) 928 rank |= RF_NOT_TLS; 929 930 // Within TLS sections, or within other RelRo sections, or within non-RelRo 931 // sections, place non-NOBITS sections first. 932 if (sec->type == SHT_NOBITS) 933 rank |= RF_BSS; 934 935 // Some architectures have additional ordering restrictions for sections 936 // within the same PT_LOAD. 937 if (config->emachine == EM_PPC64) { 938 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 939 // that we would like to make sure appear is a specific order to maximize 940 // their coverage by a single signed 16-bit offset from the TOC base 941 // pointer. Conversely, the special .tocbss section should be first among 942 // all SHT_NOBITS sections. This will put it next to the loaded special 943 // PPC64 sections (and, thus, within reach of the TOC base pointer). 944 StringRef name = sec->name; 945 if (name != ".tocbss") 946 rank |= RF_PPC_NOT_TOCBSS; 947 948 if (name == ".toc1") 949 rank |= RF_PPC_TOCL; 950 951 if (name == ".toc") 952 rank |= RF_PPC_TOC; 953 954 if (name == ".got") 955 rank |= RF_PPC_GOT; 956 957 if (name == ".branch_lt") 958 rank |= RF_PPC_BRANCH_LT; 959 } 960 961 if (config->emachine == EM_MIPS) { 962 // All sections with SHF_MIPS_GPREL flag should be grouped together 963 // because data in these sections is addressable with a gp relative address. 964 if (sec->flags & SHF_MIPS_GPREL) 965 rank |= RF_MIPS_GPREL; 966 967 if (sec->name != ".got") 968 rank |= RF_MIPS_NOT_GOT; 969 } 970 971 return rank; 972 } 973 974 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 975 const OutputSection *a = cast<OutputSection>(aCmd); 976 const OutputSection *b = cast<OutputSection>(bCmd); 977 978 if (a->sortRank != b->sortRank) 979 return a->sortRank < b->sortRank; 980 981 if (!(a->sortRank & RF_NOT_ADDR_SET)) 982 return config->sectionStartMap.lookup(a->name) < 983 config->sectionStartMap.lookup(b->name); 984 return false; 985 } 986 987 void PhdrEntry::add(OutputSection *sec) { 988 lastSec = sec; 989 if (!firstSec) 990 firstSec = sec; 991 p_align = std::max(p_align, sec->alignment); 992 if (p_type == PT_LOAD) 993 sec->ptLoad = this; 994 } 995 996 // The beginning and the ending of .rel[a].plt section are marked 997 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 998 // executable. The runtime needs these symbols in order to resolve 999 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1000 // need these symbols, since IRELATIVE relocs are resolved through GOT 1001 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1002 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1003 if (config->relocatable || needsInterpSection()) 1004 return; 1005 1006 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1007 // because .rela.plt might be empty and thus removed from output. 1008 // We'll override Out::elfHeader with In.relaIplt later when we are 1009 // sure that .rela.plt exists in output. 1010 ElfSym::relaIpltStart = addOptionalRegular( 1011 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1012 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1013 1014 ElfSym::relaIpltEnd = addOptionalRegular( 1015 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1016 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1017 } 1018 1019 template <class ELFT> 1020 void Writer<ELFT>::forEachRelSec( 1021 llvm::function_ref<void(InputSectionBase &)> fn) { 1022 // Scan all relocations. Each relocation goes through a series 1023 // of tests to determine if it needs special treatment, such as 1024 // creating GOT, PLT, copy relocations, etc. 1025 // Note that relocations for non-alloc sections are directly 1026 // processed by InputSection::relocateNonAlloc. 1027 for (InputSectionBase *isec : inputSections) 1028 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1029 fn(*isec); 1030 for (Partition &part : partitions) { 1031 for (EhInputSection *es : part.ehFrame->sections) 1032 fn(*es); 1033 if (part.armExidx && part.armExidx->isLive()) 1034 for (InputSection *ex : part.armExidx->exidxSections) 1035 fn(*ex); 1036 } 1037 } 1038 1039 // This function generates assignments for predefined symbols (e.g. _end or 1040 // _etext) and inserts them into the commands sequence to be processed at the 1041 // appropriate time. This ensures that the value is going to be correct by the 1042 // time any references to these symbols are processed and is equivalent to 1043 // defining these symbols explicitly in the linker script. 1044 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1045 if (ElfSym::globalOffsetTable) { 1046 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1047 // to the start of the .got or .got.plt section. 1048 InputSection *gotSection = in.gotPlt; 1049 if (!target->gotBaseSymInGotPlt) 1050 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1051 : cast<InputSection>(in.got); 1052 ElfSym::globalOffsetTable->section = gotSection; 1053 } 1054 1055 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1056 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1057 ElfSym::relaIpltStart->section = in.relaIplt; 1058 ElfSym::relaIpltEnd->section = in.relaIplt; 1059 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1060 } 1061 1062 PhdrEntry *last = nullptr; 1063 PhdrEntry *lastRO = nullptr; 1064 1065 for (Partition &part : partitions) { 1066 for (PhdrEntry *p : part.phdrs) { 1067 if (p->p_type != PT_LOAD) 1068 continue; 1069 last = p; 1070 if (!(p->p_flags & PF_W)) 1071 lastRO = p; 1072 } 1073 } 1074 1075 if (lastRO) { 1076 // _etext is the first location after the last read-only loadable segment. 1077 if (ElfSym::etext1) 1078 ElfSym::etext1->section = lastRO->lastSec; 1079 if (ElfSym::etext2) 1080 ElfSym::etext2->section = lastRO->lastSec; 1081 } 1082 1083 if (last) { 1084 // _edata points to the end of the last mapped initialized section. 1085 OutputSection *edata = nullptr; 1086 for (OutputSection *os : outputSections) { 1087 if (os->type != SHT_NOBITS) 1088 edata = os; 1089 if (os == last->lastSec) 1090 break; 1091 } 1092 1093 if (ElfSym::edata1) 1094 ElfSym::edata1->section = edata; 1095 if (ElfSym::edata2) 1096 ElfSym::edata2->section = edata; 1097 1098 // _end is the first location after the uninitialized data region. 1099 if (ElfSym::end1) 1100 ElfSym::end1->section = last->lastSec; 1101 if (ElfSym::end2) 1102 ElfSym::end2->section = last->lastSec; 1103 } 1104 1105 if (ElfSym::bss) 1106 ElfSym::bss->section = findSection(".bss"); 1107 1108 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1109 // be equal to the _gp symbol's value. 1110 if (ElfSym::mipsGp) { 1111 // Find GP-relative section with the lowest address 1112 // and use this address to calculate default _gp value. 1113 for (OutputSection *os : outputSections) { 1114 if (os->flags & SHF_MIPS_GPREL) { 1115 ElfSym::mipsGp->section = os; 1116 ElfSym::mipsGp->value = 0x7ff0; 1117 break; 1118 } 1119 } 1120 } 1121 } 1122 1123 // We want to find how similar two ranks are. 1124 // The more branches in getSectionRank that match, the more similar they are. 1125 // Since each branch corresponds to a bit flag, we can just use 1126 // countLeadingZeros. 1127 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1128 return countLeadingZeros(a->sortRank ^ b->sortRank); 1129 } 1130 1131 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1132 auto *sec = dyn_cast<OutputSection>(b); 1133 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1134 } 1135 1136 // When placing orphan sections, we want to place them after symbol assignments 1137 // so that an orphan after 1138 // begin_foo = .; 1139 // foo : { *(foo) } 1140 // end_foo = .; 1141 // doesn't break the intended meaning of the begin/end symbols. 1142 // We don't want to go over sections since findOrphanPos is the 1143 // one in charge of deciding the order of the sections. 1144 // We don't want to go over changes to '.', since doing so in 1145 // rx_sec : { *(rx_sec) } 1146 // . = ALIGN(0x1000); 1147 // /* The RW PT_LOAD starts here*/ 1148 // rw_sec : { *(rw_sec) } 1149 // would mean that the RW PT_LOAD would become unaligned. 1150 static bool shouldSkip(BaseCommand *cmd) { 1151 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1152 return assign->name != "."; 1153 return false; 1154 } 1155 1156 // We want to place orphan sections so that they share as much 1157 // characteristics with their neighbors as possible. For example, if 1158 // both are rw, or both are tls. 1159 static std::vector<BaseCommand *>::iterator 1160 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1161 std::vector<BaseCommand *>::iterator e) { 1162 OutputSection *sec = cast<OutputSection>(*e); 1163 1164 // Find the first element that has as close a rank as possible. 1165 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1166 return getRankProximity(sec, a) < getRankProximity(sec, b); 1167 }); 1168 if (i == e) 1169 return e; 1170 1171 // Consider all existing sections with the same proximity. 1172 int proximity = getRankProximity(sec, *i); 1173 for (; i != e; ++i) { 1174 auto *curSec = dyn_cast<OutputSection>(*i); 1175 if (!curSec || !curSec->hasInputSections) 1176 continue; 1177 if (getRankProximity(sec, curSec) != proximity || 1178 sec->sortRank < curSec->sortRank) 1179 break; 1180 } 1181 1182 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1183 auto *os = dyn_cast<OutputSection>(cmd); 1184 return os && os->hasInputSections; 1185 }; 1186 auto j = std::find_if(llvm::make_reverse_iterator(i), 1187 llvm::make_reverse_iterator(b), 1188 isOutputSecWithInputSections); 1189 i = j.base(); 1190 1191 // As a special case, if the orphan section is the last section, put 1192 // it at the very end, past any other commands. 1193 // This matches bfd's behavior and is convenient when the linker script fully 1194 // specifies the start of the file, but doesn't care about the end (the non 1195 // alloc sections for example). 1196 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1197 if (nextSec == e) 1198 return e; 1199 1200 while (i != e && shouldSkip(*i)) 1201 ++i; 1202 return i; 1203 } 1204 1205 // Builds section order for handling --symbol-ordering-file. 1206 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1207 DenseMap<const InputSectionBase *, int> sectionOrder; 1208 // Use the rarely used option -call-graph-ordering-file to sort sections. 1209 if (!config->callGraphProfile.empty()) 1210 return computeCallGraphProfileOrder(); 1211 1212 if (config->symbolOrderingFile.empty()) 1213 return sectionOrder; 1214 1215 struct SymbolOrderEntry { 1216 int priority; 1217 bool present; 1218 }; 1219 1220 // Build a map from symbols to their priorities. Symbols that didn't 1221 // appear in the symbol ordering file have the lowest priority 0. 1222 // All explicitly mentioned symbols have negative (higher) priorities. 1223 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1224 int priority = -config->symbolOrderingFile.size(); 1225 for (StringRef s : config->symbolOrderingFile) 1226 symbolOrder.insert({s, {priority++, false}}); 1227 1228 // Build a map from sections to their priorities. 1229 auto addSym = [&](Symbol &sym) { 1230 auto it = symbolOrder.find(sym.getName()); 1231 if (it == symbolOrder.end()) 1232 return; 1233 SymbolOrderEntry &ent = it->second; 1234 ent.present = true; 1235 1236 maybeWarnUnorderableSymbol(&sym); 1237 1238 if (auto *d = dyn_cast<Defined>(&sym)) { 1239 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1240 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1241 priority = std::min(priority, ent.priority); 1242 } 1243 } 1244 }; 1245 1246 // We want both global and local symbols. We get the global ones from the 1247 // symbol table and iterate the object files for the local ones. 1248 for (Symbol *sym : symtab->symbols()) 1249 if (!sym->isLazy()) 1250 addSym(*sym); 1251 1252 for (InputFile *file : objectFiles) 1253 for (Symbol *sym : file->getSymbols()) 1254 if (sym->isLocal()) 1255 addSym(*sym); 1256 1257 if (config->warnSymbolOrdering) 1258 for (auto orderEntry : symbolOrder) 1259 if (!orderEntry.second.present) 1260 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1261 1262 return sectionOrder; 1263 } 1264 1265 // Sorts the sections in ISD according to the provided section order. 1266 static void 1267 sortISDBySectionOrder(InputSectionDescription *isd, 1268 const DenseMap<const InputSectionBase *, int> &order) { 1269 std::vector<InputSection *> unorderedSections; 1270 std::vector<std::pair<InputSection *, int>> orderedSections; 1271 uint64_t unorderedSize = 0; 1272 1273 for (InputSection *isec : isd->sections) { 1274 auto i = order.find(isec); 1275 if (i == order.end()) { 1276 unorderedSections.push_back(isec); 1277 unorderedSize += isec->getSize(); 1278 continue; 1279 } 1280 orderedSections.push_back({isec, i->second}); 1281 } 1282 llvm::sort(orderedSections, llvm::less_second()); 1283 1284 // Find an insertion point for the ordered section list in the unordered 1285 // section list. On targets with limited-range branches, this is the mid-point 1286 // of the unordered section list. This decreases the likelihood that a range 1287 // extension thunk will be needed to enter or exit the ordered region. If the 1288 // ordered section list is a list of hot functions, we can generally expect 1289 // the ordered functions to be called more often than the unordered functions, 1290 // making it more likely that any particular call will be within range, and 1291 // therefore reducing the number of thunks required. 1292 // 1293 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1294 // If the layout is: 1295 // 1296 // 8MB hot 1297 // 32MB cold 1298 // 1299 // only the first 8-16MB of the cold code (depending on which hot function it 1300 // is actually calling) can call the hot code without a range extension thunk. 1301 // However, if we use this layout: 1302 // 1303 // 16MB cold 1304 // 8MB hot 1305 // 16MB cold 1306 // 1307 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1308 // of the second block of cold code can call the hot code without a thunk. So 1309 // we effectively double the amount of code that could potentially call into 1310 // the hot code without a thunk. 1311 size_t insPt = 0; 1312 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1313 uint64_t unorderedPos = 0; 1314 for (; insPt != unorderedSections.size(); ++insPt) { 1315 unorderedPos += unorderedSections[insPt]->getSize(); 1316 if (unorderedPos > unorderedSize / 2) 1317 break; 1318 } 1319 } 1320 1321 isd->sections.clear(); 1322 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1323 isd->sections.push_back(isec); 1324 for (std::pair<InputSection *, int> p : orderedSections) 1325 isd->sections.push_back(p.first); 1326 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1327 isd->sections.push_back(isec); 1328 } 1329 1330 static void sortSection(OutputSection *sec, 1331 const DenseMap<const InputSectionBase *, int> &order) { 1332 StringRef name = sec->name; 1333 1334 // Sort input sections by section name suffixes for 1335 // __attribute__((init_priority(N))). 1336 if (name == ".init_array" || name == ".fini_array") { 1337 if (!script->hasSectionsCommand) 1338 sec->sortInitFini(); 1339 return; 1340 } 1341 1342 // Sort input sections by the special rule for .ctors and .dtors. 1343 if (name == ".ctors" || name == ".dtors") { 1344 if (!script->hasSectionsCommand) 1345 sec->sortCtorsDtors(); 1346 return; 1347 } 1348 1349 // Never sort these. 1350 if (name == ".init" || name == ".fini") 1351 return; 1352 1353 // .toc is allocated just after .got and is accessed using GOT-relative 1354 // relocations. Object files compiled with small code model have an 1355 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1356 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1357 // sections having smaller relocation offsets are at beginning of .toc 1358 if (config->emachine == EM_PPC64 && name == ".toc") { 1359 if (script->hasSectionsCommand) 1360 return; 1361 assert(sec->sectionCommands.size() == 1); 1362 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1363 llvm::stable_sort(isd->sections, 1364 [](const InputSection *a, const InputSection *b) -> bool { 1365 return a->file->ppc64SmallCodeModelTocRelocs && 1366 !b->file->ppc64SmallCodeModelTocRelocs; 1367 }); 1368 return; 1369 } 1370 1371 // Sort input sections by priority using the list provided 1372 // by --symbol-ordering-file. 1373 if (!order.empty()) 1374 for (BaseCommand *b : sec->sectionCommands) 1375 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1376 sortISDBySectionOrder(isd, order); 1377 } 1378 1379 // If no layout was provided by linker script, we want to apply default 1380 // sorting for special input sections. This also handles --symbol-ordering-file. 1381 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1382 // Build the order once since it is expensive. 1383 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1384 for (BaseCommand *base : script->sectionCommands) 1385 if (auto *sec = dyn_cast<OutputSection>(base)) 1386 sortSection(sec, order); 1387 } 1388 1389 template <class ELFT> void Writer<ELFT>::sortSections() { 1390 script->adjustSectionsBeforeSorting(); 1391 1392 // Don't sort if using -r. It is not necessary and we want to preserve the 1393 // relative order for SHF_LINK_ORDER sections. 1394 if (config->relocatable) 1395 return; 1396 1397 sortInputSections(); 1398 1399 for (BaseCommand *base : script->sectionCommands) { 1400 auto *os = dyn_cast<OutputSection>(base); 1401 if (!os) 1402 continue; 1403 os->sortRank = getSectionRank(os); 1404 1405 // We want to assign rude approximation values to outSecOff fields 1406 // to know the relative order of the input sections. We use it for 1407 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1408 uint64_t i = 0; 1409 for (InputSection *sec : getInputSections(os)) 1410 sec->outSecOff = i++; 1411 } 1412 1413 if (!script->hasSectionsCommand) { 1414 // We know that all the OutputSections are contiguous in this case. 1415 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1416 std::stable_sort( 1417 llvm::find_if(script->sectionCommands, isSection), 1418 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1419 compareSections); 1420 return; 1421 } 1422 1423 // Orphan sections are sections present in the input files which are 1424 // not explicitly placed into the output file by the linker script. 1425 // 1426 // The sections in the linker script are already in the correct 1427 // order. We have to figuere out where to insert the orphan 1428 // sections. 1429 // 1430 // The order of the sections in the script is arbitrary and may not agree with 1431 // compareSections. This means that we cannot easily define a strict weak 1432 // ordering. To see why, consider a comparison of a section in the script and 1433 // one not in the script. We have a two simple options: 1434 // * Make them equivalent (a is not less than b, and b is not less than a). 1435 // The problem is then that equivalence has to be transitive and we can 1436 // have sections a, b and c with only b in a script and a less than c 1437 // which breaks this property. 1438 // * Use compareSectionsNonScript. Given that the script order doesn't have 1439 // to match, we can end up with sections a, b, c, d where b and c are in the 1440 // script and c is compareSectionsNonScript less than b. In which case d 1441 // can be equivalent to c, a to b and d < a. As a concrete example: 1442 // .a (rx) # not in script 1443 // .b (rx) # in script 1444 // .c (ro) # in script 1445 // .d (ro) # not in script 1446 // 1447 // The way we define an order then is: 1448 // * Sort only the orphan sections. They are in the end right now. 1449 // * Move each orphan section to its preferred position. We try 1450 // to put each section in the last position where it can share 1451 // a PT_LOAD. 1452 // 1453 // There is some ambiguity as to where exactly a new entry should be 1454 // inserted, because Commands contains not only output section 1455 // commands but also other types of commands such as symbol assignment 1456 // expressions. There's no correct answer here due to the lack of the 1457 // formal specification of the linker script. We use heuristics to 1458 // determine whether a new output command should be added before or 1459 // after another commands. For the details, look at shouldSkip 1460 // function. 1461 1462 auto i = script->sectionCommands.begin(); 1463 auto e = script->sectionCommands.end(); 1464 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1465 if (auto *sec = dyn_cast<OutputSection>(base)) 1466 return sec->sectionIndex == UINT32_MAX; 1467 return false; 1468 }); 1469 1470 // Sort the orphan sections. 1471 std::stable_sort(nonScriptI, e, compareSections); 1472 1473 // As a horrible special case, skip the first . assignment if it is before any 1474 // section. We do this because it is common to set a load address by starting 1475 // the script with ". = 0xabcd" and the expectation is that every section is 1476 // after that. 1477 auto firstSectionOrDotAssignment = 1478 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1479 if (firstSectionOrDotAssignment != e && 1480 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1481 ++firstSectionOrDotAssignment; 1482 i = firstSectionOrDotAssignment; 1483 1484 while (nonScriptI != e) { 1485 auto pos = findOrphanPos(i, nonScriptI); 1486 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1487 1488 // As an optimization, find all sections with the same sort rank 1489 // and insert them with one rotate. 1490 unsigned rank = orphan->sortRank; 1491 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1492 return cast<OutputSection>(cmd)->sortRank != rank; 1493 }); 1494 std::rotate(pos, nonScriptI, end); 1495 nonScriptI = end; 1496 } 1497 1498 script->adjustSectionsAfterSorting(); 1499 } 1500 1501 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1502 InputSection *la = a->getLinkOrderDep(); 1503 InputSection *lb = b->getLinkOrderDep(); 1504 OutputSection *aOut = la->getParent(); 1505 OutputSection *bOut = lb->getParent(); 1506 1507 if (aOut != bOut) 1508 return aOut->sectionIndex < bOut->sectionIndex; 1509 return la->outSecOff < lb->outSecOff; 1510 } 1511 1512 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1513 for (OutputSection *sec : outputSections) { 1514 if (!(sec->flags & SHF_LINK_ORDER)) 1515 continue; 1516 1517 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1518 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1519 if (!config->relocatable && config->emachine == EM_ARM && 1520 sec->type == SHT_ARM_EXIDX) 1521 continue; 1522 1523 // Link order may be distributed across several InputSectionDescriptions 1524 // but sort must consider them all at once. 1525 std::vector<InputSection **> scriptSections; 1526 std::vector<InputSection *> sections; 1527 bool started = false, stopped = false; 1528 for (BaseCommand *base : sec->sectionCommands) { 1529 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1530 for (InputSection *&isec : isd->sections) { 1531 if (!(isec->flags & SHF_LINK_ORDER)) { 1532 if (started) 1533 stopped = true; 1534 } else if (stopped) { 1535 error(toString(isec) + ": SHF_LINK_ORDER sections in " + sec->name + 1536 " are not contiguous"); 1537 } else { 1538 started = true; 1539 1540 scriptSections.push_back(&isec); 1541 sections.push_back(isec); 1542 1543 InputSection *link = isec->getLinkOrderDep(); 1544 if (!link->getParent()) 1545 error(toString(isec) + ": sh_link points to discarded section " + 1546 toString(link)); 1547 } 1548 } 1549 } else if (started) { 1550 stopped = true; 1551 } 1552 } 1553 1554 if (errorCount()) 1555 continue; 1556 1557 llvm::stable_sort(sections, compareByFilePosition); 1558 1559 for (int i = 0, n = sections.size(); i < n; ++i) 1560 *scriptSections[i] = sections[i]; 1561 } 1562 } 1563 1564 // We need to generate and finalize the content that depends on the address of 1565 // InputSections. As the generation of the content may also alter InputSection 1566 // addresses we must converge to a fixed point. We do that here. See the comment 1567 // in Writer<ELFT>::finalizeSections(). 1568 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1569 ThunkCreator tc; 1570 AArch64Err843419Patcher a64p; 1571 ARMErr657417Patcher a32p; 1572 script->assignAddresses(); 1573 1574 int assignPasses = 0; 1575 for (;;) { 1576 bool changed = target->needsThunks && tc.createThunks(outputSections); 1577 1578 // With Thunk Size much smaller than branch range we expect to 1579 // converge quickly; if we get to 10 something has gone wrong. 1580 if (changed && tc.pass >= 10) { 1581 error("thunk creation not converged"); 1582 break; 1583 } 1584 1585 if (config->fixCortexA53Errata843419) { 1586 if (changed) 1587 script->assignAddresses(); 1588 changed |= a64p.createFixes(); 1589 } 1590 if (config->fixCortexA8) { 1591 if (changed) 1592 script->assignAddresses(); 1593 changed |= a32p.createFixes(); 1594 } 1595 1596 if (in.mipsGot) 1597 in.mipsGot->updateAllocSize(); 1598 1599 for (Partition &part : partitions) { 1600 changed |= part.relaDyn->updateAllocSize(); 1601 if (part.relrDyn) 1602 changed |= part.relrDyn->updateAllocSize(); 1603 } 1604 1605 const Defined *changedSym = script->assignAddresses(); 1606 if (!changed) { 1607 // Some symbols may be dependent on section addresses. When we break the 1608 // loop, the symbol values are finalized because a previous 1609 // assignAddresses() finalized section addresses. 1610 if (!changedSym) 1611 break; 1612 if (++assignPasses == 5) { 1613 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1614 " does not converge"); 1615 break; 1616 } 1617 } 1618 } 1619 } 1620 1621 static void finalizeSynthetic(SyntheticSection *sec) { 1622 if (sec && sec->isNeeded() && sec->getParent()) 1623 sec->finalizeContents(); 1624 } 1625 1626 // In order to allow users to manipulate linker-synthesized sections, 1627 // we had to add synthetic sections to the input section list early, 1628 // even before we make decisions whether they are needed. This allows 1629 // users to write scripts like this: ".mygot : { .got }". 1630 // 1631 // Doing it has an unintended side effects. If it turns out that we 1632 // don't need a .got (for example) at all because there's no 1633 // relocation that needs a .got, we don't want to emit .got. 1634 // 1635 // To deal with the above problem, this function is called after 1636 // scanRelocations is called to remove synthetic sections that turn 1637 // out to be empty. 1638 static void removeUnusedSyntheticSections() { 1639 // All input synthetic sections that can be empty are placed after 1640 // all regular ones. We iterate over them all and exit at first 1641 // non-synthetic. 1642 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1643 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1644 if (!ss) 1645 return; 1646 OutputSection *os = ss->getParent(); 1647 if (!os || ss->isNeeded()) 1648 continue; 1649 1650 // If we reach here, then SS is an unused synthetic section and we want to 1651 // remove it from corresponding input section description of output section. 1652 for (BaseCommand *b : os->sectionCommands) 1653 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1654 llvm::erase_if(isd->sections, 1655 [=](InputSection *isec) { return isec == ss; }); 1656 } 1657 } 1658 1659 // Create output section objects and add them to OutputSections. 1660 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1661 Out::preinitArray = findSection(".preinit_array"); 1662 Out::initArray = findSection(".init_array"); 1663 Out::finiArray = findSection(".fini_array"); 1664 1665 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1666 // symbols for sections, so that the runtime can get the start and end 1667 // addresses of each section by section name. Add such symbols. 1668 if (!config->relocatable) { 1669 addStartEndSymbols(); 1670 for (BaseCommand *base : script->sectionCommands) 1671 if (auto *sec = dyn_cast<OutputSection>(base)) 1672 addStartStopSymbols(sec); 1673 } 1674 1675 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1676 // It should be okay as no one seems to care about the type. 1677 // Even the author of gold doesn't remember why gold behaves that way. 1678 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1679 if (mainPart->dynamic->parent) 1680 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1681 STV_HIDDEN, STT_NOTYPE, 1682 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1683 1684 // Define __rel[a]_iplt_{start,end} symbols if needed. 1685 addRelIpltSymbols(); 1686 1687 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1688 // should only be defined in an executable. If .sdata does not exist, its 1689 // value/section does not matter but it has to be relative, so set its 1690 // st_shndx arbitrarily to 1 (Out::elfHeader). 1691 if (config->emachine == EM_RISCV && !config->shared) { 1692 OutputSection *sec = findSection(".sdata"); 1693 ElfSym::riscvGlobalPointer = 1694 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1695 0x800, STV_DEFAULT, STB_GLOBAL); 1696 } 1697 1698 if (config->emachine == EM_X86_64) { 1699 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1700 // way that: 1701 // 1702 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1703 // computes 0. 1704 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1705 // the TLS block). 1706 // 1707 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1708 // an absolute symbol of zero. This is different from GNU linkers which 1709 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1710 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1711 if (s && s->isUndefined()) { 1712 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1713 STT_TLS, /*value=*/0, 0, 1714 /*section=*/nullptr}); 1715 ElfSym::tlsModuleBase = cast<Defined>(s); 1716 } 1717 } 1718 1719 // This responsible for splitting up .eh_frame section into 1720 // pieces. The relocation scan uses those pieces, so this has to be 1721 // earlier. 1722 for (Partition &part : partitions) 1723 finalizeSynthetic(part.ehFrame); 1724 1725 for (Symbol *sym : symtab->symbols()) 1726 sym->isPreemptible = computeIsPreemptible(*sym); 1727 1728 // Change values of linker-script-defined symbols from placeholders (assigned 1729 // by declareSymbols) to actual definitions. 1730 script->processSymbolAssignments(); 1731 1732 // Scan relocations. This must be done after every symbol is declared so that 1733 // we can correctly decide if a dynamic relocation is needed. This is called 1734 // after processSymbolAssignments() because it needs to know whether a 1735 // linker-script-defined symbol is absolute. 1736 if (!config->relocatable) { 1737 forEachRelSec(scanRelocations<ELFT>); 1738 reportUndefinedSymbols<ELFT>(); 1739 } 1740 1741 if (in.plt && in.plt->isNeeded()) 1742 in.plt->addSymbols(); 1743 if (in.iplt && in.iplt->isNeeded()) 1744 in.iplt->addSymbols(); 1745 1746 if (!config->allowShlibUndefined) { 1747 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1748 // entries are seen. These cases would otherwise lead to runtime errors 1749 // reported by the dynamic linker. 1750 // 1751 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1752 // catch more cases. That is too much for us. Our approach resembles the one 1753 // used in ld.gold, achieves a good balance to be useful but not too smart. 1754 for (SharedFile *file : sharedFiles) 1755 file->allNeededIsKnown = 1756 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1757 return symtab->soNames.count(needed); 1758 }); 1759 1760 for (Symbol *sym : symtab->symbols()) 1761 if (sym->isUndefined() && !sym->isWeak()) 1762 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1763 if (f->allNeededIsKnown) 1764 error(toString(f) + ": undefined reference to " + toString(*sym)); 1765 } 1766 1767 // Now that we have defined all possible global symbols including linker- 1768 // synthesized ones. Visit all symbols to give the finishing touches. 1769 for (Symbol *sym : symtab->symbols()) { 1770 if (!includeInSymtab(*sym)) 1771 continue; 1772 if (in.symTab) 1773 in.symTab->addSymbol(sym); 1774 1775 if (sym->includeInDynsym()) { 1776 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1777 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1778 if (file->isNeeded && !sym->isUndefined()) 1779 addVerneed(sym); 1780 } 1781 } 1782 1783 // We also need to scan the dynamic relocation tables of the other partitions 1784 // and add any referenced symbols to the partition's dynsym. 1785 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1786 DenseSet<Symbol *> syms; 1787 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1788 syms.insert(e.sym); 1789 for (DynamicReloc &reloc : part.relaDyn->relocs) 1790 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 1791 part.dynSymTab->addSymbol(reloc.sym); 1792 } 1793 1794 // Do not proceed if there was an undefined symbol. 1795 if (errorCount()) 1796 return; 1797 1798 if (in.mipsGot) 1799 in.mipsGot->build(); 1800 1801 removeUnusedSyntheticSections(); 1802 1803 sortSections(); 1804 1805 // Now that we have the final list, create a list of all the 1806 // OutputSections for convenience. 1807 for (BaseCommand *base : script->sectionCommands) 1808 if (auto *sec = dyn_cast<OutputSection>(base)) 1809 outputSections.push_back(sec); 1810 1811 // Prefer command line supplied address over other constraints. 1812 for (OutputSection *sec : outputSections) { 1813 auto i = config->sectionStartMap.find(sec->name); 1814 if (i != config->sectionStartMap.end()) 1815 sec->addrExpr = [=] { return i->second; }; 1816 } 1817 1818 // This is a bit of a hack. A value of 0 means undef, so we set it 1819 // to 1 to make __ehdr_start defined. The section number is not 1820 // particularly relevant. 1821 Out::elfHeader->sectionIndex = 1; 1822 1823 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 1824 OutputSection *sec = outputSections[i]; 1825 sec->sectionIndex = i + 1; 1826 sec->shName = in.shStrTab->addString(sec->name); 1827 } 1828 1829 // Binary and relocatable output does not have PHDRS. 1830 // The headers have to be created before finalize as that can influence the 1831 // image base and the dynamic section on mips includes the image base. 1832 if (!config->relocatable && !config->oFormatBinary) { 1833 for (Partition &part : partitions) { 1834 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 1835 : createPhdrs(part); 1836 if (config->emachine == EM_ARM) { 1837 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1838 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1839 } 1840 if (config->emachine == EM_MIPS) { 1841 // Add separate segments for MIPS-specific sections. 1842 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1843 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1844 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1845 } 1846 } 1847 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 1848 1849 // Find the TLS segment. This happens before the section layout loop so that 1850 // Android relocation packing can look up TLS symbol addresses. We only need 1851 // to care about the main partition here because all TLS symbols were moved 1852 // to the main partition (see MarkLive.cpp). 1853 for (PhdrEntry *p : mainPart->phdrs) 1854 if (p->p_type == PT_TLS) 1855 Out::tlsPhdr = p; 1856 } 1857 1858 // Some symbols are defined in term of program headers. Now that we 1859 // have the headers, we can find out which sections they point to. 1860 setReservedSymbolSections(); 1861 1862 finalizeSynthetic(in.bss); 1863 finalizeSynthetic(in.bssRelRo); 1864 finalizeSynthetic(in.symTabShndx); 1865 finalizeSynthetic(in.shStrTab); 1866 finalizeSynthetic(in.strTab); 1867 finalizeSynthetic(in.got); 1868 finalizeSynthetic(in.mipsGot); 1869 finalizeSynthetic(in.igotPlt); 1870 finalizeSynthetic(in.gotPlt); 1871 finalizeSynthetic(in.relaIplt); 1872 finalizeSynthetic(in.relaPlt); 1873 finalizeSynthetic(in.plt); 1874 finalizeSynthetic(in.iplt); 1875 finalizeSynthetic(in.ppc32Got2); 1876 finalizeSynthetic(in.partIndex); 1877 1878 // Dynamic section must be the last one in this list and dynamic 1879 // symbol table section (dynSymTab) must be the first one. 1880 for (Partition &part : partitions) { 1881 finalizeSynthetic(part.armExidx); 1882 finalizeSynthetic(part.dynSymTab); 1883 finalizeSynthetic(part.gnuHashTab); 1884 finalizeSynthetic(part.hashTab); 1885 finalizeSynthetic(part.verDef); 1886 finalizeSynthetic(part.relaDyn); 1887 finalizeSynthetic(part.relrDyn); 1888 finalizeSynthetic(part.ehFrameHdr); 1889 finalizeSynthetic(part.verSym); 1890 finalizeSynthetic(part.verNeed); 1891 finalizeSynthetic(part.dynamic); 1892 } 1893 1894 if (!script->hasSectionsCommand && !config->relocatable) 1895 fixSectionAlignments(); 1896 1897 // SHFLinkOrder processing must be processed after relative section placements are 1898 // known but before addresses are allocated. 1899 resolveShfLinkOrder(); 1900 if (errorCount()) 1901 return; 1902 1903 // This is used to: 1904 // 1) Create "thunks": 1905 // Jump instructions in many ISAs have small displacements, and therefore 1906 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1907 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1908 // responsibility to create and insert small pieces of code between 1909 // sections to extend the ranges if jump targets are out of range. Such 1910 // code pieces are called "thunks". 1911 // 1912 // We add thunks at this stage. We couldn't do this before this point 1913 // because this is the earliest point where we know sizes of sections and 1914 // their layouts (that are needed to determine if jump targets are in 1915 // range). 1916 // 1917 // 2) Update the sections. We need to generate content that depends on the 1918 // address of InputSections. For example, MIPS GOT section content or 1919 // android packed relocations sections content. 1920 // 1921 // 3) Assign the final values for the linker script symbols. Linker scripts 1922 // sometimes using forward symbol declarations. We want to set the correct 1923 // values. They also might change after adding the thunks. 1924 finalizeAddressDependentContent(); 1925 1926 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1927 finalizeSynthetic(in.symTab); 1928 finalizeSynthetic(in.ppc64LongBranchTarget); 1929 1930 // Fill other section headers. The dynamic table is finalized 1931 // at the end because some tags like RELSZ depend on result 1932 // of finalizing other sections. 1933 for (OutputSection *sec : outputSections) 1934 sec->finalize(); 1935 } 1936 1937 // Ensure data sections are not mixed with executable sections when 1938 // -execute-only is used. -execute-only is a feature to make pages executable 1939 // but not readable, and the feature is currently supported only on AArch64. 1940 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1941 if (!config->executeOnly) 1942 return; 1943 1944 for (OutputSection *os : outputSections) 1945 if (os->flags & SHF_EXECINSTR) 1946 for (InputSection *isec : getInputSections(os)) 1947 if (!(isec->flags & SHF_EXECINSTR)) 1948 error("cannot place " + toString(isec) + " into " + toString(os->name) + 1949 ": -execute-only does not support intermingling data and code"); 1950 } 1951 1952 // The linker is expected to define SECNAME_start and SECNAME_end 1953 // symbols for a few sections. This function defines them. 1954 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1955 // If a section does not exist, there's ambiguity as to how we 1956 // define _start and _end symbols for an init/fini section. Since 1957 // the loader assume that the symbols are always defined, we need to 1958 // always define them. But what value? The loader iterates over all 1959 // pointers between _start and _end to run global ctors/dtors, so if 1960 // the section is empty, their symbol values don't actually matter 1961 // as long as _start and _end point to the same location. 1962 // 1963 // That said, we don't want to set the symbols to 0 (which is 1964 // probably the simplest value) because that could cause some 1965 // program to fail to link due to relocation overflow, if their 1966 // program text is above 2 GiB. We use the address of the .text 1967 // section instead to prevent that failure. 1968 // 1969 // In rare situations, the .text section may not exist. If that's the 1970 // case, use the image base address as a last resort. 1971 OutputSection *Default = findSection(".text"); 1972 if (!Default) 1973 Default = Out::elfHeader; 1974 1975 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 1976 if (os) { 1977 addOptionalRegular(start, os, 0); 1978 addOptionalRegular(end, os, -1); 1979 } else { 1980 addOptionalRegular(start, Default, 0); 1981 addOptionalRegular(end, Default, 0); 1982 } 1983 }; 1984 1985 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 1986 define("__init_array_start", "__init_array_end", Out::initArray); 1987 define("__fini_array_start", "__fini_array_end", Out::finiArray); 1988 1989 if (OutputSection *sec = findSection(".ARM.exidx")) 1990 define("__exidx_start", "__exidx_end", sec); 1991 } 1992 1993 // If a section name is valid as a C identifier (which is rare because of 1994 // the leading '.'), linkers are expected to define __start_<secname> and 1995 // __stop_<secname> symbols. They are at beginning and end of the section, 1996 // respectively. This is not requested by the ELF standard, but GNU ld and 1997 // gold provide the feature, and used by many programs. 1998 template <class ELFT> 1999 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2000 StringRef s = sec->name; 2001 if (!isValidCIdentifier(s)) 2002 return; 2003 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 2004 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 2005 } 2006 2007 static bool needsPtLoad(OutputSection *sec) { 2008 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2009 return false; 2010 2011 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2012 // responsible for allocating space for them, not the PT_LOAD that 2013 // contains the TLS initialization image. 2014 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2015 return false; 2016 return true; 2017 } 2018 2019 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2020 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2021 // RW. This means that there is no alignment in the RO to RX transition and we 2022 // cannot create a PT_LOAD there. 2023 static uint64_t computeFlags(uint64_t flags) { 2024 if (config->omagic) 2025 return PF_R | PF_W | PF_X; 2026 if (config->executeOnly && (flags & PF_X)) 2027 return flags & ~PF_R; 2028 if (config->singleRoRx && !(flags & PF_W)) 2029 return flags | PF_X; 2030 return flags; 2031 } 2032 2033 // Decide which program headers to create and which sections to include in each 2034 // one. 2035 template <class ELFT> 2036 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2037 std::vector<PhdrEntry *> ret; 2038 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2039 ret.push_back(make<PhdrEntry>(type, flags)); 2040 return ret.back(); 2041 }; 2042 2043 unsigned partNo = part.getNumber(); 2044 bool isMain = partNo == 1; 2045 2046 // Add the first PT_LOAD segment for regular output sections. 2047 uint64_t flags = computeFlags(PF_R); 2048 PhdrEntry *load = nullptr; 2049 2050 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2051 // PT_LOAD. 2052 if (!config->nmagic && !config->omagic) { 2053 // The first phdr entry is PT_PHDR which describes the program header 2054 // itself. 2055 if (isMain) 2056 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2057 else 2058 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2059 2060 // PT_INTERP must be the second entry if exists. 2061 if (OutputSection *cmd = findSection(".interp", partNo)) 2062 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2063 2064 // Add the headers. We will remove them if they don't fit. 2065 // In the other partitions the headers are ordinary sections, so they don't 2066 // need to be added here. 2067 if (isMain) { 2068 load = addHdr(PT_LOAD, flags); 2069 load->add(Out::elfHeader); 2070 load->add(Out::programHeaders); 2071 } 2072 } 2073 2074 // PT_GNU_RELRO includes all sections that should be marked as 2075 // read-only by dynamic linker after processing relocations. 2076 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2077 // an error message if more than one PT_GNU_RELRO PHDR is required. 2078 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2079 bool inRelroPhdr = false; 2080 OutputSection *relroEnd = nullptr; 2081 for (OutputSection *sec : outputSections) { 2082 if (sec->partition != partNo || !needsPtLoad(sec)) 2083 continue; 2084 if (isRelroSection(sec)) { 2085 inRelroPhdr = true; 2086 if (!relroEnd) 2087 relRo->add(sec); 2088 else 2089 error("section: " + sec->name + " is not contiguous with other relro" + 2090 " sections"); 2091 } else if (inRelroPhdr) { 2092 inRelroPhdr = false; 2093 relroEnd = sec; 2094 } 2095 } 2096 2097 for (OutputSection *sec : outputSections) { 2098 if (!(sec->flags & SHF_ALLOC)) 2099 break; 2100 if (!needsPtLoad(sec)) 2101 continue; 2102 2103 // Normally, sections in partitions other than the current partition are 2104 // ignored. But partition number 255 is a special case: it contains the 2105 // partition end marker (.part.end). It needs to be added to the main 2106 // partition so that a segment is created for it in the main partition, 2107 // which will cause the dynamic loader to reserve space for the other 2108 // partitions. 2109 if (sec->partition != partNo) { 2110 if (isMain && sec->partition == 255) 2111 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2112 continue; 2113 } 2114 2115 // Segments are contiguous memory regions that has the same attributes 2116 // (e.g. executable or writable). There is one phdr for each segment. 2117 // Therefore, we need to create a new phdr when the next section has 2118 // different flags or is loaded at a discontiguous address or memory 2119 // region using AT or AT> linker script command, respectively. At the same 2120 // time, we don't want to create a separate load segment for the headers, 2121 // even if the first output section has an AT or AT> attribute. 2122 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2123 if (!load || 2124 ((sec->lmaExpr || 2125 (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) && 2126 load->lastSec != Out::programHeaders) || 2127 sec->memRegion != load->firstSec->memRegion || flags != newFlags || 2128 sec == relroEnd) { 2129 load = addHdr(PT_LOAD, newFlags); 2130 flags = newFlags; 2131 } 2132 2133 load->add(sec); 2134 } 2135 2136 // Add a TLS segment if any. 2137 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2138 for (OutputSection *sec : outputSections) 2139 if (sec->partition == partNo && sec->flags & SHF_TLS) 2140 tlsHdr->add(sec); 2141 if (tlsHdr->firstSec) 2142 ret.push_back(tlsHdr); 2143 2144 // Add an entry for .dynamic. 2145 if (OutputSection *sec = part.dynamic->getParent()) 2146 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2147 2148 if (relRo->firstSec) 2149 ret.push_back(relRo); 2150 2151 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2152 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2153 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2154 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2155 ->add(part.ehFrameHdr->getParent()); 2156 2157 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2158 // the dynamic linker fill the segment with random data. 2159 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2160 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2161 2162 if (config->zGnustack != GnuStackKind::None) { 2163 // PT_GNU_STACK is a special section to tell the loader to make the 2164 // pages for the stack non-executable. If you really want an executable 2165 // stack, you can pass -z execstack, but that's not recommended for 2166 // security reasons. 2167 unsigned perm = PF_R | PF_W; 2168 if (config->zGnustack == GnuStackKind::Exec) 2169 perm |= PF_X; 2170 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2171 } 2172 2173 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2174 // is expected to perform W^X violations, such as calling mprotect(2) or 2175 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2176 // OpenBSD. 2177 if (config->zWxneeded) 2178 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2179 2180 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2181 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2182 2183 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2184 // same alignment. 2185 PhdrEntry *note = nullptr; 2186 for (OutputSection *sec : outputSections) { 2187 if (sec->partition != partNo) 2188 continue; 2189 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2190 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2191 note = addHdr(PT_NOTE, PF_R); 2192 note->add(sec); 2193 } else { 2194 note = nullptr; 2195 } 2196 } 2197 return ret; 2198 } 2199 2200 template <class ELFT> 2201 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2202 unsigned pType, unsigned pFlags) { 2203 unsigned partNo = part.getNumber(); 2204 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2205 return cmd->partition == partNo && cmd->type == shType; 2206 }); 2207 if (i == outputSections.end()) 2208 return; 2209 2210 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2211 entry->add(*i); 2212 part.phdrs.push_back(entry); 2213 } 2214 2215 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2216 // This is achieved by assigning an alignment expression to addrExpr of each 2217 // such section. 2218 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2219 const PhdrEntry *prev; 2220 auto pageAlign = [&](const PhdrEntry *p) { 2221 OutputSection *cmd = p->firstSec; 2222 if (cmd && !cmd->addrExpr) { 2223 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2224 // padding in the file contents. 2225 // 2226 // When -z separate-code is used we must not have any overlap in pages 2227 // between an executable segment and a non-executable segment. We align to 2228 // the next maximum page size boundary on transitions between executable 2229 // and non-executable segments. 2230 // 2231 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2232 // sections will be extracted to a separate file. Align to the next 2233 // maximum page size boundary so that we can find the ELF header at the 2234 // start. We cannot benefit from overlapping p_offset ranges with the 2235 // previous segment anyway. 2236 if (config->zSeparate == SeparateSegmentKind::Loadable || 2237 (config->zSeparate == SeparateSegmentKind::Code && prev && 2238 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2239 cmd->type == SHT_LLVM_PART_EHDR) 2240 cmd->addrExpr = [] { 2241 return alignTo(script->getDot(), config->maxPageSize); 2242 }; 2243 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2244 // it must be the RW. Align to p_align(PT_TLS) to make sure 2245 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2246 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2247 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2248 // be congruent to 0 modulo p_align(PT_TLS). 2249 // 2250 // Technically this is not required, but as of 2019, some dynamic loaders 2251 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2252 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2253 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2254 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2255 // blocks correctly. We need to keep the workaround for a while. 2256 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2257 cmd->addrExpr = [] { 2258 return alignTo(script->getDot(), config->maxPageSize) + 2259 alignTo(script->getDot() % config->maxPageSize, 2260 Out::tlsPhdr->p_align); 2261 }; 2262 else 2263 cmd->addrExpr = [] { 2264 return alignTo(script->getDot(), config->maxPageSize) + 2265 script->getDot() % config->maxPageSize; 2266 }; 2267 } 2268 }; 2269 2270 for (Partition &part : partitions) { 2271 prev = nullptr; 2272 for (const PhdrEntry *p : part.phdrs) 2273 if (p->p_type == PT_LOAD && p->firstSec) { 2274 pageAlign(p); 2275 prev = p; 2276 } 2277 } 2278 } 2279 2280 // Compute an in-file position for a given section. The file offset must be the 2281 // same with its virtual address modulo the page size, so that the loader can 2282 // load executables without any address adjustment. 2283 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2284 // The first section in a PT_LOAD has to have congruent offset and address 2285 // modulo the maximum page size. 2286 if (os->ptLoad && os->ptLoad->firstSec == os) 2287 return alignTo(off, os->ptLoad->p_align, os->addr); 2288 2289 // File offsets are not significant for .bss sections other than the first one 2290 // in a PT_LOAD. By convention, we keep section offsets monotonically 2291 // increasing rather than setting to zero. 2292 if (os->type == SHT_NOBITS) 2293 return off; 2294 2295 // If the section is not in a PT_LOAD, we just have to align it. 2296 if (!os->ptLoad) 2297 return alignTo(off, os->alignment); 2298 2299 // If two sections share the same PT_LOAD the file offset is calculated 2300 // using this formula: Off2 = Off1 + (VA2 - VA1). 2301 OutputSection *first = os->ptLoad->firstSec; 2302 return first->offset + os->addr - first->addr; 2303 } 2304 2305 // Set an in-file position to a given section and returns the end position of 2306 // the section. 2307 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2308 off = computeFileOffset(os, off); 2309 os->offset = off; 2310 2311 if (os->type == SHT_NOBITS) 2312 return off; 2313 return off + os->size; 2314 } 2315 2316 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2317 uint64_t off = 0; 2318 for (OutputSection *sec : outputSections) 2319 if (sec->flags & SHF_ALLOC) 2320 off = setFileOffset(sec, off); 2321 fileSize = alignTo(off, config->wordsize); 2322 } 2323 2324 static std::string rangeToString(uint64_t addr, uint64_t len) { 2325 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2326 } 2327 2328 // Assign file offsets to output sections. 2329 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2330 uint64_t off = 0; 2331 off = setFileOffset(Out::elfHeader, off); 2332 off = setFileOffset(Out::programHeaders, off); 2333 2334 PhdrEntry *lastRX = nullptr; 2335 for (Partition &part : partitions) 2336 for (PhdrEntry *p : part.phdrs) 2337 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2338 lastRX = p; 2339 2340 for (OutputSection *sec : outputSections) { 2341 off = setFileOffset(sec, off); 2342 2343 // If this is a last section of the last executable segment and that 2344 // segment is the last loadable segment, align the offset of the 2345 // following section to avoid loading non-segments parts of the file. 2346 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2347 lastRX->lastSec == sec) 2348 off = alignTo(off, config->commonPageSize); 2349 } 2350 2351 sectionHeaderOff = alignTo(off, config->wordsize); 2352 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2353 2354 // Our logic assumes that sections have rising VA within the same segment. 2355 // With use of linker scripts it is possible to violate this rule and get file 2356 // offset overlaps or overflows. That should never happen with a valid script 2357 // which does not move the location counter backwards and usually scripts do 2358 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2359 // kernel, which control segment distribution explicitly and move the counter 2360 // backwards, so we have to allow doing that to support linking them. We 2361 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2362 // we want to prevent file size overflows because it would crash the linker. 2363 for (OutputSection *sec : outputSections) { 2364 if (sec->type == SHT_NOBITS) 2365 continue; 2366 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2367 error("unable to place section " + sec->name + " at file offset " + 2368 rangeToString(sec->offset, sec->size) + 2369 "; check your linker script for overflows"); 2370 } 2371 } 2372 2373 // Finalize the program headers. We call this function after we assign 2374 // file offsets and VAs to all sections. 2375 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2376 for (PhdrEntry *p : part.phdrs) { 2377 OutputSection *first = p->firstSec; 2378 OutputSection *last = p->lastSec; 2379 2380 if (first) { 2381 p->p_filesz = last->offset - first->offset; 2382 if (last->type != SHT_NOBITS) 2383 p->p_filesz += last->size; 2384 2385 p->p_memsz = last->addr + last->size - first->addr; 2386 p->p_offset = first->offset; 2387 p->p_vaddr = first->addr; 2388 2389 // File offsets in partitions other than the main partition are relative 2390 // to the offset of the ELF headers. Perform that adjustment now. 2391 if (part.elfHeader) 2392 p->p_offset -= part.elfHeader->getParent()->offset; 2393 2394 if (!p->hasLMA) 2395 p->p_paddr = first->getLMA(); 2396 } 2397 2398 if (p->p_type == PT_GNU_RELRO) { 2399 p->p_align = 1; 2400 // musl/glibc ld.so rounds the size down, so we need to round up 2401 // to protect the last page. This is a no-op on FreeBSD which always 2402 // rounds up. 2403 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2404 p->p_offset; 2405 } 2406 } 2407 } 2408 2409 // A helper struct for checkSectionOverlap. 2410 namespace { 2411 struct SectionOffset { 2412 OutputSection *sec; 2413 uint64_t offset; 2414 }; 2415 } // namespace 2416 2417 // Check whether sections overlap for a specific address range (file offsets, 2418 // load and virtual addresses). 2419 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2420 bool isVirtualAddr) { 2421 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2422 return a.offset < b.offset; 2423 }); 2424 2425 // Finding overlap is easy given a vector is sorted by start position. 2426 // If an element starts before the end of the previous element, they overlap. 2427 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2428 SectionOffset a = sections[i - 1]; 2429 SectionOffset b = sections[i]; 2430 if (b.offset >= a.offset + a.sec->size) 2431 continue; 2432 2433 // If both sections are in OVERLAY we allow the overlapping of virtual 2434 // addresses, because it is what OVERLAY was designed for. 2435 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2436 continue; 2437 2438 errorOrWarn("section " + a.sec->name + " " + name + 2439 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2440 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2441 b.sec->name + " range is " + 2442 rangeToString(b.offset, b.sec->size)); 2443 } 2444 } 2445 2446 // Check for overlapping sections and address overflows. 2447 // 2448 // In this function we check that none of the output sections have overlapping 2449 // file offsets. For SHF_ALLOC sections we also check that the load address 2450 // ranges and the virtual address ranges don't overlap 2451 template <class ELFT> void Writer<ELFT>::checkSections() { 2452 // First, check that section's VAs fit in available address space for target. 2453 for (OutputSection *os : outputSections) 2454 if ((os->addr + os->size < os->addr) || 2455 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2456 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2457 " of size 0x" + utohexstr(os->size) + 2458 " exceeds available address space"); 2459 2460 // Check for overlapping file offsets. In this case we need to skip any 2461 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2462 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2463 // binary is specified only add SHF_ALLOC sections are added to the output 2464 // file so we skip any non-allocated sections in that case. 2465 std::vector<SectionOffset> fileOffs; 2466 for (OutputSection *sec : outputSections) 2467 if (sec->size > 0 && sec->type != SHT_NOBITS && 2468 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2469 fileOffs.push_back({sec, sec->offset}); 2470 checkOverlap("file", fileOffs, false); 2471 2472 // When linking with -r there is no need to check for overlapping virtual/load 2473 // addresses since those addresses will only be assigned when the final 2474 // executable/shared object is created. 2475 if (config->relocatable) 2476 return; 2477 2478 // Checking for overlapping virtual and load addresses only needs to take 2479 // into account SHF_ALLOC sections since others will not be loaded. 2480 // Furthermore, we also need to skip SHF_TLS sections since these will be 2481 // mapped to other addresses at runtime and can therefore have overlapping 2482 // ranges in the file. 2483 std::vector<SectionOffset> vmas; 2484 for (OutputSection *sec : outputSections) 2485 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2486 vmas.push_back({sec, sec->addr}); 2487 checkOverlap("virtual address", vmas, true); 2488 2489 // Finally, check that the load addresses don't overlap. This will usually be 2490 // the same as the virtual addresses but can be different when using a linker 2491 // script with AT(). 2492 std::vector<SectionOffset> lmas; 2493 for (OutputSection *sec : outputSections) 2494 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2495 lmas.push_back({sec, sec->getLMA()}); 2496 checkOverlap("load address", lmas, false); 2497 } 2498 2499 // The entry point address is chosen in the following ways. 2500 // 2501 // 1. the '-e' entry command-line option; 2502 // 2. the ENTRY(symbol) command in a linker control script; 2503 // 3. the value of the symbol _start, if present; 2504 // 4. the number represented by the entry symbol, if it is a number; 2505 // 5. the address of the first byte of the .text section, if present; 2506 // 6. the address 0. 2507 static uint64_t getEntryAddr() { 2508 // Case 1, 2 or 3 2509 if (Symbol *b = symtab->find(config->entry)) 2510 return b->getVA(); 2511 2512 // Case 4 2513 uint64_t addr; 2514 if (to_integer(config->entry, addr)) 2515 return addr; 2516 2517 // Case 5 2518 if (OutputSection *sec = findSection(".text")) { 2519 if (config->warnMissingEntry) 2520 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2521 utohexstr(sec->addr)); 2522 return sec->addr; 2523 } 2524 2525 // Case 6 2526 if (config->warnMissingEntry) 2527 warn("cannot find entry symbol " + config->entry + 2528 "; not setting start address"); 2529 return 0; 2530 } 2531 2532 static uint16_t getELFType() { 2533 if (config->isPic) 2534 return ET_DYN; 2535 if (config->relocatable) 2536 return ET_REL; 2537 return ET_EXEC; 2538 } 2539 2540 template <class ELFT> void Writer<ELFT>::writeHeader() { 2541 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2542 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2543 2544 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2545 eHdr->e_type = getELFType(); 2546 eHdr->e_entry = getEntryAddr(); 2547 eHdr->e_shoff = sectionHeaderOff; 2548 2549 // Write the section header table. 2550 // 2551 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2552 // and e_shstrndx fields. When the value of one of these fields exceeds 2553 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2554 // use fields in the section header at index 0 to store 2555 // the value. The sentinel values and fields are: 2556 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2557 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2558 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2559 size_t num = outputSections.size() + 1; 2560 if (num >= SHN_LORESERVE) 2561 sHdrs->sh_size = num; 2562 else 2563 eHdr->e_shnum = num; 2564 2565 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2566 if (strTabIndex >= SHN_LORESERVE) { 2567 sHdrs->sh_link = strTabIndex; 2568 eHdr->e_shstrndx = SHN_XINDEX; 2569 } else { 2570 eHdr->e_shstrndx = strTabIndex; 2571 } 2572 2573 for (OutputSection *sec : outputSections) 2574 sec->writeHeaderTo<ELFT>(++sHdrs); 2575 } 2576 2577 // Open a result file. 2578 template <class ELFT> void Writer<ELFT>::openFile() { 2579 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2580 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2581 error("output file too large: " + Twine(fileSize) + " bytes"); 2582 return; 2583 } 2584 2585 unlinkAsync(config->outputFile); 2586 unsigned flags = 0; 2587 if (!config->relocatable) 2588 flags |= FileOutputBuffer::F_executable; 2589 if (!config->mmapOutputFile) 2590 flags |= FileOutputBuffer::F_no_mmap; 2591 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2592 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2593 2594 if (!bufferOrErr) { 2595 error("failed to open " + config->outputFile + ": " + 2596 llvm::toString(bufferOrErr.takeError())); 2597 return; 2598 } 2599 buffer = std::move(*bufferOrErr); 2600 Out::bufferStart = buffer->getBufferStart(); 2601 } 2602 2603 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2604 for (OutputSection *sec : outputSections) 2605 if (sec->flags & SHF_ALLOC) 2606 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2607 } 2608 2609 static void fillTrap(uint8_t *i, uint8_t *end) { 2610 for (; i + 4 <= end; i += 4) 2611 memcpy(i, &target->trapInstr, 4); 2612 } 2613 2614 // Fill the last page of executable segments with trap instructions 2615 // instead of leaving them as zero. Even though it is not required by any 2616 // standard, it is in general a good thing to do for security reasons. 2617 // 2618 // We'll leave other pages in segments as-is because the rest will be 2619 // overwritten by output sections. 2620 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2621 for (Partition &part : partitions) { 2622 // Fill the last page. 2623 for (PhdrEntry *p : part.phdrs) 2624 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2625 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2626 config->commonPageSize), 2627 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2628 config->commonPageSize)); 2629 2630 // Round up the file size of the last segment to the page boundary iff it is 2631 // an executable segment to ensure that other tools don't accidentally 2632 // trim the instruction padding (e.g. when stripping the file). 2633 PhdrEntry *last = nullptr; 2634 for (PhdrEntry *p : part.phdrs) 2635 if (p->p_type == PT_LOAD) 2636 last = p; 2637 2638 if (last && (last->p_flags & PF_X)) 2639 last->p_memsz = last->p_filesz = 2640 alignTo(last->p_filesz, config->commonPageSize); 2641 } 2642 } 2643 2644 // Write section contents to a mmap'ed file. 2645 template <class ELFT> void Writer<ELFT>::writeSections() { 2646 // In -r or -emit-relocs mode, write the relocation sections first as in 2647 // ELf_Rel targets we might find out that we need to modify the relocated 2648 // section while doing it. 2649 for (OutputSection *sec : outputSections) 2650 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2651 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2652 2653 for (OutputSection *sec : outputSections) 2654 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2655 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2656 } 2657 2658 // Split one uint8 array into small pieces of uint8 arrays. 2659 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2660 size_t chunkSize) { 2661 std::vector<ArrayRef<uint8_t>> ret; 2662 while (arr.size() > chunkSize) { 2663 ret.push_back(arr.take_front(chunkSize)); 2664 arr = arr.drop_front(chunkSize); 2665 } 2666 if (!arr.empty()) 2667 ret.push_back(arr); 2668 return ret; 2669 } 2670 2671 // Computes a hash value of Data using a given hash function. 2672 // In order to utilize multiple cores, we first split data into 1MB 2673 // chunks, compute a hash for each chunk, and then compute a hash value 2674 // of the hash values. 2675 static void 2676 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2677 llvm::ArrayRef<uint8_t> data, 2678 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2679 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2680 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2681 2682 // Compute hash values. 2683 parallelForEachN(0, chunks.size(), [&](size_t i) { 2684 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2685 }); 2686 2687 // Write to the final output buffer. 2688 hashFn(hashBuf.data(), hashes); 2689 } 2690 2691 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2692 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2693 return; 2694 2695 if (config->buildId == BuildIdKind::Hexstring) { 2696 for (Partition &part : partitions) 2697 part.buildId->writeBuildId(config->buildIdVector); 2698 return; 2699 } 2700 2701 // Compute a hash of all sections of the output file. 2702 size_t hashSize = mainPart->buildId->hashSize; 2703 std::vector<uint8_t> buildId(hashSize); 2704 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2705 2706 switch (config->buildId) { 2707 case BuildIdKind::Fast: 2708 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2709 write64le(dest, xxHash64(arr)); 2710 }); 2711 break; 2712 case BuildIdKind::Md5: 2713 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2714 memcpy(dest, MD5::hash(arr).data(), hashSize); 2715 }); 2716 break; 2717 case BuildIdKind::Sha1: 2718 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2719 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2720 }); 2721 break; 2722 case BuildIdKind::Uuid: 2723 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2724 error("entropy source failure: " + ec.message()); 2725 break; 2726 default: 2727 llvm_unreachable("unknown BuildIdKind"); 2728 } 2729 for (Partition &part : partitions) 2730 part.buildId->writeBuildId(buildId); 2731 } 2732 2733 template void createSyntheticSections<ELF32LE>(); 2734 template void createSyntheticSections<ELF32BE>(); 2735 template void createSyntheticSections<ELF64LE>(); 2736 template void createSyntheticSections<ELF64BE>(); 2737 2738 template void writeResult<ELF32LE>(); 2739 template void writeResult<ELF32BE>(); 2740 template void writeResult<ELF64LE>(); 2741 template void writeResult<ELF64BE>(); 2742 2743 } // namespace elf 2744 } // namespace lld 2745