1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Arrays.h" 23 #include "lld/Common/CommonLinkerContext.h" 24 #include "lld/Common/Filesystem.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/Parallel.h" 29 #include "llvm/Support/RandomNumberGenerator.h" 30 #include "llvm/Support/SHA1.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void sortSections(); 59 void resolveShfLinkOrder(); 60 void finalizeAddressDependentContent(); 61 void optimizeBasicBlockJumps(); 62 void sortInputSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection *sec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool needsInterpSection() { 94 return !config->relocatable && !config->shared && 95 !config->dynamicLinker.empty() && script->needsInterpSection(); 96 } 97 98 template <class ELFT> void elf::writeResult() { 99 Writer<ELFT>().run(); 100 } 101 102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 103 auto it = std::stable_partition( 104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 105 if (p->p_type != PT_LOAD) 106 return true; 107 if (!p->firstSec) 108 return false; 109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 110 return size != 0; 111 }); 112 113 // Clear OutputSection::ptLoad for sections contained in removed 114 // segments. 115 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 116 for (OutputSection *sec : outputSections) 117 if (removed.count(sec->ptLoad)) 118 sec->ptLoad = nullptr; 119 phdrs.erase(it, phdrs.end()); 120 } 121 122 void elf::copySectionsIntoPartitions() { 123 SmallVector<InputSectionBase *, 0> newSections; 124 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 125 for (InputSectionBase *s : inputSections) { 126 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 127 continue; 128 InputSectionBase *copy; 129 if (s->type == SHT_NOTE) 130 copy = make<InputSection>(cast<InputSection>(*s)); 131 else if (auto *es = dyn_cast<EhInputSection>(s)) 132 copy = make<EhInputSection>(*es); 133 else 134 continue; 135 copy->partition = part; 136 newSections.push_back(copy); 137 } 138 } 139 140 inputSections.insert(inputSections.end(), newSections.begin(), 141 newSections.end()); 142 } 143 144 void elf::combineEhSections() { 145 llvm::TimeTraceScope timeScope("Combine EH sections"); 146 for (InputSectionBase *&s : inputSections) { 147 // Ignore dead sections and the partition end marker (.part.end), 148 // whose partition number is out of bounds. 149 if (!s->isLive() || s->partition == 255) 150 continue; 151 152 Partition &part = s->getPartition(); 153 if (auto *es = dyn_cast<EhInputSection>(s)) { 154 part.ehFrame->addSection(es); 155 s = nullptr; 156 } else if (s->kind() == SectionBase::Regular && part.armExidx && 157 part.armExidx->addSection(cast<InputSection>(s))) { 158 s = nullptr; 159 } 160 } 161 162 llvm::erase_value(inputSections, nullptr); 163 } 164 165 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 166 uint64_t val, uint8_t stOther = STV_HIDDEN) { 167 Symbol *s = symtab->find(name); 168 if (!s || s->isDefined()) 169 return nullptr; 170 171 s->resolve(Defined{/*file=*/nullptr, name, STB_GLOBAL, stOther, STT_NOTYPE, 172 val, 173 /*size=*/0, sec}); 174 return cast<Defined>(s); 175 } 176 177 static Defined *addAbsolute(StringRef name) { 178 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 179 STT_NOTYPE, 0, 0, nullptr}); 180 return cast<Defined>(sym); 181 } 182 183 // The linker is expected to define some symbols depending on 184 // the linking result. This function defines such symbols. 185 void elf::addReservedSymbols() { 186 if (config->emachine == EM_MIPS) { 187 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 188 // so that it points to an absolute address which by default is relative 189 // to GOT. Default offset is 0x7ff0. 190 // See "Global Data Symbols" in Chapter 6 in the following document: 191 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 192 ElfSym::mipsGp = addAbsolute("_gp"); 193 194 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 195 // start of function and 'gp' pointer into GOT. 196 if (symtab->find("_gp_disp")) 197 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 198 199 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 200 // pointer. This symbol is used in the code generated by .cpload pseudo-op 201 // in case of using -mno-shared option. 202 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 203 if (symtab->find("__gnu_local_gp")) 204 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 205 } else if (config->emachine == EM_PPC) { 206 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 207 // support Small Data Area, define it arbitrarily as 0. 208 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 209 } else if (config->emachine == EM_PPC64) { 210 addPPC64SaveRestore(); 211 } 212 213 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 214 // combines the typical ELF GOT with the small data sections. It commonly 215 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 216 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 217 // represent the TOC base which is offset by 0x8000 bytes from the start of 218 // the .got section. 219 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 220 // correctness of some relocations depends on its value. 221 StringRef gotSymName = 222 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 223 224 if (Symbol *s = symtab->find(gotSymName)) { 225 if (s->isDefined()) { 226 error(toString(s->file) + " cannot redefine linker defined symbol '" + 227 gotSymName + "'"); 228 return; 229 } 230 231 uint64_t gotOff = 0; 232 if (config->emachine == EM_PPC64) 233 gotOff = 0x8000; 234 235 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 236 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 237 ElfSym::globalOffsetTable = cast<Defined>(s); 238 } 239 240 // __ehdr_start is the location of ELF file headers. Note that we define 241 // this symbol unconditionally even when using a linker script, which 242 // differs from the behavior implemented by GNU linker which only define 243 // this symbol if ELF headers are in the memory mapped segment. 244 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 245 246 // __executable_start is not documented, but the expectation of at 247 // least the Android libc is that it points to the ELF header. 248 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 249 250 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 251 // each DSO. The address of the symbol doesn't matter as long as they are 252 // different in different DSOs, so we chose the start address of the DSO. 253 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 254 255 // If linker script do layout we do not need to create any standard symbols. 256 if (script->hasSectionsCommand) 257 return; 258 259 auto add = [](StringRef s, int64_t pos) { 260 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 261 }; 262 263 ElfSym::bss = add("__bss_start", 0); 264 ElfSym::end1 = add("end", -1); 265 ElfSym::end2 = add("_end", -1); 266 ElfSym::etext1 = add("etext", -1); 267 ElfSym::etext2 = add("_etext", -1); 268 ElfSym::edata1 = add("edata", -1); 269 ElfSym::edata2 = add("_edata", -1); 270 } 271 272 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 273 for (SectionCommand *cmd : script->sectionCommands) 274 if (auto *sec = dyn_cast<OutputSection>(cmd)) 275 if (sec->name == name && sec->partition == partition) 276 return sec; 277 return nullptr; 278 } 279 280 template <class ELFT> void elf::createSyntheticSections() { 281 // Initialize all pointers with NULL. This is needed because 282 // you can call lld::elf::main more than once as a library. 283 Out::tlsPhdr = nullptr; 284 Out::preinitArray = nullptr; 285 Out::initArray = nullptr; 286 Out::finiArray = nullptr; 287 288 // Add the .interp section first because it is not a SyntheticSection. 289 // The removeUnusedSyntheticSections() function relies on the 290 // SyntheticSections coming last. 291 if (needsInterpSection()) { 292 for (size_t i = 1; i <= partitions.size(); ++i) { 293 InputSection *sec = createInterpSection(); 294 sec->partition = i; 295 inputSections.push_back(sec); 296 } 297 } 298 299 auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); }; 300 301 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 302 303 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 304 Out::programHeaders->alignment = config->wordsize; 305 306 if (config->strip != StripPolicy::All) { 307 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 308 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 309 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 310 } 311 312 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 313 add(*in.bss); 314 315 // If there is a SECTIONS command and a .data.rel.ro section name use name 316 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 317 // This makes sure our relro is contiguous. 318 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 319 in.bssRelRo = std::make_unique<BssSection>( 320 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 321 add(*in.bssRelRo); 322 323 // Add MIPS-specific sections. 324 if (config->emachine == EM_MIPS) { 325 if (!config->shared && config->hasDynSymTab) { 326 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 327 add(*in.mipsRldMap); 328 } 329 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 330 add(*in.mipsAbiFlags); 331 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 332 add(*in.mipsOptions); 333 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 334 add(*in.mipsReginfo); 335 } 336 337 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 338 339 for (Partition &part : partitions) { 340 auto add = [&](SyntheticSection &sec) { 341 sec.partition = part.getNumber(); 342 inputSections.push_back(&sec); 343 }; 344 345 if (!part.name.empty()) { 346 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 347 part.elfHeader->name = part.name; 348 add(*part.elfHeader); 349 350 part.programHeaders = 351 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 352 add(*part.programHeaders); 353 } 354 355 if (config->buildId != BuildIdKind::None) { 356 part.buildId = std::make_unique<BuildIdSection>(); 357 add(*part.buildId); 358 } 359 360 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 361 part.dynSymTab = 362 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 363 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 364 if (config->androidPackDynRelocs) 365 part.relaDyn = 366 std::make_unique<AndroidPackedRelocationSection<ELFT>>(relaDynName); 367 else 368 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 369 relaDynName, config->zCombreloc); 370 371 if (config->hasDynSymTab) { 372 add(*part.dynSymTab); 373 374 part.verSym = std::make_unique<VersionTableSection>(); 375 add(*part.verSym); 376 377 if (!namedVersionDefs().empty()) { 378 part.verDef = std::make_unique<VersionDefinitionSection>(); 379 add(*part.verDef); 380 } 381 382 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 383 add(*part.verNeed); 384 385 if (config->gnuHash) { 386 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 387 add(*part.gnuHashTab); 388 } 389 390 if (config->sysvHash) { 391 part.hashTab = std::make_unique<HashTableSection>(); 392 add(*part.hashTab); 393 } 394 395 add(*part.dynamic); 396 add(*part.dynStrTab); 397 add(*part.relaDyn); 398 } 399 400 if (config->relrPackDynRelocs) { 401 part.relrDyn = std::make_unique<RelrSection<ELFT>>(); 402 add(*part.relrDyn); 403 } 404 405 if (!config->relocatable) { 406 if (config->ehFrameHdr) { 407 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 408 add(*part.ehFrameHdr); 409 } 410 part.ehFrame = std::make_unique<EhFrameSection>(); 411 add(*part.ehFrame); 412 } 413 414 if (config->emachine == EM_ARM && !config->relocatable) { 415 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 416 // InputSections. 417 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 418 add(*part.armExidx); 419 } 420 } 421 422 if (partitions.size() != 1) { 423 // Create the partition end marker. This needs to be in partition number 255 424 // so that it is sorted after all other partitions. It also has other 425 // special handling (see createPhdrs() and combineEhSections()). 426 in.partEnd = 427 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 428 in.partEnd->partition = 255; 429 add(*in.partEnd); 430 431 in.partIndex = std::make_unique<PartitionIndexSection>(); 432 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 433 addOptionalRegular("__part_index_end", in.partIndex.get(), 434 in.partIndex->getSize()); 435 add(*in.partIndex); 436 } 437 438 // Add .got. MIPS' .got is so different from the other archs, 439 // it has its own class. 440 if (config->emachine == EM_MIPS) { 441 in.mipsGot = std::make_unique<MipsGotSection>(); 442 add(*in.mipsGot); 443 } else { 444 in.got = std::make_unique<GotSection>(); 445 add(*in.got); 446 } 447 448 if (config->emachine == EM_PPC) { 449 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 450 add(*in.ppc32Got2); 451 } 452 453 if (config->emachine == EM_PPC64) { 454 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 455 add(*in.ppc64LongBranchTarget); 456 } 457 458 in.gotPlt = std::make_unique<GotPltSection>(); 459 add(*in.gotPlt); 460 in.igotPlt = std::make_unique<IgotPltSection>(); 461 add(*in.igotPlt); 462 463 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 464 // it as a relocation and ensure the referenced section is created. 465 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 466 if (target->gotBaseSymInGotPlt) 467 in.gotPlt->hasGotPltOffRel = true; 468 else 469 in.got->hasGotOffRel = true; 470 } 471 472 if (config->gdbIndex) 473 add(*GdbIndexSection::create<ELFT>()); 474 475 // We always need to add rel[a].plt to output if it has entries. 476 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 477 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 478 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 479 add(*in.relaPlt); 480 481 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 482 // relocations are processed last by the dynamic loader. We cannot place the 483 // iplt section in .rel.dyn when Android relocation packing is enabled because 484 // that would cause a section type mismatch. However, because the Android 485 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 486 // behaviour by placing the iplt section in .rel.plt. 487 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 488 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 489 /*sort=*/false); 490 add(*in.relaIplt); 491 492 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 493 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 494 in.ibtPlt = std::make_unique<IBTPltSection>(); 495 add(*in.ibtPlt); 496 } 497 498 if (config->emachine == EM_PPC) 499 in.plt = std::make_unique<PPC32GlinkSection>(); 500 else 501 in.plt = std::make_unique<PltSection>(); 502 add(*in.plt); 503 in.iplt = std::make_unique<IpltSection>(); 504 add(*in.iplt); 505 506 if (config->andFeatures) 507 add(*make<GnuPropertySection>()); 508 509 // .note.GNU-stack is always added when we are creating a re-linkable 510 // object file. Other linkers are using the presence of this marker 511 // section to control the executable-ness of the stack area, but that 512 // is irrelevant these days. Stack area should always be non-executable 513 // by default. So we emit this section unconditionally. 514 if (config->relocatable) 515 add(*make<GnuStackSection>()); 516 517 if (in.symTab) 518 add(*in.symTab); 519 if (in.symTabShndx) 520 add(*in.symTabShndx); 521 add(*in.shStrTab); 522 if (in.strTab) 523 add(*in.strTab); 524 } 525 526 // The main function of the writer. 527 template <class ELFT> void Writer<ELFT>::run() { 528 copyLocalSymbols(); 529 530 if (config->copyRelocs) 531 addSectionSymbols(); 532 533 // Now that we have a complete set of output sections. This function 534 // completes section contents. For example, we need to add strings 535 // to the string table, and add entries to .got and .plt. 536 // finalizeSections does that. 537 finalizeSections(); 538 checkExecuteOnly(); 539 540 // If --compressed-debug-sections is specified, compress .debug_* sections. 541 // Do it right now because it changes the size of output sections. 542 for (OutputSection *sec : outputSections) 543 sec->maybeCompress<ELFT>(); 544 545 if (script->hasSectionsCommand) 546 script->allocateHeaders(mainPart->phdrs); 547 548 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 549 // 0 sized region. This has to be done late since only after assignAddresses 550 // we know the size of the sections. 551 for (Partition &part : partitions) 552 removeEmptyPTLoad(part.phdrs); 553 554 if (!config->oFormatBinary) 555 assignFileOffsets(); 556 else 557 assignFileOffsetsBinary(); 558 559 for (Partition &part : partitions) 560 setPhdrs(part); 561 562 563 // Handle --print-map(-M)/--Map, --why-extract=, --cref and 564 // --print-archive-stats=. Dump them before checkSections() because the files 565 // may be useful in case checkSections() or openFile() fails, for example, due 566 // to an erroneous file size. 567 writeMapAndCref(); 568 writeWhyExtract(); 569 writeArchiveStats(); 570 571 if (config->checkSections) 572 checkSections(); 573 574 // It does not make sense try to open the file if we have error already. 575 if (errorCount()) 576 return; 577 578 { 579 llvm::TimeTraceScope timeScope("Write output file"); 580 // Write the result down to a file. 581 openFile(); 582 if (errorCount()) 583 return; 584 585 if (!config->oFormatBinary) { 586 if (config->zSeparate != SeparateSegmentKind::None) 587 writeTrapInstr(); 588 writeHeader(); 589 writeSections(); 590 } else { 591 writeSectionsBinary(); 592 } 593 594 // Backfill .note.gnu.build-id section content. This is done at last 595 // because the content is usually a hash value of the entire output file. 596 writeBuildId(); 597 if (errorCount()) 598 return; 599 600 if (auto e = buffer->commit()) 601 error("failed to write to the output file: " + toString(std::move(e))); 602 } 603 } 604 605 template <class ELFT, class RelTy> 606 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 607 llvm::ArrayRef<RelTy> rels) { 608 for (const RelTy &rel : rels) { 609 Symbol &sym = file->getRelocTargetSym(rel); 610 if (sym.isLocal()) 611 sym.used = true; 612 } 613 } 614 615 // The function ensures that the "used" field of local symbols reflects the fact 616 // that the symbol is used in a relocation from a live section. 617 template <class ELFT> static void markUsedLocalSymbols() { 618 // With --gc-sections, the field is already filled. 619 // See MarkLive<ELFT>::resolveReloc(). 620 if (config->gcSections) 621 return; 622 // Without --gc-sections, the field is initialized with "true". 623 // Drop the flag first and then rise for symbols referenced in relocations. 624 for (ELFFileBase *file : objectFiles) { 625 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 626 for (Symbol *b : f->getLocalSymbols()) 627 b->used = false; 628 for (InputSectionBase *s : f->getSections()) { 629 InputSection *isec = dyn_cast_or_null<InputSection>(s); 630 if (!isec) 631 continue; 632 if (isec->type == SHT_REL) 633 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 634 else if (isec->type == SHT_RELA) 635 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 636 } 637 } 638 } 639 640 static bool shouldKeepInSymtab(const Defined &sym) { 641 if (sym.isSection()) 642 return false; 643 644 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 645 // from live sections. 646 if (config->copyRelocs && sym.used) 647 return true; 648 649 // Exclude local symbols pointing to .ARM.exidx sections. 650 // They are probably mapping symbols "$d", which are optional for these 651 // sections. After merging the .ARM.exidx sections, some of these symbols 652 // may become dangling. The easiest way to avoid the issue is not to add 653 // them to the symbol table from the beginning. 654 if (config->emachine == EM_ARM && sym.section && 655 sym.section->type == SHT_ARM_EXIDX) 656 return false; 657 658 if (config->discard == DiscardPolicy::None) 659 return true; 660 if (config->discard == DiscardPolicy::All) 661 return false; 662 663 // In ELF assembly .L symbols are normally discarded by the assembler. 664 // If the assembler fails to do so, the linker discards them if 665 // * --discard-locals is used. 666 // * The symbol is in a SHF_MERGE section, which is normally the reason for 667 // the assembler keeping the .L symbol. 668 if (sym.getName().startswith(".L") && 669 (config->discard == DiscardPolicy::Locals || 670 (sym.section && (sym.section->flags & SHF_MERGE)))) 671 return false; 672 return true; 673 } 674 675 static bool includeInSymtab(const Symbol &b) { 676 if (auto *d = dyn_cast<Defined>(&b)) { 677 // Always include absolute symbols. 678 SectionBase *sec = d->section; 679 if (!sec) 680 return true; 681 682 // Exclude symbols pointing to garbage-collected sections. 683 if (isa<InputSectionBase>(sec) && !sec->isLive()) 684 return false; 685 686 if (auto *s = dyn_cast<MergeInputSection>(sec)) 687 if (!s->getSectionPiece(d->value)->live) 688 return false; 689 return true; 690 } 691 return b.used; 692 } 693 694 // Local symbols are not in the linker's symbol table. This function scans 695 // each object file's symbol table to copy local symbols to the output. 696 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 697 if (!in.symTab) 698 return; 699 llvm::TimeTraceScope timeScope("Add local symbols"); 700 if (config->copyRelocs && config->discard != DiscardPolicy::None) 701 markUsedLocalSymbols<ELFT>(); 702 for (ELFFileBase *file : objectFiles) { 703 for (Symbol *b : file->getLocalSymbols()) { 704 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 705 auto *dr = dyn_cast<Defined>(b); 706 707 // No reason to keep local undefined symbol in symtab. 708 if (!dr) 709 continue; 710 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 711 in.symTab->addSymbol(b); 712 } 713 } 714 } 715 716 // Create a section symbol for each output section so that we can represent 717 // relocations that point to the section. If we know that no relocation is 718 // referring to a section (that happens if the section is a synthetic one), we 719 // don't create a section symbol for that section. 720 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 721 for (SectionCommand *cmd : script->sectionCommands) { 722 auto *sec = dyn_cast<OutputSection>(cmd); 723 if (!sec) 724 continue; 725 OutputSection &osec = *sec; 726 InputSectionBase *isec = nullptr; 727 // Iterate over all input sections and add a STT_SECTION symbol if any input 728 // section may be a relocation target. 729 for (SectionCommand *cmd : osec.commands) { 730 auto *isd = dyn_cast<InputSectionDescription>(cmd); 731 if (!isd) 732 continue; 733 for (InputSectionBase *s : isd->sections) { 734 // Relocations are not using REL[A] section symbols. 735 if (s->type == SHT_REL || s->type == SHT_RELA) 736 continue; 737 738 // Unlike other synthetic sections, mergeable output sections contain 739 // data copied from input sections, and there may be a relocation 740 // pointing to its contents if -r or --emit-reloc is given. 741 if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE)) 742 continue; 743 744 isec = s; 745 break; 746 } 747 } 748 if (!isec) 749 continue; 750 751 // Set the symbol to be relative to the output section so that its st_value 752 // equals the output section address. Note, there may be a gap between the 753 // start of the output section and isec. 754 in.symTab->addSymbol( 755 makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 756 /*value=*/0, /*size=*/0, isec->getOutputSection())); 757 } 758 } 759 760 // Today's loaders have a feature to make segments read-only after 761 // processing dynamic relocations to enhance security. PT_GNU_RELRO 762 // is defined for that. 763 // 764 // This function returns true if a section needs to be put into a 765 // PT_GNU_RELRO segment. 766 static bool isRelroSection(const OutputSection *sec) { 767 if (!config->zRelro) 768 return false; 769 770 uint64_t flags = sec->flags; 771 772 // Non-allocatable or non-writable sections don't need RELRO because 773 // they are not writable or not even mapped to memory in the first place. 774 // RELRO is for sections that are essentially read-only but need to 775 // be writable only at process startup to allow dynamic linker to 776 // apply relocations. 777 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 778 return false; 779 780 // Once initialized, TLS data segments are used as data templates 781 // for a thread-local storage. For each new thread, runtime 782 // allocates memory for a TLS and copy templates there. No thread 783 // are supposed to use templates directly. Thus, it can be in RELRO. 784 if (flags & SHF_TLS) 785 return true; 786 787 // .init_array, .preinit_array and .fini_array contain pointers to 788 // functions that are executed on process startup or exit. These 789 // pointers are set by the static linker, and they are not expected 790 // to change at runtime. But if you are an attacker, you could do 791 // interesting things by manipulating pointers in .fini_array, for 792 // example. So they are put into RELRO. 793 uint32_t type = sec->type; 794 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 795 type == SHT_PREINIT_ARRAY) 796 return true; 797 798 // .got contains pointers to external symbols. They are resolved by 799 // the dynamic linker when a module is loaded into memory, and after 800 // that they are not expected to change. So, it can be in RELRO. 801 if (in.got && sec == in.got->getParent()) 802 return true; 803 804 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 805 // through r2 register, which is reserved for that purpose. Since r2 is used 806 // for accessing .got as well, .got and .toc need to be close enough in the 807 // virtual address space. Usually, .toc comes just after .got. Since we place 808 // .got into RELRO, .toc needs to be placed into RELRO too. 809 if (sec->name.equals(".toc")) 810 return true; 811 812 // .got.plt contains pointers to external function symbols. They are 813 // by default resolved lazily, so we usually cannot put it into RELRO. 814 // However, if "-z now" is given, the lazy symbol resolution is 815 // disabled, which enables us to put it into RELRO. 816 if (sec == in.gotPlt->getParent()) 817 return config->zNow; 818 819 // .dynamic section contains data for the dynamic linker, and 820 // there's no need to write to it at runtime, so it's better to put 821 // it into RELRO. 822 if (sec->name == ".dynamic") 823 return true; 824 825 // Sections with some special names are put into RELRO. This is a 826 // bit unfortunate because section names shouldn't be significant in 827 // ELF in spirit. But in reality many linker features depend on 828 // magic section names. 829 StringRef s = sec->name; 830 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 831 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 832 s == ".fini_array" || s == ".init_array" || 833 s == ".openbsd.randomdata" || s == ".preinit_array"; 834 } 835 836 // We compute a rank for each section. The rank indicates where the 837 // section should be placed in the file. Instead of using simple 838 // numbers (0,1,2...), we use a series of flags. One for each decision 839 // point when placing the section. 840 // Using flags has two key properties: 841 // * It is easy to check if a give branch was taken. 842 // * It is easy two see how similar two ranks are (see getRankProximity). 843 enum RankFlags { 844 RF_NOT_ADDR_SET = 1 << 27, 845 RF_NOT_ALLOC = 1 << 26, 846 RF_PARTITION = 1 << 18, // Partition number (8 bits) 847 RF_NOT_PART_EHDR = 1 << 17, 848 RF_NOT_PART_PHDR = 1 << 16, 849 RF_NOT_INTERP = 1 << 15, 850 RF_NOT_NOTE = 1 << 14, 851 RF_WRITE = 1 << 13, 852 RF_EXEC_WRITE = 1 << 12, 853 RF_EXEC = 1 << 11, 854 RF_RODATA = 1 << 10, 855 RF_NOT_RELRO = 1 << 9, 856 RF_NOT_TLS = 1 << 8, 857 RF_BSS = 1 << 7, 858 RF_PPC_NOT_TOCBSS = 1 << 6, 859 RF_PPC_TOCL = 1 << 5, 860 RF_PPC_TOC = 1 << 4, 861 RF_PPC_GOT = 1 << 3, 862 RF_PPC_BRANCH_LT = 1 << 2, 863 RF_MIPS_GPREL = 1 << 1, 864 RF_MIPS_NOT_GOT = 1 << 0 865 }; 866 867 static unsigned getSectionRank(const OutputSection *sec) { 868 unsigned rank = sec->partition * RF_PARTITION; 869 870 // We want to put section specified by -T option first, so we 871 // can start assigning VA starting from them later. 872 if (config->sectionStartMap.count(sec->name)) 873 return rank; 874 rank |= RF_NOT_ADDR_SET; 875 876 // Allocatable sections go first to reduce the total PT_LOAD size and 877 // so debug info doesn't change addresses in actual code. 878 if (!(sec->flags & SHF_ALLOC)) 879 return rank | RF_NOT_ALLOC; 880 881 if (sec->type == SHT_LLVM_PART_EHDR) 882 return rank; 883 rank |= RF_NOT_PART_EHDR; 884 885 if (sec->type == SHT_LLVM_PART_PHDR) 886 return rank; 887 rank |= RF_NOT_PART_PHDR; 888 889 // Put .interp first because some loaders want to see that section 890 // on the first page of the executable file when loaded into memory. 891 if (sec->name == ".interp") 892 return rank; 893 rank |= RF_NOT_INTERP; 894 895 // Put .note sections (which make up one PT_NOTE) at the beginning so that 896 // they are likely to be included in a core file even if core file size is 897 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 898 // included in a core to match core files with executables. 899 if (sec->type == SHT_NOTE) 900 return rank; 901 rank |= RF_NOT_NOTE; 902 903 // Sort sections based on their access permission in the following 904 // order: R, RX, RWX, RW. This order is based on the following 905 // considerations: 906 // * Read-only sections come first such that they go in the 907 // PT_LOAD covering the program headers at the start of the file. 908 // * Read-only, executable sections come next. 909 // * Writable, executable sections follow such that .plt on 910 // architectures where it needs to be writable will be placed 911 // between .text and .data. 912 // * Writable sections come last, such that .bss lands at the very 913 // end of the last PT_LOAD. 914 bool isExec = sec->flags & SHF_EXECINSTR; 915 bool isWrite = sec->flags & SHF_WRITE; 916 917 if (isExec) { 918 if (isWrite) 919 rank |= RF_EXEC_WRITE; 920 else 921 rank |= RF_EXEC; 922 } else if (isWrite) { 923 rank |= RF_WRITE; 924 } else if (sec->type == SHT_PROGBITS) { 925 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 926 // .eh_frame) closer to .text. They likely contain PC or GOT relative 927 // relocations and there could be relocation overflow if other huge sections 928 // (.dynstr .dynsym) were placed in between. 929 rank |= RF_RODATA; 930 } 931 932 // Place RelRo sections first. After considering SHT_NOBITS below, the 933 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 934 // where | marks where page alignment happens. An alternative ordering is 935 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 936 // waste more bytes due to 2 alignment places. 937 if (!isRelroSection(sec)) 938 rank |= RF_NOT_RELRO; 939 940 // If we got here we know that both A and B are in the same PT_LOAD. 941 942 // The TLS initialization block needs to be a single contiguous block in a R/W 943 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 944 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 945 // after PROGBITS. 946 if (!(sec->flags & SHF_TLS)) 947 rank |= RF_NOT_TLS; 948 949 // Within TLS sections, or within other RelRo sections, or within non-RelRo 950 // sections, place non-NOBITS sections first. 951 if (sec->type == SHT_NOBITS) 952 rank |= RF_BSS; 953 954 // Some architectures have additional ordering restrictions for sections 955 // within the same PT_LOAD. 956 if (config->emachine == EM_PPC64) { 957 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 958 // that we would like to make sure appear is a specific order to maximize 959 // their coverage by a single signed 16-bit offset from the TOC base 960 // pointer. Conversely, the special .tocbss section should be first among 961 // all SHT_NOBITS sections. This will put it next to the loaded special 962 // PPC64 sections (and, thus, within reach of the TOC base pointer). 963 StringRef name = sec->name; 964 if (name != ".tocbss") 965 rank |= RF_PPC_NOT_TOCBSS; 966 967 if (name == ".toc1") 968 rank |= RF_PPC_TOCL; 969 970 if (name == ".toc") 971 rank |= RF_PPC_TOC; 972 973 if (name == ".got") 974 rank |= RF_PPC_GOT; 975 976 if (name == ".branch_lt") 977 rank |= RF_PPC_BRANCH_LT; 978 } 979 980 if (config->emachine == EM_MIPS) { 981 // All sections with SHF_MIPS_GPREL flag should be grouped together 982 // because data in these sections is addressable with a gp relative address. 983 if (sec->flags & SHF_MIPS_GPREL) 984 rank |= RF_MIPS_GPREL; 985 986 if (sec->name != ".got") 987 rank |= RF_MIPS_NOT_GOT; 988 } 989 990 return rank; 991 } 992 993 static bool compareSections(const SectionCommand *aCmd, 994 const SectionCommand *bCmd) { 995 const OutputSection *a = cast<OutputSection>(aCmd); 996 const OutputSection *b = cast<OutputSection>(bCmd); 997 998 if (a->sortRank != b->sortRank) 999 return a->sortRank < b->sortRank; 1000 1001 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1002 return config->sectionStartMap.lookup(a->name) < 1003 config->sectionStartMap.lookup(b->name); 1004 return false; 1005 } 1006 1007 void PhdrEntry::add(OutputSection *sec) { 1008 lastSec = sec; 1009 if (!firstSec) 1010 firstSec = sec; 1011 p_align = std::max(p_align, sec->alignment); 1012 if (p_type == PT_LOAD) 1013 sec->ptLoad = this; 1014 } 1015 1016 // The beginning and the ending of .rel[a].plt section are marked 1017 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1018 // executable. The runtime needs these symbols in order to resolve 1019 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1020 // need these symbols, since IRELATIVE relocs are resolved through GOT 1021 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1022 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1023 if (config->relocatable || config->isPic) 1024 return; 1025 1026 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1027 // because .rela.plt might be empty and thus removed from output. 1028 // We'll override Out::elfHeader with In.relaIplt later when we are 1029 // sure that .rela.plt exists in output. 1030 ElfSym::relaIpltStart = addOptionalRegular( 1031 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1032 Out::elfHeader, 0, STV_HIDDEN); 1033 1034 ElfSym::relaIpltEnd = addOptionalRegular( 1035 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1036 Out::elfHeader, 0, STV_HIDDEN); 1037 } 1038 1039 // This function generates assignments for predefined symbols (e.g. _end or 1040 // _etext) and inserts them into the commands sequence to be processed at the 1041 // appropriate time. This ensures that the value is going to be correct by the 1042 // time any references to these symbols are processed and is equivalent to 1043 // defining these symbols explicitly in the linker script. 1044 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1045 if (ElfSym::globalOffsetTable) { 1046 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1047 // to the start of the .got or .got.plt section. 1048 InputSection *sec = in.gotPlt.get(); 1049 if (!target->gotBaseSymInGotPlt) 1050 sec = in.mipsGot.get() ? cast<InputSection>(in.mipsGot.get()) 1051 : cast<InputSection>(in.got.get()); 1052 ElfSym::globalOffsetTable->section = sec; 1053 } 1054 1055 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1056 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1057 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1058 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1059 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1060 } 1061 1062 PhdrEntry *last = nullptr; 1063 PhdrEntry *lastRO = nullptr; 1064 1065 for (Partition &part : partitions) { 1066 for (PhdrEntry *p : part.phdrs) { 1067 if (p->p_type != PT_LOAD) 1068 continue; 1069 last = p; 1070 if (!(p->p_flags & PF_W)) 1071 lastRO = p; 1072 } 1073 } 1074 1075 if (lastRO) { 1076 // _etext is the first location after the last read-only loadable segment. 1077 if (ElfSym::etext1) 1078 ElfSym::etext1->section = lastRO->lastSec; 1079 if (ElfSym::etext2) 1080 ElfSym::etext2->section = lastRO->lastSec; 1081 } 1082 1083 if (last) { 1084 // _edata points to the end of the last mapped initialized section. 1085 OutputSection *edata = nullptr; 1086 for (OutputSection *os : outputSections) { 1087 if (os->type != SHT_NOBITS) 1088 edata = os; 1089 if (os == last->lastSec) 1090 break; 1091 } 1092 1093 if (ElfSym::edata1) 1094 ElfSym::edata1->section = edata; 1095 if (ElfSym::edata2) 1096 ElfSym::edata2->section = edata; 1097 1098 // _end is the first location after the uninitialized data region. 1099 if (ElfSym::end1) 1100 ElfSym::end1->section = last->lastSec; 1101 if (ElfSym::end2) 1102 ElfSym::end2->section = last->lastSec; 1103 } 1104 1105 if (ElfSym::bss) 1106 ElfSym::bss->section = findSection(".bss"); 1107 1108 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1109 // be equal to the _gp symbol's value. 1110 if (ElfSym::mipsGp) { 1111 // Find GP-relative section with the lowest address 1112 // and use this address to calculate default _gp value. 1113 for (OutputSection *os : outputSections) { 1114 if (os->flags & SHF_MIPS_GPREL) { 1115 ElfSym::mipsGp->section = os; 1116 ElfSym::mipsGp->value = 0x7ff0; 1117 break; 1118 } 1119 } 1120 } 1121 } 1122 1123 // We want to find how similar two ranks are. 1124 // The more branches in getSectionRank that match, the more similar they are. 1125 // Since each branch corresponds to a bit flag, we can just use 1126 // countLeadingZeros. 1127 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1128 return countLeadingZeros(a->sortRank ^ b->sortRank); 1129 } 1130 1131 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1132 auto *sec = dyn_cast<OutputSection>(b); 1133 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1134 } 1135 1136 // When placing orphan sections, we want to place them after symbol assignments 1137 // so that an orphan after 1138 // begin_foo = .; 1139 // foo : { *(foo) } 1140 // end_foo = .; 1141 // doesn't break the intended meaning of the begin/end symbols. 1142 // We don't want to go over sections since findOrphanPos is the 1143 // one in charge of deciding the order of the sections. 1144 // We don't want to go over changes to '.', since doing so in 1145 // rx_sec : { *(rx_sec) } 1146 // . = ALIGN(0x1000); 1147 // /* The RW PT_LOAD starts here*/ 1148 // rw_sec : { *(rw_sec) } 1149 // would mean that the RW PT_LOAD would become unaligned. 1150 static bool shouldSkip(SectionCommand *cmd) { 1151 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1152 return assign->name != "."; 1153 return false; 1154 } 1155 1156 // We want to place orphan sections so that they share as much 1157 // characteristics with their neighbors as possible. For example, if 1158 // both are rw, or both are tls. 1159 static SmallVectorImpl<SectionCommand *>::iterator 1160 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1161 SmallVectorImpl<SectionCommand *>::iterator e) { 1162 OutputSection *sec = cast<OutputSection>(*e); 1163 1164 // Find the first element that has as close a rank as possible. 1165 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1166 return getRankProximity(sec, a) < getRankProximity(sec, b); 1167 }); 1168 if (i == e) 1169 return e; 1170 auto foundSec = dyn_cast<OutputSection>(*i); 1171 if (!foundSec) 1172 return e; 1173 1174 // Consider all existing sections with the same proximity. 1175 int proximity = getRankProximity(sec, *i); 1176 unsigned sortRank = sec->sortRank; 1177 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1178 // Prevent the orphan section to be placed before the found section. If 1179 // custom program headers are defined, that helps to avoid adding it to a 1180 // previous segment and changing flags of that segment, for example, making 1181 // a read-only segment writable. If memory regions are defined, an orphan 1182 // section should continue the same region as the found section to better 1183 // resemble the behavior of GNU ld. 1184 sortRank = std::max(sortRank, foundSec->sortRank); 1185 for (; i != e; ++i) { 1186 auto *curSec = dyn_cast<OutputSection>(*i); 1187 if (!curSec || !curSec->hasInputSections) 1188 continue; 1189 if (getRankProximity(sec, curSec) != proximity || 1190 sortRank < curSec->sortRank) 1191 break; 1192 } 1193 1194 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1195 auto *os = dyn_cast<OutputSection>(cmd); 1196 return os && os->hasInputSections; 1197 }; 1198 auto j = 1199 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1200 isOutputSecWithInputSections); 1201 i = j.base(); 1202 1203 // As a special case, if the orphan section is the last section, put 1204 // it at the very end, past any other commands. 1205 // This matches bfd's behavior and is convenient when the linker script fully 1206 // specifies the start of the file, but doesn't care about the end (the non 1207 // alloc sections for example). 1208 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1209 if (nextSec == e) 1210 return e; 1211 1212 while (i != e && shouldSkip(*i)) 1213 ++i; 1214 return i; 1215 } 1216 1217 // Adds random priorities to sections not already in the map. 1218 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1219 if (config->shuffleSections.empty()) 1220 return; 1221 1222 SmallVector<InputSectionBase *, 0> matched, sections = inputSections; 1223 matched.reserve(sections.size()); 1224 for (const auto &patAndSeed : config->shuffleSections) { 1225 matched.clear(); 1226 for (InputSectionBase *sec : sections) 1227 if (patAndSeed.first.match(sec->name)) 1228 matched.push_back(sec); 1229 const uint32_t seed = patAndSeed.second; 1230 if (seed == UINT32_MAX) { 1231 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1232 // section order is stable even if the number of sections changes. This is 1233 // useful to catch issues like static initialization order fiasco 1234 // reliably. 1235 std::reverse(matched.begin(), matched.end()); 1236 } else { 1237 std::mt19937 g(seed ? seed : std::random_device()()); 1238 llvm::shuffle(matched.begin(), matched.end(), g); 1239 } 1240 size_t i = 0; 1241 for (InputSectionBase *&sec : sections) 1242 if (patAndSeed.first.match(sec->name)) 1243 sec = matched[i++]; 1244 } 1245 1246 // Existing priorities are < 0, so use priorities >= 0 for the missing 1247 // sections. 1248 int prio = 0; 1249 for (InputSectionBase *sec : sections) { 1250 if (order.try_emplace(sec, prio).second) 1251 ++prio; 1252 } 1253 } 1254 1255 // Builds section order for handling --symbol-ordering-file. 1256 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1257 DenseMap<const InputSectionBase *, int> sectionOrder; 1258 // Use the rarely used option --call-graph-ordering-file to sort sections. 1259 if (!config->callGraphProfile.empty()) 1260 return computeCallGraphProfileOrder(); 1261 1262 if (config->symbolOrderingFile.empty()) 1263 return sectionOrder; 1264 1265 struct SymbolOrderEntry { 1266 int priority; 1267 bool present; 1268 }; 1269 1270 // Build a map from symbols to their priorities. Symbols that didn't 1271 // appear in the symbol ordering file have the lowest priority 0. 1272 // All explicitly mentioned symbols have negative (higher) priorities. 1273 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1274 int priority = -config->symbolOrderingFile.size(); 1275 for (StringRef s : config->symbolOrderingFile) 1276 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1277 1278 // Build a map from sections to their priorities. 1279 auto addSym = [&](Symbol &sym) { 1280 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1281 if (it == symbolOrder.end()) 1282 return; 1283 SymbolOrderEntry &ent = it->second; 1284 ent.present = true; 1285 1286 maybeWarnUnorderableSymbol(&sym); 1287 1288 if (auto *d = dyn_cast<Defined>(&sym)) { 1289 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1290 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1291 priority = std::min(priority, ent.priority); 1292 } 1293 } 1294 }; 1295 1296 // We want both global and local symbols. We get the global ones from the 1297 // symbol table and iterate the object files for the local ones. 1298 for (Symbol *sym : symtab->symbols()) 1299 addSym(*sym); 1300 1301 for (ELFFileBase *file : objectFiles) 1302 for (Symbol *sym : file->getLocalSymbols()) 1303 addSym(*sym); 1304 1305 if (config->warnSymbolOrdering) 1306 for (auto orderEntry : symbolOrder) 1307 if (!orderEntry.second.present) 1308 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1309 1310 return sectionOrder; 1311 } 1312 1313 // Sorts the sections in ISD according to the provided section order. 1314 static void 1315 sortISDBySectionOrder(InputSectionDescription *isd, 1316 const DenseMap<const InputSectionBase *, int> &order) { 1317 SmallVector<InputSection *, 0> unorderedSections; 1318 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1319 uint64_t unorderedSize = 0; 1320 1321 for (InputSection *isec : isd->sections) { 1322 auto i = order.find(isec); 1323 if (i == order.end()) { 1324 unorderedSections.push_back(isec); 1325 unorderedSize += isec->getSize(); 1326 continue; 1327 } 1328 orderedSections.push_back({isec, i->second}); 1329 } 1330 llvm::sort(orderedSections, llvm::less_second()); 1331 1332 // Find an insertion point for the ordered section list in the unordered 1333 // section list. On targets with limited-range branches, this is the mid-point 1334 // of the unordered section list. This decreases the likelihood that a range 1335 // extension thunk will be needed to enter or exit the ordered region. If the 1336 // ordered section list is a list of hot functions, we can generally expect 1337 // the ordered functions to be called more often than the unordered functions, 1338 // making it more likely that any particular call will be within range, and 1339 // therefore reducing the number of thunks required. 1340 // 1341 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1342 // If the layout is: 1343 // 1344 // 8MB hot 1345 // 32MB cold 1346 // 1347 // only the first 8-16MB of the cold code (depending on which hot function it 1348 // is actually calling) can call the hot code without a range extension thunk. 1349 // However, if we use this layout: 1350 // 1351 // 16MB cold 1352 // 8MB hot 1353 // 16MB cold 1354 // 1355 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1356 // of the second block of cold code can call the hot code without a thunk. So 1357 // we effectively double the amount of code that could potentially call into 1358 // the hot code without a thunk. 1359 size_t insPt = 0; 1360 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1361 uint64_t unorderedPos = 0; 1362 for (; insPt != unorderedSections.size(); ++insPt) { 1363 unorderedPos += unorderedSections[insPt]->getSize(); 1364 if (unorderedPos > unorderedSize / 2) 1365 break; 1366 } 1367 } 1368 1369 isd->sections.clear(); 1370 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1371 isd->sections.push_back(isec); 1372 for (std::pair<InputSection *, int> p : orderedSections) 1373 isd->sections.push_back(p.first); 1374 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1375 isd->sections.push_back(isec); 1376 } 1377 1378 static void sortSection(OutputSection *sec, 1379 const DenseMap<const InputSectionBase *, int> &order) { 1380 StringRef name = sec->name; 1381 1382 // Never sort these. 1383 if (name == ".init" || name == ".fini") 1384 return; 1385 1386 // IRelative relocations that usually live in the .rel[a].dyn section should 1387 // be processed last by the dynamic loader. To achieve that we add synthetic 1388 // sections in the required order from the beginning so that the in.relaIplt 1389 // section is placed last in an output section. Here we just do not apply 1390 // sorting for an output section which holds the in.relaIplt section. 1391 if (in.relaIplt->getParent() == sec) 1392 return; 1393 1394 // Sort input sections by priority using the list provided by 1395 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1396 // digit radix sort. The sections may be sorted stably again by a more 1397 // significant key. 1398 if (!order.empty()) 1399 for (SectionCommand *b : sec->commands) 1400 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1401 sortISDBySectionOrder(isd, order); 1402 1403 if (script->hasSectionsCommand) 1404 return; 1405 1406 if (name == ".init_array" || name == ".fini_array") { 1407 sec->sortInitFini(); 1408 } else if (name == ".ctors" || name == ".dtors") { 1409 sec->sortCtorsDtors(); 1410 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1411 // .toc is allocated just after .got and is accessed using GOT-relative 1412 // relocations. Object files compiled with small code model have an 1413 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1414 // To reduce the risk of relocation overflow, .toc contents are sorted so 1415 // that sections having smaller relocation offsets are at beginning of .toc 1416 assert(sec->commands.size() == 1); 1417 auto *isd = cast<InputSectionDescription>(sec->commands[0]); 1418 llvm::stable_sort(isd->sections, 1419 [](const InputSection *a, const InputSection *b) -> bool { 1420 return a->file->ppc64SmallCodeModelTocRelocs && 1421 !b->file->ppc64SmallCodeModelTocRelocs; 1422 }); 1423 } 1424 } 1425 1426 // If no layout was provided by linker script, we want to apply default 1427 // sorting for special input sections. This also handles --symbol-ordering-file. 1428 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1429 // Build the order once since it is expensive. 1430 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1431 maybeShuffle(order); 1432 for (SectionCommand *cmd : script->sectionCommands) 1433 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1434 sortSection(sec, order); 1435 } 1436 1437 template <class ELFT> void Writer<ELFT>::sortSections() { 1438 llvm::TimeTraceScope timeScope("Sort sections"); 1439 1440 // Don't sort if using -r. It is not necessary and we want to preserve the 1441 // relative order for SHF_LINK_ORDER sections. 1442 if (config->relocatable) { 1443 script->adjustOutputSections(); 1444 return; 1445 } 1446 1447 sortInputSections(); 1448 1449 for (SectionCommand *cmd : script->sectionCommands) 1450 if (auto *osec = dyn_cast_or_null<OutputSection>(cmd)) 1451 osec->sortRank = getSectionRank(osec); 1452 if (!script->hasSectionsCommand) { 1453 // We know that all the OutputSections are contiguous in this case. 1454 auto isSection = [](SectionCommand *cmd) { 1455 return isa<OutputSection>(cmd); 1456 }; 1457 std::stable_sort( 1458 llvm::find_if(script->sectionCommands, isSection), 1459 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1460 compareSections); 1461 } 1462 1463 // Process INSERT commands and update output section attributes. From this 1464 // point onwards the order of script->sectionCommands is fixed. 1465 script->processInsertCommands(); 1466 script->adjustOutputSections(); 1467 1468 if (!script->hasSectionsCommand) 1469 return; 1470 1471 // Orphan sections are sections present in the input files which are 1472 // not explicitly placed into the output file by the linker script. 1473 // 1474 // The sections in the linker script are already in the correct 1475 // order. We have to figuere out where to insert the orphan 1476 // sections. 1477 // 1478 // The order of the sections in the script is arbitrary and may not agree with 1479 // compareSections. This means that we cannot easily define a strict weak 1480 // ordering. To see why, consider a comparison of a section in the script and 1481 // one not in the script. We have a two simple options: 1482 // * Make them equivalent (a is not less than b, and b is not less than a). 1483 // The problem is then that equivalence has to be transitive and we can 1484 // have sections a, b and c with only b in a script and a less than c 1485 // which breaks this property. 1486 // * Use compareSectionsNonScript. Given that the script order doesn't have 1487 // to match, we can end up with sections a, b, c, d where b and c are in the 1488 // script and c is compareSectionsNonScript less than b. In which case d 1489 // can be equivalent to c, a to b and d < a. As a concrete example: 1490 // .a (rx) # not in script 1491 // .b (rx) # in script 1492 // .c (ro) # in script 1493 // .d (ro) # not in script 1494 // 1495 // The way we define an order then is: 1496 // * Sort only the orphan sections. They are in the end right now. 1497 // * Move each orphan section to its preferred position. We try 1498 // to put each section in the last position where it can share 1499 // a PT_LOAD. 1500 // 1501 // There is some ambiguity as to where exactly a new entry should be 1502 // inserted, because Commands contains not only output section 1503 // commands but also other types of commands such as symbol assignment 1504 // expressions. There's no correct answer here due to the lack of the 1505 // formal specification of the linker script. We use heuristics to 1506 // determine whether a new output command should be added before or 1507 // after another commands. For the details, look at shouldSkip 1508 // function. 1509 1510 auto i = script->sectionCommands.begin(); 1511 auto e = script->sectionCommands.end(); 1512 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1513 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1514 return sec->sectionIndex == UINT32_MAX; 1515 return false; 1516 }); 1517 1518 // Sort the orphan sections. 1519 std::stable_sort(nonScriptI, e, compareSections); 1520 1521 // As a horrible special case, skip the first . assignment if it is before any 1522 // section. We do this because it is common to set a load address by starting 1523 // the script with ". = 0xabcd" and the expectation is that every section is 1524 // after that. 1525 auto firstSectionOrDotAssignment = 1526 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1527 if (firstSectionOrDotAssignment != e && 1528 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1529 ++firstSectionOrDotAssignment; 1530 i = firstSectionOrDotAssignment; 1531 1532 while (nonScriptI != e) { 1533 auto pos = findOrphanPos(i, nonScriptI); 1534 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1535 1536 // As an optimization, find all sections with the same sort rank 1537 // and insert them with one rotate. 1538 unsigned rank = orphan->sortRank; 1539 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1540 return cast<OutputSection>(cmd)->sortRank != rank; 1541 }); 1542 std::rotate(pos, nonScriptI, end); 1543 nonScriptI = end; 1544 } 1545 1546 script->adjustSectionsAfterSorting(); 1547 } 1548 1549 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1550 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1551 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1552 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1553 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1554 if (!la || !lb) 1555 return la && !lb; 1556 OutputSection *aOut = la->getParent(); 1557 OutputSection *bOut = lb->getParent(); 1558 1559 if (aOut != bOut) 1560 return aOut->addr < bOut->addr; 1561 return la->outSecOff < lb->outSecOff; 1562 } 1563 1564 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1565 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1566 for (OutputSection *sec : outputSections) { 1567 if (!(sec->flags & SHF_LINK_ORDER)) 1568 continue; 1569 1570 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1571 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1572 if (!config->relocatable && config->emachine == EM_ARM && 1573 sec->type == SHT_ARM_EXIDX) 1574 continue; 1575 1576 // Link order may be distributed across several InputSectionDescriptions. 1577 // Sorting is performed separately. 1578 SmallVector<InputSection **, 0> scriptSections; 1579 SmallVector<InputSection *, 0> sections; 1580 for (SectionCommand *cmd : sec->commands) { 1581 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1582 if (!isd) 1583 continue; 1584 bool hasLinkOrder = false; 1585 scriptSections.clear(); 1586 sections.clear(); 1587 for (InputSection *&isec : isd->sections) { 1588 if (isec->flags & SHF_LINK_ORDER) { 1589 InputSection *link = isec->getLinkOrderDep(); 1590 if (link && !link->getParent()) 1591 error(toString(isec) + ": sh_link points to discarded section " + 1592 toString(link)); 1593 hasLinkOrder = true; 1594 } 1595 scriptSections.push_back(&isec); 1596 sections.push_back(isec); 1597 } 1598 if (hasLinkOrder && errorCount() == 0) { 1599 llvm::stable_sort(sections, compareByFilePosition); 1600 for (int i = 0, n = sections.size(); i != n; ++i) 1601 *scriptSections[i] = sections[i]; 1602 } 1603 } 1604 } 1605 } 1606 1607 static void finalizeSynthetic(SyntheticSection *sec) { 1608 if (sec && sec->isNeeded() && sec->getParent()) { 1609 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1610 sec->finalizeContents(); 1611 } 1612 } 1613 1614 // We need to generate and finalize the content that depends on the address of 1615 // InputSections. As the generation of the content may also alter InputSection 1616 // addresses we must converge to a fixed point. We do that here. See the comment 1617 // in Writer<ELFT>::finalizeSections(). 1618 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1619 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1620 ThunkCreator tc; 1621 AArch64Err843419Patcher a64p; 1622 ARMErr657417Patcher a32p; 1623 script->assignAddresses(); 1624 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1625 // do require the relative addresses of OutputSections because linker scripts 1626 // can assign Virtual Addresses to OutputSections that are not monotonically 1627 // increasing. 1628 for (Partition &part : partitions) 1629 finalizeSynthetic(part.armExidx.get()); 1630 resolveShfLinkOrder(); 1631 1632 // Converts call x@GDPLT to call __tls_get_addr 1633 if (config->emachine == EM_HEXAGON) 1634 hexagonTLSSymbolUpdate(outputSections); 1635 1636 int assignPasses = 0; 1637 for (;;) { 1638 bool changed = target->needsThunks && tc.createThunks(outputSections); 1639 1640 // With Thunk Size much smaller than branch range we expect to 1641 // converge quickly; if we get to 15 something has gone wrong. 1642 if (changed && tc.pass >= 15) { 1643 error("thunk creation not converged"); 1644 break; 1645 } 1646 1647 if (config->fixCortexA53Errata843419) { 1648 if (changed) 1649 script->assignAddresses(); 1650 changed |= a64p.createFixes(); 1651 } 1652 if (config->fixCortexA8) { 1653 if (changed) 1654 script->assignAddresses(); 1655 changed |= a32p.createFixes(); 1656 } 1657 1658 if (in.mipsGot) 1659 in.mipsGot->updateAllocSize(); 1660 1661 for (Partition &part : partitions) { 1662 changed |= part.relaDyn->updateAllocSize(); 1663 if (part.relrDyn) 1664 changed |= part.relrDyn->updateAllocSize(); 1665 } 1666 1667 const Defined *changedSym = script->assignAddresses(); 1668 if (!changed) { 1669 // Some symbols may be dependent on section addresses. When we break the 1670 // loop, the symbol values are finalized because a previous 1671 // assignAddresses() finalized section addresses. 1672 if (!changedSym) 1673 break; 1674 if (++assignPasses == 5) { 1675 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1676 " does not converge"); 1677 break; 1678 } 1679 } 1680 } 1681 1682 if (config->relocatable) 1683 for (OutputSection *sec : outputSections) 1684 sec->addr = 0; 1685 1686 // If addrExpr is set, the address may not be a multiple of the alignment. 1687 // Warn because this is error-prone. 1688 for (SectionCommand *cmd : script->sectionCommands) 1689 if (auto *os = dyn_cast<OutputSection>(cmd)) 1690 if (os->addr % os->alignment != 0) 1691 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1692 os->name + " is not a multiple of alignment (" + 1693 Twine(os->alignment) + ")"); 1694 } 1695 1696 // If Input Sections have been shrunk (basic block sections) then 1697 // update symbol values and sizes associated with these sections. With basic 1698 // block sections, input sections can shrink when the jump instructions at 1699 // the end of the section are relaxed. 1700 static void fixSymbolsAfterShrinking() { 1701 for (InputFile *File : objectFiles) { 1702 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1703 auto *def = dyn_cast<Defined>(Sym); 1704 if (!def) 1705 return; 1706 1707 const SectionBase *sec = def->section; 1708 if (!sec) 1709 return; 1710 1711 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1712 if (!inputSec || !inputSec->bytesDropped) 1713 return; 1714 1715 const size_t OldSize = inputSec->data().size(); 1716 const size_t NewSize = OldSize - inputSec->bytesDropped; 1717 1718 if (def->value > NewSize && def->value <= OldSize) { 1719 LLVM_DEBUG(llvm::dbgs() 1720 << "Moving symbol " << Sym->getName() << " from " 1721 << def->value << " to " 1722 << def->value - inputSec->bytesDropped << " bytes\n"); 1723 def->value -= inputSec->bytesDropped; 1724 return; 1725 } 1726 1727 if (def->value + def->size > NewSize && def->value <= OldSize && 1728 def->value + def->size <= OldSize) { 1729 LLVM_DEBUG(llvm::dbgs() 1730 << "Shrinking symbol " << Sym->getName() << " from " 1731 << def->size << " to " << def->size - inputSec->bytesDropped 1732 << " bytes\n"); 1733 def->size -= inputSec->bytesDropped; 1734 } 1735 }); 1736 } 1737 } 1738 1739 // If basic block sections exist, there are opportunities to delete fall thru 1740 // jumps and shrink jump instructions after basic block reordering. This 1741 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1742 // option is used. 1743 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1744 assert(config->optimizeBBJumps); 1745 1746 script->assignAddresses(); 1747 // For every output section that has executable input sections, this 1748 // does the following: 1749 // 1. Deletes all direct jump instructions in input sections that 1750 // jump to the following section as it is not required. 1751 // 2. If there are two consecutive jump instructions, it checks 1752 // if they can be flipped and one can be deleted. 1753 for (OutputSection *osec : outputSections) { 1754 if (!(osec->flags & SHF_EXECINSTR)) 1755 continue; 1756 SmallVector<InputSection *, 0> sections = getInputSections(*osec); 1757 size_t numDeleted = 0; 1758 // Delete all fall through jump instructions. Also, check if two 1759 // consecutive jump instructions can be flipped so that a fall 1760 // through jmp instruction can be deleted. 1761 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1762 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1763 InputSection &sec = *sections[i]; 1764 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1765 } 1766 if (numDeleted > 0) { 1767 script->assignAddresses(); 1768 LLVM_DEBUG(llvm::dbgs() 1769 << "Removing " << numDeleted << " fall through jumps\n"); 1770 } 1771 } 1772 1773 fixSymbolsAfterShrinking(); 1774 1775 for (OutputSection *osec : outputSections) 1776 for (InputSection *is : getInputSections(*osec)) 1777 is->trim(); 1778 } 1779 1780 // In order to allow users to manipulate linker-synthesized sections, 1781 // we had to add synthetic sections to the input section list early, 1782 // even before we make decisions whether they are needed. This allows 1783 // users to write scripts like this: ".mygot : { .got }". 1784 // 1785 // Doing it has an unintended side effects. If it turns out that we 1786 // don't need a .got (for example) at all because there's no 1787 // relocation that needs a .got, we don't want to emit .got. 1788 // 1789 // To deal with the above problem, this function is called after 1790 // scanRelocations is called to remove synthetic sections that turn 1791 // out to be empty. 1792 static void removeUnusedSyntheticSections() { 1793 // All input synthetic sections that can be empty are placed after 1794 // all regular ones. Reverse iterate to find the first synthetic section 1795 // after a non-synthetic one which will be our starting point. 1796 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1797 [](InputSectionBase *s) { 1798 return !isa<SyntheticSection>(s); 1799 }) 1800 .base(); 1801 1802 // Remove unused synthetic sections from inputSections; 1803 DenseSet<InputSectionBase *> unused; 1804 auto end = 1805 std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) { 1806 auto *sec = cast<SyntheticSection>(s); 1807 if (sec->getParent() && sec->isNeeded()) 1808 return false; 1809 unused.insert(sec); 1810 return true; 1811 }); 1812 inputSections.erase(end, inputSections.end()); 1813 1814 // Remove unused synthetic sections from the corresponding input section 1815 // description and orphanSections. 1816 for (auto *sec : unused) 1817 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1818 for (SectionCommand *cmd : osec->commands) 1819 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1820 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1821 return unused.count(isec); 1822 }); 1823 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1824 return unused.count(sec); 1825 }); 1826 } 1827 1828 // Create output section objects and add them to OutputSections. 1829 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1830 Out::preinitArray = findSection(".preinit_array"); 1831 Out::initArray = findSection(".init_array"); 1832 Out::finiArray = findSection(".fini_array"); 1833 1834 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1835 // symbols for sections, so that the runtime can get the start and end 1836 // addresses of each section by section name. Add such symbols. 1837 if (!config->relocatable) { 1838 addStartEndSymbols(); 1839 for (SectionCommand *cmd : script->sectionCommands) 1840 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1841 addStartStopSymbols(sec); 1842 } 1843 1844 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1845 // It should be okay as no one seems to care about the type. 1846 // Even the author of gold doesn't remember why gold behaves that way. 1847 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1848 if (mainPart->dynamic->parent) 1849 symtab->addSymbol( 1850 Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1851 /*value=*/0, /*size=*/0, mainPart->dynamic.get()}); 1852 1853 // Define __rel[a]_iplt_{start,end} symbols if needed. 1854 addRelIpltSymbols(); 1855 1856 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1857 // should only be defined in an executable. If .sdata does not exist, its 1858 // value/section does not matter but it has to be relative, so set its 1859 // st_shndx arbitrarily to 1 (Out::elfHeader). 1860 if (config->emachine == EM_RISCV && !config->shared) { 1861 OutputSection *sec = findSection(".sdata"); 1862 ElfSym::riscvGlobalPointer = 1863 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1864 0x800, STV_DEFAULT); 1865 } 1866 1867 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1868 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1869 // way that: 1870 // 1871 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1872 // computes 0. 1873 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1874 // the TLS block). 1875 // 1876 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1877 // an absolute symbol of zero. This is different from GNU linkers which 1878 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1879 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1880 if (s && s->isUndefined()) { 1881 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1882 STT_TLS, /*value=*/0, 0, 1883 /*section=*/nullptr}); 1884 ElfSym::tlsModuleBase = cast<Defined>(s); 1885 } 1886 } 1887 1888 { 1889 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1890 // This responsible for splitting up .eh_frame section into 1891 // pieces. The relocation scan uses those pieces, so this has to be 1892 // earlier. 1893 for (Partition &part : partitions) 1894 finalizeSynthetic(part.ehFrame.get()); 1895 } 1896 1897 if (config->hasDynSymTab) { 1898 parallelForEach(symtab->symbols(), [](Symbol *sym) { 1899 sym->isPreemptible = computeIsPreemptible(*sym); 1900 }); 1901 } 1902 1903 // Change values of linker-script-defined symbols from placeholders (assigned 1904 // by declareSymbols) to actual definitions. 1905 script->processSymbolAssignments(); 1906 1907 { 1908 llvm::TimeTraceScope timeScope("Scan relocations"); 1909 // Scan relocations. This must be done after every symbol is declared so 1910 // that we can correctly decide if a dynamic relocation is needed. This is 1911 // called after processSymbolAssignments() because it needs to know whether 1912 // a linker-script-defined symbol is absolute. 1913 ppc64noTocRelax.clear(); 1914 if (!config->relocatable) { 1915 // Scan all relocations. Each relocation goes through a series of tests to 1916 // determine if it needs special treatment, such as creating GOT, PLT, 1917 // copy relocations, etc. Note that relocations for non-alloc sections are 1918 // directly processed by InputSection::relocateNonAlloc. 1919 for (InputSectionBase *sec : inputSections) 1920 if (sec->isLive() && isa<InputSection>(sec) && (sec->flags & SHF_ALLOC)) 1921 scanRelocations<ELFT>(*sec); 1922 for (Partition &part : partitions) { 1923 for (EhInputSection *sec : part.ehFrame->sections) 1924 scanRelocations<ELFT>(*sec); 1925 if (part.armExidx && part.armExidx->isLive()) 1926 for (InputSection *sec : part.armExidx->exidxSections) 1927 scanRelocations<ELFT>(*sec); 1928 } 1929 1930 reportUndefinedSymbols<ELFT>(); 1931 postScanRelocations(); 1932 } 1933 } 1934 1935 if (in.plt && in.plt->isNeeded()) 1936 in.plt->addSymbols(); 1937 if (in.iplt && in.iplt->isNeeded()) 1938 in.iplt->addSymbols(); 1939 1940 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1941 auto diagnose = 1942 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 1943 ? errorOrWarn 1944 : warn; 1945 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1946 // entries are seen. These cases would otherwise lead to runtime errors 1947 // reported by the dynamic linker. 1948 // 1949 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1950 // catch more cases. That is too much for us. Our approach resembles the one 1951 // used in ld.gold, achieves a good balance to be useful but not too smart. 1952 for (SharedFile *file : sharedFiles) { 1953 bool allNeededIsKnown = 1954 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1955 return symtab->soNames.count(CachedHashStringRef(needed)); 1956 }); 1957 if (!allNeededIsKnown) 1958 continue; 1959 for (Symbol *sym : file->requiredSymbols) 1960 if (sym->isUndefined() && !sym->isWeak()) 1961 diagnose(toString(file) + ": undefined reference to " + 1962 toString(*sym) + " [--no-allow-shlib-undefined]"); 1963 } 1964 } 1965 1966 { 1967 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 1968 // Now that we have defined all possible global symbols including linker- 1969 // synthesized ones. Visit all symbols to give the finishing touches. 1970 for (Symbol *sym : symtab->symbols()) { 1971 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 1972 continue; 1973 if (!config->relocatable) 1974 sym->binding = sym->computeBinding(); 1975 if (in.symTab) 1976 in.symTab->addSymbol(sym); 1977 1978 if (sym->includeInDynsym()) { 1979 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1980 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1981 if (file->isNeeded && !sym->isUndefined()) 1982 addVerneed(sym); 1983 } 1984 } 1985 1986 // We also need to scan the dynamic relocation tables of the other 1987 // partitions and add any referenced symbols to the partition's dynsym. 1988 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1989 DenseSet<Symbol *> syms; 1990 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1991 syms.insert(e.sym); 1992 for (DynamicReloc &reloc : part.relaDyn->relocs) 1993 if (reloc.sym && reloc.needsDynSymIndex() && 1994 syms.insert(reloc.sym).second) 1995 part.dynSymTab->addSymbol(reloc.sym); 1996 } 1997 } 1998 1999 if (in.mipsGot) 2000 in.mipsGot->build(); 2001 2002 removeUnusedSyntheticSections(); 2003 script->diagnoseOrphanHandling(); 2004 2005 sortSections(); 2006 2007 // Create a list of OutputSections, assign sectionIndex, and populate 2008 // in.shStrTab. 2009 for (SectionCommand *cmd : script->sectionCommands) 2010 if (auto *osec = dyn_cast<OutputSection>(cmd)) { 2011 outputSections.push_back(osec); 2012 osec->sectionIndex = outputSections.size(); 2013 osec->shName = in.shStrTab->addString(osec->name); 2014 } 2015 2016 // Prefer command line supplied address over other constraints. 2017 for (OutputSection *sec : outputSections) { 2018 auto i = config->sectionStartMap.find(sec->name); 2019 if (i != config->sectionStartMap.end()) 2020 sec->addrExpr = [=] { return i->second; }; 2021 } 2022 2023 // With the outputSections available check for GDPLT relocations 2024 // and add __tls_get_addr symbol if needed. 2025 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2026 Symbol *sym = symtab->addSymbol(Undefined{ 2027 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2028 sym->isPreemptible = true; 2029 partitions[0].dynSymTab->addSymbol(sym); 2030 } 2031 2032 // This is a bit of a hack. A value of 0 means undef, so we set it 2033 // to 1 to make __ehdr_start defined. The section number is not 2034 // particularly relevant. 2035 Out::elfHeader->sectionIndex = 1; 2036 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2037 2038 // Binary and relocatable output does not have PHDRS. 2039 // The headers have to be created before finalize as that can influence the 2040 // image base and the dynamic section on mips includes the image base. 2041 if (!config->relocatable && !config->oFormatBinary) { 2042 for (Partition &part : partitions) { 2043 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2044 : createPhdrs(part); 2045 if (config->emachine == EM_ARM) { 2046 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2047 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2048 } 2049 if (config->emachine == EM_MIPS) { 2050 // Add separate segments for MIPS-specific sections. 2051 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2052 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2053 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2054 } 2055 } 2056 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2057 2058 // Find the TLS segment. This happens before the section layout loop so that 2059 // Android relocation packing can look up TLS symbol addresses. We only need 2060 // to care about the main partition here because all TLS symbols were moved 2061 // to the main partition (see MarkLive.cpp). 2062 for (PhdrEntry *p : mainPart->phdrs) 2063 if (p->p_type == PT_TLS) 2064 Out::tlsPhdr = p; 2065 } 2066 2067 // Some symbols are defined in term of program headers. Now that we 2068 // have the headers, we can find out which sections they point to. 2069 setReservedSymbolSections(); 2070 2071 { 2072 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2073 2074 finalizeSynthetic(in.bss.get()); 2075 finalizeSynthetic(in.bssRelRo.get()); 2076 finalizeSynthetic(in.symTabShndx.get()); 2077 finalizeSynthetic(in.shStrTab.get()); 2078 finalizeSynthetic(in.strTab.get()); 2079 finalizeSynthetic(in.got.get()); 2080 finalizeSynthetic(in.mipsGot.get()); 2081 finalizeSynthetic(in.igotPlt.get()); 2082 finalizeSynthetic(in.gotPlt.get()); 2083 finalizeSynthetic(in.relaIplt.get()); 2084 finalizeSynthetic(in.relaPlt.get()); 2085 finalizeSynthetic(in.plt.get()); 2086 finalizeSynthetic(in.iplt.get()); 2087 finalizeSynthetic(in.ppc32Got2.get()); 2088 finalizeSynthetic(in.partIndex.get()); 2089 2090 // Dynamic section must be the last one in this list and dynamic 2091 // symbol table section (dynSymTab) must be the first one. 2092 for (Partition &part : partitions) { 2093 if (part.relaDyn) { 2094 // Compute DT_RELACOUNT to be used by part.dynamic. 2095 part.relaDyn->partitionRels(); 2096 finalizeSynthetic(part.relaDyn.get()); 2097 } 2098 2099 finalizeSynthetic(part.dynSymTab.get()); 2100 finalizeSynthetic(part.gnuHashTab.get()); 2101 finalizeSynthetic(part.hashTab.get()); 2102 finalizeSynthetic(part.verDef.get()); 2103 finalizeSynthetic(part.relrDyn.get()); 2104 finalizeSynthetic(part.ehFrameHdr.get()); 2105 finalizeSynthetic(part.verSym.get()); 2106 finalizeSynthetic(part.verNeed.get()); 2107 finalizeSynthetic(part.dynamic.get()); 2108 } 2109 } 2110 2111 if (!script->hasSectionsCommand && !config->relocatable) 2112 fixSectionAlignments(); 2113 2114 // This is used to: 2115 // 1) Create "thunks": 2116 // Jump instructions in many ISAs have small displacements, and therefore 2117 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2118 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2119 // responsibility to create and insert small pieces of code between 2120 // sections to extend the ranges if jump targets are out of range. Such 2121 // code pieces are called "thunks". 2122 // 2123 // We add thunks at this stage. We couldn't do this before this point 2124 // because this is the earliest point where we know sizes of sections and 2125 // their layouts (that are needed to determine if jump targets are in 2126 // range). 2127 // 2128 // 2) Update the sections. We need to generate content that depends on the 2129 // address of InputSections. For example, MIPS GOT section content or 2130 // android packed relocations sections content. 2131 // 2132 // 3) Assign the final values for the linker script symbols. Linker scripts 2133 // sometimes using forward symbol declarations. We want to set the correct 2134 // values. They also might change after adding the thunks. 2135 finalizeAddressDependentContent(); 2136 2137 // All information needed for OutputSection part of Map file is available. 2138 if (errorCount()) 2139 return; 2140 2141 { 2142 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2143 // finalizeAddressDependentContent may have added local symbols to the 2144 // static symbol table. 2145 finalizeSynthetic(in.symTab.get()); 2146 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2147 } 2148 2149 // Relaxation to delete inter-basic block jumps created by basic block 2150 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2151 // can relax jump instructions based on symbol offset. 2152 if (config->optimizeBBJumps) 2153 optimizeBasicBlockJumps(); 2154 2155 // Fill other section headers. The dynamic table is finalized 2156 // at the end because some tags like RELSZ depend on result 2157 // of finalizing other sections. 2158 for (OutputSection *sec : outputSections) 2159 sec->finalize(); 2160 } 2161 2162 // Ensure data sections are not mixed with executable sections when 2163 // --execute-only is used. --execute-only make pages executable but not 2164 // readable. 2165 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2166 if (!config->executeOnly) 2167 return; 2168 2169 for (OutputSection *osec : outputSections) 2170 if (osec->flags & SHF_EXECINSTR) 2171 for (InputSection *isec : getInputSections(*osec)) 2172 if (!(isec->flags & SHF_EXECINSTR)) 2173 error("cannot place " + toString(isec) + " into " + 2174 toString(osec->name) + 2175 ": --execute-only does not support intermingling data and code"); 2176 } 2177 2178 // The linker is expected to define SECNAME_start and SECNAME_end 2179 // symbols for a few sections. This function defines them. 2180 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2181 // If a section does not exist, there's ambiguity as to how we 2182 // define _start and _end symbols for an init/fini section. Since 2183 // the loader assume that the symbols are always defined, we need to 2184 // always define them. But what value? The loader iterates over all 2185 // pointers between _start and _end to run global ctors/dtors, so if 2186 // the section is empty, their symbol values don't actually matter 2187 // as long as _start and _end point to the same location. 2188 // 2189 // That said, we don't want to set the symbols to 0 (which is 2190 // probably the simplest value) because that could cause some 2191 // program to fail to link due to relocation overflow, if their 2192 // program text is above 2 GiB. We use the address of the .text 2193 // section instead to prevent that failure. 2194 // 2195 // In rare situations, the .text section may not exist. If that's the 2196 // case, use the image base address as a last resort. 2197 OutputSection *Default = findSection(".text"); 2198 if (!Default) 2199 Default = Out::elfHeader; 2200 2201 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2202 if (os && !script->isDiscarded(os)) { 2203 addOptionalRegular(start, os, 0); 2204 addOptionalRegular(end, os, -1); 2205 } else { 2206 addOptionalRegular(start, Default, 0); 2207 addOptionalRegular(end, Default, 0); 2208 } 2209 }; 2210 2211 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2212 define("__init_array_start", "__init_array_end", Out::initArray); 2213 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2214 2215 if (OutputSection *sec = findSection(".ARM.exidx")) 2216 define("__exidx_start", "__exidx_end", sec); 2217 } 2218 2219 // If a section name is valid as a C identifier (which is rare because of 2220 // the leading '.'), linkers are expected to define __start_<secname> and 2221 // __stop_<secname> symbols. They are at beginning and end of the section, 2222 // respectively. This is not requested by the ELF standard, but GNU ld and 2223 // gold provide the feature, and used by many programs. 2224 template <class ELFT> 2225 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2226 StringRef s = sec->name; 2227 if (!isValidCIdentifier(s)) 2228 return; 2229 addOptionalRegular(saver().save("__start_" + s), sec, 0, 2230 config->zStartStopVisibility); 2231 addOptionalRegular(saver().save("__stop_" + s), sec, -1, 2232 config->zStartStopVisibility); 2233 } 2234 2235 static bool needsPtLoad(OutputSection *sec) { 2236 if (!(sec->flags & SHF_ALLOC)) 2237 return false; 2238 2239 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2240 // responsible for allocating space for them, not the PT_LOAD that 2241 // contains the TLS initialization image. 2242 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2243 return false; 2244 return true; 2245 } 2246 2247 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2248 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2249 // RW. This means that there is no alignment in the RO to RX transition and we 2250 // cannot create a PT_LOAD there. 2251 static uint64_t computeFlags(uint64_t flags) { 2252 if (config->omagic) 2253 return PF_R | PF_W | PF_X; 2254 if (config->executeOnly && (flags & PF_X)) 2255 return flags & ~PF_R; 2256 if (config->singleRoRx && !(flags & PF_W)) 2257 return flags | PF_X; 2258 return flags; 2259 } 2260 2261 // Decide which program headers to create and which sections to include in each 2262 // one. 2263 template <class ELFT> 2264 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2265 SmallVector<PhdrEntry *, 0> ret; 2266 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2267 ret.push_back(make<PhdrEntry>(type, flags)); 2268 return ret.back(); 2269 }; 2270 2271 unsigned partNo = part.getNumber(); 2272 bool isMain = partNo == 1; 2273 2274 // Add the first PT_LOAD segment for regular output sections. 2275 uint64_t flags = computeFlags(PF_R); 2276 PhdrEntry *load = nullptr; 2277 2278 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2279 // PT_LOAD. 2280 if (!config->nmagic && !config->omagic) { 2281 // The first phdr entry is PT_PHDR which describes the program header 2282 // itself. 2283 if (isMain) 2284 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2285 else 2286 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2287 2288 // PT_INTERP must be the second entry if exists. 2289 if (OutputSection *cmd = findSection(".interp", partNo)) 2290 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2291 2292 // Add the headers. We will remove them if they don't fit. 2293 // In the other partitions the headers are ordinary sections, so they don't 2294 // need to be added here. 2295 if (isMain) { 2296 load = addHdr(PT_LOAD, flags); 2297 load->add(Out::elfHeader); 2298 load->add(Out::programHeaders); 2299 } 2300 } 2301 2302 // PT_GNU_RELRO includes all sections that should be marked as 2303 // read-only by dynamic linker after processing relocations. 2304 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2305 // an error message if more than one PT_GNU_RELRO PHDR is required. 2306 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2307 bool inRelroPhdr = false; 2308 OutputSection *relroEnd = nullptr; 2309 for (OutputSection *sec : outputSections) { 2310 if (sec->partition != partNo || !needsPtLoad(sec)) 2311 continue; 2312 if (isRelroSection(sec)) { 2313 inRelroPhdr = true; 2314 if (!relroEnd) 2315 relRo->add(sec); 2316 else 2317 error("section: " + sec->name + " is not contiguous with other relro" + 2318 " sections"); 2319 } else if (inRelroPhdr) { 2320 inRelroPhdr = false; 2321 relroEnd = sec; 2322 } 2323 } 2324 2325 for (OutputSection *sec : outputSections) { 2326 if (!needsPtLoad(sec)) 2327 continue; 2328 2329 // Normally, sections in partitions other than the current partition are 2330 // ignored. But partition number 255 is a special case: it contains the 2331 // partition end marker (.part.end). It needs to be added to the main 2332 // partition so that a segment is created for it in the main partition, 2333 // which will cause the dynamic loader to reserve space for the other 2334 // partitions. 2335 if (sec->partition != partNo) { 2336 if (isMain && sec->partition == 255) 2337 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2338 continue; 2339 } 2340 2341 // Segments are contiguous memory regions that has the same attributes 2342 // (e.g. executable or writable). There is one phdr for each segment. 2343 // Therefore, we need to create a new phdr when the next section has 2344 // different flags or is loaded at a discontiguous address or memory 2345 // region using AT or AT> linker script command, respectively. At the same 2346 // time, we don't want to create a separate load segment for the headers, 2347 // even if the first output section has an AT or AT> attribute. 2348 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2349 bool sameLMARegion = 2350 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2351 if (!(load && newFlags == flags && sec != relroEnd && 2352 sec->memRegion == load->firstSec->memRegion && 2353 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2354 load = addHdr(PT_LOAD, newFlags); 2355 flags = newFlags; 2356 } 2357 2358 load->add(sec); 2359 } 2360 2361 // Add a TLS segment if any. 2362 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2363 for (OutputSection *sec : outputSections) 2364 if (sec->partition == partNo && sec->flags & SHF_TLS) 2365 tlsHdr->add(sec); 2366 if (tlsHdr->firstSec) 2367 ret.push_back(tlsHdr); 2368 2369 // Add an entry for .dynamic. 2370 if (OutputSection *sec = part.dynamic->getParent()) 2371 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2372 2373 if (relRo->firstSec) 2374 ret.push_back(relRo); 2375 2376 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2377 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2378 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2379 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2380 ->add(part.ehFrameHdr->getParent()); 2381 2382 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2383 // the dynamic linker fill the segment with random data. 2384 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2385 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2386 2387 if (config->zGnustack != GnuStackKind::None) { 2388 // PT_GNU_STACK is a special section to tell the loader to make the 2389 // pages for the stack non-executable. If you really want an executable 2390 // stack, you can pass -z execstack, but that's not recommended for 2391 // security reasons. 2392 unsigned perm = PF_R | PF_W; 2393 if (config->zGnustack == GnuStackKind::Exec) 2394 perm |= PF_X; 2395 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2396 } 2397 2398 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2399 // is expected to perform W^X violations, such as calling mprotect(2) or 2400 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2401 // OpenBSD. 2402 if (config->zWxneeded) 2403 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2404 2405 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2406 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2407 2408 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2409 // same alignment. 2410 PhdrEntry *note = nullptr; 2411 for (OutputSection *sec : outputSections) { 2412 if (sec->partition != partNo) 2413 continue; 2414 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2415 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2416 note = addHdr(PT_NOTE, PF_R); 2417 note->add(sec); 2418 } else { 2419 note = nullptr; 2420 } 2421 } 2422 return ret; 2423 } 2424 2425 template <class ELFT> 2426 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2427 unsigned pType, unsigned pFlags) { 2428 unsigned partNo = part.getNumber(); 2429 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2430 return cmd->partition == partNo && cmd->type == shType; 2431 }); 2432 if (i == outputSections.end()) 2433 return; 2434 2435 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2436 entry->add(*i); 2437 part.phdrs.push_back(entry); 2438 } 2439 2440 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2441 // This is achieved by assigning an alignment expression to addrExpr of each 2442 // such section. 2443 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2444 const PhdrEntry *prev; 2445 auto pageAlign = [&](const PhdrEntry *p) { 2446 OutputSection *cmd = p->firstSec; 2447 if (!cmd) 2448 return; 2449 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2450 if (!cmd->addrExpr) { 2451 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2452 // padding in the file contents. 2453 // 2454 // When -z separate-code is used we must not have any overlap in pages 2455 // between an executable segment and a non-executable segment. We align to 2456 // the next maximum page size boundary on transitions between executable 2457 // and non-executable segments. 2458 // 2459 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2460 // sections will be extracted to a separate file. Align to the next 2461 // maximum page size boundary so that we can find the ELF header at the 2462 // start. We cannot benefit from overlapping p_offset ranges with the 2463 // previous segment anyway. 2464 if (config->zSeparate == SeparateSegmentKind::Loadable || 2465 (config->zSeparate == SeparateSegmentKind::Code && prev && 2466 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2467 cmd->type == SHT_LLVM_PART_EHDR) 2468 cmd->addrExpr = [] { 2469 return alignTo(script->getDot(), config->maxPageSize); 2470 }; 2471 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2472 // it must be the RW. Align to p_align(PT_TLS) to make sure 2473 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2474 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2475 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2476 // be congruent to 0 modulo p_align(PT_TLS). 2477 // 2478 // Technically this is not required, but as of 2019, some dynamic loaders 2479 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2480 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2481 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2482 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2483 // blocks correctly. We need to keep the workaround for a while. 2484 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2485 cmd->addrExpr = [] { 2486 return alignTo(script->getDot(), config->maxPageSize) + 2487 alignTo(script->getDot() % config->maxPageSize, 2488 Out::tlsPhdr->p_align); 2489 }; 2490 else 2491 cmd->addrExpr = [] { 2492 return alignTo(script->getDot(), config->maxPageSize) + 2493 script->getDot() % config->maxPageSize; 2494 }; 2495 } 2496 }; 2497 2498 for (Partition &part : partitions) { 2499 prev = nullptr; 2500 for (const PhdrEntry *p : part.phdrs) 2501 if (p->p_type == PT_LOAD && p->firstSec) { 2502 pageAlign(p); 2503 prev = p; 2504 } 2505 } 2506 } 2507 2508 // Compute an in-file position for a given section. The file offset must be the 2509 // same with its virtual address modulo the page size, so that the loader can 2510 // load executables without any address adjustment. 2511 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2512 // The first section in a PT_LOAD has to have congruent offset and address 2513 // modulo the maximum page size. 2514 if (os->ptLoad && os->ptLoad->firstSec == os) 2515 return alignTo(off, os->ptLoad->p_align, os->addr); 2516 2517 // File offsets are not significant for .bss sections other than the first one 2518 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2519 // increasing rather than setting to zero. 2520 if (os->type == SHT_NOBITS && 2521 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2522 return off; 2523 2524 // If the section is not in a PT_LOAD, we just have to align it. 2525 if (!os->ptLoad) 2526 return alignTo(off, os->alignment); 2527 2528 // If two sections share the same PT_LOAD the file offset is calculated 2529 // using this formula: Off2 = Off1 + (VA2 - VA1). 2530 OutputSection *first = os->ptLoad->firstSec; 2531 return first->offset + os->addr - first->addr; 2532 } 2533 2534 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2535 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2536 auto needsOffset = [](OutputSection &sec) { 2537 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2538 }; 2539 uint64_t minAddr = UINT64_MAX; 2540 for (OutputSection *sec : outputSections) 2541 if (needsOffset(*sec)) { 2542 sec->offset = sec->getLMA(); 2543 minAddr = std::min(minAddr, sec->offset); 2544 } 2545 2546 // Sections are laid out at LMA minus minAddr. 2547 fileSize = 0; 2548 for (OutputSection *sec : outputSections) 2549 if (needsOffset(*sec)) { 2550 sec->offset -= minAddr; 2551 fileSize = std::max(fileSize, sec->offset + sec->size); 2552 } 2553 } 2554 2555 static std::string rangeToString(uint64_t addr, uint64_t len) { 2556 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2557 } 2558 2559 // Assign file offsets to output sections. 2560 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2561 Out::programHeaders->offset = Out::elfHeader->size; 2562 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2563 2564 PhdrEntry *lastRX = nullptr; 2565 for (Partition &part : partitions) 2566 for (PhdrEntry *p : part.phdrs) 2567 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2568 lastRX = p; 2569 2570 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2571 // will not occupy file offsets contained by a PT_LOAD. 2572 for (OutputSection *sec : outputSections) { 2573 if (!(sec->flags & SHF_ALLOC)) 2574 continue; 2575 off = computeFileOffset(sec, off); 2576 sec->offset = off; 2577 if (sec->type != SHT_NOBITS) 2578 off += sec->size; 2579 2580 // If this is a last section of the last executable segment and that 2581 // segment is the last loadable segment, align the offset of the 2582 // following section to avoid loading non-segments parts of the file. 2583 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2584 lastRX->lastSec == sec) 2585 off = alignTo(off, config->maxPageSize); 2586 } 2587 for (OutputSection *osec : outputSections) 2588 if (!(osec->flags & SHF_ALLOC)) { 2589 osec->offset = alignTo(off, osec->alignment); 2590 off = osec->offset + osec->size; 2591 } 2592 2593 sectionHeaderOff = alignTo(off, config->wordsize); 2594 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2595 2596 // Our logic assumes that sections have rising VA within the same segment. 2597 // With use of linker scripts it is possible to violate this rule and get file 2598 // offset overlaps or overflows. That should never happen with a valid script 2599 // which does not move the location counter backwards and usually scripts do 2600 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2601 // kernel, which control segment distribution explicitly and move the counter 2602 // backwards, so we have to allow doing that to support linking them. We 2603 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2604 // we want to prevent file size overflows because it would crash the linker. 2605 for (OutputSection *sec : outputSections) { 2606 if (sec->type == SHT_NOBITS) 2607 continue; 2608 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2609 error("unable to place section " + sec->name + " at file offset " + 2610 rangeToString(sec->offset, sec->size) + 2611 "; check your linker script for overflows"); 2612 } 2613 } 2614 2615 // Finalize the program headers. We call this function after we assign 2616 // file offsets and VAs to all sections. 2617 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2618 for (PhdrEntry *p : part.phdrs) { 2619 OutputSection *first = p->firstSec; 2620 OutputSection *last = p->lastSec; 2621 2622 if (first) { 2623 p->p_filesz = last->offset - first->offset; 2624 if (last->type != SHT_NOBITS) 2625 p->p_filesz += last->size; 2626 2627 p->p_memsz = last->addr + last->size - first->addr; 2628 p->p_offset = first->offset; 2629 p->p_vaddr = first->addr; 2630 2631 // File offsets in partitions other than the main partition are relative 2632 // to the offset of the ELF headers. Perform that adjustment now. 2633 if (part.elfHeader) 2634 p->p_offset -= part.elfHeader->getParent()->offset; 2635 2636 if (!p->hasLMA) 2637 p->p_paddr = first->getLMA(); 2638 } 2639 2640 if (p->p_type == PT_GNU_RELRO) { 2641 p->p_align = 1; 2642 // musl/glibc ld.so rounds the size down, so we need to round up 2643 // to protect the last page. This is a no-op on FreeBSD which always 2644 // rounds up. 2645 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2646 p->p_offset; 2647 } 2648 } 2649 } 2650 2651 // A helper struct for checkSectionOverlap. 2652 namespace { 2653 struct SectionOffset { 2654 OutputSection *sec; 2655 uint64_t offset; 2656 }; 2657 } // namespace 2658 2659 // Check whether sections overlap for a specific address range (file offsets, 2660 // load and virtual addresses). 2661 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2662 bool isVirtualAddr) { 2663 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2664 return a.offset < b.offset; 2665 }); 2666 2667 // Finding overlap is easy given a vector is sorted by start position. 2668 // If an element starts before the end of the previous element, they overlap. 2669 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2670 SectionOffset a = sections[i - 1]; 2671 SectionOffset b = sections[i]; 2672 if (b.offset >= a.offset + a.sec->size) 2673 continue; 2674 2675 // If both sections are in OVERLAY we allow the overlapping of virtual 2676 // addresses, because it is what OVERLAY was designed for. 2677 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2678 continue; 2679 2680 errorOrWarn("section " + a.sec->name + " " + name + 2681 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2682 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2683 b.sec->name + " range is " + 2684 rangeToString(b.offset, b.sec->size)); 2685 } 2686 } 2687 2688 // Check for overlapping sections and address overflows. 2689 // 2690 // In this function we check that none of the output sections have overlapping 2691 // file offsets. For SHF_ALLOC sections we also check that the load address 2692 // ranges and the virtual address ranges don't overlap 2693 template <class ELFT> void Writer<ELFT>::checkSections() { 2694 // First, check that section's VAs fit in available address space for target. 2695 for (OutputSection *os : outputSections) 2696 if ((os->addr + os->size < os->addr) || 2697 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2698 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2699 " of size 0x" + utohexstr(os->size) + 2700 " exceeds available address space"); 2701 2702 // Check for overlapping file offsets. In this case we need to skip any 2703 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2704 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2705 // binary is specified only add SHF_ALLOC sections are added to the output 2706 // file so we skip any non-allocated sections in that case. 2707 std::vector<SectionOffset> fileOffs; 2708 for (OutputSection *sec : outputSections) 2709 if (sec->size > 0 && sec->type != SHT_NOBITS && 2710 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2711 fileOffs.push_back({sec, sec->offset}); 2712 checkOverlap("file", fileOffs, false); 2713 2714 // When linking with -r there is no need to check for overlapping virtual/load 2715 // addresses since those addresses will only be assigned when the final 2716 // executable/shared object is created. 2717 if (config->relocatable) 2718 return; 2719 2720 // Checking for overlapping virtual and load addresses only needs to take 2721 // into account SHF_ALLOC sections since others will not be loaded. 2722 // Furthermore, we also need to skip SHF_TLS sections since these will be 2723 // mapped to other addresses at runtime and can therefore have overlapping 2724 // ranges in the file. 2725 std::vector<SectionOffset> vmas; 2726 for (OutputSection *sec : outputSections) 2727 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2728 vmas.push_back({sec, sec->addr}); 2729 checkOverlap("virtual address", vmas, true); 2730 2731 // Finally, check that the load addresses don't overlap. This will usually be 2732 // the same as the virtual addresses but can be different when using a linker 2733 // script with AT(). 2734 std::vector<SectionOffset> lmas; 2735 for (OutputSection *sec : outputSections) 2736 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2737 lmas.push_back({sec, sec->getLMA()}); 2738 checkOverlap("load address", lmas, false); 2739 } 2740 2741 // The entry point address is chosen in the following ways. 2742 // 2743 // 1. the '-e' entry command-line option; 2744 // 2. the ENTRY(symbol) command in a linker control script; 2745 // 3. the value of the symbol _start, if present; 2746 // 4. the number represented by the entry symbol, if it is a number; 2747 // 5. the address 0. 2748 static uint64_t getEntryAddr() { 2749 // Case 1, 2 or 3 2750 if (Symbol *b = symtab->find(config->entry)) 2751 return b->getVA(); 2752 2753 // Case 4 2754 uint64_t addr; 2755 if (to_integer(config->entry, addr)) 2756 return addr; 2757 2758 // Case 5 2759 if (config->warnMissingEntry) 2760 warn("cannot find entry symbol " + config->entry + 2761 "; not setting start address"); 2762 return 0; 2763 } 2764 2765 static uint16_t getELFType() { 2766 if (config->isPic) 2767 return ET_DYN; 2768 if (config->relocatable) 2769 return ET_REL; 2770 return ET_EXEC; 2771 } 2772 2773 template <class ELFT> void Writer<ELFT>::writeHeader() { 2774 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2775 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2776 2777 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2778 eHdr->e_type = getELFType(); 2779 eHdr->e_entry = getEntryAddr(); 2780 eHdr->e_shoff = sectionHeaderOff; 2781 2782 // Write the section header table. 2783 // 2784 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2785 // and e_shstrndx fields. When the value of one of these fields exceeds 2786 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2787 // use fields in the section header at index 0 to store 2788 // the value. The sentinel values and fields are: 2789 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2790 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2791 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2792 size_t num = outputSections.size() + 1; 2793 if (num >= SHN_LORESERVE) 2794 sHdrs->sh_size = num; 2795 else 2796 eHdr->e_shnum = num; 2797 2798 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2799 if (strTabIndex >= SHN_LORESERVE) { 2800 sHdrs->sh_link = strTabIndex; 2801 eHdr->e_shstrndx = SHN_XINDEX; 2802 } else { 2803 eHdr->e_shstrndx = strTabIndex; 2804 } 2805 2806 for (OutputSection *sec : outputSections) 2807 sec->writeHeaderTo<ELFT>(++sHdrs); 2808 } 2809 2810 // Open a result file. 2811 template <class ELFT> void Writer<ELFT>::openFile() { 2812 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2813 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2814 std::string msg; 2815 raw_string_ostream s(msg); 2816 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2817 << "section sizes:\n"; 2818 for (OutputSection *os : outputSections) 2819 s << os->name << ' ' << os->size << "\n"; 2820 error(s.str()); 2821 return; 2822 } 2823 2824 unlinkAsync(config->outputFile); 2825 unsigned flags = 0; 2826 if (!config->relocatable) 2827 flags |= FileOutputBuffer::F_executable; 2828 if (!config->mmapOutputFile) 2829 flags |= FileOutputBuffer::F_no_mmap; 2830 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2831 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2832 2833 if (!bufferOrErr) { 2834 error("failed to open " + config->outputFile + ": " + 2835 llvm::toString(bufferOrErr.takeError())); 2836 return; 2837 } 2838 buffer = std::move(*bufferOrErr); 2839 Out::bufferStart = buffer->getBufferStart(); 2840 } 2841 2842 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2843 for (OutputSection *sec : outputSections) 2844 if (sec->flags & SHF_ALLOC) 2845 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2846 } 2847 2848 static void fillTrap(uint8_t *i, uint8_t *end) { 2849 for (; i + 4 <= end; i += 4) 2850 memcpy(i, &target->trapInstr, 4); 2851 } 2852 2853 // Fill the last page of executable segments with trap instructions 2854 // instead of leaving them as zero. Even though it is not required by any 2855 // standard, it is in general a good thing to do for security reasons. 2856 // 2857 // We'll leave other pages in segments as-is because the rest will be 2858 // overwritten by output sections. 2859 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2860 for (Partition &part : partitions) { 2861 // Fill the last page. 2862 for (PhdrEntry *p : part.phdrs) 2863 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2864 fillTrap(Out::bufferStart + 2865 alignDown(p->firstSec->offset + p->p_filesz, 4), 2866 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2867 config->maxPageSize)); 2868 2869 // Round up the file size of the last segment to the page boundary iff it is 2870 // an executable segment to ensure that other tools don't accidentally 2871 // trim the instruction padding (e.g. when stripping the file). 2872 PhdrEntry *last = nullptr; 2873 for (PhdrEntry *p : part.phdrs) 2874 if (p->p_type == PT_LOAD) 2875 last = p; 2876 2877 if (last && (last->p_flags & PF_X)) 2878 last->p_memsz = last->p_filesz = 2879 alignTo(last->p_filesz, config->maxPageSize); 2880 } 2881 } 2882 2883 // Write section contents to a mmap'ed file. 2884 template <class ELFT> void Writer<ELFT>::writeSections() { 2885 llvm::TimeTraceScope timeScope("Write sections"); 2886 2887 // In -r or --emit-relocs mode, write the relocation sections first as in 2888 // ELf_Rel targets we might find out that we need to modify the relocated 2889 // section while doing it. 2890 for (OutputSection *sec : outputSections) 2891 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2892 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2893 2894 for (OutputSection *sec : outputSections) 2895 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2896 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2897 2898 // Finally, check that all dynamic relocation addends were written correctly. 2899 if (config->checkDynamicRelocs && config->writeAddends) { 2900 for (OutputSection *sec : outputSections) 2901 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2902 sec->checkDynRelAddends(Out::bufferStart); 2903 } 2904 } 2905 2906 // Computes a hash value of Data using a given hash function. 2907 // In order to utilize multiple cores, we first split data into 1MB 2908 // chunks, compute a hash for each chunk, and then compute a hash value 2909 // of the hash values. 2910 static void 2911 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2912 llvm::ArrayRef<uint8_t> data, 2913 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2914 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2915 const size_t hashesSize = chunks.size() * hashBuf.size(); 2916 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 2917 2918 // Compute hash values. 2919 parallelForEachN(0, chunks.size(), [&](size_t i) { 2920 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 2921 }); 2922 2923 // Write to the final output buffer. 2924 hashFn(hashBuf.data(), makeArrayRef(hashes.get(), hashesSize)); 2925 } 2926 2927 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2928 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2929 return; 2930 2931 if (config->buildId == BuildIdKind::Hexstring) { 2932 for (Partition &part : partitions) 2933 part.buildId->writeBuildId(config->buildIdVector); 2934 return; 2935 } 2936 2937 // Compute a hash of all sections of the output file. 2938 size_t hashSize = mainPart->buildId->hashSize; 2939 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 2940 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 2941 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 2942 2943 switch (config->buildId) { 2944 case BuildIdKind::Fast: 2945 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2946 write64le(dest, xxHash64(arr)); 2947 }); 2948 break; 2949 case BuildIdKind::Md5: 2950 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2951 memcpy(dest, MD5::hash(arr).data(), hashSize); 2952 }); 2953 break; 2954 case BuildIdKind::Sha1: 2955 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2956 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2957 }); 2958 break; 2959 case BuildIdKind::Uuid: 2960 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 2961 error("entropy source failure: " + ec.message()); 2962 break; 2963 default: 2964 llvm_unreachable("unknown BuildIdKind"); 2965 } 2966 for (Partition &part : partitions) 2967 part.buildId->writeBuildId(output); 2968 } 2969 2970 template void elf::createSyntheticSections<ELF32LE>(); 2971 template void elf::createSyntheticSections<ELF32BE>(); 2972 template void elf::createSyntheticSections<ELF64LE>(); 2973 template void elf::createSyntheticSections<ELF64BE>(); 2974 2975 template void elf::writeResult<ELF32LE>(); 2976 template void elf::writeResult<ELF32BE>(); 2977 template void elf::writeResult<ELF64LE>(); 2978 template void elf::writeResult<ELF64BE>(); 2979