1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Arrays.h" 23 #include "lld/Common/Filesystem.h" 24 #include "lld/Common/Memory.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/Parallel.h" 29 #include "llvm/Support/RandomNumberGenerator.h" 30 #include "llvm/Support/SHA1.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 // ".text.split." holds symbols which are split out from functions in other 135 // input sections. For example, with -fsplit-machine-functions, placing the 136 // cold parts in .text.split instead of .text.unlikely mitigates against poor 137 // profile inaccuracy. Techniques such as hugepage remapping can make 138 // conservative decisions at the section granularity. 139 if (config->zKeepTextSectionPrefix) 140 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 141 ".text.startup.", ".text.exit.", ".text.split."}) 142 if (isSectionPrefix(v, s->name)) 143 return v.drop_back(); 144 145 for (StringRef v : 146 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 147 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 148 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 149 if (isSectionPrefix(v, s->name)) 150 return v.drop_back(); 151 152 return s->name; 153 } 154 155 static bool needsInterpSection() { 156 return !config->relocatable && !config->shared && 157 !config->dynamicLinker.empty() && script->needsInterpSection(); 158 } 159 160 template <class ELFT> void elf::writeResult() { 161 Writer<ELFT>().run(); 162 } 163 164 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 165 auto it = std::stable_partition( 166 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 167 if (p->p_type != PT_LOAD) 168 return true; 169 if (!p->firstSec) 170 return false; 171 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 172 return size != 0; 173 }); 174 175 // Clear OutputSection::ptLoad for sections contained in removed 176 // segments. 177 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 178 for (OutputSection *sec : outputSections) 179 if (removed.count(sec->ptLoad)) 180 sec->ptLoad = nullptr; 181 phdrs.erase(it, phdrs.end()); 182 } 183 184 void elf::copySectionsIntoPartitions() { 185 std::vector<InputSectionBase *> newSections; 186 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 187 for (InputSectionBase *s : inputSections) { 188 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 189 continue; 190 InputSectionBase *copy; 191 if (s->type == SHT_NOTE) 192 copy = make<InputSection>(cast<InputSection>(*s)); 193 else if (auto *es = dyn_cast<EhInputSection>(s)) 194 copy = make<EhInputSection>(*es); 195 else 196 continue; 197 copy->partition = part; 198 newSections.push_back(copy); 199 } 200 } 201 202 inputSections.insert(inputSections.end(), newSections.begin(), 203 newSections.end()); 204 } 205 206 void elf::combineEhSections() { 207 llvm::TimeTraceScope timeScope("Combine EH sections"); 208 for (InputSectionBase *&s : inputSections) { 209 // Ignore dead sections and the partition end marker (.part.end), 210 // whose partition number is out of bounds. 211 if (!s->isLive() || s->partition == 255) 212 continue; 213 214 Partition &part = s->getPartition(); 215 if (auto *es = dyn_cast<EhInputSection>(s)) { 216 part.ehFrame->addSection(es); 217 s = nullptr; 218 } else if (s->kind() == SectionBase::Regular && part.armExidx && 219 part.armExidx->addSection(cast<InputSection>(s))) { 220 s = nullptr; 221 } 222 } 223 224 llvm::erase_value(inputSections, nullptr); 225 } 226 227 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 228 uint64_t val, uint8_t stOther = STV_HIDDEN) { 229 Symbol *s = symtab->find(name); 230 if (!s || s->isDefined()) 231 return nullptr; 232 233 s->resolve(Defined{/*file=*/nullptr, name, STB_GLOBAL, stOther, STT_NOTYPE, 234 val, 235 /*size=*/0, sec}); 236 return cast<Defined>(s); 237 } 238 239 static Defined *addAbsolute(StringRef name) { 240 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 241 STT_NOTYPE, 0, 0, nullptr}); 242 return cast<Defined>(sym); 243 } 244 245 // The linker is expected to define some symbols depending on 246 // the linking result. This function defines such symbols. 247 void elf::addReservedSymbols() { 248 if (config->emachine == EM_MIPS) { 249 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 250 // so that it points to an absolute address which by default is relative 251 // to GOT. Default offset is 0x7ff0. 252 // See "Global Data Symbols" in Chapter 6 in the following document: 253 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 254 ElfSym::mipsGp = addAbsolute("_gp"); 255 256 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 257 // start of function and 'gp' pointer into GOT. 258 if (symtab->find("_gp_disp")) 259 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 260 261 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 262 // pointer. This symbol is used in the code generated by .cpload pseudo-op 263 // in case of using -mno-shared option. 264 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 265 if (symtab->find("__gnu_local_gp")) 266 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 267 } else if (config->emachine == EM_PPC) { 268 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 269 // support Small Data Area, define it arbitrarily as 0. 270 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 271 } else if (config->emachine == EM_PPC64) { 272 addPPC64SaveRestore(); 273 } 274 275 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 276 // combines the typical ELF GOT with the small data sections. It commonly 277 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 278 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 279 // represent the TOC base which is offset by 0x8000 bytes from the start of 280 // the .got section. 281 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 282 // correctness of some relocations depends on its value. 283 StringRef gotSymName = 284 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 285 286 if (Symbol *s = symtab->find(gotSymName)) { 287 if (s->isDefined()) { 288 error(toString(s->file) + " cannot redefine linker defined symbol '" + 289 gotSymName + "'"); 290 return; 291 } 292 293 uint64_t gotOff = 0; 294 if (config->emachine == EM_PPC64) 295 gotOff = 0x8000; 296 297 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 298 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 299 ElfSym::globalOffsetTable = cast<Defined>(s); 300 } 301 302 // __ehdr_start is the location of ELF file headers. Note that we define 303 // this symbol unconditionally even when using a linker script, which 304 // differs from the behavior implemented by GNU linker which only define 305 // this symbol if ELF headers are in the memory mapped segment. 306 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 307 308 // __executable_start is not documented, but the expectation of at 309 // least the Android libc is that it points to the ELF header. 310 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 311 312 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 313 // each DSO. The address of the symbol doesn't matter as long as they are 314 // different in different DSOs, so we chose the start address of the DSO. 315 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 316 317 // If linker script do layout we do not need to create any standard symbols. 318 if (script->hasSectionsCommand) 319 return; 320 321 auto add = [](StringRef s, int64_t pos) { 322 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 323 }; 324 325 ElfSym::bss = add("__bss_start", 0); 326 ElfSym::end1 = add("end", -1); 327 ElfSym::end2 = add("_end", -1); 328 ElfSym::etext1 = add("etext", -1); 329 ElfSym::etext2 = add("_etext", -1); 330 ElfSym::edata1 = add("edata", -1); 331 ElfSym::edata2 = add("_edata", -1); 332 } 333 334 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 335 for (BaseCommand *base : script->sectionCommands) 336 if (auto *sec = dyn_cast<OutputSection>(base)) 337 if (sec->name == name && sec->partition == partition) 338 return sec; 339 return nullptr; 340 } 341 342 template <class ELFT> void elf::createSyntheticSections() { 343 // Initialize all pointers with NULL. This is needed because 344 // you can call lld::elf::main more than once as a library. 345 memset(&Out::first, 0, sizeof(Out)); 346 347 // Add the .interp section first because it is not a SyntheticSection. 348 // The removeUnusedSyntheticSections() function relies on the 349 // SyntheticSections coming last. 350 if (needsInterpSection()) { 351 for (size_t i = 1; i <= partitions.size(); ++i) { 352 InputSection *sec = createInterpSection(); 353 sec->partition = i; 354 inputSections.push_back(sec); 355 } 356 } 357 358 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 359 360 in.shStrTab = make<StringTableSection>(".shstrtab", false); 361 362 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 363 Out::programHeaders->alignment = config->wordsize; 364 365 if (config->strip != StripPolicy::All) { 366 in.strTab = make<StringTableSection>(".strtab", false); 367 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 368 in.symTabShndx = make<SymtabShndxSection>(); 369 } 370 371 in.bss = make<BssSection>(".bss", 0, 1); 372 add(in.bss); 373 374 // If there is a SECTIONS command and a .data.rel.ro section name use name 375 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 376 // This makes sure our relro is contiguous. 377 bool hasDataRelRo = 378 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 379 in.bssRelRo = 380 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 381 add(in.bssRelRo); 382 383 // Add MIPS-specific sections. 384 if (config->emachine == EM_MIPS) { 385 if (!config->shared && config->hasDynSymTab) { 386 in.mipsRldMap = make<MipsRldMapSection>(); 387 add(in.mipsRldMap); 388 } 389 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 390 add(sec); 391 if (auto *sec = MipsOptionsSection<ELFT>::create()) 392 add(sec); 393 if (auto *sec = MipsReginfoSection<ELFT>::create()) 394 add(sec); 395 } 396 397 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 398 399 for (Partition &part : partitions) { 400 auto add = [&](SyntheticSection *sec) { 401 sec->partition = part.getNumber(); 402 inputSections.push_back(sec); 403 }; 404 405 if (!part.name.empty()) { 406 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 407 part.elfHeader->name = part.name; 408 add(part.elfHeader); 409 410 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 411 add(part.programHeaders); 412 } 413 414 if (config->buildId != BuildIdKind::None) { 415 part.buildId = make<BuildIdSection>(); 416 add(part.buildId); 417 } 418 419 part.dynStrTab = make<StringTableSection>(".dynstr", true); 420 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 421 part.dynamic = make<DynamicSection<ELFT>>(); 422 if (config->androidPackDynRelocs) 423 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 424 else 425 part.relaDyn = 426 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 427 428 if (config->hasDynSymTab) { 429 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 430 add(part.dynSymTab); 431 432 part.verSym = make<VersionTableSection>(); 433 add(part.verSym); 434 435 if (!namedVersionDefs().empty()) { 436 part.verDef = make<VersionDefinitionSection>(); 437 add(part.verDef); 438 } 439 440 part.verNeed = make<VersionNeedSection<ELFT>>(); 441 add(part.verNeed); 442 443 if (config->gnuHash) { 444 part.gnuHashTab = make<GnuHashTableSection>(); 445 add(part.gnuHashTab); 446 } 447 448 if (config->sysvHash) { 449 part.hashTab = make<HashTableSection>(); 450 add(part.hashTab); 451 } 452 453 add(part.dynamic); 454 add(part.dynStrTab); 455 add(part.relaDyn); 456 } 457 458 if (config->relrPackDynRelocs) { 459 part.relrDyn = make<RelrSection<ELFT>>(); 460 add(part.relrDyn); 461 } 462 463 if (!config->relocatable) { 464 if (config->ehFrameHdr) { 465 part.ehFrameHdr = make<EhFrameHeader>(); 466 add(part.ehFrameHdr); 467 } 468 part.ehFrame = make<EhFrameSection>(); 469 add(part.ehFrame); 470 } 471 472 if (config->emachine == EM_ARM && !config->relocatable) { 473 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 474 // InputSections. 475 part.armExidx = make<ARMExidxSyntheticSection>(); 476 add(part.armExidx); 477 } 478 } 479 480 if (partitions.size() != 1) { 481 // Create the partition end marker. This needs to be in partition number 255 482 // so that it is sorted after all other partitions. It also has other 483 // special handling (see createPhdrs() and combineEhSections()). 484 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 485 in.partEnd->partition = 255; 486 add(in.partEnd); 487 488 in.partIndex = make<PartitionIndexSection>(); 489 addOptionalRegular("__part_index_begin", in.partIndex, 0); 490 addOptionalRegular("__part_index_end", in.partIndex, 491 in.partIndex->getSize()); 492 add(in.partIndex); 493 } 494 495 // Add .got. MIPS' .got is so different from the other archs, 496 // it has its own class. 497 if (config->emachine == EM_MIPS) { 498 in.mipsGot = make<MipsGotSection>(); 499 add(in.mipsGot); 500 } else { 501 in.got = make<GotSection>(); 502 add(in.got); 503 } 504 505 if (config->emachine == EM_PPC) { 506 in.ppc32Got2 = make<PPC32Got2Section>(); 507 add(in.ppc32Got2); 508 } 509 510 if (config->emachine == EM_PPC64) { 511 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 512 add(in.ppc64LongBranchTarget); 513 } 514 515 in.gotPlt = make<GotPltSection>(); 516 add(in.gotPlt); 517 in.igotPlt = make<IgotPltSection>(); 518 add(in.igotPlt); 519 520 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 521 // it as a relocation and ensure the referenced section is created. 522 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 523 if (target->gotBaseSymInGotPlt) 524 in.gotPlt->hasGotPltOffRel = true; 525 else 526 in.got->hasGotOffRel = true; 527 } 528 529 if (config->gdbIndex) 530 add(GdbIndexSection::create<ELFT>()); 531 532 // We always need to add rel[a].plt to output if it has entries. 533 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 534 in.relaPlt = make<RelocationSection<ELFT>>( 535 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 536 add(in.relaPlt); 537 538 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 539 // relocations are processed last by the dynamic loader. We cannot place the 540 // iplt section in .rel.dyn when Android relocation packing is enabled because 541 // that would cause a section type mismatch. However, because the Android 542 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 543 // behaviour by placing the iplt section in .rel.plt. 544 in.relaIplt = make<RelocationSection<ELFT>>( 545 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 546 /*sort=*/false); 547 add(in.relaIplt); 548 549 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 550 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 551 in.ibtPlt = make<IBTPltSection>(); 552 add(in.ibtPlt); 553 } 554 555 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 556 : make<PltSection>(); 557 add(in.plt); 558 in.iplt = make<IpltSection>(); 559 add(in.iplt); 560 561 if (config->andFeatures) 562 add(make<GnuPropertySection>()); 563 564 // .note.GNU-stack is always added when we are creating a re-linkable 565 // object file. Other linkers are using the presence of this marker 566 // section to control the executable-ness of the stack area, but that 567 // is irrelevant these days. Stack area should always be non-executable 568 // by default. So we emit this section unconditionally. 569 if (config->relocatable) 570 add(make<GnuStackSection>()); 571 572 if (in.symTab) 573 add(in.symTab); 574 if (in.symTabShndx) 575 add(in.symTabShndx); 576 add(in.shStrTab); 577 if (in.strTab) 578 add(in.strTab); 579 } 580 581 // The main function of the writer. 582 template <class ELFT> void Writer<ELFT>::run() { 583 copyLocalSymbols(); 584 585 if (config->copyRelocs) 586 addSectionSymbols(); 587 588 // Now that we have a complete set of output sections. This function 589 // completes section contents. For example, we need to add strings 590 // to the string table, and add entries to .got and .plt. 591 // finalizeSections does that. 592 finalizeSections(); 593 checkExecuteOnly(); 594 if (errorCount()) 595 return; 596 597 // If --compressed-debug-sections is specified, compress .debug_* sections. 598 // Do it right now because it changes the size of output sections. 599 for (OutputSection *sec : outputSections) 600 sec->maybeCompress<ELFT>(); 601 602 if (script->hasSectionsCommand) 603 script->allocateHeaders(mainPart->phdrs); 604 605 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 606 // 0 sized region. This has to be done late since only after assignAddresses 607 // we know the size of the sections. 608 for (Partition &part : partitions) 609 removeEmptyPTLoad(part.phdrs); 610 611 if (!config->oFormatBinary) 612 assignFileOffsets(); 613 else 614 assignFileOffsetsBinary(); 615 616 for (Partition &part : partitions) 617 setPhdrs(part); 618 619 if (config->relocatable) 620 for (OutputSection *sec : outputSections) 621 sec->addr = 0; 622 623 // Handle --print-map(-M)/--Map, --why-extract=, --cref and 624 // --print-archive-stats=. Dump them before checkSections() because the files 625 // may be useful in case checkSections() or openFile() fails, for example, due 626 // to an erroneous file size. 627 writeMapFile(); 628 writeWhyExtract(); 629 writeCrossReferenceTable(); 630 writeArchiveStats(); 631 632 if (config->checkSections) 633 checkSections(); 634 635 // It does not make sense try to open the file if we have error already. 636 if (errorCount()) 637 return; 638 639 { 640 llvm::TimeTraceScope timeScope("Write output file"); 641 // Write the result down to a file. 642 openFile(); 643 if (errorCount()) 644 return; 645 646 if (!config->oFormatBinary) { 647 if (config->zSeparate != SeparateSegmentKind::None) 648 writeTrapInstr(); 649 writeHeader(); 650 writeSections(); 651 } else { 652 writeSectionsBinary(); 653 } 654 655 // Backfill .note.gnu.build-id section content. This is done at last 656 // because the content is usually a hash value of the entire output file. 657 writeBuildId(); 658 if (errorCount()) 659 return; 660 661 if (auto e = buffer->commit()) 662 error("failed to write to the output file: " + toString(std::move(e))); 663 } 664 } 665 666 template <class ELFT, class RelTy> 667 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 668 llvm::ArrayRef<RelTy> rels) { 669 for (const RelTy &rel : rels) { 670 Symbol &sym = file->getRelocTargetSym(rel); 671 if (sym.isLocal()) 672 sym.used = true; 673 } 674 } 675 676 // The function ensures that the "used" field of local symbols reflects the fact 677 // that the symbol is used in a relocation from a live section. 678 template <class ELFT> static void markUsedLocalSymbols() { 679 // With --gc-sections, the field is already filled. 680 // See MarkLive<ELFT>::resolveReloc(). 681 if (config->gcSections) 682 return; 683 // Without --gc-sections, the field is initialized with "true". 684 // Drop the flag first and then rise for symbols referenced in relocations. 685 for (InputFile *file : objectFiles) { 686 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 687 for (Symbol *b : f->getLocalSymbols()) 688 b->used = false; 689 for (InputSectionBase *s : f->getSections()) { 690 InputSection *isec = dyn_cast_or_null<InputSection>(s); 691 if (!isec) 692 continue; 693 if (isec->type == SHT_REL) 694 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 695 else if (isec->type == SHT_RELA) 696 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 697 } 698 } 699 } 700 701 static bool shouldKeepInSymtab(const Defined &sym) { 702 if (sym.isSection()) 703 return false; 704 705 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 706 // from live sections. 707 if (config->copyRelocs && sym.used) 708 return true; 709 710 // Exclude local symbols pointing to .ARM.exidx sections. 711 // They are probably mapping symbols "$d", which are optional for these 712 // sections. After merging the .ARM.exidx sections, some of these symbols 713 // may become dangling. The easiest way to avoid the issue is not to add 714 // them to the symbol table from the beginning. 715 if (config->emachine == EM_ARM && sym.section && 716 sym.section->type == SHT_ARM_EXIDX) 717 return false; 718 719 if (config->discard == DiscardPolicy::None) 720 return true; 721 if (config->discard == DiscardPolicy::All) 722 return false; 723 724 // In ELF assembly .L symbols are normally discarded by the assembler. 725 // If the assembler fails to do so, the linker discards them if 726 // * --discard-locals is used. 727 // * The symbol is in a SHF_MERGE section, which is normally the reason for 728 // the assembler keeping the .L symbol. 729 if (sym.getName().startswith(".L") && 730 (config->discard == DiscardPolicy::Locals || 731 (sym.section && (sym.section->flags & SHF_MERGE)))) 732 return false; 733 return true; 734 } 735 736 static bool includeInSymtab(const Symbol &b) { 737 if (!b.isLocal() && !b.isUsedInRegularObj) 738 return false; 739 740 if (auto *d = dyn_cast<Defined>(&b)) { 741 // Always include absolute symbols. 742 SectionBase *sec = d->section; 743 if (!sec) 744 return true; 745 sec = sec->repl; 746 747 // Exclude symbols pointing to garbage-collected sections. 748 if (isa<InputSectionBase>(sec) && !sec->isLive()) 749 return false; 750 751 if (auto *s = dyn_cast<MergeInputSection>(sec)) 752 if (!s->getSectionPiece(d->value)->live) 753 return false; 754 return true; 755 } 756 return b.used; 757 } 758 759 // Local symbols are not in the linker's symbol table. This function scans 760 // each object file's symbol table to copy local symbols to the output. 761 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 762 if (!in.symTab) 763 return; 764 llvm::TimeTraceScope timeScope("Add local symbols"); 765 if (config->copyRelocs && config->discard != DiscardPolicy::None) 766 markUsedLocalSymbols<ELFT>(); 767 for (InputFile *file : objectFiles) { 768 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 769 for (Symbol *b : f->getLocalSymbols()) { 770 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 771 auto *dr = dyn_cast<Defined>(b); 772 773 // No reason to keep local undefined symbol in symtab. 774 if (!dr) 775 continue; 776 if (!includeInSymtab(*b)) 777 continue; 778 if (!shouldKeepInSymtab(*dr)) 779 continue; 780 in.symTab->addSymbol(b); 781 } 782 } 783 } 784 785 // Create a section symbol for each output section so that we can represent 786 // relocations that point to the section. If we know that no relocation is 787 // referring to a section (that happens if the section is a synthetic one), we 788 // don't create a section symbol for that section. 789 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 790 for (BaseCommand *base : script->sectionCommands) { 791 auto *sec = dyn_cast<OutputSection>(base); 792 if (!sec) 793 continue; 794 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 795 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 796 return !isd->sections.empty(); 797 return false; 798 }); 799 if (i == sec->sectionCommands.end()) 800 continue; 801 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 802 803 // Relocations are not using REL[A] section symbols. 804 if (isec->type == SHT_REL || isec->type == SHT_RELA) 805 continue; 806 807 // Unlike other synthetic sections, mergeable output sections contain data 808 // copied from input sections, and there may be a relocation pointing to its 809 // contents if -r or --emit-reloc is given. 810 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 811 continue; 812 813 // Set the symbol to be relative to the output section so that its st_value 814 // equals the output section address. Note, there may be a gap between the 815 // start of the output section and isec. 816 auto *sym = 817 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 818 /*value=*/0, /*size=*/0, isec->getOutputSection()); 819 in.symTab->addSymbol(sym); 820 } 821 } 822 823 // Today's loaders have a feature to make segments read-only after 824 // processing dynamic relocations to enhance security. PT_GNU_RELRO 825 // is defined for that. 826 // 827 // This function returns true if a section needs to be put into a 828 // PT_GNU_RELRO segment. 829 static bool isRelroSection(const OutputSection *sec) { 830 if (!config->zRelro) 831 return false; 832 833 uint64_t flags = sec->flags; 834 835 // Non-allocatable or non-writable sections don't need RELRO because 836 // they are not writable or not even mapped to memory in the first place. 837 // RELRO is for sections that are essentially read-only but need to 838 // be writable only at process startup to allow dynamic linker to 839 // apply relocations. 840 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 841 return false; 842 843 // Once initialized, TLS data segments are used as data templates 844 // for a thread-local storage. For each new thread, runtime 845 // allocates memory for a TLS and copy templates there. No thread 846 // are supposed to use templates directly. Thus, it can be in RELRO. 847 if (flags & SHF_TLS) 848 return true; 849 850 // .init_array, .preinit_array and .fini_array contain pointers to 851 // functions that are executed on process startup or exit. These 852 // pointers are set by the static linker, and they are not expected 853 // to change at runtime. But if you are an attacker, you could do 854 // interesting things by manipulating pointers in .fini_array, for 855 // example. So they are put into RELRO. 856 uint32_t type = sec->type; 857 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 858 type == SHT_PREINIT_ARRAY) 859 return true; 860 861 // .got contains pointers to external symbols. They are resolved by 862 // the dynamic linker when a module is loaded into memory, and after 863 // that they are not expected to change. So, it can be in RELRO. 864 if (in.got && sec == in.got->getParent()) 865 return true; 866 867 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 868 // through r2 register, which is reserved for that purpose. Since r2 is used 869 // for accessing .got as well, .got and .toc need to be close enough in the 870 // virtual address space. Usually, .toc comes just after .got. Since we place 871 // .got into RELRO, .toc needs to be placed into RELRO too. 872 if (sec->name.equals(".toc")) 873 return true; 874 875 // .got.plt contains pointers to external function symbols. They are 876 // by default resolved lazily, so we usually cannot put it into RELRO. 877 // However, if "-z now" is given, the lazy symbol resolution is 878 // disabled, which enables us to put it into RELRO. 879 if (sec == in.gotPlt->getParent()) 880 return config->zNow; 881 882 // .dynamic section contains data for the dynamic linker, and 883 // there's no need to write to it at runtime, so it's better to put 884 // it into RELRO. 885 if (sec->name == ".dynamic") 886 return true; 887 888 // Sections with some special names are put into RELRO. This is a 889 // bit unfortunate because section names shouldn't be significant in 890 // ELF in spirit. But in reality many linker features depend on 891 // magic section names. 892 StringRef s = sec->name; 893 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 894 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 895 s == ".fini_array" || s == ".init_array" || 896 s == ".openbsd.randomdata" || s == ".preinit_array"; 897 } 898 899 // We compute a rank for each section. The rank indicates where the 900 // section should be placed in the file. Instead of using simple 901 // numbers (0,1,2...), we use a series of flags. One for each decision 902 // point when placing the section. 903 // Using flags has two key properties: 904 // * It is easy to check if a give branch was taken. 905 // * It is easy two see how similar two ranks are (see getRankProximity). 906 enum RankFlags { 907 RF_NOT_ADDR_SET = 1 << 27, 908 RF_NOT_ALLOC = 1 << 26, 909 RF_PARTITION = 1 << 18, // Partition number (8 bits) 910 RF_NOT_PART_EHDR = 1 << 17, 911 RF_NOT_PART_PHDR = 1 << 16, 912 RF_NOT_INTERP = 1 << 15, 913 RF_NOT_NOTE = 1 << 14, 914 RF_WRITE = 1 << 13, 915 RF_EXEC_WRITE = 1 << 12, 916 RF_EXEC = 1 << 11, 917 RF_RODATA = 1 << 10, 918 RF_NOT_RELRO = 1 << 9, 919 RF_NOT_TLS = 1 << 8, 920 RF_BSS = 1 << 7, 921 RF_PPC_NOT_TOCBSS = 1 << 6, 922 RF_PPC_TOCL = 1 << 5, 923 RF_PPC_TOC = 1 << 4, 924 RF_PPC_GOT = 1 << 3, 925 RF_PPC_BRANCH_LT = 1 << 2, 926 RF_MIPS_GPREL = 1 << 1, 927 RF_MIPS_NOT_GOT = 1 << 0 928 }; 929 930 static unsigned getSectionRank(const OutputSection *sec) { 931 unsigned rank = sec->partition * RF_PARTITION; 932 933 // We want to put section specified by -T option first, so we 934 // can start assigning VA starting from them later. 935 if (config->sectionStartMap.count(sec->name)) 936 return rank; 937 rank |= RF_NOT_ADDR_SET; 938 939 // Allocatable sections go first to reduce the total PT_LOAD size and 940 // so debug info doesn't change addresses in actual code. 941 if (!(sec->flags & SHF_ALLOC)) 942 return rank | RF_NOT_ALLOC; 943 944 if (sec->type == SHT_LLVM_PART_EHDR) 945 return rank; 946 rank |= RF_NOT_PART_EHDR; 947 948 if (sec->type == SHT_LLVM_PART_PHDR) 949 return rank; 950 rank |= RF_NOT_PART_PHDR; 951 952 // Put .interp first because some loaders want to see that section 953 // on the first page of the executable file when loaded into memory. 954 if (sec->name == ".interp") 955 return rank; 956 rank |= RF_NOT_INTERP; 957 958 // Put .note sections (which make up one PT_NOTE) at the beginning so that 959 // they are likely to be included in a core file even if core file size is 960 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 961 // included in a core to match core files with executables. 962 if (sec->type == SHT_NOTE) 963 return rank; 964 rank |= RF_NOT_NOTE; 965 966 // Sort sections based on their access permission in the following 967 // order: R, RX, RWX, RW. This order is based on the following 968 // considerations: 969 // * Read-only sections come first such that they go in the 970 // PT_LOAD covering the program headers at the start of the file. 971 // * Read-only, executable sections come next. 972 // * Writable, executable sections follow such that .plt on 973 // architectures where it needs to be writable will be placed 974 // between .text and .data. 975 // * Writable sections come last, such that .bss lands at the very 976 // end of the last PT_LOAD. 977 bool isExec = sec->flags & SHF_EXECINSTR; 978 bool isWrite = sec->flags & SHF_WRITE; 979 980 if (isExec) { 981 if (isWrite) 982 rank |= RF_EXEC_WRITE; 983 else 984 rank |= RF_EXEC; 985 } else if (isWrite) { 986 rank |= RF_WRITE; 987 } else if (sec->type == SHT_PROGBITS) { 988 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 989 // .eh_frame) closer to .text. They likely contain PC or GOT relative 990 // relocations and there could be relocation overflow if other huge sections 991 // (.dynstr .dynsym) were placed in between. 992 rank |= RF_RODATA; 993 } 994 995 // Place RelRo sections first. After considering SHT_NOBITS below, the 996 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 997 // where | marks where page alignment happens. An alternative ordering is 998 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 999 // waste more bytes due to 2 alignment places. 1000 if (!isRelroSection(sec)) 1001 rank |= RF_NOT_RELRO; 1002 1003 // If we got here we know that both A and B are in the same PT_LOAD. 1004 1005 // The TLS initialization block needs to be a single contiguous block in a R/W 1006 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1007 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1008 // after PROGBITS. 1009 if (!(sec->flags & SHF_TLS)) 1010 rank |= RF_NOT_TLS; 1011 1012 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1013 // sections, place non-NOBITS sections first. 1014 if (sec->type == SHT_NOBITS) 1015 rank |= RF_BSS; 1016 1017 // Some architectures have additional ordering restrictions for sections 1018 // within the same PT_LOAD. 1019 if (config->emachine == EM_PPC64) { 1020 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1021 // that we would like to make sure appear is a specific order to maximize 1022 // their coverage by a single signed 16-bit offset from the TOC base 1023 // pointer. Conversely, the special .tocbss section should be first among 1024 // all SHT_NOBITS sections. This will put it next to the loaded special 1025 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1026 StringRef name = sec->name; 1027 if (name != ".tocbss") 1028 rank |= RF_PPC_NOT_TOCBSS; 1029 1030 if (name == ".toc1") 1031 rank |= RF_PPC_TOCL; 1032 1033 if (name == ".toc") 1034 rank |= RF_PPC_TOC; 1035 1036 if (name == ".got") 1037 rank |= RF_PPC_GOT; 1038 1039 if (name == ".branch_lt") 1040 rank |= RF_PPC_BRANCH_LT; 1041 } 1042 1043 if (config->emachine == EM_MIPS) { 1044 // All sections with SHF_MIPS_GPREL flag should be grouped together 1045 // because data in these sections is addressable with a gp relative address. 1046 if (sec->flags & SHF_MIPS_GPREL) 1047 rank |= RF_MIPS_GPREL; 1048 1049 if (sec->name != ".got") 1050 rank |= RF_MIPS_NOT_GOT; 1051 } 1052 1053 return rank; 1054 } 1055 1056 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1057 const OutputSection *a = cast<OutputSection>(aCmd); 1058 const OutputSection *b = cast<OutputSection>(bCmd); 1059 1060 if (a->sortRank != b->sortRank) 1061 return a->sortRank < b->sortRank; 1062 1063 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1064 return config->sectionStartMap.lookup(a->name) < 1065 config->sectionStartMap.lookup(b->name); 1066 return false; 1067 } 1068 1069 void PhdrEntry::add(OutputSection *sec) { 1070 lastSec = sec; 1071 if (!firstSec) 1072 firstSec = sec; 1073 p_align = std::max(p_align, sec->alignment); 1074 if (p_type == PT_LOAD) 1075 sec->ptLoad = this; 1076 } 1077 1078 // The beginning and the ending of .rel[a].plt section are marked 1079 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1080 // executable. The runtime needs these symbols in order to resolve 1081 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1082 // need these symbols, since IRELATIVE relocs are resolved through GOT 1083 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1084 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1085 if (config->relocatable || config->isPic) 1086 return; 1087 1088 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1089 // because .rela.plt might be empty and thus removed from output. 1090 // We'll override Out::elfHeader with In.relaIplt later when we are 1091 // sure that .rela.plt exists in output. 1092 ElfSym::relaIpltStart = addOptionalRegular( 1093 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1094 Out::elfHeader, 0, STV_HIDDEN); 1095 1096 ElfSym::relaIpltEnd = addOptionalRegular( 1097 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1098 Out::elfHeader, 0, STV_HIDDEN); 1099 } 1100 1101 template <class ELFT> 1102 void Writer<ELFT>::forEachRelSec( 1103 llvm::function_ref<void(InputSectionBase &)> fn) { 1104 // Scan all relocations. Each relocation goes through a series 1105 // of tests to determine if it needs special treatment, such as 1106 // creating GOT, PLT, copy relocations, etc. 1107 // Note that relocations for non-alloc sections are directly 1108 // processed by InputSection::relocateNonAlloc. 1109 for (InputSectionBase *isec : inputSections) 1110 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1111 fn(*isec); 1112 for (Partition &part : partitions) { 1113 for (EhInputSection *es : part.ehFrame->sections) 1114 fn(*es); 1115 if (part.armExidx && part.armExidx->isLive()) 1116 for (InputSection *ex : part.armExidx->exidxSections) 1117 fn(*ex); 1118 } 1119 } 1120 1121 // This function generates assignments for predefined symbols (e.g. _end or 1122 // _etext) and inserts them into the commands sequence to be processed at the 1123 // appropriate time. This ensures that the value is going to be correct by the 1124 // time any references to these symbols are processed and is equivalent to 1125 // defining these symbols explicitly in the linker script. 1126 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1127 if (ElfSym::globalOffsetTable) { 1128 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1129 // to the start of the .got or .got.plt section. 1130 InputSection *gotSection = in.gotPlt; 1131 if (!target->gotBaseSymInGotPlt) 1132 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1133 : cast<InputSection>(in.got); 1134 ElfSym::globalOffsetTable->section = gotSection; 1135 } 1136 1137 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1138 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1139 ElfSym::relaIpltStart->section = in.relaIplt; 1140 ElfSym::relaIpltEnd->section = in.relaIplt; 1141 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1142 } 1143 1144 PhdrEntry *last = nullptr; 1145 PhdrEntry *lastRO = nullptr; 1146 1147 for (Partition &part : partitions) { 1148 for (PhdrEntry *p : part.phdrs) { 1149 if (p->p_type != PT_LOAD) 1150 continue; 1151 last = p; 1152 if (!(p->p_flags & PF_W)) 1153 lastRO = p; 1154 } 1155 } 1156 1157 if (lastRO) { 1158 // _etext is the first location after the last read-only loadable segment. 1159 if (ElfSym::etext1) 1160 ElfSym::etext1->section = lastRO->lastSec; 1161 if (ElfSym::etext2) 1162 ElfSym::etext2->section = lastRO->lastSec; 1163 } 1164 1165 if (last) { 1166 // _edata points to the end of the last mapped initialized section. 1167 OutputSection *edata = nullptr; 1168 for (OutputSection *os : outputSections) { 1169 if (os->type != SHT_NOBITS) 1170 edata = os; 1171 if (os == last->lastSec) 1172 break; 1173 } 1174 1175 if (ElfSym::edata1) 1176 ElfSym::edata1->section = edata; 1177 if (ElfSym::edata2) 1178 ElfSym::edata2->section = edata; 1179 1180 // _end is the first location after the uninitialized data region. 1181 if (ElfSym::end1) 1182 ElfSym::end1->section = last->lastSec; 1183 if (ElfSym::end2) 1184 ElfSym::end2->section = last->lastSec; 1185 } 1186 1187 if (ElfSym::bss) 1188 ElfSym::bss->section = findSection(".bss"); 1189 1190 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1191 // be equal to the _gp symbol's value. 1192 if (ElfSym::mipsGp) { 1193 // Find GP-relative section with the lowest address 1194 // and use this address to calculate default _gp value. 1195 for (OutputSection *os : outputSections) { 1196 if (os->flags & SHF_MIPS_GPREL) { 1197 ElfSym::mipsGp->section = os; 1198 ElfSym::mipsGp->value = 0x7ff0; 1199 break; 1200 } 1201 } 1202 } 1203 } 1204 1205 // We want to find how similar two ranks are. 1206 // The more branches in getSectionRank that match, the more similar they are. 1207 // Since each branch corresponds to a bit flag, we can just use 1208 // countLeadingZeros. 1209 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1210 return countLeadingZeros(a->sortRank ^ b->sortRank); 1211 } 1212 1213 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1214 auto *sec = dyn_cast<OutputSection>(b); 1215 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1216 } 1217 1218 // When placing orphan sections, we want to place them after symbol assignments 1219 // so that an orphan after 1220 // begin_foo = .; 1221 // foo : { *(foo) } 1222 // end_foo = .; 1223 // doesn't break the intended meaning of the begin/end symbols. 1224 // We don't want to go over sections since findOrphanPos is the 1225 // one in charge of deciding the order of the sections. 1226 // We don't want to go over changes to '.', since doing so in 1227 // rx_sec : { *(rx_sec) } 1228 // . = ALIGN(0x1000); 1229 // /* The RW PT_LOAD starts here*/ 1230 // rw_sec : { *(rw_sec) } 1231 // would mean that the RW PT_LOAD would become unaligned. 1232 static bool shouldSkip(BaseCommand *cmd) { 1233 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1234 return assign->name != "."; 1235 return false; 1236 } 1237 1238 // We want to place orphan sections so that they share as much 1239 // characteristics with their neighbors as possible. For example, if 1240 // both are rw, or both are tls. 1241 static std::vector<BaseCommand *>::iterator 1242 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1243 std::vector<BaseCommand *>::iterator e) { 1244 OutputSection *sec = cast<OutputSection>(*e); 1245 1246 // Find the first element that has as close a rank as possible. 1247 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1248 return getRankProximity(sec, a) < getRankProximity(sec, b); 1249 }); 1250 if (i == e) 1251 return e; 1252 auto foundSec = dyn_cast<OutputSection>(*i); 1253 if (!foundSec) 1254 return e; 1255 1256 // Consider all existing sections with the same proximity. 1257 int proximity = getRankProximity(sec, *i); 1258 unsigned sortRank = sec->sortRank; 1259 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1260 // Prevent the orphan section to be placed before the found section. If 1261 // custom program headers are defined, that helps to avoid adding it to a 1262 // previous segment and changing flags of that segment, for example, making 1263 // a read-only segment writable. If memory regions are defined, an orphan 1264 // section should continue the same region as the found section to better 1265 // resemble the behavior of GNU ld. 1266 sortRank = std::max(sortRank, foundSec->sortRank); 1267 for (; i != e; ++i) { 1268 auto *curSec = dyn_cast<OutputSection>(*i); 1269 if (!curSec || !curSec->hasInputSections) 1270 continue; 1271 if (getRankProximity(sec, curSec) != proximity || 1272 sortRank < curSec->sortRank) 1273 break; 1274 } 1275 1276 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1277 auto *os = dyn_cast<OutputSection>(cmd); 1278 return os && os->hasInputSections; 1279 }; 1280 auto j = std::find_if(llvm::make_reverse_iterator(i), 1281 llvm::make_reverse_iterator(b), 1282 isOutputSecWithInputSections); 1283 i = j.base(); 1284 1285 // As a special case, if the orphan section is the last section, put 1286 // it at the very end, past any other commands. 1287 // This matches bfd's behavior and is convenient when the linker script fully 1288 // specifies the start of the file, but doesn't care about the end (the non 1289 // alloc sections for example). 1290 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1291 if (nextSec == e) 1292 return e; 1293 1294 while (i != e && shouldSkip(*i)) 1295 ++i; 1296 return i; 1297 } 1298 1299 // Adds random priorities to sections not already in the map. 1300 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1301 if (config->shuffleSections.empty()) 1302 return; 1303 1304 std::vector<InputSectionBase *> matched, sections = inputSections; 1305 matched.reserve(sections.size()); 1306 for (const auto &patAndSeed : config->shuffleSections) { 1307 matched.clear(); 1308 for (InputSectionBase *sec : sections) 1309 if (patAndSeed.first.match(sec->name)) 1310 matched.push_back(sec); 1311 const uint32_t seed = patAndSeed.second; 1312 if (seed == UINT32_MAX) { 1313 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1314 // section order is stable even if the number of sections changes. This is 1315 // useful to catch issues like static initialization order fiasco 1316 // reliably. 1317 std::reverse(matched.begin(), matched.end()); 1318 } else { 1319 std::mt19937 g(seed ? seed : std::random_device()()); 1320 llvm::shuffle(matched.begin(), matched.end(), g); 1321 } 1322 size_t i = 0; 1323 for (InputSectionBase *&sec : sections) 1324 if (patAndSeed.first.match(sec->name)) 1325 sec = matched[i++]; 1326 } 1327 1328 // Existing priorities are < 0, so use priorities >= 0 for the missing 1329 // sections. 1330 int prio = 0; 1331 for (InputSectionBase *sec : sections) { 1332 if (order.try_emplace(sec, prio).second) 1333 ++prio; 1334 } 1335 } 1336 1337 // Builds section order for handling --symbol-ordering-file. 1338 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1339 DenseMap<const InputSectionBase *, int> sectionOrder; 1340 // Use the rarely used option --call-graph-ordering-file to sort sections. 1341 if (!config->callGraphProfile.empty()) 1342 return computeCallGraphProfileOrder(); 1343 1344 if (config->symbolOrderingFile.empty()) 1345 return sectionOrder; 1346 1347 struct SymbolOrderEntry { 1348 int priority; 1349 bool present; 1350 }; 1351 1352 // Build a map from symbols to their priorities. Symbols that didn't 1353 // appear in the symbol ordering file have the lowest priority 0. 1354 // All explicitly mentioned symbols have negative (higher) priorities. 1355 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1356 int priority = -config->symbolOrderingFile.size(); 1357 for (StringRef s : config->symbolOrderingFile) 1358 symbolOrder.insert({s, {priority++, false}}); 1359 1360 // Build a map from sections to their priorities. 1361 auto addSym = [&](Symbol &sym) { 1362 auto it = symbolOrder.find(sym.getName()); 1363 if (it == symbolOrder.end()) 1364 return; 1365 SymbolOrderEntry &ent = it->second; 1366 ent.present = true; 1367 1368 maybeWarnUnorderableSymbol(&sym); 1369 1370 if (auto *d = dyn_cast<Defined>(&sym)) { 1371 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1372 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1373 priority = std::min(priority, ent.priority); 1374 } 1375 } 1376 }; 1377 1378 // We want both global and local symbols. We get the global ones from the 1379 // symbol table and iterate the object files for the local ones. 1380 for (Symbol *sym : symtab->symbols()) 1381 if (!sym->isLazy()) 1382 addSym(*sym); 1383 1384 for (InputFile *file : objectFiles) 1385 for (Symbol *sym : file->getSymbols()) { 1386 if (!sym->isLocal()) 1387 break; 1388 addSym(*sym); 1389 } 1390 1391 if (config->warnSymbolOrdering) 1392 for (auto orderEntry : symbolOrder) 1393 if (!orderEntry.second.present) 1394 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1395 1396 return sectionOrder; 1397 } 1398 1399 // Sorts the sections in ISD according to the provided section order. 1400 static void 1401 sortISDBySectionOrder(InputSectionDescription *isd, 1402 const DenseMap<const InputSectionBase *, int> &order) { 1403 std::vector<InputSection *> unorderedSections; 1404 std::vector<std::pair<InputSection *, int>> orderedSections; 1405 uint64_t unorderedSize = 0; 1406 1407 for (InputSection *isec : isd->sections) { 1408 auto i = order.find(isec); 1409 if (i == order.end()) { 1410 unorderedSections.push_back(isec); 1411 unorderedSize += isec->getSize(); 1412 continue; 1413 } 1414 orderedSections.push_back({isec, i->second}); 1415 } 1416 llvm::sort(orderedSections, llvm::less_second()); 1417 1418 // Find an insertion point for the ordered section list in the unordered 1419 // section list. On targets with limited-range branches, this is the mid-point 1420 // of the unordered section list. This decreases the likelihood that a range 1421 // extension thunk will be needed to enter or exit the ordered region. If the 1422 // ordered section list is a list of hot functions, we can generally expect 1423 // the ordered functions to be called more often than the unordered functions, 1424 // making it more likely that any particular call will be within range, and 1425 // therefore reducing the number of thunks required. 1426 // 1427 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1428 // If the layout is: 1429 // 1430 // 8MB hot 1431 // 32MB cold 1432 // 1433 // only the first 8-16MB of the cold code (depending on which hot function it 1434 // is actually calling) can call the hot code without a range extension thunk. 1435 // However, if we use this layout: 1436 // 1437 // 16MB cold 1438 // 8MB hot 1439 // 16MB cold 1440 // 1441 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1442 // of the second block of cold code can call the hot code without a thunk. So 1443 // we effectively double the amount of code that could potentially call into 1444 // the hot code without a thunk. 1445 size_t insPt = 0; 1446 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1447 uint64_t unorderedPos = 0; 1448 for (; insPt != unorderedSections.size(); ++insPt) { 1449 unorderedPos += unorderedSections[insPt]->getSize(); 1450 if (unorderedPos > unorderedSize / 2) 1451 break; 1452 } 1453 } 1454 1455 isd->sections.clear(); 1456 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1457 isd->sections.push_back(isec); 1458 for (std::pair<InputSection *, int> p : orderedSections) 1459 isd->sections.push_back(p.first); 1460 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1461 isd->sections.push_back(isec); 1462 } 1463 1464 static void sortSection(OutputSection *sec, 1465 const DenseMap<const InputSectionBase *, int> &order) { 1466 StringRef name = sec->name; 1467 1468 // Never sort these. 1469 if (name == ".init" || name == ".fini") 1470 return; 1471 1472 // IRelative relocations that usually live in the .rel[a].dyn section should 1473 // be processed last by the dynamic loader. To achieve that we add synthetic 1474 // sections in the required order from the beginning so that the in.relaIplt 1475 // section is placed last in an output section. Here we just do not apply 1476 // sorting for an output section which holds the in.relaIplt section. 1477 if (in.relaIplt->getParent() == sec) 1478 return; 1479 1480 // Sort input sections by priority using the list provided by 1481 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1482 // digit radix sort. The sections may be sorted stably again by a more 1483 // significant key. 1484 if (!order.empty()) 1485 for (BaseCommand *b : sec->sectionCommands) 1486 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1487 sortISDBySectionOrder(isd, order); 1488 1489 if (script->hasSectionsCommand) 1490 return; 1491 1492 if (name == ".init_array" || name == ".fini_array") { 1493 sec->sortInitFini(); 1494 } else if (name == ".ctors" || name == ".dtors") { 1495 sec->sortCtorsDtors(); 1496 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1497 // .toc is allocated just after .got and is accessed using GOT-relative 1498 // relocations. Object files compiled with small code model have an 1499 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1500 // To reduce the risk of relocation overflow, .toc contents are sorted so 1501 // that sections having smaller relocation offsets are at beginning of .toc 1502 assert(sec->sectionCommands.size() == 1); 1503 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1504 llvm::stable_sort(isd->sections, 1505 [](const InputSection *a, const InputSection *b) -> bool { 1506 return a->file->ppc64SmallCodeModelTocRelocs && 1507 !b->file->ppc64SmallCodeModelTocRelocs; 1508 }); 1509 } 1510 } 1511 1512 // If no layout was provided by linker script, we want to apply default 1513 // sorting for special input sections. This also handles --symbol-ordering-file. 1514 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1515 // Build the order once since it is expensive. 1516 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1517 maybeShuffle(order); 1518 for (BaseCommand *base : script->sectionCommands) 1519 if (auto *sec = dyn_cast<OutputSection>(base)) 1520 sortSection(sec, order); 1521 } 1522 1523 template <class ELFT> void Writer<ELFT>::sortSections() { 1524 llvm::TimeTraceScope timeScope("Sort sections"); 1525 script->adjustSectionsBeforeSorting(); 1526 1527 // Don't sort if using -r. It is not necessary and we want to preserve the 1528 // relative order for SHF_LINK_ORDER sections. 1529 if (config->relocatable) 1530 return; 1531 1532 sortInputSections(); 1533 1534 for (BaseCommand *base : script->sectionCommands) { 1535 auto *os = dyn_cast<OutputSection>(base); 1536 if (!os) 1537 continue; 1538 os->sortRank = getSectionRank(os); 1539 1540 // We want to assign rude approximation values to outSecOff fields 1541 // to know the relative order of the input sections. We use it for 1542 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1543 uint64_t i = 0; 1544 for (InputSection *sec : getInputSections(os)) 1545 sec->outSecOff = i++; 1546 } 1547 1548 if (!script->hasSectionsCommand) { 1549 // We know that all the OutputSections are contiguous in this case. 1550 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1551 std::stable_sort( 1552 llvm::find_if(script->sectionCommands, isSection), 1553 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1554 compareSections); 1555 1556 // Process INSERT commands. From this point onwards the order of 1557 // script->sectionCommands is fixed. 1558 script->processInsertCommands(); 1559 return; 1560 } 1561 1562 script->processInsertCommands(); 1563 1564 // Orphan sections are sections present in the input files which are 1565 // not explicitly placed into the output file by the linker script. 1566 // 1567 // The sections in the linker script are already in the correct 1568 // order. We have to figuere out where to insert the orphan 1569 // sections. 1570 // 1571 // The order of the sections in the script is arbitrary and may not agree with 1572 // compareSections. This means that we cannot easily define a strict weak 1573 // ordering. To see why, consider a comparison of a section in the script and 1574 // one not in the script. We have a two simple options: 1575 // * Make them equivalent (a is not less than b, and b is not less than a). 1576 // The problem is then that equivalence has to be transitive and we can 1577 // have sections a, b and c with only b in a script and a less than c 1578 // which breaks this property. 1579 // * Use compareSectionsNonScript. Given that the script order doesn't have 1580 // to match, we can end up with sections a, b, c, d where b and c are in the 1581 // script and c is compareSectionsNonScript less than b. In which case d 1582 // can be equivalent to c, a to b and d < a. As a concrete example: 1583 // .a (rx) # not in script 1584 // .b (rx) # in script 1585 // .c (ro) # in script 1586 // .d (ro) # not in script 1587 // 1588 // The way we define an order then is: 1589 // * Sort only the orphan sections. They are in the end right now. 1590 // * Move each orphan section to its preferred position. We try 1591 // to put each section in the last position where it can share 1592 // a PT_LOAD. 1593 // 1594 // There is some ambiguity as to where exactly a new entry should be 1595 // inserted, because Commands contains not only output section 1596 // commands but also other types of commands such as symbol assignment 1597 // expressions. There's no correct answer here due to the lack of the 1598 // formal specification of the linker script. We use heuristics to 1599 // determine whether a new output command should be added before or 1600 // after another commands. For the details, look at shouldSkip 1601 // function. 1602 1603 auto i = script->sectionCommands.begin(); 1604 auto e = script->sectionCommands.end(); 1605 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1606 if (auto *sec = dyn_cast<OutputSection>(base)) 1607 return sec->sectionIndex == UINT32_MAX; 1608 return false; 1609 }); 1610 1611 // Sort the orphan sections. 1612 std::stable_sort(nonScriptI, e, compareSections); 1613 1614 // As a horrible special case, skip the first . assignment if it is before any 1615 // section. We do this because it is common to set a load address by starting 1616 // the script with ". = 0xabcd" and the expectation is that every section is 1617 // after that. 1618 auto firstSectionOrDotAssignment = 1619 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1620 if (firstSectionOrDotAssignment != e && 1621 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1622 ++firstSectionOrDotAssignment; 1623 i = firstSectionOrDotAssignment; 1624 1625 while (nonScriptI != e) { 1626 auto pos = findOrphanPos(i, nonScriptI); 1627 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1628 1629 // As an optimization, find all sections with the same sort rank 1630 // and insert them with one rotate. 1631 unsigned rank = orphan->sortRank; 1632 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1633 return cast<OutputSection>(cmd)->sortRank != rank; 1634 }); 1635 std::rotate(pos, nonScriptI, end); 1636 nonScriptI = end; 1637 } 1638 1639 script->adjustSectionsAfterSorting(); 1640 } 1641 1642 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1643 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1644 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1645 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1646 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1647 if (!la || !lb) 1648 return la && !lb; 1649 OutputSection *aOut = la->getParent(); 1650 OutputSection *bOut = lb->getParent(); 1651 1652 if (aOut != bOut) 1653 return aOut->addr < bOut->addr; 1654 return la->outSecOff < lb->outSecOff; 1655 } 1656 1657 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1658 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1659 for (OutputSection *sec : outputSections) { 1660 if (!(sec->flags & SHF_LINK_ORDER)) 1661 continue; 1662 1663 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1664 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1665 if (!config->relocatable && config->emachine == EM_ARM && 1666 sec->type == SHT_ARM_EXIDX) 1667 continue; 1668 1669 // Link order may be distributed across several InputSectionDescriptions. 1670 // Sorting is performed separately. 1671 std::vector<InputSection **> scriptSections; 1672 std::vector<InputSection *> sections; 1673 for (BaseCommand *base : sec->sectionCommands) { 1674 auto *isd = dyn_cast<InputSectionDescription>(base); 1675 if (!isd) 1676 continue; 1677 bool hasLinkOrder = false; 1678 scriptSections.clear(); 1679 sections.clear(); 1680 for (InputSection *&isec : isd->sections) { 1681 if (isec->flags & SHF_LINK_ORDER) { 1682 InputSection *link = isec->getLinkOrderDep(); 1683 if (link && !link->getParent()) 1684 error(toString(isec) + ": sh_link points to discarded section " + 1685 toString(link)); 1686 hasLinkOrder = true; 1687 } 1688 scriptSections.push_back(&isec); 1689 sections.push_back(isec); 1690 } 1691 if (hasLinkOrder && errorCount() == 0) { 1692 llvm::stable_sort(sections, compareByFilePosition); 1693 for (int i = 0, n = sections.size(); i != n; ++i) 1694 *scriptSections[i] = sections[i]; 1695 } 1696 } 1697 } 1698 } 1699 1700 static void finalizeSynthetic(SyntheticSection *sec) { 1701 if (sec && sec->isNeeded() && sec->getParent()) { 1702 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1703 sec->finalizeContents(); 1704 } 1705 } 1706 1707 // We need to generate and finalize the content that depends on the address of 1708 // InputSections. As the generation of the content may also alter InputSection 1709 // addresses we must converge to a fixed point. We do that here. See the comment 1710 // in Writer<ELFT>::finalizeSections(). 1711 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1712 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1713 ThunkCreator tc; 1714 AArch64Err843419Patcher a64p; 1715 ARMErr657417Patcher a32p; 1716 script->assignAddresses(); 1717 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1718 // do require the relative addresses of OutputSections because linker scripts 1719 // can assign Virtual Addresses to OutputSections that are not monotonically 1720 // increasing. 1721 for (Partition &part : partitions) 1722 finalizeSynthetic(part.armExidx); 1723 resolveShfLinkOrder(); 1724 1725 // Converts call x@GDPLT to call __tls_get_addr 1726 if (config->emachine == EM_HEXAGON) 1727 hexagonTLSSymbolUpdate(outputSections); 1728 1729 int assignPasses = 0; 1730 for (;;) { 1731 bool changed = target->needsThunks && tc.createThunks(outputSections); 1732 1733 // With Thunk Size much smaller than branch range we expect to 1734 // converge quickly; if we get to 15 something has gone wrong. 1735 if (changed && tc.pass >= 15) { 1736 error("thunk creation not converged"); 1737 break; 1738 } 1739 1740 if (config->fixCortexA53Errata843419) { 1741 if (changed) 1742 script->assignAddresses(); 1743 changed |= a64p.createFixes(); 1744 } 1745 if (config->fixCortexA8) { 1746 if (changed) 1747 script->assignAddresses(); 1748 changed |= a32p.createFixes(); 1749 } 1750 1751 if (in.mipsGot) 1752 in.mipsGot->updateAllocSize(); 1753 1754 for (Partition &part : partitions) { 1755 changed |= part.relaDyn->updateAllocSize(); 1756 if (part.relrDyn) 1757 changed |= part.relrDyn->updateAllocSize(); 1758 } 1759 1760 const Defined *changedSym = script->assignAddresses(); 1761 if (!changed) { 1762 // Some symbols may be dependent on section addresses. When we break the 1763 // loop, the symbol values are finalized because a previous 1764 // assignAddresses() finalized section addresses. 1765 if (!changedSym) 1766 break; 1767 if (++assignPasses == 5) { 1768 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1769 " does not converge"); 1770 break; 1771 } 1772 } 1773 } 1774 1775 // If addrExpr is set, the address may not be a multiple of the alignment. 1776 // Warn because this is error-prone. 1777 for (BaseCommand *cmd : script->sectionCommands) 1778 if (auto *os = dyn_cast<OutputSection>(cmd)) 1779 if (os->addr % os->alignment != 0) 1780 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1781 os->name + " is not a multiple of alignment (" + 1782 Twine(os->alignment) + ")"); 1783 } 1784 1785 // If Input Sections have been shrunk (basic block sections) then 1786 // update symbol values and sizes associated with these sections. With basic 1787 // block sections, input sections can shrink when the jump instructions at 1788 // the end of the section are relaxed. 1789 static void fixSymbolsAfterShrinking() { 1790 for (InputFile *File : objectFiles) { 1791 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1792 auto *def = dyn_cast<Defined>(Sym); 1793 if (!def) 1794 return; 1795 1796 const SectionBase *sec = def->section; 1797 if (!sec) 1798 return; 1799 1800 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1801 if (!inputSec || !inputSec->bytesDropped) 1802 return; 1803 1804 const size_t OldSize = inputSec->data().size(); 1805 const size_t NewSize = OldSize - inputSec->bytesDropped; 1806 1807 if (def->value > NewSize && def->value <= OldSize) { 1808 LLVM_DEBUG(llvm::dbgs() 1809 << "Moving symbol " << Sym->getName() << " from " 1810 << def->value << " to " 1811 << def->value - inputSec->bytesDropped << " bytes\n"); 1812 def->value -= inputSec->bytesDropped; 1813 return; 1814 } 1815 1816 if (def->value + def->size > NewSize && def->value <= OldSize && 1817 def->value + def->size <= OldSize) { 1818 LLVM_DEBUG(llvm::dbgs() 1819 << "Shrinking symbol " << Sym->getName() << " from " 1820 << def->size << " to " << def->size - inputSec->bytesDropped 1821 << " bytes\n"); 1822 def->size -= inputSec->bytesDropped; 1823 } 1824 }); 1825 } 1826 } 1827 1828 // If basic block sections exist, there are opportunities to delete fall thru 1829 // jumps and shrink jump instructions after basic block reordering. This 1830 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1831 // option is used. 1832 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1833 assert(config->optimizeBBJumps); 1834 1835 script->assignAddresses(); 1836 // For every output section that has executable input sections, this 1837 // does the following: 1838 // 1. Deletes all direct jump instructions in input sections that 1839 // jump to the following section as it is not required. 1840 // 2. If there are two consecutive jump instructions, it checks 1841 // if they can be flipped and one can be deleted. 1842 for (OutputSection *os : outputSections) { 1843 if (!(os->flags & SHF_EXECINSTR)) 1844 continue; 1845 std::vector<InputSection *> sections = getInputSections(os); 1846 std::vector<unsigned> result(sections.size()); 1847 // Delete all fall through jump instructions. Also, check if two 1848 // consecutive jump instructions can be flipped so that a fall 1849 // through jmp instruction can be deleted. 1850 parallelForEachN(0, sections.size(), [&](size_t i) { 1851 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1852 InputSection &is = *sections[i]; 1853 result[i] = 1854 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1855 }); 1856 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1857 if (numDeleted > 0) { 1858 script->assignAddresses(); 1859 LLVM_DEBUG(llvm::dbgs() 1860 << "Removing " << numDeleted << " fall through jumps\n"); 1861 } 1862 } 1863 1864 fixSymbolsAfterShrinking(); 1865 1866 for (OutputSection *os : outputSections) { 1867 std::vector<InputSection *> sections = getInputSections(os); 1868 for (InputSection *is : sections) 1869 is->trim(); 1870 } 1871 } 1872 1873 // In order to allow users to manipulate linker-synthesized sections, 1874 // we had to add synthetic sections to the input section list early, 1875 // even before we make decisions whether they are needed. This allows 1876 // users to write scripts like this: ".mygot : { .got }". 1877 // 1878 // Doing it has an unintended side effects. If it turns out that we 1879 // don't need a .got (for example) at all because there's no 1880 // relocation that needs a .got, we don't want to emit .got. 1881 // 1882 // To deal with the above problem, this function is called after 1883 // scanRelocations is called to remove synthetic sections that turn 1884 // out to be empty. 1885 static void removeUnusedSyntheticSections() { 1886 // All input synthetic sections that can be empty are placed after 1887 // all regular ones. Reverse iterate to find the first synthetic section 1888 // after a non-synthetic one which will be our starting point. 1889 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1890 [](InputSectionBase *s) { 1891 return !isa<SyntheticSection>(s); 1892 }) 1893 .base(); 1894 1895 DenseSet<InputSectionDescription *> isdSet; 1896 // Mark unused synthetic sections for deletion 1897 auto end = std::stable_partition( 1898 start, inputSections.end(), [&](InputSectionBase *s) { 1899 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1900 OutputSection *os = ss->getParent(); 1901 if (!os || ss->isNeeded()) 1902 return true; 1903 1904 // If we reach here, then ss is an unused synthetic section and we want 1905 // to remove it from the corresponding input section description, and 1906 // orphanSections. 1907 for (BaseCommand *b : os->sectionCommands) 1908 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1909 isdSet.insert(isd); 1910 1911 llvm::erase_if( 1912 script->orphanSections, 1913 [=](const InputSectionBase *isec) { return isec == ss; }); 1914 1915 return false; 1916 }); 1917 1918 DenseSet<InputSectionBase *> unused(end, inputSections.end()); 1919 for (auto *isd : isdSet) 1920 llvm::erase_if(isd->sections, 1921 [=](InputSection *isec) { return unused.count(isec); }); 1922 1923 // Erase unused synthetic sections. 1924 inputSections.erase(end, inputSections.end()); 1925 } 1926 1927 // Create output section objects and add them to OutputSections. 1928 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1929 Out::preinitArray = findSection(".preinit_array"); 1930 Out::initArray = findSection(".init_array"); 1931 Out::finiArray = findSection(".fini_array"); 1932 1933 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1934 // symbols for sections, so that the runtime can get the start and end 1935 // addresses of each section by section name. Add such symbols. 1936 if (!config->relocatable) { 1937 addStartEndSymbols(); 1938 for (BaseCommand *base : script->sectionCommands) 1939 if (auto *sec = dyn_cast<OutputSection>(base)) 1940 addStartStopSymbols(sec); 1941 } 1942 1943 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1944 // It should be okay as no one seems to care about the type. 1945 // Even the author of gold doesn't remember why gold behaves that way. 1946 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1947 if (mainPart->dynamic->parent) 1948 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1949 STV_HIDDEN, STT_NOTYPE, 1950 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1951 1952 // Define __rel[a]_iplt_{start,end} symbols if needed. 1953 addRelIpltSymbols(); 1954 1955 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1956 // should only be defined in an executable. If .sdata does not exist, its 1957 // value/section does not matter but it has to be relative, so set its 1958 // st_shndx arbitrarily to 1 (Out::elfHeader). 1959 if (config->emachine == EM_RISCV && !config->shared) { 1960 OutputSection *sec = findSection(".sdata"); 1961 ElfSym::riscvGlobalPointer = 1962 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1963 0x800, STV_DEFAULT); 1964 } 1965 1966 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1967 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1968 // way that: 1969 // 1970 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1971 // computes 0. 1972 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1973 // the TLS block). 1974 // 1975 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1976 // an absolute symbol of zero. This is different from GNU linkers which 1977 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1978 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1979 if (s && s->isUndefined()) { 1980 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1981 STT_TLS, /*value=*/0, 0, 1982 /*section=*/nullptr}); 1983 ElfSym::tlsModuleBase = cast<Defined>(s); 1984 } 1985 } 1986 1987 { 1988 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1989 // This responsible for splitting up .eh_frame section into 1990 // pieces. The relocation scan uses those pieces, so this has to be 1991 // earlier. 1992 for (Partition &part : partitions) 1993 finalizeSynthetic(part.ehFrame); 1994 } 1995 1996 for (Symbol *sym : symtab->symbols()) 1997 sym->isPreemptible = computeIsPreemptible(*sym); 1998 1999 // Change values of linker-script-defined symbols from placeholders (assigned 2000 // by declareSymbols) to actual definitions. 2001 script->processSymbolAssignments(); 2002 2003 { 2004 llvm::TimeTraceScope timeScope("Scan relocations"); 2005 // Scan relocations. This must be done after every symbol is declared so 2006 // that we can correctly decide if a dynamic relocation is needed. This is 2007 // called after processSymbolAssignments() because it needs to know whether 2008 // a linker-script-defined symbol is absolute. 2009 ppc64noTocRelax.clear(); 2010 if (!config->relocatable) { 2011 forEachRelSec(scanRelocations<ELFT>); 2012 reportUndefinedSymbols<ELFT>(); 2013 } 2014 } 2015 2016 if (in.plt && in.plt->isNeeded()) 2017 in.plt->addSymbols(); 2018 if (in.iplt && in.iplt->isNeeded()) 2019 in.iplt->addSymbols(); 2020 2021 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 2022 auto diagnose = 2023 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 2024 ? errorOrWarn 2025 : warn; 2026 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 2027 // entries are seen. These cases would otherwise lead to runtime errors 2028 // reported by the dynamic linker. 2029 // 2030 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 2031 // catch more cases. That is too much for us. Our approach resembles the one 2032 // used in ld.gold, achieves a good balance to be useful but not too smart. 2033 for (SharedFile *file : sharedFiles) { 2034 bool allNeededIsKnown = 2035 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2036 return symtab->soNames.count(needed); 2037 }); 2038 if (!allNeededIsKnown) 2039 continue; 2040 for (Symbol *sym : file->requiredSymbols) 2041 if (sym->isUndefined() && !sym->isWeak()) 2042 diagnose(toString(file) + ": undefined reference to " + 2043 toString(*sym) + " [--no-allow-shlib-undefined]"); 2044 } 2045 } 2046 2047 { 2048 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2049 // Now that we have defined all possible global symbols including linker- 2050 // synthesized ones. Visit all symbols to give the finishing touches. 2051 for (Symbol *sym : symtab->symbols()) { 2052 if (!includeInSymtab(*sym)) 2053 continue; 2054 if (in.symTab) 2055 in.symTab->addSymbol(sym); 2056 2057 if (sym->includeInDynsym()) { 2058 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2059 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2060 if (file->isNeeded && !sym->isUndefined()) 2061 addVerneed(sym); 2062 } 2063 } 2064 2065 // We also need to scan the dynamic relocation tables of the other 2066 // partitions and add any referenced symbols to the partition's dynsym. 2067 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2068 DenseSet<Symbol *> syms; 2069 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2070 syms.insert(e.sym); 2071 for (DynamicReloc &reloc : part.relaDyn->relocs) 2072 if (reloc.sym && reloc.needsDynSymIndex() && 2073 syms.insert(reloc.sym).second) 2074 part.dynSymTab->addSymbol(reloc.sym); 2075 } 2076 } 2077 2078 // Do not proceed if there was an undefined symbol. 2079 if (errorCount()) 2080 return; 2081 2082 if (in.mipsGot) 2083 in.mipsGot->build(); 2084 2085 removeUnusedSyntheticSections(); 2086 script->diagnoseOrphanHandling(); 2087 2088 sortSections(); 2089 2090 // Now that we have the final list, create a list of all the 2091 // OutputSections for convenience. 2092 for (BaseCommand *base : script->sectionCommands) 2093 if (auto *sec = dyn_cast<OutputSection>(base)) 2094 outputSections.push_back(sec); 2095 2096 // Prefer command line supplied address over other constraints. 2097 for (OutputSection *sec : outputSections) { 2098 auto i = config->sectionStartMap.find(sec->name); 2099 if (i != config->sectionStartMap.end()) 2100 sec->addrExpr = [=] { return i->second; }; 2101 } 2102 2103 // With the outputSections available check for GDPLT relocations 2104 // and add __tls_get_addr symbol if needed. 2105 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2106 Symbol *sym = symtab->addSymbol(Undefined{ 2107 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2108 sym->isPreemptible = true; 2109 partitions[0].dynSymTab->addSymbol(sym); 2110 } 2111 2112 // This is a bit of a hack. A value of 0 means undef, so we set it 2113 // to 1 to make __ehdr_start defined. The section number is not 2114 // particularly relevant. 2115 Out::elfHeader->sectionIndex = 1; 2116 2117 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2118 OutputSection *sec = outputSections[i]; 2119 sec->sectionIndex = i + 1; 2120 sec->shName = in.shStrTab->addString(sec->name); 2121 } 2122 2123 // Binary and relocatable output does not have PHDRS. 2124 // The headers have to be created before finalize as that can influence the 2125 // image base and the dynamic section on mips includes the image base. 2126 if (!config->relocatable && !config->oFormatBinary) { 2127 for (Partition &part : partitions) { 2128 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2129 : createPhdrs(part); 2130 if (config->emachine == EM_ARM) { 2131 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2132 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2133 } 2134 if (config->emachine == EM_MIPS) { 2135 // Add separate segments for MIPS-specific sections. 2136 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2137 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2138 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2139 } 2140 } 2141 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2142 2143 // Find the TLS segment. This happens before the section layout loop so that 2144 // Android relocation packing can look up TLS symbol addresses. We only need 2145 // to care about the main partition here because all TLS symbols were moved 2146 // to the main partition (see MarkLive.cpp). 2147 for (PhdrEntry *p : mainPart->phdrs) 2148 if (p->p_type == PT_TLS) 2149 Out::tlsPhdr = p; 2150 } 2151 2152 // Some symbols are defined in term of program headers. Now that we 2153 // have the headers, we can find out which sections they point to. 2154 setReservedSymbolSections(); 2155 2156 { 2157 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2158 2159 finalizeSynthetic(in.bss); 2160 finalizeSynthetic(in.bssRelRo); 2161 finalizeSynthetic(in.symTabShndx); 2162 finalizeSynthetic(in.shStrTab); 2163 finalizeSynthetic(in.strTab); 2164 finalizeSynthetic(in.got); 2165 finalizeSynthetic(in.mipsGot); 2166 finalizeSynthetic(in.igotPlt); 2167 finalizeSynthetic(in.gotPlt); 2168 finalizeSynthetic(in.relaIplt); 2169 finalizeSynthetic(in.relaPlt); 2170 finalizeSynthetic(in.plt); 2171 finalizeSynthetic(in.iplt); 2172 finalizeSynthetic(in.ppc32Got2); 2173 finalizeSynthetic(in.partIndex); 2174 2175 // Dynamic section must be the last one in this list and dynamic 2176 // symbol table section (dynSymTab) must be the first one. 2177 for (Partition &part : partitions) { 2178 finalizeSynthetic(part.dynSymTab); 2179 finalizeSynthetic(part.gnuHashTab); 2180 finalizeSynthetic(part.hashTab); 2181 finalizeSynthetic(part.verDef); 2182 finalizeSynthetic(part.relaDyn); 2183 finalizeSynthetic(part.relrDyn); 2184 finalizeSynthetic(part.ehFrameHdr); 2185 finalizeSynthetic(part.verSym); 2186 finalizeSynthetic(part.verNeed); 2187 finalizeSynthetic(part.dynamic); 2188 } 2189 } 2190 2191 if (!script->hasSectionsCommand && !config->relocatable) 2192 fixSectionAlignments(); 2193 2194 // This is used to: 2195 // 1) Create "thunks": 2196 // Jump instructions in many ISAs have small displacements, and therefore 2197 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2198 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2199 // responsibility to create and insert small pieces of code between 2200 // sections to extend the ranges if jump targets are out of range. Such 2201 // code pieces are called "thunks". 2202 // 2203 // We add thunks at this stage. We couldn't do this before this point 2204 // because this is the earliest point where we know sizes of sections and 2205 // their layouts (that are needed to determine if jump targets are in 2206 // range). 2207 // 2208 // 2) Update the sections. We need to generate content that depends on the 2209 // address of InputSections. For example, MIPS GOT section content or 2210 // android packed relocations sections content. 2211 // 2212 // 3) Assign the final values for the linker script symbols. Linker scripts 2213 // sometimes using forward symbol declarations. We want to set the correct 2214 // values. They also might change after adding the thunks. 2215 finalizeAddressDependentContent(); 2216 if (errorCount()) 2217 return; 2218 2219 { 2220 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2221 // finalizeAddressDependentContent may have added local symbols to the 2222 // static symbol table. 2223 finalizeSynthetic(in.symTab); 2224 finalizeSynthetic(in.ppc64LongBranchTarget); 2225 } 2226 2227 // Relaxation to delete inter-basic block jumps created by basic block 2228 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2229 // can relax jump instructions based on symbol offset. 2230 if (config->optimizeBBJumps) 2231 optimizeBasicBlockJumps(); 2232 2233 // Fill other section headers. The dynamic table is finalized 2234 // at the end because some tags like RELSZ depend on result 2235 // of finalizing other sections. 2236 for (OutputSection *sec : outputSections) 2237 sec->finalize(); 2238 } 2239 2240 // Ensure data sections are not mixed with executable sections when 2241 // --execute-only is used. --execute-only make pages executable but not 2242 // readable. 2243 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2244 if (!config->executeOnly) 2245 return; 2246 2247 for (OutputSection *os : outputSections) 2248 if (os->flags & SHF_EXECINSTR) 2249 for (InputSection *isec : getInputSections(os)) 2250 if (!(isec->flags & SHF_EXECINSTR)) 2251 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2252 ": -execute-only does not support intermingling data and code"); 2253 } 2254 2255 // The linker is expected to define SECNAME_start and SECNAME_end 2256 // symbols for a few sections. This function defines them. 2257 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2258 // If a section does not exist, there's ambiguity as to how we 2259 // define _start and _end symbols for an init/fini section. Since 2260 // the loader assume that the symbols are always defined, we need to 2261 // always define them. But what value? The loader iterates over all 2262 // pointers between _start and _end to run global ctors/dtors, so if 2263 // the section is empty, their symbol values don't actually matter 2264 // as long as _start and _end point to the same location. 2265 // 2266 // That said, we don't want to set the symbols to 0 (which is 2267 // probably the simplest value) because that could cause some 2268 // program to fail to link due to relocation overflow, if their 2269 // program text is above 2 GiB. We use the address of the .text 2270 // section instead to prevent that failure. 2271 // 2272 // In rare situations, the .text section may not exist. If that's the 2273 // case, use the image base address as a last resort. 2274 OutputSection *Default = findSection(".text"); 2275 if (!Default) 2276 Default = Out::elfHeader; 2277 2278 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2279 if (os && !script->isDiscarded(os)) { 2280 addOptionalRegular(start, os, 0); 2281 addOptionalRegular(end, os, -1); 2282 } else { 2283 addOptionalRegular(start, Default, 0); 2284 addOptionalRegular(end, Default, 0); 2285 } 2286 }; 2287 2288 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2289 define("__init_array_start", "__init_array_end", Out::initArray); 2290 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2291 2292 if (OutputSection *sec = findSection(".ARM.exidx")) 2293 define("__exidx_start", "__exidx_end", sec); 2294 } 2295 2296 // If a section name is valid as a C identifier (which is rare because of 2297 // the leading '.'), linkers are expected to define __start_<secname> and 2298 // __stop_<secname> symbols. They are at beginning and end of the section, 2299 // respectively. This is not requested by the ELF standard, but GNU ld and 2300 // gold provide the feature, and used by many programs. 2301 template <class ELFT> 2302 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2303 StringRef s = sec->name; 2304 if (!isValidCIdentifier(s)) 2305 return; 2306 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2307 config->zStartStopVisibility); 2308 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2309 config->zStartStopVisibility); 2310 } 2311 2312 static bool needsPtLoad(OutputSection *sec) { 2313 if (!(sec->flags & SHF_ALLOC)) 2314 return false; 2315 2316 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2317 // responsible for allocating space for them, not the PT_LOAD that 2318 // contains the TLS initialization image. 2319 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2320 return false; 2321 return true; 2322 } 2323 2324 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2325 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2326 // RW. This means that there is no alignment in the RO to RX transition and we 2327 // cannot create a PT_LOAD there. 2328 static uint64_t computeFlags(uint64_t flags) { 2329 if (config->omagic) 2330 return PF_R | PF_W | PF_X; 2331 if (config->executeOnly && (flags & PF_X)) 2332 return flags & ~PF_R; 2333 if (config->singleRoRx && !(flags & PF_W)) 2334 return flags | PF_X; 2335 return flags; 2336 } 2337 2338 // Decide which program headers to create and which sections to include in each 2339 // one. 2340 template <class ELFT> 2341 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2342 std::vector<PhdrEntry *> ret; 2343 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2344 ret.push_back(make<PhdrEntry>(type, flags)); 2345 return ret.back(); 2346 }; 2347 2348 unsigned partNo = part.getNumber(); 2349 bool isMain = partNo == 1; 2350 2351 // Add the first PT_LOAD segment for regular output sections. 2352 uint64_t flags = computeFlags(PF_R); 2353 PhdrEntry *load = nullptr; 2354 2355 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2356 // PT_LOAD. 2357 if (!config->nmagic && !config->omagic) { 2358 // The first phdr entry is PT_PHDR which describes the program header 2359 // itself. 2360 if (isMain) 2361 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2362 else 2363 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2364 2365 // PT_INTERP must be the second entry if exists. 2366 if (OutputSection *cmd = findSection(".interp", partNo)) 2367 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2368 2369 // Add the headers. We will remove them if they don't fit. 2370 // In the other partitions the headers are ordinary sections, so they don't 2371 // need to be added here. 2372 if (isMain) { 2373 load = addHdr(PT_LOAD, flags); 2374 load->add(Out::elfHeader); 2375 load->add(Out::programHeaders); 2376 } 2377 } 2378 2379 // PT_GNU_RELRO includes all sections that should be marked as 2380 // read-only by dynamic linker after processing relocations. 2381 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2382 // an error message if more than one PT_GNU_RELRO PHDR is required. 2383 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2384 bool inRelroPhdr = false; 2385 OutputSection *relroEnd = nullptr; 2386 for (OutputSection *sec : outputSections) { 2387 if (sec->partition != partNo || !needsPtLoad(sec)) 2388 continue; 2389 if (isRelroSection(sec)) { 2390 inRelroPhdr = true; 2391 if (!relroEnd) 2392 relRo->add(sec); 2393 else 2394 error("section: " + sec->name + " is not contiguous with other relro" + 2395 " sections"); 2396 } else if (inRelroPhdr) { 2397 inRelroPhdr = false; 2398 relroEnd = sec; 2399 } 2400 } 2401 2402 for (OutputSection *sec : outputSections) { 2403 if (!needsPtLoad(sec)) 2404 continue; 2405 2406 // Normally, sections in partitions other than the current partition are 2407 // ignored. But partition number 255 is a special case: it contains the 2408 // partition end marker (.part.end). It needs to be added to the main 2409 // partition so that a segment is created for it in the main partition, 2410 // which will cause the dynamic loader to reserve space for the other 2411 // partitions. 2412 if (sec->partition != partNo) { 2413 if (isMain && sec->partition == 255) 2414 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2415 continue; 2416 } 2417 2418 // Segments are contiguous memory regions that has the same attributes 2419 // (e.g. executable or writable). There is one phdr for each segment. 2420 // Therefore, we need to create a new phdr when the next section has 2421 // different flags or is loaded at a discontiguous address or memory 2422 // region using AT or AT> linker script command, respectively. At the same 2423 // time, we don't want to create a separate load segment for the headers, 2424 // even if the first output section has an AT or AT> attribute. 2425 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2426 bool sameLMARegion = 2427 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2428 if (!(load && newFlags == flags && sec != relroEnd && 2429 sec->memRegion == load->firstSec->memRegion && 2430 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2431 load = addHdr(PT_LOAD, newFlags); 2432 flags = newFlags; 2433 } 2434 2435 load->add(sec); 2436 } 2437 2438 // Add a TLS segment if any. 2439 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2440 for (OutputSection *sec : outputSections) 2441 if (sec->partition == partNo && sec->flags & SHF_TLS) 2442 tlsHdr->add(sec); 2443 if (tlsHdr->firstSec) 2444 ret.push_back(tlsHdr); 2445 2446 // Add an entry for .dynamic. 2447 if (OutputSection *sec = part.dynamic->getParent()) 2448 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2449 2450 if (relRo->firstSec) 2451 ret.push_back(relRo); 2452 2453 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2454 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2455 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2456 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2457 ->add(part.ehFrameHdr->getParent()); 2458 2459 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2460 // the dynamic linker fill the segment with random data. 2461 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2462 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2463 2464 if (config->zGnustack != GnuStackKind::None) { 2465 // PT_GNU_STACK is a special section to tell the loader to make the 2466 // pages for the stack non-executable. If you really want an executable 2467 // stack, you can pass -z execstack, but that's not recommended for 2468 // security reasons. 2469 unsigned perm = PF_R | PF_W; 2470 if (config->zGnustack == GnuStackKind::Exec) 2471 perm |= PF_X; 2472 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2473 } 2474 2475 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2476 // is expected to perform W^X violations, such as calling mprotect(2) or 2477 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2478 // OpenBSD. 2479 if (config->zWxneeded) 2480 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2481 2482 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2483 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2484 2485 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2486 // same alignment. 2487 PhdrEntry *note = nullptr; 2488 for (OutputSection *sec : outputSections) { 2489 if (sec->partition != partNo) 2490 continue; 2491 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2492 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2493 note = addHdr(PT_NOTE, PF_R); 2494 note->add(sec); 2495 } else { 2496 note = nullptr; 2497 } 2498 } 2499 return ret; 2500 } 2501 2502 template <class ELFT> 2503 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2504 unsigned pType, unsigned pFlags) { 2505 unsigned partNo = part.getNumber(); 2506 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2507 return cmd->partition == partNo && cmd->type == shType; 2508 }); 2509 if (i == outputSections.end()) 2510 return; 2511 2512 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2513 entry->add(*i); 2514 part.phdrs.push_back(entry); 2515 } 2516 2517 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2518 // This is achieved by assigning an alignment expression to addrExpr of each 2519 // such section. 2520 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2521 const PhdrEntry *prev; 2522 auto pageAlign = [&](const PhdrEntry *p) { 2523 OutputSection *cmd = p->firstSec; 2524 if (!cmd) 2525 return; 2526 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2527 if (!cmd->addrExpr) { 2528 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2529 // padding in the file contents. 2530 // 2531 // When -z separate-code is used we must not have any overlap in pages 2532 // between an executable segment and a non-executable segment. We align to 2533 // the next maximum page size boundary on transitions between executable 2534 // and non-executable segments. 2535 // 2536 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2537 // sections will be extracted to a separate file. Align to the next 2538 // maximum page size boundary so that we can find the ELF header at the 2539 // start. We cannot benefit from overlapping p_offset ranges with the 2540 // previous segment anyway. 2541 if (config->zSeparate == SeparateSegmentKind::Loadable || 2542 (config->zSeparate == SeparateSegmentKind::Code && prev && 2543 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2544 cmd->type == SHT_LLVM_PART_EHDR) 2545 cmd->addrExpr = [] { 2546 return alignTo(script->getDot(), config->maxPageSize); 2547 }; 2548 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2549 // it must be the RW. Align to p_align(PT_TLS) to make sure 2550 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2551 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2552 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2553 // be congruent to 0 modulo p_align(PT_TLS). 2554 // 2555 // Technically this is not required, but as of 2019, some dynamic loaders 2556 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2557 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2558 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2559 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2560 // blocks correctly. We need to keep the workaround for a while. 2561 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2562 cmd->addrExpr = [] { 2563 return alignTo(script->getDot(), config->maxPageSize) + 2564 alignTo(script->getDot() % config->maxPageSize, 2565 Out::tlsPhdr->p_align); 2566 }; 2567 else 2568 cmd->addrExpr = [] { 2569 return alignTo(script->getDot(), config->maxPageSize) + 2570 script->getDot() % config->maxPageSize; 2571 }; 2572 } 2573 }; 2574 2575 for (Partition &part : partitions) { 2576 prev = nullptr; 2577 for (const PhdrEntry *p : part.phdrs) 2578 if (p->p_type == PT_LOAD && p->firstSec) { 2579 pageAlign(p); 2580 prev = p; 2581 } 2582 } 2583 } 2584 2585 // Compute an in-file position for a given section. The file offset must be the 2586 // same with its virtual address modulo the page size, so that the loader can 2587 // load executables without any address adjustment. 2588 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2589 // The first section in a PT_LOAD has to have congruent offset and address 2590 // modulo the maximum page size. 2591 if (os->ptLoad && os->ptLoad->firstSec == os) 2592 return alignTo(off, os->ptLoad->p_align, os->addr); 2593 2594 // File offsets are not significant for .bss sections other than the first one 2595 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2596 // increasing rather than setting to zero. 2597 if (os->type == SHT_NOBITS && 2598 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2599 return off; 2600 2601 // If the section is not in a PT_LOAD, we just have to align it. 2602 if (!os->ptLoad) 2603 return alignTo(off, os->alignment); 2604 2605 // If two sections share the same PT_LOAD the file offset is calculated 2606 // using this formula: Off2 = Off1 + (VA2 - VA1). 2607 OutputSection *first = os->ptLoad->firstSec; 2608 return first->offset + os->addr - first->addr; 2609 } 2610 2611 // Set an in-file position to a given section and returns the end position of 2612 // the section. 2613 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2614 off = computeFileOffset(os, off); 2615 os->offset = off; 2616 2617 if (os->type == SHT_NOBITS) 2618 return off; 2619 return off + os->size; 2620 } 2621 2622 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2623 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2624 auto needsOffset = [](OutputSection &sec) { 2625 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2626 }; 2627 uint64_t minAddr = UINT64_MAX; 2628 for (OutputSection *sec : outputSections) 2629 if (needsOffset(*sec)) { 2630 sec->offset = sec->getLMA(); 2631 minAddr = std::min(minAddr, sec->offset); 2632 } 2633 2634 // Sections are laid out at LMA minus minAddr. 2635 fileSize = 0; 2636 for (OutputSection *sec : outputSections) 2637 if (needsOffset(*sec)) { 2638 sec->offset -= minAddr; 2639 fileSize = std::max(fileSize, sec->offset + sec->size); 2640 } 2641 } 2642 2643 static std::string rangeToString(uint64_t addr, uint64_t len) { 2644 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2645 } 2646 2647 // Assign file offsets to output sections. 2648 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2649 uint64_t off = 0; 2650 off = setFileOffset(Out::elfHeader, off); 2651 off = setFileOffset(Out::programHeaders, off); 2652 2653 PhdrEntry *lastRX = nullptr; 2654 for (Partition &part : partitions) 2655 for (PhdrEntry *p : part.phdrs) 2656 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2657 lastRX = p; 2658 2659 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2660 // will not occupy file offsets contained by a PT_LOAD. 2661 for (OutputSection *sec : outputSections) { 2662 if (!(sec->flags & SHF_ALLOC)) 2663 continue; 2664 off = setFileOffset(sec, off); 2665 2666 // If this is a last section of the last executable segment and that 2667 // segment is the last loadable segment, align the offset of the 2668 // following section to avoid loading non-segments parts of the file. 2669 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2670 lastRX->lastSec == sec) 2671 off = alignTo(off, config->commonPageSize); 2672 } 2673 for (OutputSection *sec : outputSections) 2674 if (!(sec->flags & SHF_ALLOC)) 2675 off = setFileOffset(sec, off); 2676 2677 sectionHeaderOff = alignTo(off, config->wordsize); 2678 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2679 2680 // Our logic assumes that sections have rising VA within the same segment. 2681 // With use of linker scripts it is possible to violate this rule and get file 2682 // offset overlaps or overflows. That should never happen with a valid script 2683 // which does not move the location counter backwards and usually scripts do 2684 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2685 // kernel, which control segment distribution explicitly and move the counter 2686 // backwards, so we have to allow doing that to support linking them. We 2687 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2688 // we want to prevent file size overflows because it would crash the linker. 2689 for (OutputSection *sec : outputSections) { 2690 if (sec->type == SHT_NOBITS) 2691 continue; 2692 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2693 error("unable to place section " + sec->name + " at file offset " + 2694 rangeToString(sec->offset, sec->size) + 2695 "; check your linker script for overflows"); 2696 } 2697 } 2698 2699 // Finalize the program headers. We call this function after we assign 2700 // file offsets and VAs to all sections. 2701 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2702 for (PhdrEntry *p : part.phdrs) { 2703 OutputSection *first = p->firstSec; 2704 OutputSection *last = p->lastSec; 2705 2706 if (first) { 2707 p->p_filesz = last->offset - first->offset; 2708 if (last->type != SHT_NOBITS) 2709 p->p_filesz += last->size; 2710 2711 p->p_memsz = last->addr + last->size - first->addr; 2712 p->p_offset = first->offset; 2713 p->p_vaddr = first->addr; 2714 2715 // File offsets in partitions other than the main partition are relative 2716 // to the offset of the ELF headers. Perform that adjustment now. 2717 if (part.elfHeader) 2718 p->p_offset -= part.elfHeader->getParent()->offset; 2719 2720 if (!p->hasLMA) 2721 p->p_paddr = first->getLMA(); 2722 } 2723 2724 if (p->p_type == PT_GNU_RELRO) { 2725 p->p_align = 1; 2726 // musl/glibc ld.so rounds the size down, so we need to round up 2727 // to protect the last page. This is a no-op on FreeBSD which always 2728 // rounds up. 2729 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2730 p->p_offset; 2731 } 2732 } 2733 } 2734 2735 // A helper struct for checkSectionOverlap. 2736 namespace { 2737 struct SectionOffset { 2738 OutputSection *sec; 2739 uint64_t offset; 2740 }; 2741 } // namespace 2742 2743 // Check whether sections overlap for a specific address range (file offsets, 2744 // load and virtual addresses). 2745 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2746 bool isVirtualAddr) { 2747 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2748 return a.offset < b.offset; 2749 }); 2750 2751 // Finding overlap is easy given a vector is sorted by start position. 2752 // If an element starts before the end of the previous element, they overlap. 2753 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2754 SectionOffset a = sections[i - 1]; 2755 SectionOffset b = sections[i]; 2756 if (b.offset >= a.offset + a.sec->size) 2757 continue; 2758 2759 // If both sections are in OVERLAY we allow the overlapping of virtual 2760 // addresses, because it is what OVERLAY was designed for. 2761 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2762 continue; 2763 2764 errorOrWarn("section " + a.sec->name + " " + name + 2765 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2766 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2767 b.sec->name + " range is " + 2768 rangeToString(b.offset, b.sec->size)); 2769 } 2770 } 2771 2772 // Check for overlapping sections and address overflows. 2773 // 2774 // In this function we check that none of the output sections have overlapping 2775 // file offsets. For SHF_ALLOC sections we also check that the load address 2776 // ranges and the virtual address ranges don't overlap 2777 template <class ELFT> void Writer<ELFT>::checkSections() { 2778 // First, check that section's VAs fit in available address space for target. 2779 for (OutputSection *os : outputSections) 2780 if ((os->addr + os->size < os->addr) || 2781 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2782 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2783 " of size 0x" + utohexstr(os->size) + 2784 " exceeds available address space"); 2785 2786 // Check for overlapping file offsets. In this case we need to skip any 2787 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2788 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2789 // binary is specified only add SHF_ALLOC sections are added to the output 2790 // file so we skip any non-allocated sections in that case. 2791 std::vector<SectionOffset> fileOffs; 2792 for (OutputSection *sec : outputSections) 2793 if (sec->size > 0 && sec->type != SHT_NOBITS && 2794 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2795 fileOffs.push_back({sec, sec->offset}); 2796 checkOverlap("file", fileOffs, false); 2797 2798 // When linking with -r there is no need to check for overlapping virtual/load 2799 // addresses since those addresses will only be assigned when the final 2800 // executable/shared object is created. 2801 if (config->relocatable) 2802 return; 2803 2804 // Checking for overlapping virtual and load addresses only needs to take 2805 // into account SHF_ALLOC sections since others will not be loaded. 2806 // Furthermore, we also need to skip SHF_TLS sections since these will be 2807 // mapped to other addresses at runtime and can therefore have overlapping 2808 // ranges in the file. 2809 std::vector<SectionOffset> vmas; 2810 for (OutputSection *sec : outputSections) 2811 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2812 vmas.push_back({sec, sec->addr}); 2813 checkOverlap("virtual address", vmas, true); 2814 2815 // Finally, check that the load addresses don't overlap. This will usually be 2816 // the same as the virtual addresses but can be different when using a linker 2817 // script with AT(). 2818 std::vector<SectionOffset> lmas; 2819 for (OutputSection *sec : outputSections) 2820 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2821 lmas.push_back({sec, sec->getLMA()}); 2822 checkOverlap("load address", lmas, false); 2823 } 2824 2825 // The entry point address is chosen in the following ways. 2826 // 2827 // 1. the '-e' entry command-line option; 2828 // 2. the ENTRY(symbol) command in a linker control script; 2829 // 3. the value of the symbol _start, if present; 2830 // 4. the number represented by the entry symbol, if it is a number; 2831 // 5. the address 0. 2832 static uint64_t getEntryAddr() { 2833 // Case 1, 2 or 3 2834 if (Symbol *b = symtab->find(config->entry)) 2835 return b->getVA(); 2836 2837 // Case 4 2838 uint64_t addr; 2839 if (to_integer(config->entry, addr)) 2840 return addr; 2841 2842 // Case 5 2843 if (config->warnMissingEntry) 2844 warn("cannot find entry symbol " + config->entry + 2845 "; not setting start address"); 2846 return 0; 2847 } 2848 2849 static uint16_t getELFType() { 2850 if (config->isPic) 2851 return ET_DYN; 2852 if (config->relocatable) 2853 return ET_REL; 2854 return ET_EXEC; 2855 } 2856 2857 template <class ELFT> void Writer<ELFT>::writeHeader() { 2858 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2859 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2860 2861 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2862 eHdr->e_type = getELFType(); 2863 eHdr->e_entry = getEntryAddr(); 2864 eHdr->e_shoff = sectionHeaderOff; 2865 2866 // Write the section header table. 2867 // 2868 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2869 // and e_shstrndx fields. When the value of one of these fields exceeds 2870 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2871 // use fields in the section header at index 0 to store 2872 // the value. The sentinel values and fields are: 2873 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2874 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2875 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2876 size_t num = outputSections.size() + 1; 2877 if (num >= SHN_LORESERVE) 2878 sHdrs->sh_size = num; 2879 else 2880 eHdr->e_shnum = num; 2881 2882 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2883 if (strTabIndex >= SHN_LORESERVE) { 2884 sHdrs->sh_link = strTabIndex; 2885 eHdr->e_shstrndx = SHN_XINDEX; 2886 } else { 2887 eHdr->e_shstrndx = strTabIndex; 2888 } 2889 2890 for (OutputSection *sec : outputSections) 2891 sec->writeHeaderTo<ELFT>(++sHdrs); 2892 } 2893 2894 // Open a result file. 2895 template <class ELFT> void Writer<ELFT>::openFile() { 2896 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2897 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2898 std::string msg; 2899 raw_string_ostream s(msg); 2900 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2901 << "section sizes:\n"; 2902 for (OutputSection *os : outputSections) 2903 s << os->name << ' ' << os->size << "\n"; 2904 error(s.str()); 2905 return; 2906 } 2907 2908 unlinkAsync(config->outputFile); 2909 unsigned flags = 0; 2910 if (!config->relocatable) 2911 flags |= FileOutputBuffer::F_executable; 2912 if (!config->mmapOutputFile) 2913 flags |= FileOutputBuffer::F_no_mmap; 2914 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2915 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2916 2917 if (!bufferOrErr) { 2918 error("failed to open " + config->outputFile + ": " + 2919 llvm::toString(bufferOrErr.takeError())); 2920 return; 2921 } 2922 buffer = std::move(*bufferOrErr); 2923 Out::bufferStart = buffer->getBufferStart(); 2924 } 2925 2926 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2927 for (OutputSection *sec : outputSections) 2928 if (sec->flags & SHF_ALLOC) 2929 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2930 } 2931 2932 static void fillTrap(uint8_t *i, uint8_t *end) { 2933 for (; i + 4 <= end; i += 4) 2934 memcpy(i, &target->trapInstr, 4); 2935 } 2936 2937 // Fill the last page of executable segments with trap instructions 2938 // instead of leaving them as zero. Even though it is not required by any 2939 // standard, it is in general a good thing to do for security reasons. 2940 // 2941 // We'll leave other pages in segments as-is because the rest will be 2942 // overwritten by output sections. 2943 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2944 for (Partition &part : partitions) { 2945 // Fill the last page. 2946 for (PhdrEntry *p : part.phdrs) 2947 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2948 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2949 config->commonPageSize), 2950 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2951 config->commonPageSize)); 2952 2953 // Round up the file size of the last segment to the page boundary iff it is 2954 // an executable segment to ensure that other tools don't accidentally 2955 // trim the instruction padding (e.g. when stripping the file). 2956 PhdrEntry *last = nullptr; 2957 for (PhdrEntry *p : part.phdrs) 2958 if (p->p_type == PT_LOAD) 2959 last = p; 2960 2961 if (last && (last->p_flags & PF_X)) 2962 last->p_memsz = last->p_filesz = 2963 alignTo(last->p_filesz, config->commonPageSize); 2964 } 2965 } 2966 2967 // Write section contents to a mmap'ed file. 2968 template <class ELFT> void Writer<ELFT>::writeSections() { 2969 // In -r or --emit-relocs mode, write the relocation sections first as in 2970 // ELf_Rel targets we might find out that we need to modify the relocated 2971 // section while doing it. 2972 for (OutputSection *sec : outputSections) 2973 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2974 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2975 2976 for (OutputSection *sec : outputSections) 2977 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2978 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2979 2980 // Finally, check that all dynamic relocation addends were written correctly. 2981 if (config->checkDynamicRelocs && config->writeAddends) { 2982 for (OutputSection *sec : outputSections) 2983 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2984 sec->checkDynRelAddends(Out::bufferStart); 2985 } 2986 } 2987 2988 // Computes a hash value of Data using a given hash function. 2989 // In order to utilize multiple cores, we first split data into 1MB 2990 // chunks, compute a hash for each chunk, and then compute a hash value 2991 // of the hash values. 2992 static void 2993 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2994 llvm::ArrayRef<uint8_t> data, 2995 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2996 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2997 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2998 2999 // Compute hash values. 3000 parallelForEachN(0, chunks.size(), [&](size_t i) { 3001 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 3002 }); 3003 3004 // Write to the final output buffer. 3005 hashFn(hashBuf.data(), hashes); 3006 } 3007 3008 template <class ELFT> void Writer<ELFT>::writeBuildId() { 3009 if (!mainPart->buildId || !mainPart->buildId->getParent()) 3010 return; 3011 3012 if (config->buildId == BuildIdKind::Hexstring) { 3013 for (Partition &part : partitions) 3014 part.buildId->writeBuildId(config->buildIdVector); 3015 return; 3016 } 3017 3018 // Compute a hash of all sections of the output file. 3019 size_t hashSize = mainPart->buildId->hashSize; 3020 std::vector<uint8_t> buildId(hashSize); 3021 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 3022 3023 switch (config->buildId) { 3024 case BuildIdKind::Fast: 3025 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3026 write64le(dest, xxHash64(arr)); 3027 }); 3028 break; 3029 case BuildIdKind::Md5: 3030 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3031 memcpy(dest, MD5::hash(arr).data(), hashSize); 3032 }); 3033 break; 3034 case BuildIdKind::Sha1: 3035 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3036 memcpy(dest, SHA1::hash(arr).data(), hashSize); 3037 }); 3038 break; 3039 case BuildIdKind::Uuid: 3040 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 3041 error("entropy source failure: " + ec.message()); 3042 break; 3043 default: 3044 llvm_unreachable("unknown BuildIdKind"); 3045 } 3046 for (Partition &part : partitions) 3047 part.buildId->writeBuildId(buildId); 3048 } 3049 3050 template void elf::createSyntheticSections<ELF32LE>(); 3051 template void elf::createSyntheticSections<ELF32BE>(); 3052 template void elf::createSyntheticSections<ELF64LE>(); 3053 template void elf::createSyntheticSections<ELF64BE>(); 3054 3055 template void elf::writeResult<ELF32LE>(); 3056 template void elf::writeResult<ELF32BE>(); 3057 template void elf::writeResult<ELF64LE>(); 3058 template void elf::writeResult<ELF64BE>(); 3059