1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 #define DEBUG_TYPE "lld" 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::support; 40 using namespace llvm::support::endian; 41 using namespace lld; 42 using namespace lld::elf; 43 44 namespace { 45 // The writer writes a SymbolTable result to a file. 46 template <class ELFT> class Writer { 47 public: 48 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 49 50 Writer() : buffer(errorHandler().outputBuffer) {} 51 52 void run(); 53 54 private: 55 void copyLocalSymbols(); 56 void addSectionSymbols(); 57 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 58 void sortSections(); 59 void resolveShfLinkOrder(); 60 void finalizeAddressDependentContent(); 61 void optimizeBasicBlockJumps(); 62 void sortInputSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 std::vector<PhdrEntry *> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection *sec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool isSectionPrefix(StringRef prefix, StringRef name) { 94 return name.startswith(prefix) || name == prefix.drop_back(); 95 } 96 97 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 98 if (config->relocatable) 99 return s->name; 100 101 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 102 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 103 // technically required, but not doing it is odd). This code guarantees that. 104 if (auto *isec = dyn_cast<InputSection>(s)) { 105 if (InputSectionBase *rel = isec->getRelocatedSection()) { 106 OutputSection *out = rel->getOutputSection(); 107 if (s->type == SHT_RELA) 108 return saver.save(".rela" + out->name); 109 return saver.save(".rel" + out->name); 110 } 111 } 112 113 // A BssSection created for a common symbol is identified as "COMMON" in 114 // linker scripts. It should go to .bss section. 115 if (s->name == "COMMON") 116 return ".bss"; 117 118 if (script->hasSectionsCommand) 119 return s->name; 120 121 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 122 // by grouping sections with certain prefixes. 123 124 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 125 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 126 // We provide an option -z keep-text-section-prefix to group such sections 127 // into separate output sections. This is more flexible. See also 128 // sortISDBySectionOrder(). 129 // ".text.unknown" means the hotness of the section is unknown. When 130 // SampleFDO is used, if a function doesn't have sample, it could be very 131 // cold or it could be a new function never being sampled. Those functions 132 // will be kept in the ".text.unknown" section. 133 // ".text.split." holds symbols which are split out from functions in other 134 // input sections. For example, with -fsplit-machine-functions, placing the 135 // cold parts in .text.split instead of .text.unlikely mitigates against poor 136 // profile inaccuracy. Techniques such as hugepage remapping can make 137 // conservative decisions at the section granularity. 138 if (config->zKeepTextSectionPrefix) 139 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 140 ".text.startup.", ".text.exit.", ".text.split."}) 141 if (isSectionPrefix(v, s->name)) 142 return v.drop_back(); 143 144 for (StringRef v : 145 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 146 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 147 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 148 if (isSectionPrefix(v, s->name)) 149 return v.drop_back(); 150 151 return s->name; 152 } 153 154 static bool needsInterpSection() { 155 return !config->relocatable && !config->shared && 156 !config->dynamicLinker.empty() && script->needsInterpSection(); 157 } 158 159 template <class ELFT> void elf::writeResult() { 160 Writer<ELFT>().run(); 161 } 162 163 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 164 auto it = std::stable_partition( 165 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 166 if (p->p_type != PT_LOAD) 167 return true; 168 if (!p->firstSec) 169 return false; 170 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 171 return size != 0; 172 }); 173 174 // Clear OutputSection::ptLoad for sections contained in removed 175 // segments. 176 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 177 for (OutputSection *sec : outputSections) 178 if (removed.count(sec->ptLoad)) 179 sec->ptLoad = nullptr; 180 phdrs.erase(it, phdrs.end()); 181 } 182 183 void elf::copySectionsIntoPartitions() { 184 std::vector<InputSectionBase *> newSections; 185 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 186 for (InputSectionBase *s : inputSections) { 187 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 188 continue; 189 InputSectionBase *copy; 190 if (s->type == SHT_NOTE) 191 copy = make<InputSection>(cast<InputSection>(*s)); 192 else if (auto *es = dyn_cast<EhInputSection>(s)) 193 copy = make<EhInputSection>(*es); 194 else 195 continue; 196 copy->partition = part; 197 newSections.push_back(copy); 198 } 199 } 200 201 inputSections.insert(inputSections.end(), newSections.begin(), 202 newSections.end()); 203 } 204 205 void elf::combineEhSections() { 206 llvm::TimeTraceScope timeScope("Combine EH sections"); 207 for (InputSectionBase *&s : inputSections) { 208 // Ignore dead sections and the partition end marker (.part.end), 209 // whose partition number is out of bounds. 210 if (!s->isLive() || s->partition == 255) 211 continue; 212 213 Partition &part = s->getPartition(); 214 if (auto *es = dyn_cast<EhInputSection>(s)) { 215 part.ehFrame->addSection(es); 216 s = nullptr; 217 } else if (s->kind() == SectionBase::Regular && part.armExidx && 218 part.armExidx->addSection(cast<InputSection>(s))) { 219 s = nullptr; 220 } 221 } 222 223 std::vector<InputSectionBase *> &v = inputSections; 224 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 225 } 226 227 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 228 uint64_t val, uint8_t stOther = STV_HIDDEN, 229 uint8_t binding = STB_GLOBAL) { 230 Symbol *s = symtab->find(name); 231 if (!s || s->isDefined()) 232 return nullptr; 233 234 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 235 /*size=*/0, sec}); 236 return cast<Defined>(s); 237 } 238 239 static Defined *addAbsolute(StringRef name) { 240 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 241 STT_NOTYPE, 0, 0, nullptr}); 242 return cast<Defined>(sym); 243 } 244 245 // The linker is expected to define some symbols depending on 246 // the linking result. This function defines such symbols. 247 void elf::addReservedSymbols() { 248 if (config->emachine == EM_MIPS) { 249 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 250 // so that it points to an absolute address which by default is relative 251 // to GOT. Default offset is 0x7ff0. 252 // See "Global Data Symbols" in Chapter 6 in the following document: 253 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 254 ElfSym::mipsGp = addAbsolute("_gp"); 255 256 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 257 // start of function and 'gp' pointer into GOT. 258 if (symtab->find("_gp_disp")) 259 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 260 261 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 262 // pointer. This symbol is used in the code generated by .cpload pseudo-op 263 // in case of using -mno-shared option. 264 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 265 if (symtab->find("__gnu_local_gp")) 266 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 267 } else if (config->emachine == EM_PPC) { 268 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 269 // support Small Data Area, define it arbitrarily as 0. 270 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 271 } else if (config->emachine == EM_PPC64) { 272 addPPC64SaveRestore(); 273 } 274 275 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 276 // combines the typical ELF GOT with the small data sections. It commonly 277 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 278 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 279 // represent the TOC base which is offset by 0x8000 bytes from the start of 280 // the .got section. 281 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 282 // correctness of some relocations depends on its value. 283 StringRef gotSymName = 284 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 285 286 if (Symbol *s = symtab->find(gotSymName)) { 287 if (s->isDefined()) { 288 error(toString(s->file) + " cannot redefine linker defined symbol '" + 289 gotSymName + "'"); 290 return; 291 } 292 293 uint64_t gotOff = 0; 294 if (config->emachine == EM_PPC64) 295 gotOff = 0x8000; 296 297 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 298 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 299 ElfSym::globalOffsetTable = cast<Defined>(s); 300 } 301 302 // __ehdr_start is the location of ELF file headers. Note that we define 303 // this symbol unconditionally even when using a linker script, which 304 // differs from the behavior implemented by GNU linker which only define 305 // this symbol if ELF headers are in the memory mapped segment. 306 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 307 308 // __executable_start is not documented, but the expectation of at 309 // least the Android libc is that it points to the ELF header. 310 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 311 312 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 313 // each DSO. The address of the symbol doesn't matter as long as they are 314 // different in different DSOs, so we chose the start address of the DSO. 315 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 316 317 // If linker script do layout we do not need to create any standard symbols. 318 if (script->hasSectionsCommand) 319 return; 320 321 auto add = [](StringRef s, int64_t pos) { 322 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 323 }; 324 325 ElfSym::bss = add("__bss_start", 0); 326 ElfSym::end1 = add("end", -1); 327 ElfSym::end2 = add("_end", -1); 328 ElfSym::etext1 = add("etext", -1); 329 ElfSym::etext2 = add("_etext", -1); 330 ElfSym::edata1 = add("edata", -1); 331 ElfSym::edata2 = add("_edata", -1); 332 } 333 334 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 335 for (BaseCommand *base : script->sectionCommands) 336 if (auto *sec = dyn_cast<OutputSection>(base)) 337 if (sec->name == name && sec->partition == partition) 338 return sec; 339 return nullptr; 340 } 341 342 template <class ELFT> void elf::createSyntheticSections() { 343 // Initialize all pointers with NULL. This is needed because 344 // you can call lld::elf::main more than once as a library. 345 memset(&Out::first, 0, sizeof(Out)); 346 347 // Add the .interp section first because it is not a SyntheticSection. 348 // The removeUnusedSyntheticSections() function relies on the 349 // SyntheticSections coming last. 350 if (needsInterpSection()) { 351 for (size_t i = 1; i <= partitions.size(); ++i) { 352 InputSection *sec = createInterpSection(); 353 sec->partition = i; 354 inputSections.push_back(sec); 355 } 356 } 357 358 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 359 360 in.shStrTab = make<StringTableSection>(".shstrtab", false); 361 362 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 363 Out::programHeaders->alignment = config->wordsize; 364 365 if (config->strip != StripPolicy::All) { 366 in.strTab = make<StringTableSection>(".strtab", false); 367 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 368 in.symTabShndx = make<SymtabShndxSection>(); 369 } 370 371 in.bss = make<BssSection>(".bss", 0, 1); 372 add(in.bss); 373 374 // If there is a SECTIONS command and a .data.rel.ro section name use name 375 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 376 // This makes sure our relro is contiguous. 377 bool hasDataRelRo = 378 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 379 in.bssRelRo = 380 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 381 add(in.bssRelRo); 382 383 // Add MIPS-specific sections. 384 if (config->emachine == EM_MIPS) { 385 if (!config->shared && config->hasDynSymTab) { 386 in.mipsRldMap = make<MipsRldMapSection>(); 387 add(in.mipsRldMap); 388 } 389 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 390 add(sec); 391 if (auto *sec = MipsOptionsSection<ELFT>::create()) 392 add(sec); 393 if (auto *sec = MipsReginfoSection<ELFT>::create()) 394 add(sec); 395 } 396 397 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 398 399 for (Partition &part : partitions) { 400 auto add = [&](SyntheticSection *sec) { 401 sec->partition = part.getNumber(); 402 inputSections.push_back(sec); 403 }; 404 405 if (!part.name.empty()) { 406 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 407 part.elfHeader->name = part.name; 408 add(part.elfHeader); 409 410 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 411 add(part.programHeaders); 412 } 413 414 if (config->buildId != BuildIdKind::None) { 415 part.buildId = make<BuildIdSection>(); 416 add(part.buildId); 417 } 418 419 part.dynStrTab = make<StringTableSection>(".dynstr", true); 420 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 421 part.dynamic = make<DynamicSection<ELFT>>(); 422 if (config->androidPackDynRelocs) 423 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 424 else 425 part.relaDyn = 426 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 427 428 if (config->hasDynSymTab) { 429 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 430 add(part.dynSymTab); 431 432 part.verSym = make<VersionTableSection>(); 433 add(part.verSym); 434 435 if (!namedVersionDefs().empty()) { 436 part.verDef = make<VersionDefinitionSection>(); 437 add(part.verDef); 438 } 439 440 part.verNeed = make<VersionNeedSection<ELFT>>(); 441 add(part.verNeed); 442 443 if (config->gnuHash) { 444 part.gnuHashTab = make<GnuHashTableSection>(); 445 add(part.gnuHashTab); 446 } 447 448 if (config->sysvHash) { 449 part.hashTab = make<HashTableSection>(); 450 add(part.hashTab); 451 } 452 453 add(part.dynamic); 454 add(part.dynStrTab); 455 add(part.relaDyn); 456 } 457 458 if (config->relrPackDynRelocs) { 459 part.relrDyn = make<RelrSection<ELFT>>(); 460 add(part.relrDyn); 461 } 462 463 if (!config->relocatable) { 464 if (config->ehFrameHdr) { 465 part.ehFrameHdr = make<EhFrameHeader>(); 466 add(part.ehFrameHdr); 467 } 468 part.ehFrame = make<EhFrameSection>(); 469 add(part.ehFrame); 470 } 471 472 if (config->emachine == EM_ARM && !config->relocatable) { 473 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 474 // InputSections. 475 part.armExidx = make<ARMExidxSyntheticSection>(); 476 add(part.armExidx); 477 } 478 } 479 480 if (partitions.size() != 1) { 481 // Create the partition end marker. This needs to be in partition number 255 482 // so that it is sorted after all other partitions. It also has other 483 // special handling (see createPhdrs() and combineEhSections()). 484 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 485 in.partEnd->partition = 255; 486 add(in.partEnd); 487 488 in.partIndex = make<PartitionIndexSection>(); 489 addOptionalRegular("__part_index_begin", in.partIndex, 0); 490 addOptionalRegular("__part_index_end", in.partIndex, 491 in.partIndex->getSize()); 492 add(in.partIndex); 493 } 494 495 // Add .got. MIPS' .got is so different from the other archs, 496 // it has its own class. 497 if (config->emachine == EM_MIPS) { 498 in.mipsGot = make<MipsGotSection>(); 499 add(in.mipsGot); 500 } else { 501 in.got = make<GotSection>(); 502 add(in.got); 503 } 504 505 if (config->emachine == EM_PPC) { 506 in.ppc32Got2 = make<PPC32Got2Section>(); 507 add(in.ppc32Got2); 508 } 509 510 if (config->emachine == EM_PPC64) { 511 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 512 add(in.ppc64LongBranchTarget); 513 } 514 515 in.gotPlt = make<GotPltSection>(); 516 add(in.gotPlt); 517 in.igotPlt = make<IgotPltSection>(); 518 add(in.igotPlt); 519 520 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 521 // it as a relocation and ensure the referenced section is created. 522 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 523 if (target->gotBaseSymInGotPlt) 524 in.gotPlt->hasGotPltOffRel = true; 525 else 526 in.got->hasGotOffRel = true; 527 } 528 529 if (config->gdbIndex) 530 add(GdbIndexSection::create<ELFT>()); 531 532 // We always need to add rel[a].plt to output if it has entries. 533 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 534 in.relaPlt = make<RelocationSection<ELFT>>( 535 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 536 add(in.relaPlt); 537 538 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 539 // relocations are processed last by the dynamic loader. We cannot place the 540 // iplt section in .rel.dyn when Android relocation packing is enabled because 541 // that would cause a section type mismatch. However, because the Android 542 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 543 // behaviour by placing the iplt section in .rel.plt. 544 in.relaIplt = make<RelocationSection<ELFT>>( 545 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 546 /*sort=*/false); 547 add(in.relaIplt); 548 549 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 550 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 551 in.ibtPlt = make<IBTPltSection>(); 552 add(in.ibtPlt); 553 } 554 555 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 556 : make<PltSection>(); 557 add(in.plt); 558 in.iplt = make<IpltSection>(); 559 add(in.iplt); 560 561 if (config->andFeatures) 562 add(make<GnuPropertySection>()); 563 564 // .note.GNU-stack is always added when we are creating a re-linkable 565 // object file. Other linkers are using the presence of this marker 566 // section to control the executable-ness of the stack area, but that 567 // is irrelevant these days. Stack area should always be non-executable 568 // by default. So we emit this section unconditionally. 569 if (config->relocatable) 570 add(make<GnuStackSection>()); 571 572 if (in.symTab) 573 add(in.symTab); 574 if (in.symTabShndx) 575 add(in.symTabShndx); 576 add(in.shStrTab); 577 if (in.strTab) 578 add(in.strTab); 579 } 580 581 // The main function of the writer. 582 template <class ELFT> void Writer<ELFT>::run() { 583 copyLocalSymbols(); 584 585 if (config->copyRelocs) 586 addSectionSymbols(); 587 588 // Now that we have a complete set of output sections. This function 589 // completes section contents. For example, we need to add strings 590 // to the string table, and add entries to .got and .plt. 591 // finalizeSections does that. 592 finalizeSections(); 593 checkExecuteOnly(); 594 if (errorCount()) 595 return; 596 597 // If -compressed-debug-sections is specified, we need to compress 598 // .debug_* sections. Do it right now because it changes the size of 599 // output sections. 600 for (OutputSection *sec : outputSections) 601 sec->maybeCompress<ELFT>(); 602 603 if (script->hasSectionsCommand) 604 script->allocateHeaders(mainPart->phdrs); 605 606 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 607 // 0 sized region. This has to be done late since only after assignAddresses 608 // we know the size of the sections. 609 for (Partition &part : partitions) 610 removeEmptyPTLoad(part.phdrs); 611 612 if (!config->oFormatBinary) 613 assignFileOffsets(); 614 else 615 assignFileOffsetsBinary(); 616 617 for (Partition &part : partitions) 618 setPhdrs(part); 619 620 if (config->relocatable) 621 for (OutputSection *sec : outputSections) 622 sec->addr = 0; 623 624 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 625 // before checkSections() because the files may be useful in case 626 // checkSections() or openFile() fails, for example, due to an erroneous file 627 // size. 628 writeMapFile(); 629 writeCrossReferenceTable(); 630 writeArchiveStats(); 631 632 if (config->checkSections) 633 checkSections(); 634 635 // It does not make sense try to open the file if we have error already. 636 if (errorCount()) 637 return; 638 639 { 640 llvm::TimeTraceScope timeScope("Write output file"); 641 // Write the result down to a file. 642 openFile(); 643 if (errorCount()) 644 return; 645 646 if (!config->oFormatBinary) { 647 if (config->zSeparate != SeparateSegmentKind::None) 648 writeTrapInstr(); 649 writeHeader(); 650 writeSections(); 651 } else { 652 writeSectionsBinary(); 653 } 654 655 // Backfill .note.gnu.build-id section content. This is done at last 656 // because the content is usually a hash value of the entire output file. 657 writeBuildId(); 658 if (errorCount()) 659 return; 660 661 if (auto e = buffer->commit()) 662 error("failed to write to the output file: " + toString(std::move(e))); 663 } 664 } 665 666 template <class ELFT, class RelTy> 667 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 668 llvm::ArrayRef<RelTy> rels) { 669 for (const RelTy &rel : rels) { 670 Symbol &sym = file->getRelocTargetSym(rel); 671 if (sym.isLocal()) 672 sym.used = true; 673 } 674 } 675 676 // The function ensures that the "used" field of local symbols reflects the fact 677 // that the symbol is used in a relocation from a live section. 678 template <class ELFT> static void markUsedLocalSymbols() { 679 // With --gc-sections, the field is already filled. 680 // See MarkLive<ELFT>::resolveReloc(). 681 if (config->gcSections) 682 return; 683 // Without --gc-sections, the field is initialized with "true". 684 // Drop the flag first and then rise for symbols referenced in relocations. 685 for (InputFile *file : objectFiles) { 686 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 687 for (Symbol *b : f->getLocalSymbols()) 688 b->used = false; 689 for (InputSectionBase *s : f->getSections()) { 690 InputSection *isec = dyn_cast_or_null<InputSection>(s); 691 if (!isec) 692 continue; 693 if (isec->type == SHT_REL) 694 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 695 else if (isec->type == SHT_RELA) 696 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 697 } 698 } 699 } 700 701 static bool shouldKeepInSymtab(const Defined &sym) { 702 if (sym.isSection()) 703 return false; 704 705 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 706 // from live sections. 707 if (config->copyRelocs && sym.used) 708 return true; 709 710 // Exclude local symbols pointing to .ARM.exidx sections. 711 // They are probably mapping symbols "$d", which are optional for these 712 // sections. After merging the .ARM.exidx sections, some of these symbols 713 // may become dangling. The easiest way to avoid the issue is not to add 714 // them to the symbol table from the beginning. 715 if (config->emachine == EM_ARM && sym.section && 716 sym.section->type == SHT_ARM_EXIDX) 717 return false; 718 719 if (config->discard == DiscardPolicy::None) 720 return true; 721 if (config->discard == DiscardPolicy::All) 722 return false; 723 724 // In ELF assembly .L symbols are normally discarded by the assembler. 725 // If the assembler fails to do so, the linker discards them if 726 // * --discard-locals is used. 727 // * The symbol is in a SHF_MERGE section, which is normally the reason for 728 // the assembler keeping the .L symbol. 729 StringRef name = sym.getName(); 730 bool isLocal = name.startswith(".L") || name.empty(); 731 if (!isLocal) 732 return true; 733 734 if (config->discard == DiscardPolicy::Locals) 735 return false; 736 737 SectionBase *sec = sym.section; 738 return !sec || !(sec->flags & SHF_MERGE); 739 } 740 741 static bool includeInSymtab(const Symbol &b) { 742 if (!b.isLocal() && !b.isUsedInRegularObj) 743 return false; 744 745 if (auto *d = dyn_cast<Defined>(&b)) { 746 // Always include absolute symbols. 747 SectionBase *sec = d->section; 748 if (!sec) 749 return true; 750 sec = sec->repl; 751 752 // Exclude symbols pointing to garbage-collected sections. 753 if (isa<InputSectionBase>(sec) && !sec->isLive()) 754 return false; 755 756 if (auto *s = dyn_cast<MergeInputSection>(sec)) 757 if (!s->getSectionPiece(d->value)->live) 758 return false; 759 return true; 760 } 761 return b.used; 762 } 763 764 // Local symbols are not in the linker's symbol table. This function scans 765 // each object file's symbol table to copy local symbols to the output. 766 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 767 if (!in.symTab) 768 return; 769 llvm::TimeTraceScope timeScope("Add local symbols"); 770 if (config->copyRelocs && config->discard != DiscardPolicy::None) 771 markUsedLocalSymbols<ELFT>(); 772 for (InputFile *file : objectFiles) { 773 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 774 for (Symbol *b : f->getLocalSymbols()) { 775 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 776 auto *dr = dyn_cast<Defined>(b); 777 778 // No reason to keep local undefined symbol in symtab. 779 if (!dr) 780 continue; 781 if (!includeInSymtab(*b)) 782 continue; 783 if (!shouldKeepInSymtab(*dr)) 784 continue; 785 in.symTab->addSymbol(b); 786 } 787 } 788 } 789 790 // Create a section symbol for each output section so that we can represent 791 // relocations that point to the section. If we know that no relocation is 792 // referring to a section (that happens if the section is a synthetic one), we 793 // don't create a section symbol for that section. 794 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 795 for (BaseCommand *base : script->sectionCommands) { 796 auto *sec = dyn_cast<OutputSection>(base); 797 if (!sec) 798 continue; 799 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 800 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 801 return !isd->sections.empty(); 802 return false; 803 }); 804 if (i == sec->sectionCommands.end()) 805 continue; 806 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 807 808 // Relocations are not using REL[A] section symbols. 809 if (isec->type == SHT_REL || isec->type == SHT_RELA) 810 continue; 811 812 // Unlike other synthetic sections, mergeable output sections contain data 813 // copied from input sections, and there may be a relocation pointing to its 814 // contents if -r or -emit-reloc are given. 815 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 816 continue; 817 818 // Set the symbol to be relative to the output section so that its st_value 819 // equals the output section address. Note, there may be a gap between the 820 // start of the output section and isec. 821 auto *sym = 822 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 823 /*value=*/0, /*size=*/0, isec->getOutputSection()); 824 in.symTab->addSymbol(sym); 825 } 826 } 827 828 // Today's loaders have a feature to make segments read-only after 829 // processing dynamic relocations to enhance security. PT_GNU_RELRO 830 // is defined for that. 831 // 832 // This function returns true if a section needs to be put into a 833 // PT_GNU_RELRO segment. 834 static bool isRelroSection(const OutputSection *sec) { 835 if (!config->zRelro) 836 return false; 837 838 uint64_t flags = sec->flags; 839 840 // Non-allocatable or non-writable sections don't need RELRO because 841 // they are not writable or not even mapped to memory in the first place. 842 // RELRO is for sections that are essentially read-only but need to 843 // be writable only at process startup to allow dynamic linker to 844 // apply relocations. 845 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 846 return false; 847 848 // Once initialized, TLS data segments are used as data templates 849 // for a thread-local storage. For each new thread, runtime 850 // allocates memory for a TLS and copy templates there. No thread 851 // are supposed to use templates directly. Thus, it can be in RELRO. 852 if (flags & SHF_TLS) 853 return true; 854 855 // .init_array, .preinit_array and .fini_array contain pointers to 856 // functions that are executed on process startup or exit. These 857 // pointers are set by the static linker, and they are not expected 858 // to change at runtime. But if you are an attacker, you could do 859 // interesting things by manipulating pointers in .fini_array, for 860 // example. So they are put into RELRO. 861 uint32_t type = sec->type; 862 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 863 type == SHT_PREINIT_ARRAY) 864 return true; 865 866 // .got contains pointers to external symbols. They are resolved by 867 // the dynamic linker when a module is loaded into memory, and after 868 // that they are not expected to change. So, it can be in RELRO. 869 if (in.got && sec == in.got->getParent()) 870 return true; 871 872 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 873 // through r2 register, which is reserved for that purpose. Since r2 is used 874 // for accessing .got as well, .got and .toc need to be close enough in the 875 // virtual address space. Usually, .toc comes just after .got. Since we place 876 // .got into RELRO, .toc needs to be placed into RELRO too. 877 if (sec->name.equals(".toc")) 878 return true; 879 880 // .got.plt contains pointers to external function symbols. They are 881 // by default resolved lazily, so we usually cannot put it into RELRO. 882 // However, if "-z now" is given, the lazy symbol resolution is 883 // disabled, which enables us to put it into RELRO. 884 if (sec == in.gotPlt->getParent()) 885 return config->zNow; 886 887 // .dynamic section contains data for the dynamic linker, and 888 // there's no need to write to it at runtime, so it's better to put 889 // it into RELRO. 890 if (sec->name == ".dynamic") 891 return true; 892 893 // Sections with some special names are put into RELRO. This is a 894 // bit unfortunate because section names shouldn't be significant in 895 // ELF in spirit. But in reality many linker features depend on 896 // magic section names. 897 StringRef s = sec->name; 898 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 899 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 900 s == ".fini_array" || s == ".init_array" || 901 s == ".openbsd.randomdata" || s == ".preinit_array"; 902 } 903 904 // We compute a rank for each section. The rank indicates where the 905 // section should be placed in the file. Instead of using simple 906 // numbers (0,1,2...), we use a series of flags. One for each decision 907 // point when placing the section. 908 // Using flags has two key properties: 909 // * It is easy to check if a give branch was taken. 910 // * It is easy two see how similar two ranks are (see getRankProximity). 911 enum RankFlags { 912 RF_NOT_ADDR_SET = 1 << 27, 913 RF_NOT_ALLOC = 1 << 26, 914 RF_PARTITION = 1 << 18, // Partition number (8 bits) 915 RF_NOT_PART_EHDR = 1 << 17, 916 RF_NOT_PART_PHDR = 1 << 16, 917 RF_NOT_INTERP = 1 << 15, 918 RF_NOT_NOTE = 1 << 14, 919 RF_WRITE = 1 << 13, 920 RF_EXEC_WRITE = 1 << 12, 921 RF_EXEC = 1 << 11, 922 RF_RODATA = 1 << 10, 923 RF_NOT_RELRO = 1 << 9, 924 RF_NOT_TLS = 1 << 8, 925 RF_BSS = 1 << 7, 926 RF_PPC_NOT_TOCBSS = 1 << 6, 927 RF_PPC_TOCL = 1 << 5, 928 RF_PPC_TOC = 1 << 4, 929 RF_PPC_GOT = 1 << 3, 930 RF_PPC_BRANCH_LT = 1 << 2, 931 RF_MIPS_GPREL = 1 << 1, 932 RF_MIPS_NOT_GOT = 1 << 0 933 }; 934 935 static unsigned getSectionRank(const OutputSection *sec) { 936 unsigned rank = sec->partition * RF_PARTITION; 937 938 // We want to put section specified by -T option first, so we 939 // can start assigning VA starting from them later. 940 if (config->sectionStartMap.count(sec->name)) 941 return rank; 942 rank |= RF_NOT_ADDR_SET; 943 944 // Allocatable sections go first to reduce the total PT_LOAD size and 945 // so debug info doesn't change addresses in actual code. 946 if (!(sec->flags & SHF_ALLOC)) 947 return rank | RF_NOT_ALLOC; 948 949 if (sec->type == SHT_LLVM_PART_EHDR) 950 return rank; 951 rank |= RF_NOT_PART_EHDR; 952 953 if (sec->type == SHT_LLVM_PART_PHDR) 954 return rank; 955 rank |= RF_NOT_PART_PHDR; 956 957 // Put .interp first because some loaders want to see that section 958 // on the first page of the executable file when loaded into memory. 959 if (sec->name == ".interp") 960 return rank; 961 rank |= RF_NOT_INTERP; 962 963 // Put .note sections (which make up one PT_NOTE) at the beginning so that 964 // they are likely to be included in a core file even if core file size is 965 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 966 // included in a core to match core files with executables. 967 if (sec->type == SHT_NOTE) 968 return rank; 969 rank |= RF_NOT_NOTE; 970 971 // Sort sections based on their access permission in the following 972 // order: R, RX, RWX, RW. This order is based on the following 973 // considerations: 974 // * Read-only sections come first such that they go in the 975 // PT_LOAD covering the program headers at the start of the file. 976 // * Read-only, executable sections come next. 977 // * Writable, executable sections follow such that .plt on 978 // architectures where it needs to be writable will be placed 979 // between .text and .data. 980 // * Writable sections come last, such that .bss lands at the very 981 // end of the last PT_LOAD. 982 bool isExec = sec->flags & SHF_EXECINSTR; 983 bool isWrite = sec->flags & SHF_WRITE; 984 985 if (isExec) { 986 if (isWrite) 987 rank |= RF_EXEC_WRITE; 988 else 989 rank |= RF_EXEC; 990 } else if (isWrite) { 991 rank |= RF_WRITE; 992 } else if (sec->type == SHT_PROGBITS) { 993 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 994 // .eh_frame) closer to .text. They likely contain PC or GOT relative 995 // relocations and there could be relocation overflow if other huge sections 996 // (.dynstr .dynsym) were placed in between. 997 rank |= RF_RODATA; 998 } 999 1000 // Place RelRo sections first. After considering SHT_NOBITS below, the 1001 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 1002 // where | marks where page alignment happens. An alternative ordering is 1003 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 1004 // waste more bytes due to 2 alignment places. 1005 if (!isRelroSection(sec)) 1006 rank |= RF_NOT_RELRO; 1007 1008 // If we got here we know that both A and B are in the same PT_LOAD. 1009 1010 // The TLS initialization block needs to be a single contiguous block in a R/W 1011 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1012 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1013 // after PROGBITS. 1014 if (!(sec->flags & SHF_TLS)) 1015 rank |= RF_NOT_TLS; 1016 1017 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1018 // sections, place non-NOBITS sections first. 1019 if (sec->type == SHT_NOBITS) 1020 rank |= RF_BSS; 1021 1022 // Some architectures have additional ordering restrictions for sections 1023 // within the same PT_LOAD. 1024 if (config->emachine == EM_PPC64) { 1025 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1026 // that we would like to make sure appear is a specific order to maximize 1027 // their coverage by a single signed 16-bit offset from the TOC base 1028 // pointer. Conversely, the special .tocbss section should be first among 1029 // all SHT_NOBITS sections. This will put it next to the loaded special 1030 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1031 StringRef name = sec->name; 1032 if (name != ".tocbss") 1033 rank |= RF_PPC_NOT_TOCBSS; 1034 1035 if (name == ".toc1") 1036 rank |= RF_PPC_TOCL; 1037 1038 if (name == ".toc") 1039 rank |= RF_PPC_TOC; 1040 1041 if (name == ".got") 1042 rank |= RF_PPC_GOT; 1043 1044 if (name == ".branch_lt") 1045 rank |= RF_PPC_BRANCH_LT; 1046 } 1047 1048 if (config->emachine == EM_MIPS) { 1049 // All sections with SHF_MIPS_GPREL flag should be grouped together 1050 // because data in these sections is addressable with a gp relative address. 1051 if (sec->flags & SHF_MIPS_GPREL) 1052 rank |= RF_MIPS_GPREL; 1053 1054 if (sec->name != ".got") 1055 rank |= RF_MIPS_NOT_GOT; 1056 } 1057 1058 return rank; 1059 } 1060 1061 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1062 const OutputSection *a = cast<OutputSection>(aCmd); 1063 const OutputSection *b = cast<OutputSection>(bCmd); 1064 1065 if (a->sortRank != b->sortRank) 1066 return a->sortRank < b->sortRank; 1067 1068 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1069 return config->sectionStartMap.lookup(a->name) < 1070 config->sectionStartMap.lookup(b->name); 1071 return false; 1072 } 1073 1074 void PhdrEntry::add(OutputSection *sec) { 1075 lastSec = sec; 1076 if (!firstSec) 1077 firstSec = sec; 1078 p_align = std::max(p_align, sec->alignment); 1079 if (p_type == PT_LOAD) 1080 sec->ptLoad = this; 1081 } 1082 1083 // The beginning and the ending of .rel[a].plt section are marked 1084 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1085 // executable. The runtime needs these symbols in order to resolve 1086 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1087 // need these symbols, since IRELATIVE relocs are resolved through GOT 1088 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1089 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1090 if (config->relocatable || needsInterpSection()) 1091 return; 1092 1093 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1094 // because .rela.plt might be empty and thus removed from output. 1095 // We'll override Out::elfHeader with In.relaIplt later when we are 1096 // sure that .rela.plt exists in output. 1097 ElfSym::relaIpltStart = addOptionalRegular( 1098 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1099 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1100 1101 ElfSym::relaIpltEnd = addOptionalRegular( 1102 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1103 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1104 } 1105 1106 template <class ELFT> 1107 void Writer<ELFT>::forEachRelSec( 1108 llvm::function_ref<void(InputSectionBase &)> fn) { 1109 // Scan all relocations. Each relocation goes through a series 1110 // of tests to determine if it needs special treatment, such as 1111 // creating GOT, PLT, copy relocations, etc. 1112 // Note that relocations for non-alloc sections are directly 1113 // processed by InputSection::relocateNonAlloc. 1114 for (InputSectionBase *isec : inputSections) 1115 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1116 fn(*isec); 1117 for (Partition &part : partitions) { 1118 for (EhInputSection *es : part.ehFrame->sections) 1119 fn(*es); 1120 if (part.armExidx && part.armExidx->isLive()) 1121 for (InputSection *ex : part.armExidx->exidxSections) 1122 fn(*ex); 1123 } 1124 } 1125 1126 // This function generates assignments for predefined symbols (e.g. _end or 1127 // _etext) and inserts them into the commands sequence to be processed at the 1128 // appropriate time. This ensures that the value is going to be correct by the 1129 // time any references to these symbols are processed and is equivalent to 1130 // defining these symbols explicitly in the linker script. 1131 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1132 if (ElfSym::globalOffsetTable) { 1133 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1134 // to the start of the .got or .got.plt section. 1135 InputSection *gotSection = in.gotPlt; 1136 if (!target->gotBaseSymInGotPlt) 1137 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1138 : cast<InputSection>(in.got); 1139 ElfSym::globalOffsetTable->section = gotSection; 1140 } 1141 1142 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1143 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1144 ElfSym::relaIpltStart->section = in.relaIplt; 1145 ElfSym::relaIpltEnd->section = in.relaIplt; 1146 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1147 } 1148 1149 PhdrEntry *last = nullptr; 1150 PhdrEntry *lastRO = nullptr; 1151 1152 for (Partition &part : partitions) { 1153 for (PhdrEntry *p : part.phdrs) { 1154 if (p->p_type != PT_LOAD) 1155 continue; 1156 last = p; 1157 if (!(p->p_flags & PF_W)) 1158 lastRO = p; 1159 } 1160 } 1161 1162 if (lastRO) { 1163 // _etext is the first location after the last read-only loadable segment. 1164 if (ElfSym::etext1) 1165 ElfSym::etext1->section = lastRO->lastSec; 1166 if (ElfSym::etext2) 1167 ElfSym::etext2->section = lastRO->lastSec; 1168 } 1169 1170 if (last) { 1171 // _edata points to the end of the last mapped initialized section. 1172 OutputSection *edata = nullptr; 1173 for (OutputSection *os : outputSections) { 1174 if (os->type != SHT_NOBITS) 1175 edata = os; 1176 if (os == last->lastSec) 1177 break; 1178 } 1179 1180 if (ElfSym::edata1) 1181 ElfSym::edata1->section = edata; 1182 if (ElfSym::edata2) 1183 ElfSym::edata2->section = edata; 1184 1185 // _end is the first location after the uninitialized data region. 1186 if (ElfSym::end1) 1187 ElfSym::end1->section = last->lastSec; 1188 if (ElfSym::end2) 1189 ElfSym::end2->section = last->lastSec; 1190 } 1191 1192 if (ElfSym::bss) 1193 ElfSym::bss->section = findSection(".bss"); 1194 1195 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1196 // be equal to the _gp symbol's value. 1197 if (ElfSym::mipsGp) { 1198 // Find GP-relative section with the lowest address 1199 // and use this address to calculate default _gp value. 1200 for (OutputSection *os : outputSections) { 1201 if (os->flags & SHF_MIPS_GPREL) { 1202 ElfSym::mipsGp->section = os; 1203 ElfSym::mipsGp->value = 0x7ff0; 1204 break; 1205 } 1206 } 1207 } 1208 } 1209 1210 // We want to find how similar two ranks are. 1211 // The more branches in getSectionRank that match, the more similar they are. 1212 // Since each branch corresponds to a bit flag, we can just use 1213 // countLeadingZeros. 1214 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1215 return countLeadingZeros(a->sortRank ^ b->sortRank); 1216 } 1217 1218 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1219 auto *sec = dyn_cast<OutputSection>(b); 1220 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1221 } 1222 1223 // When placing orphan sections, we want to place them after symbol assignments 1224 // so that an orphan after 1225 // begin_foo = .; 1226 // foo : { *(foo) } 1227 // end_foo = .; 1228 // doesn't break the intended meaning of the begin/end symbols. 1229 // We don't want to go over sections since findOrphanPos is the 1230 // one in charge of deciding the order of the sections. 1231 // We don't want to go over changes to '.', since doing so in 1232 // rx_sec : { *(rx_sec) } 1233 // . = ALIGN(0x1000); 1234 // /* The RW PT_LOAD starts here*/ 1235 // rw_sec : { *(rw_sec) } 1236 // would mean that the RW PT_LOAD would become unaligned. 1237 static bool shouldSkip(BaseCommand *cmd) { 1238 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1239 return assign->name != "."; 1240 return false; 1241 } 1242 1243 // We want to place orphan sections so that they share as much 1244 // characteristics with their neighbors as possible. For example, if 1245 // both are rw, or both are tls. 1246 static std::vector<BaseCommand *>::iterator 1247 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1248 std::vector<BaseCommand *>::iterator e) { 1249 OutputSection *sec = cast<OutputSection>(*e); 1250 1251 // Find the first element that has as close a rank as possible. 1252 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1253 return getRankProximity(sec, a) < getRankProximity(sec, b); 1254 }); 1255 if (i == e) 1256 return e; 1257 1258 // Consider all existing sections with the same proximity. 1259 int proximity = getRankProximity(sec, *i); 1260 for (; i != e; ++i) { 1261 auto *curSec = dyn_cast<OutputSection>(*i); 1262 if (!curSec || !curSec->hasInputSections) 1263 continue; 1264 if (getRankProximity(sec, curSec) != proximity || 1265 sec->sortRank < curSec->sortRank) 1266 break; 1267 } 1268 1269 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1270 auto *os = dyn_cast<OutputSection>(cmd); 1271 return os && os->hasInputSections; 1272 }; 1273 auto j = std::find_if(llvm::make_reverse_iterator(i), 1274 llvm::make_reverse_iterator(b), 1275 isOutputSecWithInputSections); 1276 i = j.base(); 1277 1278 // As a special case, if the orphan section is the last section, put 1279 // it at the very end, past any other commands. 1280 // This matches bfd's behavior and is convenient when the linker script fully 1281 // specifies the start of the file, but doesn't care about the end (the non 1282 // alloc sections for example). 1283 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1284 if (nextSec == e) 1285 return e; 1286 1287 while (i != e && shouldSkip(*i)) 1288 ++i; 1289 return i; 1290 } 1291 1292 // Adds random priorities to sections not already in the map. 1293 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1294 if (!config->shuffleSectionSeed) 1295 return; 1296 1297 std::vector<int> priorities(inputSections.size() - order.size()); 1298 // Existing priorities are < 0, so use priorities >= 0 for the missing 1299 // sections. 1300 int curPrio = 0; 1301 for (int &prio : priorities) 1302 prio = curPrio++; 1303 uint32_t seed = *config->shuffleSectionSeed; 1304 std::mt19937 g(seed ? seed : std::random_device()()); 1305 llvm::shuffle(priorities.begin(), priorities.end(), g); 1306 int prioIndex = 0; 1307 for (InputSectionBase *sec : inputSections) { 1308 if (order.try_emplace(sec, priorities[prioIndex]).second) 1309 ++prioIndex; 1310 } 1311 } 1312 1313 // Builds section order for handling --symbol-ordering-file. 1314 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1315 DenseMap<const InputSectionBase *, int> sectionOrder; 1316 // Use the rarely used option -call-graph-ordering-file to sort sections. 1317 if (!config->callGraphProfile.empty()) 1318 return computeCallGraphProfileOrder(); 1319 1320 if (config->symbolOrderingFile.empty()) 1321 return sectionOrder; 1322 1323 struct SymbolOrderEntry { 1324 int priority; 1325 bool present; 1326 }; 1327 1328 // Build a map from symbols to their priorities. Symbols that didn't 1329 // appear in the symbol ordering file have the lowest priority 0. 1330 // All explicitly mentioned symbols have negative (higher) priorities. 1331 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1332 int priority = -config->symbolOrderingFile.size(); 1333 for (StringRef s : config->symbolOrderingFile) 1334 symbolOrder.insert({s, {priority++, false}}); 1335 1336 // Build a map from sections to their priorities. 1337 auto addSym = [&](Symbol &sym) { 1338 auto it = symbolOrder.find(sym.getName()); 1339 if (it == symbolOrder.end()) 1340 return; 1341 SymbolOrderEntry &ent = it->second; 1342 ent.present = true; 1343 1344 maybeWarnUnorderableSymbol(&sym); 1345 1346 if (auto *d = dyn_cast<Defined>(&sym)) { 1347 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1348 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1349 priority = std::min(priority, ent.priority); 1350 } 1351 } 1352 }; 1353 1354 // We want both global and local symbols. We get the global ones from the 1355 // symbol table and iterate the object files for the local ones. 1356 for (Symbol *sym : symtab->symbols()) 1357 if (!sym->isLazy()) 1358 addSym(*sym); 1359 1360 for (InputFile *file : objectFiles) 1361 for (Symbol *sym : file->getSymbols()) { 1362 if (!sym->isLocal()) 1363 break; 1364 addSym(*sym); 1365 } 1366 1367 if (config->warnSymbolOrdering) 1368 for (auto orderEntry : symbolOrder) 1369 if (!orderEntry.second.present) 1370 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1371 1372 return sectionOrder; 1373 } 1374 1375 // Sorts the sections in ISD according to the provided section order. 1376 static void 1377 sortISDBySectionOrder(InputSectionDescription *isd, 1378 const DenseMap<const InputSectionBase *, int> &order) { 1379 std::vector<InputSection *> unorderedSections; 1380 std::vector<std::pair<InputSection *, int>> orderedSections; 1381 uint64_t unorderedSize = 0; 1382 1383 for (InputSection *isec : isd->sections) { 1384 auto i = order.find(isec); 1385 if (i == order.end()) { 1386 unorderedSections.push_back(isec); 1387 unorderedSize += isec->getSize(); 1388 continue; 1389 } 1390 orderedSections.push_back({isec, i->second}); 1391 } 1392 llvm::sort(orderedSections, llvm::less_second()); 1393 1394 // Find an insertion point for the ordered section list in the unordered 1395 // section list. On targets with limited-range branches, this is the mid-point 1396 // of the unordered section list. This decreases the likelihood that a range 1397 // extension thunk will be needed to enter or exit the ordered region. If the 1398 // ordered section list is a list of hot functions, we can generally expect 1399 // the ordered functions to be called more often than the unordered functions, 1400 // making it more likely that any particular call will be within range, and 1401 // therefore reducing the number of thunks required. 1402 // 1403 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1404 // If the layout is: 1405 // 1406 // 8MB hot 1407 // 32MB cold 1408 // 1409 // only the first 8-16MB of the cold code (depending on which hot function it 1410 // is actually calling) can call the hot code without a range extension thunk. 1411 // However, if we use this layout: 1412 // 1413 // 16MB cold 1414 // 8MB hot 1415 // 16MB cold 1416 // 1417 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1418 // of the second block of cold code can call the hot code without a thunk. So 1419 // we effectively double the amount of code that could potentially call into 1420 // the hot code without a thunk. 1421 size_t insPt = 0; 1422 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1423 uint64_t unorderedPos = 0; 1424 for (; insPt != unorderedSections.size(); ++insPt) { 1425 unorderedPos += unorderedSections[insPt]->getSize(); 1426 if (unorderedPos > unorderedSize / 2) 1427 break; 1428 } 1429 } 1430 1431 isd->sections.clear(); 1432 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1433 isd->sections.push_back(isec); 1434 for (std::pair<InputSection *, int> p : orderedSections) 1435 isd->sections.push_back(p.first); 1436 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1437 isd->sections.push_back(isec); 1438 } 1439 1440 static void sortSection(OutputSection *sec, 1441 const DenseMap<const InputSectionBase *, int> &order) { 1442 StringRef name = sec->name; 1443 1444 // Never sort these. 1445 if (name == ".init" || name == ".fini") 1446 return; 1447 1448 // IRelative relocations that usually live in the .rel[a].dyn section should 1449 // be proccessed last by the dynamic loader. To achieve that we add synthetic 1450 // sections in the required order from the begining so that the in.relaIplt 1451 // section is placed last in an output section. Here we just do not apply 1452 // sorting for an output section which holds the in.relaIplt section. 1453 if (in.relaIplt->getParent() == sec) 1454 return; 1455 1456 // Sort input sections by priority using the list provided by 1457 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1458 // digit radix sort. The sections may be sorted stably again by a more 1459 // significant key. 1460 if (!order.empty()) 1461 for (BaseCommand *b : sec->sectionCommands) 1462 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1463 sortISDBySectionOrder(isd, order); 1464 1465 // Sort input sections by section name suffixes for 1466 // __attribute__((init_priority(N))). 1467 if (name == ".init_array" || name == ".fini_array") { 1468 if (!script->hasSectionsCommand) 1469 sec->sortInitFini(); 1470 return; 1471 } 1472 1473 // Sort input sections by the special rule for .ctors and .dtors. 1474 if (name == ".ctors" || name == ".dtors") { 1475 if (!script->hasSectionsCommand) 1476 sec->sortCtorsDtors(); 1477 return; 1478 } 1479 1480 // .toc is allocated just after .got and is accessed using GOT-relative 1481 // relocations. Object files compiled with small code model have an 1482 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1483 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1484 // sections having smaller relocation offsets are at beginning of .toc 1485 if (config->emachine == EM_PPC64 && name == ".toc") { 1486 if (script->hasSectionsCommand) 1487 return; 1488 assert(sec->sectionCommands.size() == 1); 1489 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1490 llvm::stable_sort(isd->sections, 1491 [](const InputSection *a, const InputSection *b) -> bool { 1492 return a->file->ppc64SmallCodeModelTocRelocs && 1493 !b->file->ppc64SmallCodeModelTocRelocs; 1494 }); 1495 return; 1496 } 1497 } 1498 1499 // If no layout was provided by linker script, we want to apply default 1500 // sorting for special input sections. This also handles --symbol-ordering-file. 1501 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1502 // Build the order once since it is expensive. 1503 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1504 maybeShuffle(order); 1505 for (BaseCommand *base : script->sectionCommands) 1506 if (auto *sec = dyn_cast<OutputSection>(base)) 1507 sortSection(sec, order); 1508 } 1509 1510 template <class ELFT> void Writer<ELFT>::sortSections() { 1511 llvm::TimeTraceScope timeScope("Sort sections"); 1512 script->adjustSectionsBeforeSorting(); 1513 1514 // Don't sort if using -r. It is not necessary and we want to preserve the 1515 // relative order for SHF_LINK_ORDER sections. 1516 if (config->relocatable) 1517 return; 1518 1519 sortInputSections(); 1520 1521 for (BaseCommand *base : script->sectionCommands) { 1522 auto *os = dyn_cast<OutputSection>(base); 1523 if (!os) 1524 continue; 1525 os->sortRank = getSectionRank(os); 1526 1527 // We want to assign rude approximation values to outSecOff fields 1528 // to know the relative order of the input sections. We use it for 1529 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1530 uint64_t i = 0; 1531 for (InputSection *sec : getInputSections(os)) 1532 sec->outSecOff = i++; 1533 } 1534 1535 if (!script->hasSectionsCommand) { 1536 // We know that all the OutputSections are contiguous in this case. 1537 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1538 std::stable_sort( 1539 llvm::find_if(script->sectionCommands, isSection), 1540 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1541 compareSections); 1542 1543 // Process INSERT commands. From this point onwards the order of 1544 // script->sectionCommands is fixed. 1545 script->processInsertCommands(); 1546 return; 1547 } 1548 1549 script->processInsertCommands(); 1550 1551 // Orphan sections are sections present in the input files which are 1552 // not explicitly placed into the output file by the linker script. 1553 // 1554 // The sections in the linker script are already in the correct 1555 // order. We have to figuere out where to insert the orphan 1556 // sections. 1557 // 1558 // The order of the sections in the script is arbitrary and may not agree with 1559 // compareSections. This means that we cannot easily define a strict weak 1560 // ordering. To see why, consider a comparison of a section in the script and 1561 // one not in the script. We have a two simple options: 1562 // * Make them equivalent (a is not less than b, and b is not less than a). 1563 // The problem is then that equivalence has to be transitive and we can 1564 // have sections a, b and c with only b in a script and a less than c 1565 // which breaks this property. 1566 // * Use compareSectionsNonScript. Given that the script order doesn't have 1567 // to match, we can end up with sections a, b, c, d where b and c are in the 1568 // script and c is compareSectionsNonScript less than b. In which case d 1569 // can be equivalent to c, a to b and d < a. As a concrete example: 1570 // .a (rx) # not in script 1571 // .b (rx) # in script 1572 // .c (ro) # in script 1573 // .d (ro) # not in script 1574 // 1575 // The way we define an order then is: 1576 // * Sort only the orphan sections. They are in the end right now. 1577 // * Move each orphan section to its preferred position. We try 1578 // to put each section in the last position where it can share 1579 // a PT_LOAD. 1580 // 1581 // There is some ambiguity as to where exactly a new entry should be 1582 // inserted, because Commands contains not only output section 1583 // commands but also other types of commands such as symbol assignment 1584 // expressions. There's no correct answer here due to the lack of the 1585 // formal specification of the linker script. We use heuristics to 1586 // determine whether a new output command should be added before or 1587 // after another commands. For the details, look at shouldSkip 1588 // function. 1589 1590 auto i = script->sectionCommands.begin(); 1591 auto e = script->sectionCommands.end(); 1592 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1593 if (auto *sec = dyn_cast<OutputSection>(base)) 1594 return sec->sectionIndex == UINT32_MAX; 1595 return false; 1596 }); 1597 1598 // Sort the orphan sections. 1599 std::stable_sort(nonScriptI, e, compareSections); 1600 1601 // As a horrible special case, skip the first . assignment if it is before any 1602 // section. We do this because it is common to set a load address by starting 1603 // the script with ". = 0xabcd" and the expectation is that every section is 1604 // after that. 1605 auto firstSectionOrDotAssignment = 1606 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1607 if (firstSectionOrDotAssignment != e && 1608 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1609 ++firstSectionOrDotAssignment; 1610 i = firstSectionOrDotAssignment; 1611 1612 while (nonScriptI != e) { 1613 auto pos = findOrphanPos(i, nonScriptI); 1614 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1615 1616 // As an optimization, find all sections with the same sort rank 1617 // and insert them with one rotate. 1618 unsigned rank = orphan->sortRank; 1619 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1620 return cast<OutputSection>(cmd)->sortRank != rank; 1621 }); 1622 std::rotate(pos, nonScriptI, end); 1623 nonScriptI = end; 1624 } 1625 1626 script->adjustSectionsAfterSorting(); 1627 } 1628 1629 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1630 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1631 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1632 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1633 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1634 if (!la || !lb) 1635 return la && !lb; 1636 OutputSection *aOut = la->getParent(); 1637 OutputSection *bOut = lb->getParent(); 1638 1639 if (aOut != bOut) 1640 return aOut->addr < bOut->addr; 1641 return la->outSecOff < lb->outSecOff; 1642 } 1643 1644 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1645 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1646 for (OutputSection *sec : outputSections) { 1647 if (!(sec->flags & SHF_LINK_ORDER)) 1648 continue; 1649 1650 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1651 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1652 if (!config->relocatable && config->emachine == EM_ARM && 1653 sec->type == SHT_ARM_EXIDX) 1654 continue; 1655 1656 // Link order may be distributed across several InputSectionDescriptions. 1657 // Sorting is performed separately. 1658 std::vector<InputSection **> scriptSections; 1659 std::vector<InputSection *> sections; 1660 for (BaseCommand *base : sec->sectionCommands) { 1661 auto *isd = dyn_cast<InputSectionDescription>(base); 1662 if (!isd) 1663 continue; 1664 bool hasLinkOrder = false; 1665 scriptSections.clear(); 1666 sections.clear(); 1667 for (InputSection *&isec : isd->sections) { 1668 if (isec->flags & SHF_LINK_ORDER) { 1669 InputSection *link = isec->getLinkOrderDep(); 1670 if (link && !link->getParent()) 1671 error(toString(isec) + ": sh_link points to discarded section " + 1672 toString(link)); 1673 hasLinkOrder = true; 1674 } 1675 scriptSections.push_back(&isec); 1676 sections.push_back(isec); 1677 } 1678 if (hasLinkOrder && errorCount() == 0) { 1679 llvm::stable_sort(sections, compareByFilePosition); 1680 for (int i = 0, n = sections.size(); i != n; ++i) 1681 *scriptSections[i] = sections[i]; 1682 } 1683 } 1684 } 1685 } 1686 1687 static void finalizeSynthetic(SyntheticSection *sec) { 1688 if (sec && sec->isNeeded() && sec->getParent()) { 1689 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1690 sec->finalizeContents(); 1691 } 1692 } 1693 1694 // We need to generate and finalize the content that depends on the address of 1695 // InputSections. As the generation of the content may also alter InputSection 1696 // addresses we must converge to a fixed point. We do that here. See the comment 1697 // in Writer<ELFT>::finalizeSections(). 1698 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1699 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1700 ThunkCreator tc; 1701 AArch64Err843419Patcher a64p; 1702 ARMErr657417Patcher a32p; 1703 script->assignAddresses(); 1704 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1705 // do require the relative addresses of OutputSections because linker scripts 1706 // can assign Virtual Addresses to OutputSections that are not monotonically 1707 // increasing. 1708 for (Partition &part : partitions) 1709 finalizeSynthetic(part.armExidx); 1710 resolveShfLinkOrder(); 1711 1712 // Converts call x@GDPLT to call __tls_get_addr 1713 if (config->emachine == EM_HEXAGON) 1714 hexagonTLSSymbolUpdate(outputSections); 1715 1716 int assignPasses = 0; 1717 for (;;) { 1718 bool changed = target->needsThunks && tc.createThunks(outputSections); 1719 1720 // With Thunk Size much smaller than branch range we expect to 1721 // converge quickly; if we get to 15 something has gone wrong. 1722 if (changed && tc.pass >= 15) { 1723 error("thunk creation not converged"); 1724 break; 1725 } 1726 1727 if (config->fixCortexA53Errata843419) { 1728 if (changed) 1729 script->assignAddresses(); 1730 changed |= a64p.createFixes(); 1731 } 1732 if (config->fixCortexA8) { 1733 if (changed) 1734 script->assignAddresses(); 1735 changed |= a32p.createFixes(); 1736 } 1737 1738 if (in.mipsGot) 1739 in.mipsGot->updateAllocSize(); 1740 1741 for (Partition &part : partitions) { 1742 changed |= part.relaDyn->updateAllocSize(); 1743 if (part.relrDyn) 1744 changed |= part.relrDyn->updateAllocSize(); 1745 } 1746 1747 const Defined *changedSym = script->assignAddresses(); 1748 if (!changed) { 1749 // Some symbols may be dependent on section addresses. When we break the 1750 // loop, the symbol values are finalized because a previous 1751 // assignAddresses() finalized section addresses. 1752 if (!changedSym) 1753 break; 1754 if (++assignPasses == 5) { 1755 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1756 " does not converge"); 1757 break; 1758 } 1759 } 1760 } 1761 1762 // If addrExpr is set, the address may not be a multiple of the alignment. 1763 // Warn because this is error-prone. 1764 for (BaseCommand *cmd : script->sectionCommands) 1765 if (auto *os = dyn_cast<OutputSection>(cmd)) 1766 if (os->addr % os->alignment != 0) 1767 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1768 os->name + " is not a multiple of alignment (" + 1769 Twine(os->alignment) + ")"); 1770 } 1771 1772 // If Input Sections have been shrinked (basic block sections) then 1773 // update symbol values and sizes associated with these sections. With basic 1774 // block sections, input sections can shrink when the jump instructions at 1775 // the end of the section are relaxed. 1776 static void fixSymbolsAfterShrinking() { 1777 for (InputFile *File : objectFiles) { 1778 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1779 auto *def = dyn_cast<Defined>(Sym); 1780 if (!def) 1781 return; 1782 1783 const SectionBase *sec = def->section; 1784 if (!sec) 1785 return; 1786 1787 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1788 if (!inputSec || !inputSec->bytesDropped) 1789 return; 1790 1791 const size_t OldSize = inputSec->data().size(); 1792 const size_t NewSize = OldSize - inputSec->bytesDropped; 1793 1794 if (def->value > NewSize && def->value <= OldSize) { 1795 LLVM_DEBUG(llvm::dbgs() 1796 << "Moving symbol " << Sym->getName() << " from " 1797 << def->value << " to " 1798 << def->value - inputSec->bytesDropped << " bytes\n"); 1799 def->value -= inputSec->bytesDropped; 1800 return; 1801 } 1802 1803 if (def->value + def->size > NewSize && def->value <= OldSize && 1804 def->value + def->size <= OldSize) { 1805 LLVM_DEBUG(llvm::dbgs() 1806 << "Shrinking symbol " << Sym->getName() << " from " 1807 << def->size << " to " << def->size - inputSec->bytesDropped 1808 << " bytes\n"); 1809 def->size -= inputSec->bytesDropped; 1810 } 1811 }); 1812 } 1813 } 1814 1815 // If basic block sections exist, there are opportunities to delete fall thru 1816 // jumps and shrink jump instructions after basic block reordering. This 1817 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1818 // option is used. 1819 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1820 assert(config->optimizeBBJumps); 1821 1822 script->assignAddresses(); 1823 // For every output section that has executable input sections, this 1824 // does the following: 1825 // 1. Deletes all direct jump instructions in input sections that 1826 // jump to the following section as it is not required. 1827 // 2. If there are two consecutive jump instructions, it checks 1828 // if they can be flipped and one can be deleted. 1829 for (OutputSection *os : outputSections) { 1830 if (!(os->flags & SHF_EXECINSTR)) 1831 continue; 1832 std::vector<InputSection *> sections = getInputSections(os); 1833 std::vector<unsigned> result(sections.size()); 1834 // Delete all fall through jump instructions. Also, check if two 1835 // consecutive jump instructions can be flipped so that a fall 1836 // through jmp instruction can be deleted. 1837 parallelForEachN(0, sections.size(), [&](size_t i) { 1838 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1839 InputSection &is = *sections[i]; 1840 result[i] = 1841 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1842 }); 1843 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1844 if (numDeleted > 0) { 1845 script->assignAddresses(); 1846 LLVM_DEBUG(llvm::dbgs() 1847 << "Removing " << numDeleted << " fall through jumps\n"); 1848 } 1849 } 1850 1851 fixSymbolsAfterShrinking(); 1852 1853 for (OutputSection *os : outputSections) { 1854 std::vector<InputSection *> sections = getInputSections(os); 1855 for (InputSection *is : sections) 1856 is->trim(); 1857 } 1858 } 1859 1860 // In order to allow users to manipulate linker-synthesized sections, 1861 // we had to add synthetic sections to the input section list early, 1862 // even before we make decisions whether they are needed. This allows 1863 // users to write scripts like this: ".mygot : { .got }". 1864 // 1865 // Doing it has an unintended side effects. If it turns out that we 1866 // don't need a .got (for example) at all because there's no 1867 // relocation that needs a .got, we don't want to emit .got. 1868 // 1869 // To deal with the above problem, this function is called after 1870 // scanRelocations is called to remove synthetic sections that turn 1871 // out to be empty. 1872 static void removeUnusedSyntheticSections() { 1873 // All input synthetic sections that can be empty are placed after 1874 // all regular ones. We iterate over them all and exit at first 1875 // non-synthetic. 1876 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1877 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1878 if (!ss) 1879 return; 1880 OutputSection *os = ss->getParent(); 1881 if (!os || ss->isNeeded()) 1882 continue; 1883 1884 // If we reach here, then ss is an unused synthetic section and we want to 1885 // remove it from the corresponding input section description, and 1886 // orphanSections. 1887 for (BaseCommand *b : os->sectionCommands) 1888 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1889 llvm::erase_if(isd->sections, 1890 [=](InputSection *isec) { return isec == ss; }); 1891 llvm::erase_if(script->orphanSections, 1892 [=](const InputSectionBase *isec) { return isec == ss; }); 1893 } 1894 } 1895 1896 // Create output section objects and add them to OutputSections. 1897 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1898 Out::preinitArray = findSection(".preinit_array"); 1899 Out::initArray = findSection(".init_array"); 1900 Out::finiArray = findSection(".fini_array"); 1901 1902 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1903 // symbols for sections, so that the runtime can get the start and end 1904 // addresses of each section by section name. Add such symbols. 1905 if (!config->relocatable) { 1906 addStartEndSymbols(); 1907 for (BaseCommand *base : script->sectionCommands) 1908 if (auto *sec = dyn_cast<OutputSection>(base)) 1909 addStartStopSymbols(sec); 1910 } 1911 1912 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1913 // It should be okay as no one seems to care about the type. 1914 // Even the author of gold doesn't remember why gold behaves that way. 1915 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1916 if (mainPart->dynamic->parent) 1917 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1918 STV_HIDDEN, STT_NOTYPE, 1919 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1920 1921 // Define __rel[a]_iplt_{start,end} symbols if needed. 1922 addRelIpltSymbols(); 1923 1924 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1925 // should only be defined in an executable. If .sdata does not exist, its 1926 // value/section does not matter but it has to be relative, so set its 1927 // st_shndx arbitrarily to 1 (Out::elfHeader). 1928 if (config->emachine == EM_RISCV && !config->shared) { 1929 OutputSection *sec = findSection(".sdata"); 1930 ElfSym::riscvGlobalPointer = 1931 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1932 0x800, STV_DEFAULT, STB_GLOBAL); 1933 } 1934 1935 if (config->emachine == EM_X86_64) { 1936 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1937 // way that: 1938 // 1939 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1940 // computes 0. 1941 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1942 // the TLS block). 1943 // 1944 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1945 // an absolute symbol of zero. This is different from GNU linkers which 1946 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1947 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1948 if (s && s->isUndefined()) { 1949 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1950 STT_TLS, /*value=*/0, 0, 1951 /*section=*/nullptr}); 1952 ElfSym::tlsModuleBase = cast<Defined>(s); 1953 } 1954 } 1955 1956 { 1957 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1958 // This responsible for splitting up .eh_frame section into 1959 // pieces. The relocation scan uses those pieces, so this has to be 1960 // earlier. 1961 for (Partition &part : partitions) 1962 finalizeSynthetic(part.ehFrame); 1963 } 1964 1965 for (Symbol *sym : symtab->symbols()) 1966 sym->isPreemptible = computeIsPreemptible(*sym); 1967 1968 // Change values of linker-script-defined symbols from placeholders (assigned 1969 // by declareSymbols) to actual definitions. 1970 script->processSymbolAssignments(); 1971 1972 { 1973 llvm::TimeTraceScope timeScope("Scan relocations"); 1974 // Scan relocations. This must be done after every symbol is declared so 1975 // that we can correctly decide if a dynamic relocation is needed. This is 1976 // called after processSymbolAssignments() because it needs to know whether 1977 // a linker-script-defined symbol is absolute. 1978 ppc64noTocRelax.clear(); 1979 if (!config->relocatable) { 1980 forEachRelSec(scanRelocations<ELFT>); 1981 reportUndefinedSymbols<ELFT>(); 1982 } 1983 } 1984 1985 if (in.plt && in.plt->isNeeded()) 1986 in.plt->addSymbols(); 1987 if (in.iplt && in.iplt->isNeeded()) 1988 in.iplt->addSymbols(); 1989 1990 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1991 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1992 // entries are seen. These cases would otherwise lead to runtime errors 1993 // reported by the dynamic linker. 1994 // 1995 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1996 // catch more cases. That is too much for us. Our approach resembles the one 1997 // used in ld.gold, achieves a good balance to be useful but not too smart. 1998 for (SharedFile *file : sharedFiles) 1999 file->allNeededIsKnown = 2000 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2001 return symtab->soNames.count(needed); 2002 }); 2003 2004 for (Symbol *sym : symtab->symbols()) 2005 if (sym->isUndefined() && !sym->isWeak()) 2006 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 2007 if (f->allNeededIsKnown) { 2008 auto diagnose = config->unresolvedSymbolsInShlib == 2009 UnresolvedPolicy::ReportError 2010 ? errorOrWarn 2011 : warn; 2012 diagnose(toString(f) + ": undefined reference to " + 2013 toString(*sym) + " [--no-allow-shlib-undefined]"); 2014 } 2015 } 2016 2017 { 2018 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2019 // Now that we have defined all possible global symbols including linker- 2020 // synthesized ones. Visit all symbols to give the finishing touches. 2021 for (Symbol *sym : symtab->symbols()) { 2022 if (!includeInSymtab(*sym)) 2023 continue; 2024 if (in.symTab) 2025 in.symTab->addSymbol(sym); 2026 2027 if (sym->includeInDynsym()) { 2028 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2029 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2030 if (file->isNeeded && !sym->isUndefined()) 2031 addVerneed(sym); 2032 } 2033 } 2034 2035 // We also need to scan the dynamic relocation tables of the other 2036 // partitions and add any referenced symbols to the partition's dynsym. 2037 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2038 DenseSet<Symbol *> syms; 2039 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2040 syms.insert(e.sym); 2041 for (DynamicReloc &reloc : part.relaDyn->relocs) 2042 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 2043 part.dynSymTab->addSymbol(reloc.sym); 2044 } 2045 } 2046 2047 // Do not proceed if there was an undefined symbol. 2048 if (errorCount()) 2049 return; 2050 2051 if (in.mipsGot) 2052 in.mipsGot->build(); 2053 2054 removeUnusedSyntheticSections(); 2055 script->diagnoseOrphanHandling(); 2056 2057 sortSections(); 2058 2059 // Now that we have the final list, create a list of all the 2060 // OutputSections for convenience. 2061 for (BaseCommand *base : script->sectionCommands) 2062 if (auto *sec = dyn_cast<OutputSection>(base)) 2063 outputSections.push_back(sec); 2064 2065 // Prefer command line supplied address over other constraints. 2066 for (OutputSection *sec : outputSections) { 2067 auto i = config->sectionStartMap.find(sec->name); 2068 if (i != config->sectionStartMap.end()) 2069 sec->addrExpr = [=] { return i->second; }; 2070 } 2071 2072 // With the outputSections available check for GDPLT relocations 2073 // and add __tls_get_addr symbol if needed. 2074 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2075 Symbol *sym = symtab->addSymbol(Undefined{ 2076 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2077 sym->isPreemptible = true; 2078 partitions[0].dynSymTab->addSymbol(sym); 2079 } 2080 2081 // This is a bit of a hack. A value of 0 means undef, so we set it 2082 // to 1 to make __ehdr_start defined. The section number is not 2083 // particularly relevant. 2084 Out::elfHeader->sectionIndex = 1; 2085 2086 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2087 OutputSection *sec = outputSections[i]; 2088 sec->sectionIndex = i + 1; 2089 sec->shName = in.shStrTab->addString(sec->name); 2090 } 2091 2092 // Binary and relocatable output does not have PHDRS. 2093 // The headers have to be created before finalize as that can influence the 2094 // image base and the dynamic section on mips includes the image base. 2095 if (!config->relocatable && !config->oFormatBinary) { 2096 for (Partition &part : partitions) { 2097 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2098 : createPhdrs(part); 2099 if (config->emachine == EM_ARM) { 2100 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2101 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2102 } 2103 if (config->emachine == EM_MIPS) { 2104 // Add separate segments for MIPS-specific sections. 2105 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2106 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2107 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2108 } 2109 } 2110 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2111 2112 // Find the TLS segment. This happens before the section layout loop so that 2113 // Android relocation packing can look up TLS symbol addresses. We only need 2114 // to care about the main partition here because all TLS symbols were moved 2115 // to the main partition (see MarkLive.cpp). 2116 for (PhdrEntry *p : mainPart->phdrs) 2117 if (p->p_type == PT_TLS) 2118 Out::tlsPhdr = p; 2119 } 2120 2121 // Some symbols are defined in term of program headers. Now that we 2122 // have the headers, we can find out which sections they point to. 2123 setReservedSymbolSections(); 2124 2125 { 2126 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2127 2128 finalizeSynthetic(in.bss); 2129 finalizeSynthetic(in.bssRelRo); 2130 finalizeSynthetic(in.symTabShndx); 2131 finalizeSynthetic(in.shStrTab); 2132 finalizeSynthetic(in.strTab); 2133 finalizeSynthetic(in.got); 2134 finalizeSynthetic(in.mipsGot); 2135 finalizeSynthetic(in.igotPlt); 2136 finalizeSynthetic(in.gotPlt); 2137 finalizeSynthetic(in.relaIplt); 2138 finalizeSynthetic(in.relaPlt); 2139 finalizeSynthetic(in.plt); 2140 finalizeSynthetic(in.iplt); 2141 finalizeSynthetic(in.ppc32Got2); 2142 finalizeSynthetic(in.partIndex); 2143 2144 // Dynamic section must be the last one in this list and dynamic 2145 // symbol table section (dynSymTab) must be the first one. 2146 for (Partition &part : partitions) { 2147 finalizeSynthetic(part.dynSymTab); 2148 finalizeSynthetic(part.gnuHashTab); 2149 finalizeSynthetic(part.hashTab); 2150 finalizeSynthetic(part.verDef); 2151 finalizeSynthetic(part.relaDyn); 2152 finalizeSynthetic(part.relrDyn); 2153 finalizeSynthetic(part.ehFrameHdr); 2154 finalizeSynthetic(part.verSym); 2155 finalizeSynthetic(part.verNeed); 2156 finalizeSynthetic(part.dynamic); 2157 } 2158 } 2159 2160 if (!script->hasSectionsCommand && !config->relocatable) 2161 fixSectionAlignments(); 2162 2163 // This is used to: 2164 // 1) Create "thunks": 2165 // Jump instructions in many ISAs have small displacements, and therefore 2166 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2167 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2168 // responsibility to create and insert small pieces of code between 2169 // sections to extend the ranges if jump targets are out of range. Such 2170 // code pieces are called "thunks". 2171 // 2172 // We add thunks at this stage. We couldn't do this before this point 2173 // because this is the earliest point where we know sizes of sections and 2174 // their layouts (that are needed to determine if jump targets are in 2175 // range). 2176 // 2177 // 2) Update the sections. We need to generate content that depends on the 2178 // address of InputSections. For example, MIPS GOT section content or 2179 // android packed relocations sections content. 2180 // 2181 // 3) Assign the final values for the linker script symbols. Linker scripts 2182 // sometimes using forward symbol declarations. We want to set the correct 2183 // values. They also might change after adding the thunks. 2184 finalizeAddressDependentContent(); 2185 if (errorCount()) 2186 return; 2187 2188 { 2189 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2190 // finalizeAddressDependentContent may have added local symbols to the 2191 // static symbol table. 2192 finalizeSynthetic(in.symTab); 2193 finalizeSynthetic(in.ppc64LongBranchTarget); 2194 } 2195 2196 // Relaxation to delete inter-basic block jumps created by basic block 2197 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2198 // can relax jump instructions based on symbol offset. 2199 if (config->optimizeBBJumps) 2200 optimizeBasicBlockJumps(); 2201 2202 // Fill other section headers. The dynamic table is finalized 2203 // at the end because some tags like RELSZ depend on result 2204 // of finalizing other sections. 2205 for (OutputSection *sec : outputSections) 2206 sec->finalize(); 2207 } 2208 2209 // Ensure data sections are not mixed with executable sections when 2210 // -execute-only is used. -execute-only is a feature to make pages executable 2211 // but not readable, and the feature is currently supported only on AArch64. 2212 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2213 if (!config->executeOnly) 2214 return; 2215 2216 for (OutputSection *os : outputSections) 2217 if (os->flags & SHF_EXECINSTR) 2218 for (InputSection *isec : getInputSections(os)) 2219 if (!(isec->flags & SHF_EXECINSTR)) 2220 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2221 ": -execute-only does not support intermingling data and code"); 2222 } 2223 2224 // The linker is expected to define SECNAME_start and SECNAME_end 2225 // symbols for a few sections. This function defines them. 2226 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2227 // If a section does not exist, there's ambiguity as to how we 2228 // define _start and _end symbols for an init/fini section. Since 2229 // the loader assume that the symbols are always defined, we need to 2230 // always define them. But what value? The loader iterates over all 2231 // pointers between _start and _end to run global ctors/dtors, so if 2232 // the section is empty, their symbol values don't actually matter 2233 // as long as _start and _end point to the same location. 2234 // 2235 // That said, we don't want to set the symbols to 0 (which is 2236 // probably the simplest value) because that could cause some 2237 // program to fail to link due to relocation overflow, if their 2238 // program text is above 2 GiB. We use the address of the .text 2239 // section instead to prevent that failure. 2240 // 2241 // In rare situations, the .text section may not exist. If that's the 2242 // case, use the image base address as a last resort. 2243 OutputSection *Default = findSection(".text"); 2244 if (!Default) 2245 Default = Out::elfHeader; 2246 2247 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2248 if (os) { 2249 addOptionalRegular(start, os, 0); 2250 addOptionalRegular(end, os, -1); 2251 } else { 2252 addOptionalRegular(start, Default, 0); 2253 addOptionalRegular(end, Default, 0); 2254 } 2255 }; 2256 2257 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2258 define("__init_array_start", "__init_array_end", Out::initArray); 2259 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2260 2261 if (OutputSection *sec = findSection(".ARM.exidx")) 2262 define("__exidx_start", "__exidx_end", sec); 2263 } 2264 2265 // If a section name is valid as a C identifier (which is rare because of 2266 // the leading '.'), linkers are expected to define __start_<secname> and 2267 // __stop_<secname> symbols. They are at beginning and end of the section, 2268 // respectively. This is not requested by the ELF standard, but GNU ld and 2269 // gold provide the feature, and used by many programs. 2270 template <class ELFT> 2271 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2272 StringRef s = sec->name; 2273 if (!isValidCIdentifier(s)) 2274 return; 2275 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2276 config->zStartStopVisibility); 2277 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2278 config->zStartStopVisibility); 2279 } 2280 2281 static bool needsPtLoad(OutputSection *sec) { 2282 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2283 return false; 2284 2285 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2286 // responsible for allocating space for them, not the PT_LOAD that 2287 // contains the TLS initialization image. 2288 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2289 return false; 2290 return true; 2291 } 2292 2293 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2294 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2295 // RW. This means that there is no alignment in the RO to RX transition and we 2296 // cannot create a PT_LOAD there. 2297 static uint64_t computeFlags(uint64_t flags) { 2298 if (config->omagic) 2299 return PF_R | PF_W | PF_X; 2300 if (config->executeOnly && (flags & PF_X)) 2301 return flags & ~PF_R; 2302 if (config->singleRoRx && !(flags & PF_W)) 2303 return flags | PF_X; 2304 return flags; 2305 } 2306 2307 // Decide which program headers to create and which sections to include in each 2308 // one. 2309 template <class ELFT> 2310 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2311 std::vector<PhdrEntry *> ret; 2312 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2313 ret.push_back(make<PhdrEntry>(type, flags)); 2314 return ret.back(); 2315 }; 2316 2317 unsigned partNo = part.getNumber(); 2318 bool isMain = partNo == 1; 2319 2320 // Add the first PT_LOAD segment for regular output sections. 2321 uint64_t flags = computeFlags(PF_R); 2322 PhdrEntry *load = nullptr; 2323 2324 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2325 // PT_LOAD. 2326 if (!config->nmagic && !config->omagic) { 2327 // The first phdr entry is PT_PHDR which describes the program header 2328 // itself. 2329 if (isMain) 2330 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2331 else 2332 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2333 2334 // PT_INTERP must be the second entry if exists. 2335 if (OutputSection *cmd = findSection(".interp", partNo)) 2336 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2337 2338 // Add the headers. We will remove them if they don't fit. 2339 // In the other partitions the headers are ordinary sections, so they don't 2340 // need to be added here. 2341 if (isMain) { 2342 load = addHdr(PT_LOAD, flags); 2343 load->add(Out::elfHeader); 2344 load->add(Out::programHeaders); 2345 } 2346 } 2347 2348 // PT_GNU_RELRO includes all sections that should be marked as 2349 // read-only by dynamic linker after processing relocations. 2350 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2351 // an error message if more than one PT_GNU_RELRO PHDR is required. 2352 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2353 bool inRelroPhdr = false; 2354 OutputSection *relroEnd = nullptr; 2355 for (OutputSection *sec : outputSections) { 2356 if (sec->partition != partNo || !needsPtLoad(sec)) 2357 continue; 2358 if (isRelroSection(sec)) { 2359 inRelroPhdr = true; 2360 if (!relroEnd) 2361 relRo->add(sec); 2362 else 2363 error("section: " + sec->name + " is not contiguous with other relro" + 2364 " sections"); 2365 } else if (inRelroPhdr) { 2366 inRelroPhdr = false; 2367 relroEnd = sec; 2368 } 2369 } 2370 2371 for (OutputSection *sec : outputSections) { 2372 if (!needsPtLoad(sec)) 2373 continue; 2374 2375 // Normally, sections in partitions other than the current partition are 2376 // ignored. But partition number 255 is a special case: it contains the 2377 // partition end marker (.part.end). It needs to be added to the main 2378 // partition so that a segment is created for it in the main partition, 2379 // which will cause the dynamic loader to reserve space for the other 2380 // partitions. 2381 if (sec->partition != partNo) { 2382 if (isMain && sec->partition == 255) 2383 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2384 continue; 2385 } 2386 2387 // Segments are contiguous memory regions that has the same attributes 2388 // (e.g. executable or writable). There is one phdr for each segment. 2389 // Therefore, we need to create a new phdr when the next section has 2390 // different flags or is loaded at a discontiguous address or memory 2391 // region using AT or AT> linker script command, respectively. At the same 2392 // time, we don't want to create a separate load segment for the headers, 2393 // even if the first output section has an AT or AT> attribute. 2394 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2395 bool sameLMARegion = 2396 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2397 if (!(load && newFlags == flags && sec != relroEnd && 2398 sec->memRegion == load->firstSec->memRegion && 2399 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2400 load = addHdr(PT_LOAD, newFlags); 2401 flags = newFlags; 2402 } 2403 2404 load->add(sec); 2405 } 2406 2407 // Add a TLS segment if any. 2408 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2409 for (OutputSection *sec : outputSections) 2410 if (sec->partition == partNo && sec->flags & SHF_TLS) 2411 tlsHdr->add(sec); 2412 if (tlsHdr->firstSec) 2413 ret.push_back(tlsHdr); 2414 2415 // Add an entry for .dynamic. 2416 if (OutputSection *sec = part.dynamic->getParent()) 2417 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2418 2419 if (relRo->firstSec) 2420 ret.push_back(relRo); 2421 2422 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2423 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2424 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2425 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2426 ->add(part.ehFrameHdr->getParent()); 2427 2428 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2429 // the dynamic linker fill the segment with random data. 2430 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2431 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2432 2433 if (config->zGnustack != GnuStackKind::None) { 2434 // PT_GNU_STACK is a special section to tell the loader to make the 2435 // pages for the stack non-executable. If you really want an executable 2436 // stack, you can pass -z execstack, but that's not recommended for 2437 // security reasons. 2438 unsigned perm = PF_R | PF_W; 2439 if (config->zGnustack == GnuStackKind::Exec) 2440 perm |= PF_X; 2441 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2442 } 2443 2444 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2445 // is expected to perform W^X violations, such as calling mprotect(2) or 2446 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2447 // OpenBSD. 2448 if (config->zWxneeded) 2449 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2450 2451 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2452 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2453 2454 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2455 // same alignment. 2456 PhdrEntry *note = nullptr; 2457 for (OutputSection *sec : outputSections) { 2458 if (sec->partition != partNo) 2459 continue; 2460 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2461 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2462 note = addHdr(PT_NOTE, PF_R); 2463 note->add(sec); 2464 } else { 2465 note = nullptr; 2466 } 2467 } 2468 return ret; 2469 } 2470 2471 template <class ELFT> 2472 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2473 unsigned pType, unsigned pFlags) { 2474 unsigned partNo = part.getNumber(); 2475 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2476 return cmd->partition == partNo && cmd->type == shType; 2477 }); 2478 if (i == outputSections.end()) 2479 return; 2480 2481 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2482 entry->add(*i); 2483 part.phdrs.push_back(entry); 2484 } 2485 2486 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2487 // This is achieved by assigning an alignment expression to addrExpr of each 2488 // such section. 2489 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2490 const PhdrEntry *prev; 2491 auto pageAlign = [&](const PhdrEntry *p) { 2492 OutputSection *cmd = p->firstSec; 2493 if (!cmd) 2494 return; 2495 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2496 if (!cmd->addrExpr) { 2497 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2498 // padding in the file contents. 2499 // 2500 // When -z separate-code is used we must not have any overlap in pages 2501 // between an executable segment and a non-executable segment. We align to 2502 // the next maximum page size boundary on transitions between executable 2503 // and non-executable segments. 2504 // 2505 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2506 // sections will be extracted to a separate file. Align to the next 2507 // maximum page size boundary so that we can find the ELF header at the 2508 // start. We cannot benefit from overlapping p_offset ranges with the 2509 // previous segment anyway. 2510 if (config->zSeparate == SeparateSegmentKind::Loadable || 2511 (config->zSeparate == SeparateSegmentKind::Code && prev && 2512 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2513 cmd->type == SHT_LLVM_PART_EHDR) 2514 cmd->addrExpr = [] { 2515 return alignTo(script->getDot(), config->maxPageSize); 2516 }; 2517 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2518 // it must be the RW. Align to p_align(PT_TLS) to make sure 2519 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2520 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2521 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2522 // be congruent to 0 modulo p_align(PT_TLS). 2523 // 2524 // Technically this is not required, but as of 2019, some dynamic loaders 2525 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2526 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2527 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2528 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2529 // blocks correctly. We need to keep the workaround for a while. 2530 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2531 cmd->addrExpr = [] { 2532 return alignTo(script->getDot(), config->maxPageSize) + 2533 alignTo(script->getDot() % config->maxPageSize, 2534 Out::tlsPhdr->p_align); 2535 }; 2536 else 2537 cmd->addrExpr = [] { 2538 return alignTo(script->getDot(), config->maxPageSize) + 2539 script->getDot() % config->maxPageSize; 2540 }; 2541 } 2542 }; 2543 2544 for (Partition &part : partitions) { 2545 prev = nullptr; 2546 for (const PhdrEntry *p : part.phdrs) 2547 if (p->p_type == PT_LOAD && p->firstSec) { 2548 pageAlign(p); 2549 prev = p; 2550 } 2551 } 2552 } 2553 2554 // Compute an in-file position for a given section. The file offset must be the 2555 // same with its virtual address modulo the page size, so that the loader can 2556 // load executables without any address adjustment. 2557 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2558 // The first section in a PT_LOAD has to have congruent offset and address 2559 // modulo the maximum page size. 2560 if (os->ptLoad && os->ptLoad->firstSec == os) 2561 return alignTo(off, os->ptLoad->p_align, os->addr); 2562 2563 // File offsets are not significant for .bss sections other than the first one 2564 // in a PT_LOAD. By convention, we keep section offsets monotonically 2565 // increasing rather than setting to zero. 2566 if (os->type == SHT_NOBITS) 2567 return off; 2568 2569 // If the section is not in a PT_LOAD, we just have to align it. 2570 if (!os->ptLoad) 2571 return alignTo(off, os->alignment); 2572 2573 // If two sections share the same PT_LOAD the file offset is calculated 2574 // using this formula: Off2 = Off1 + (VA2 - VA1). 2575 OutputSection *first = os->ptLoad->firstSec; 2576 return first->offset + os->addr - first->addr; 2577 } 2578 2579 // Set an in-file position to a given section and returns the end position of 2580 // the section. 2581 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2582 off = computeFileOffset(os, off); 2583 os->offset = off; 2584 2585 if (os->type == SHT_NOBITS) 2586 return off; 2587 return off + os->size; 2588 } 2589 2590 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2591 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2592 auto needsOffset = [](OutputSection &sec) { 2593 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2594 }; 2595 uint64_t minAddr = UINT64_MAX; 2596 for (OutputSection *sec : outputSections) 2597 if (needsOffset(*sec)) { 2598 sec->offset = sec->getLMA(); 2599 minAddr = std::min(minAddr, sec->offset); 2600 } 2601 2602 // Sections are laid out at LMA minus minAddr. 2603 fileSize = 0; 2604 for (OutputSection *sec : outputSections) 2605 if (needsOffset(*sec)) { 2606 sec->offset -= minAddr; 2607 fileSize = std::max(fileSize, sec->offset + sec->size); 2608 } 2609 } 2610 2611 static std::string rangeToString(uint64_t addr, uint64_t len) { 2612 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2613 } 2614 2615 // Assign file offsets to output sections. 2616 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2617 uint64_t off = 0; 2618 off = setFileOffset(Out::elfHeader, off); 2619 off = setFileOffset(Out::programHeaders, off); 2620 2621 PhdrEntry *lastRX = nullptr; 2622 for (Partition &part : partitions) 2623 for (PhdrEntry *p : part.phdrs) 2624 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2625 lastRX = p; 2626 2627 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2628 // will not occupy file offsets contained by a PT_LOAD. 2629 for (OutputSection *sec : outputSections) { 2630 if (!(sec->flags & SHF_ALLOC)) 2631 continue; 2632 off = setFileOffset(sec, off); 2633 2634 // If this is a last section of the last executable segment and that 2635 // segment is the last loadable segment, align the offset of the 2636 // following section to avoid loading non-segments parts of the file. 2637 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2638 lastRX->lastSec == sec) 2639 off = alignTo(off, config->commonPageSize); 2640 } 2641 for (OutputSection *sec : outputSections) 2642 if (!(sec->flags & SHF_ALLOC)) 2643 off = setFileOffset(sec, off); 2644 2645 sectionHeaderOff = alignTo(off, config->wordsize); 2646 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2647 2648 // Our logic assumes that sections have rising VA within the same segment. 2649 // With use of linker scripts it is possible to violate this rule and get file 2650 // offset overlaps or overflows. That should never happen with a valid script 2651 // which does not move the location counter backwards and usually scripts do 2652 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2653 // kernel, which control segment distribution explicitly and move the counter 2654 // backwards, so we have to allow doing that to support linking them. We 2655 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2656 // we want to prevent file size overflows because it would crash the linker. 2657 for (OutputSection *sec : outputSections) { 2658 if (sec->type == SHT_NOBITS) 2659 continue; 2660 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2661 error("unable to place section " + sec->name + " at file offset " + 2662 rangeToString(sec->offset, sec->size) + 2663 "; check your linker script for overflows"); 2664 } 2665 } 2666 2667 // Finalize the program headers. We call this function after we assign 2668 // file offsets and VAs to all sections. 2669 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2670 for (PhdrEntry *p : part.phdrs) { 2671 OutputSection *first = p->firstSec; 2672 OutputSection *last = p->lastSec; 2673 2674 if (first) { 2675 p->p_filesz = last->offset - first->offset; 2676 if (last->type != SHT_NOBITS) 2677 p->p_filesz += last->size; 2678 2679 p->p_memsz = last->addr + last->size - first->addr; 2680 p->p_offset = first->offset; 2681 p->p_vaddr = first->addr; 2682 2683 // File offsets in partitions other than the main partition are relative 2684 // to the offset of the ELF headers. Perform that adjustment now. 2685 if (part.elfHeader) 2686 p->p_offset -= part.elfHeader->getParent()->offset; 2687 2688 if (!p->hasLMA) 2689 p->p_paddr = first->getLMA(); 2690 } 2691 2692 if (p->p_type == PT_GNU_RELRO) { 2693 p->p_align = 1; 2694 // musl/glibc ld.so rounds the size down, so we need to round up 2695 // to protect the last page. This is a no-op on FreeBSD which always 2696 // rounds up. 2697 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2698 p->p_offset; 2699 } 2700 } 2701 } 2702 2703 // A helper struct for checkSectionOverlap. 2704 namespace { 2705 struct SectionOffset { 2706 OutputSection *sec; 2707 uint64_t offset; 2708 }; 2709 } // namespace 2710 2711 // Check whether sections overlap for a specific address range (file offsets, 2712 // load and virtual addresses). 2713 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2714 bool isVirtualAddr) { 2715 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2716 return a.offset < b.offset; 2717 }); 2718 2719 // Finding overlap is easy given a vector is sorted by start position. 2720 // If an element starts before the end of the previous element, they overlap. 2721 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2722 SectionOffset a = sections[i - 1]; 2723 SectionOffset b = sections[i]; 2724 if (b.offset >= a.offset + a.sec->size) 2725 continue; 2726 2727 // If both sections are in OVERLAY we allow the overlapping of virtual 2728 // addresses, because it is what OVERLAY was designed for. 2729 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2730 continue; 2731 2732 errorOrWarn("section " + a.sec->name + " " + name + 2733 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2734 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2735 b.sec->name + " range is " + 2736 rangeToString(b.offset, b.sec->size)); 2737 } 2738 } 2739 2740 // Check for overlapping sections and address overflows. 2741 // 2742 // In this function we check that none of the output sections have overlapping 2743 // file offsets. For SHF_ALLOC sections we also check that the load address 2744 // ranges and the virtual address ranges don't overlap 2745 template <class ELFT> void Writer<ELFT>::checkSections() { 2746 // First, check that section's VAs fit in available address space for target. 2747 for (OutputSection *os : outputSections) 2748 if ((os->addr + os->size < os->addr) || 2749 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2750 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2751 " of size 0x" + utohexstr(os->size) + 2752 " exceeds available address space"); 2753 2754 // Check for overlapping file offsets. In this case we need to skip any 2755 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2756 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2757 // binary is specified only add SHF_ALLOC sections are added to the output 2758 // file so we skip any non-allocated sections in that case. 2759 std::vector<SectionOffset> fileOffs; 2760 for (OutputSection *sec : outputSections) 2761 if (sec->size > 0 && sec->type != SHT_NOBITS && 2762 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2763 fileOffs.push_back({sec, sec->offset}); 2764 checkOverlap("file", fileOffs, false); 2765 2766 // When linking with -r there is no need to check for overlapping virtual/load 2767 // addresses since those addresses will only be assigned when the final 2768 // executable/shared object is created. 2769 if (config->relocatable) 2770 return; 2771 2772 // Checking for overlapping virtual and load addresses only needs to take 2773 // into account SHF_ALLOC sections since others will not be loaded. 2774 // Furthermore, we also need to skip SHF_TLS sections since these will be 2775 // mapped to other addresses at runtime and can therefore have overlapping 2776 // ranges in the file. 2777 std::vector<SectionOffset> vmas; 2778 for (OutputSection *sec : outputSections) 2779 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2780 vmas.push_back({sec, sec->addr}); 2781 checkOverlap("virtual address", vmas, true); 2782 2783 // Finally, check that the load addresses don't overlap. This will usually be 2784 // the same as the virtual addresses but can be different when using a linker 2785 // script with AT(). 2786 std::vector<SectionOffset> lmas; 2787 for (OutputSection *sec : outputSections) 2788 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2789 lmas.push_back({sec, sec->getLMA()}); 2790 checkOverlap("load address", lmas, false); 2791 } 2792 2793 // The entry point address is chosen in the following ways. 2794 // 2795 // 1. the '-e' entry command-line option; 2796 // 2. the ENTRY(symbol) command in a linker control script; 2797 // 3. the value of the symbol _start, if present; 2798 // 4. the number represented by the entry symbol, if it is a number; 2799 // 5. the address of the first byte of the .text section, if present; 2800 // 6. the address 0. 2801 static uint64_t getEntryAddr() { 2802 // Case 1, 2 or 3 2803 if (Symbol *b = symtab->find(config->entry)) 2804 return b->getVA(); 2805 2806 // Case 4 2807 uint64_t addr; 2808 if (to_integer(config->entry, addr)) 2809 return addr; 2810 2811 // Case 5 2812 if (OutputSection *sec = findSection(".text")) { 2813 if (config->warnMissingEntry) 2814 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2815 utohexstr(sec->addr)); 2816 return sec->addr; 2817 } 2818 2819 // Case 6 2820 if (config->warnMissingEntry) 2821 warn("cannot find entry symbol " + config->entry + 2822 "; not setting start address"); 2823 return 0; 2824 } 2825 2826 static uint16_t getELFType() { 2827 if (config->isPic) 2828 return ET_DYN; 2829 if (config->relocatable) 2830 return ET_REL; 2831 return ET_EXEC; 2832 } 2833 2834 template <class ELFT> void Writer<ELFT>::writeHeader() { 2835 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2836 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2837 2838 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2839 eHdr->e_type = getELFType(); 2840 eHdr->e_entry = getEntryAddr(); 2841 eHdr->e_shoff = sectionHeaderOff; 2842 2843 // Write the section header table. 2844 // 2845 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2846 // and e_shstrndx fields. When the value of one of these fields exceeds 2847 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2848 // use fields in the section header at index 0 to store 2849 // the value. The sentinel values and fields are: 2850 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2851 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2852 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2853 size_t num = outputSections.size() + 1; 2854 if (num >= SHN_LORESERVE) 2855 sHdrs->sh_size = num; 2856 else 2857 eHdr->e_shnum = num; 2858 2859 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2860 if (strTabIndex >= SHN_LORESERVE) { 2861 sHdrs->sh_link = strTabIndex; 2862 eHdr->e_shstrndx = SHN_XINDEX; 2863 } else { 2864 eHdr->e_shstrndx = strTabIndex; 2865 } 2866 2867 for (OutputSection *sec : outputSections) 2868 sec->writeHeaderTo<ELFT>(++sHdrs); 2869 } 2870 2871 // Open a result file. 2872 template <class ELFT> void Writer<ELFT>::openFile() { 2873 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2874 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2875 std::string msg; 2876 raw_string_ostream s(msg); 2877 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2878 << "section sizes:\n"; 2879 for (OutputSection *os : outputSections) 2880 s << os->name << ' ' << os->size << "\n"; 2881 error(s.str()); 2882 return; 2883 } 2884 2885 unlinkAsync(config->outputFile); 2886 unsigned flags = 0; 2887 if (!config->relocatable) 2888 flags |= FileOutputBuffer::F_executable; 2889 if (!config->mmapOutputFile) 2890 flags |= FileOutputBuffer::F_no_mmap; 2891 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2892 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2893 2894 if (!bufferOrErr) { 2895 error("failed to open " + config->outputFile + ": " + 2896 llvm::toString(bufferOrErr.takeError())); 2897 return; 2898 } 2899 buffer = std::move(*bufferOrErr); 2900 Out::bufferStart = buffer->getBufferStart(); 2901 } 2902 2903 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2904 for (OutputSection *sec : outputSections) 2905 if (sec->flags & SHF_ALLOC) 2906 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2907 } 2908 2909 static void fillTrap(uint8_t *i, uint8_t *end) { 2910 for (; i + 4 <= end; i += 4) 2911 memcpy(i, &target->trapInstr, 4); 2912 } 2913 2914 // Fill the last page of executable segments with trap instructions 2915 // instead of leaving them as zero. Even though it is not required by any 2916 // standard, it is in general a good thing to do for security reasons. 2917 // 2918 // We'll leave other pages in segments as-is because the rest will be 2919 // overwritten by output sections. 2920 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2921 for (Partition &part : partitions) { 2922 // Fill the last page. 2923 for (PhdrEntry *p : part.phdrs) 2924 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2925 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2926 config->commonPageSize), 2927 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2928 config->commonPageSize)); 2929 2930 // Round up the file size of the last segment to the page boundary iff it is 2931 // an executable segment to ensure that other tools don't accidentally 2932 // trim the instruction padding (e.g. when stripping the file). 2933 PhdrEntry *last = nullptr; 2934 for (PhdrEntry *p : part.phdrs) 2935 if (p->p_type == PT_LOAD) 2936 last = p; 2937 2938 if (last && (last->p_flags & PF_X)) 2939 last->p_memsz = last->p_filesz = 2940 alignTo(last->p_filesz, config->commonPageSize); 2941 } 2942 } 2943 2944 // Write section contents to a mmap'ed file. 2945 template <class ELFT> void Writer<ELFT>::writeSections() { 2946 // In -r or -emit-relocs mode, write the relocation sections first as in 2947 // ELf_Rel targets we might find out that we need to modify the relocated 2948 // section while doing it. 2949 for (OutputSection *sec : outputSections) 2950 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2951 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2952 2953 for (OutputSection *sec : outputSections) 2954 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2955 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2956 } 2957 2958 // Split one uint8 array into small pieces of uint8 arrays. 2959 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2960 size_t chunkSize) { 2961 std::vector<ArrayRef<uint8_t>> ret; 2962 while (arr.size() > chunkSize) { 2963 ret.push_back(arr.take_front(chunkSize)); 2964 arr = arr.drop_front(chunkSize); 2965 } 2966 if (!arr.empty()) 2967 ret.push_back(arr); 2968 return ret; 2969 } 2970 2971 // Computes a hash value of Data using a given hash function. 2972 // In order to utilize multiple cores, we first split data into 1MB 2973 // chunks, compute a hash for each chunk, and then compute a hash value 2974 // of the hash values. 2975 static void 2976 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2977 llvm::ArrayRef<uint8_t> data, 2978 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2979 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2980 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2981 2982 // Compute hash values. 2983 parallelForEachN(0, chunks.size(), [&](size_t i) { 2984 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2985 }); 2986 2987 // Write to the final output buffer. 2988 hashFn(hashBuf.data(), hashes); 2989 } 2990 2991 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2992 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2993 return; 2994 2995 if (config->buildId == BuildIdKind::Hexstring) { 2996 for (Partition &part : partitions) 2997 part.buildId->writeBuildId(config->buildIdVector); 2998 return; 2999 } 3000 3001 // Compute a hash of all sections of the output file. 3002 size_t hashSize = mainPart->buildId->hashSize; 3003 std::vector<uint8_t> buildId(hashSize); 3004 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 3005 3006 switch (config->buildId) { 3007 case BuildIdKind::Fast: 3008 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3009 write64le(dest, xxHash64(arr)); 3010 }); 3011 break; 3012 case BuildIdKind::Md5: 3013 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3014 memcpy(dest, MD5::hash(arr).data(), hashSize); 3015 }); 3016 break; 3017 case BuildIdKind::Sha1: 3018 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3019 memcpy(dest, SHA1::hash(arr).data(), hashSize); 3020 }); 3021 break; 3022 case BuildIdKind::Uuid: 3023 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 3024 error("entropy source failure: " + ec.message()); 3025 break; 3026 default: 3027 llvm_unreachable("unknown BuildIdKind"); 3028 } 3029 for (Partition &part : partitions) 3030 part.buildId->writeBuildId(buildId); 3031 } 3032 3033 template void elf::createSyntheticSections<ELF32LE>(); 3034 template void elf::createSyntheticSections<ELF32BE>(); 3035 template void elf::createSyntheticSections<ELF64LE>(); 3036 template void elf::createSyntheticSections<ELF64BE>(); 3037 3038 template void elf::writeResult<ELF32LE>(); 3039 template void elf::writeResult<ELF32BE>(); 3040 template void elf::writeResult<ELF64LE>(); 3041 template void elf::writeResult<ELF64BE>(); 3042