1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Arrays.h" 24 #include "lld/Common/CommonLinkerContext.h" 25 #include "lld/Common/Filesystem.h" 26 #include "lld/Common/Strings.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/Support/BLAKE3.h" 29 #include "llvm/Support/Parallel.h" 30 #include "llvm/Support/RandomNumberGenerator.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void addSectionSymbols(); 57 void sortSections(); 58 void resolveShfLinkOrder(); 59 void finalizeAddressDependentContent(); 60 void optimizeBasicBlockJumps(); 61 void sortInputSections(); 62 void sortOrphanSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection &osec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool needsInterpSection() { 94 return !config->relocatable && !config->shared && 95 !config->dynamicLinker.empty() && script->needsInterpSection(); 96 } 97 98 template <class ELFT> void elf::writeResult() { 99 Writer<ELFT>().run(); 100 } 101 102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 103 auto it = std::stable_partition( 104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 105 if (p->p_type != PT_LOAD) 106 return true; 107 if (!p->firstSec) 108 return false; 109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 110 return size != 0; 111 }); 112 113 // Clear OutputSection::ptLoad for sections contained in removed 114 // segments. 115 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 116 for (OutputSection *sec : outputSections) 117 if (removed.count(sec->ptLoad)) 118 sec->ptLoad = nullptr; 119 phdrs.erase(it, phdrs.end()); 120 } 121 122 void elf::copySectionsIntoPartitions() { 123 SmallVector<InputSectionBase *, 0> newSections; 124 const size_t ehSize = ctx.ehInputSections.size(); 125 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 126 for (InputSectionBase *s : ctx.inputSections) { 127 if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE) 128 continue; 129 auto *copy = make<InputSection>(cast<InputSection>(*s)); 130 copy->partition = part; 131 newSections.push_back(copy); 132 } 133 for (size_t i = 0; i != ehSize; ++i) { 134 assert(ctx.ehInputSections[i]->isLive()); 135 auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]); 136 copy->partition = part; 137 ctx.ehInputSections.push_back(copy); 138 } 139 } 140 141 ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(), 142 newSections.end()); 143 } 144 145 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 146 uint64_t val, uint8_t stOther = STV_HIDDEN) { 147 Symbol *s = symtab.find(name); 148 if (!s || s->isDefined() || s->isCommon()) 149 return nullptr; 150 151 s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, stOther, 152 STT_NOTYPE, val, 153 /*size=*/0, sec}); 154 s->isUsedInRegularObj = true; 155 return cast<Defined>(s); 156 } 157 158 // The linker is expected to define some symbols depending on 159 // the linking result. This function defines such symbols. 160 void elf::addReservedSymbols() { 161 if (config->emachine == EM_MIPS) { 162 auto addAbsolute = [](StringRef name) { 163 Symbol *sym = 164 symtab.addSymbol(Defined{ctx.internalFile, name, STB_GLOBAL, 165 STV_HIDDEN, STT_NOTYPE, 0, 0, nullptr}); 166 sym->isUsedInRegularObj = true; 167 return cast<Defined>(sym); 168 }; 169 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 170 // so that it points to an absolute address which by default is relative 171 // to GOT. Default offset is 0x7ff0. 172 // See "Global Data Symbols" in Chapter 6 in the following document: 173 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 174 ElfSym::mipsGp = addAbsolute("_gp"); 175 176 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 177 // start of function and 'gp' pointer into GOT. 178 if (symtab.find("_gp_disp")) 179 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 180 181 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 182 // pointer. This symbol is used in the code generated by .cpload pseudo-op 183 // in case of using -mno-shared option. 184 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 185 if (symtab.find("__gnu_local_gp")) 186 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 187 } else if (config->emachine == EM_PPC) { 188 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 189 // support Small Data Area, define it arbitrarily as 0. 190 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 191 } else if (config->emachine == EM_PPC64) { 192 addPPC64SaveRestore(); 193 } 194 195 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 196 // combines the typical ELF GOT with the small data sections. It commonly 197 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 198 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 199 // represent the TOC base which is offset by 0x8000 bytes from the start of 200 // the .got section. 201 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 202 // correctness of some relocations depends on its value. 203 StringRef gotSymName = 204 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 205 206 if (Symbol *s = symtab.find(gotSymName)) { 207 if (s->isDefined()) { 208 error(toString(s->file) + " cannot redefine linker defined symbol '" + 209 gotSymName + "'"); 210 return; 211 } 212 213 uint64_t gotOff = 0; 214 if (config->emachine == EM_PPC64) 215 gotOff = 0x8000; 216 217 s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN, 218 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 219 ElfSym::globalOffsetTable = cast<Defined>(s); 220 } 221 222 // __ehdr_start is the location of ELF file headers. Note that we define 223 // this symbol unconditionally even when using a linker script, which 224 // differs from the behavior implemented by GNU linker which only define 225 // this symbol if ELF headers are in the memory mapped segment. 226 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 227 228 // __executable_start is not documented, but the expectation of at 229 // least the Android libc is that it points to the ELF header. 230 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 231 232 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 233 // each DSO. The address of the symbol doesn't matter as long as they are 234 // different in different DSOs, so we chose the start address of the DSO. 235 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 236 237 // If linker script do layout we do not need to create any standard symbols. 238 if (script->hasSectionsCommand) 239 return; 240 241 auto add = [](StringRef s, int64_t pos) { 242 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 243 }; 244 245 ElfSym::bss = add("__bss_start", 0); 246 ElfSym::end1 = add("end", -1); 247 ElfSym::end2 = add("_end", -1); 248 ElfSym::etext1 = add("etext", -1); 249 ElfSym::etext2 = add("_etext", -1); 250 ElfSym::edata1 = add("edata", -1); 251 ElfSym::edata2 = add("_edata", -1); 252 } 253 254 static void demoteDefined(Defined &sym, DenseMap<SectionBase *, size_t> &map) { 255 if (map.empty()) 256 for (auto [i, sec] : llvm::enumerate(sym.file->getSections())) 257 map.try_emplace(sec, i); 258 // Change WEAK to GLOBAL so that if a scanned relocation references sym, 259 // maybeReportUndefined will report an error. 260 uint8_t binding = sym.isWeak() ? uint8_t(STB_GLOBAL) : sym.binding; 261 Undefined(sym.file, sym.getName(), binding, sym.stOther, sym.type, 262 /*discardedSecIdx=*/map.lookup(sym.section)) 263 .overwrite(sym); 264 // Eliminate from the symbol table, otherwise we would leave an undefined 265 // symbol if the symbol is unreferenced in the absence of GC. 266 sym.isUsedInRegularObj = false; 267 } 268 269 // If all references to a DSO happen to be weak, the DSO is not added to 270 // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid 271 // dangling references to an unneeded DSO. Use a weak binding to avoid 272 // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols. 273 // 274 // In addition, demote symbols defined in discarded sections, so that 275 // references to /DISCARD/ discarded symbols will lead to errors. 276 static void demoteSymbolsAndComputeIsPreemptible() { 277 llvm::TimeTraceScope timeScope("Demote symbols"); 278 DenseMap<InputFile *, DenseMap<SectionBase *, size_t>> sectionIndexMap; 279 for (Symbol *sym : symtab.getSymbols()) { 280 if (auto *d = dyn_cast<Defined>(sym)) { 281 if (d->section && !d->section->isLive()) 282 demoteDefined(*d, sectionIndexMap[d->file]); 283 } else { 284 auto *s = dyn_cast<SharedSymbol>(sym); 285 if (sym->isLazy() || (s && !cast<SharedFile>(s->file)->isNeeded)) { 286 uint8_t binding = sym->isLazy() ? sym->binding : uint8_t(STB_WEAK); 287 Undefined(ctx.internalFile, sym->getName(), binding, sym->stOther, 288 sym->type) 289 .overwrite(*sym); 290 sym->versionId = VER_NDX_GLOBAL; 291 } 292 } 293 294 if (config->hasDynSymTab) 295 sym->isPreemptible = computeIsPreemptible(*sym); 296 } 297 } 298 299 bool elf::hasMemtag() { 300 return config->emachine == EM_AARCH64 && 301 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE; 302 } 303 304 // Fully static executables don't support MTE globals at this point in time, as 305 // we currently rely on: 306 // - A dynamic loader to process relocations, and 307 // - Dynamic entries. 308 // This restriction could be removed in future by re-using some of the ideas 309 // that ifuncs use in fully static executables. 310 bool elf::canHaveMemtagGlobals() { 311 return hasMemtag() && 312 (config->relocatable || config->shared || needsInterpSection()); 313 } 314 315 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 316 for (SectionCommand *cmd : script->sectionCommands) 317 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 318 if (osd->osec.name == name && osd->osec.partition == partition) 319 return &osd->osec; 320 return nullptr; 321 } 322 323 template <class ELFT> void elf::createSyntheticSections() { 324 // Initialize all pointers with NULL. This is needed because 325 // you can call lld::elf::main more than once as a library. 326 Out::tlsPhdr = nullptr; 327 Out::preinitArray = nullptr; 328 Out::initArray = nullptr; 329 Out::finiArray = nullptr; 330 331 // Add the .interp section first because it is not a SyntheticSection. 332 // The removeUnusedSyntheticSections() function relies on the 333 // SyntheticSections coming last. 334 if (needsInterpSection()) { 335 for (size_t i = 1; i <= partitions.size(); ++i) { 336 InputSection *sec = createInterpSection(); 337 sec->partition = i; 338 ctx.inputSections.push_back(sec); 339 } 340 } 341 342 auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); }; 343 344 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 345 346 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 347 Out::programHeaders->addralign = config->wordsize; 348 349 if (config->strip != StripPolicy::All) { 350 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 351 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 352 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 353 } 354 355 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 356 add(*in.bss); 357 358 // If there is a SECTIONS command and a .data.rel.ro section name use name 359 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 360 // This makes sure our relro is contiguous. 361 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 362 in.bssRelRo = std::make_unique<BssSection>( 363 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 364 add(*in.bssRelRo); 365 366 // Add MIPS-specific sections. 367 if (config->emachine == EM_MIPS) { 368 if (!config->shared && config->hasDynSymTab) { 369 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 370 add(*in.mipsRldMap); 371 } 372 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 373 add(*in.mipsAbiFlags); 374 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 375 add(*in.mipsOptions); 376 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 377 add(*in.mipsReginfo); 378 } 379 380 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 381 382 const unsigned threadCount = config->threadCount; 383 for (Partition &part : partitions) { 384 auto add = [&](SyntheticSection &sec) { 385 sec.partition = part.getNumber(); 386 ctx.inputSections.push_back(&sec); 387 }; 388 389 if (!part.name.empty()) { 390 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 391 part.elfHeader->name = part.name; 392 add(*part.elfHeader); 393 394 part.programHeaders = 395 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 396 add(*part.programHeaders); 397 } 398 399 if (config->buildId != BuildIdKind::None) { 400 part.buildId = std::make_unique<BuildIdSection>(); 401 add(*part.buildId); 402 } 403 404 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 405 part.dynSymTab = 406 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 407 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 408 409 if (hasMemtag()) { 410 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(); 411 add(*part.memtagAndroidNote); 412 if (canHaveMemtagGlobals()) { 413 part.memtagGlobalDescriptors = 414 std::make_unique<MemtagGlobalDescriptors>(); 415 add(*part.memtagGlobalDescriptors); 416 } 417 } 418 419 if (config->androidPackDynRelocs) 420 part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>( 421 relaDynName, threadCount); 422 else 423 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 424 relaDynName, config->zCombreloc, threadCount); 425 426 if (config->hasDynSymTab) { 427 add(*part.dynSymTab); 428 429 part.verSym = std::make_unique<VersionTableSection>(); 430 add(*part.verSym); 431 432 if (!namedVersionDefs().empty()) { 433 part.verDef = std::make_unique<VersionDefinitionSection>(); 434 add(*part.verDef); 435 } 436 437 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 438 add(*part.verNeed); 439 440 if (config->gnuHash) { 441 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 442 add(*part.gnuHashTab); 443 } 444 445 if (config->sysvHash) { 446 part.hashTab = std::make_unique<HashTableSection>(); 447 add(*part.hashTab); 448 } 449 450 add(*part.dynamic); 451 add(*part.dynStrTab); 452 add(*part.relaDyn); 453 } 454 455 if (config->relrPackDynRelocs) { 456 part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount); 457 add(*part.relrDyn); 458 } 459 460 if (!config->relocatable) { 461 if (config->ehFrameHdr) { 462 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 463 add(*part.ehFrameHdr); 464 } 465 part.ehFrame = std::make_unique<EhFrameSection>(); 466 add(*part.ehFrame); 467 468 if (config->emachine == EM_ARM) { 469 // This section replaces all the individual .ARM.exidx InputSections. 470 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 471 add(*part.armExidx); 472 } 473 } 474 475 if (!config->packageMetadata.empty()) { 476 part.packageMetadataNote = std::make_unique<PackageMetadataNote>(); 477 add(*part.packageMetadataNote); 478 } 479 } 480 481 if (partitions.size() != 1) { 482 // Create the partition end marker. This needs to be in partition number 255 483 // so that it is sorted after all other partitions. It also has other 484 // special handling (see createPhdrs() and combineEhSections()). 485 in.partEnd = 486 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 487 in.partEnd->partition = 255; 488 add(*in.partEnd); 489 490 in.partIndex = std::make_unique<PartitionIndexSection>(); 491 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 492 addOptionalRegular("__part_index_end", in.partIndex.get(), 493 in.partIndex->getSize()); 494 add(*in.partIndex); 495 } 496 497 // Add .got. MIPS' .got is so different from the other archs, 498 // it has its own class. 499 if (config->emachine == EM_MIPS) { 500 in.mipsGot = std::make_unique<MipsGotSection>(); 501 add(*in.mipsGot); 502 } else { 503 in.got = std::make_unique<GotSection>(); 504 add(*in.got); 505 } 506 507 if (config->emachine == EM_PPC) { 508 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 509 add(*in.ppc32Got2); 510 } 511 512 if (config->emachine == EM_PPC64) { 513 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 514 add(*in.ppc64LongBranchTarget); 515 } 516 517 in.gotPlt = std::make_unique<GotPltSection>(); 518 add(*in.gotPlt); 519 in.igotPlt = std::make_unique<IgotPltSection>(); 520 add(*in.igotPlt); 521 // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the 522 // section in the absence of PHDRS/SECTIONS commands. 523 if (config->zRelro && ((script->phdrsCommands.empty() && 524 !script->hasSectionsCommand) || script->seenRelroEnd)) { 525 in.relroPadding = std::make_unique<RelroPaddingSection>(); 526 add(*in.relroPadding); 527 } 528 529 if (config->emachine == EM_ARM) { 530 in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(); 531 add(*in.armCmseSGSection); 532 } 533 534 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 535 // it as a relocation and ensure the referenced section is created. 536 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 537 if (target->gotBaseSymInGotPlt) 538 in.gotPlt->hasGotPltOffRel = true; 539 else 540 in.got->hasGotOffRel = true; 541 } 542 543 if (config->gdbIndex) 544 add(*GdbIndexSection::create<ELFT>()); 545 546 // We always need to add rel[a].plt to output if it has entries. 547 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 548 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 549 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false, 550 /*threadCount=*/1); 551 add(*in.relaPlt); 552 553 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 554 // relocations are processed last by the dynamic loader. We cannot place the 555 // iplt section in .rel.dyn when Android relocation packing is enabled because 556 // that would cause a section type mismatch. However, because the Android 557 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 558 // behaviour by placing the iplt section in .rel.plt. 559 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 560 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 561 /*sort=*/false, /*threadCount=*/1); 562 add(*in.relaIplt); 563 564 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 565 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 566 in.ibtPlt = std::make_unique<IBTPltSection>(); 567 add(*in.ibtPlt); 568 } 569 570 if (config->emachine == EM_PPC) 571 in.plt = std::make_unique<PPC32GlinkSection>(); 572 else 573 in.plt = std::make_unique<PltSection>(); 574 add(*in.plt); 575 in.iplt = std::make_unique<IpltSection>(); 576 add(*in.iplt); 577 578 if (config->andFeatures) 579 add(*make<GnuPropertySection>()); 580 581 // .note.GNU-stack is always added when we are creating a re-linkable 582 // object file. Other linkers are using the presence of this marker 583 // section to control the executable-ness of the stack area, but that 584 // is irrelevant these days. Stack area should always be non-executable 585 // by default. So we emit this section unconditionally. 586 if (config->relocatable) 587 add(*make<GnuStackSection>()); 588 589 if (in.symTab) 590 add(*in.symTab); 591 if (in.symTabShndx) 592 add(*in.symTabShndx); 593 add(*in.shStrTab); 594 if (in.strTab) 595 add(*in.strTab); 596 } 597 598 // The main function of the writer. 599 template <class ELFT> void Writer<ELFT>::run() { 600 // Now that we have a complete set of output sections. This function 601 // completes section contents. For example, we need to add strings 602 // to the string table, and add entries to .got and .plt. 603 // finalizeSections does that. 604 finalizeSections(); 605 checkExecuteOnly(); 606 607 // If --compressed-debug-sections is specified, compress .debug_* sections. 608 // Do it right now because it changes the size of output sections. 609 for (OutputSection *sec : outputSections) 610 sec->maybeCompress<ELFT>(); 611 612 if (script->hasSectionsCommand) 613 script->allocateHeaders(mainPart->phdrs); 614 615 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 616 // 0 sized region. This has to be done late since only after assignAddresses 617 // we know the size of the sections. 618 for (Partition &part : partitions) 619 removeEmptyPTLoad(part.phdrs); 620 621 if (!config->oFormatBinary) 622 assignFileOffsets(); 623 else 624 assignFileOffsetsBinary(); 625 626 for (Partition &part : partitions) 627 setPhdrs(part); 628 629 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections() 630 // because the files may be useful in case checkSections() or openFile() 631 // fails, for example, due to an erroneous file size. 632 writeMapAndCref(); 633 634 // Handle --print-memory-usage option. 635 if (config->printMemoryUsage) 636 script->printMemoryUsage(lld::outs()); 637 638 if (config->checkSections) 639 checkSections(); 640 641 // It does not make sense try to open the file if we have error already. 642 if (errorCount()) 643 return; 644 645 { 646 llvm::TimeTraceScope timeScope("Write output file"); 647 // Write the result down to a file. 648 openFile(); 649 if (errorCount()) 650 return; 651 652 if (!config->oFormatBinary) { 653 if (config->zSeparate != SeparateSegmentKind::None) 654 writeTrapInstr(); 655 writeHeader(); 656 writeSections(); 657 } else { 658 writeSectionsBinary(); 659 } 660 661 // Backfill .note.gnu.build-id section content. This is done at last 662 // because the content is usually a hash value of the entire output file. 663 writeBuildId(); 664 if (errorCount()) 665 return; 666 667 if (auto e = buffer->commit()) 668 fatal("failed to write output '" + buffer->getPath() + 669 "': " + toString(std::move(e))); 670 671 if (!config->cmseOutputLib.empty()) 672 writeARMCmseImportLib<ELFT>(); 673 } 674 } 675 676 template <class ELFT, class RelTy> 677 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 678 llvm::ArrayRef<RelTy> rels) { 679 for (const RelTy &rel : rels) { 680 Symbol &sym = file->getRelocTargetSym(rel); 681 if (sym.isLocal()) 682 sym.used = true; 683 } 684 } 685 686 // The function ensures that the "used" field of local symbols reflects the fact 687 // that the symbol is used in a relocation from a live section. 688 template <class ELFT> static void markUsedLocalSymbols() { 689 // With --gc-sections, the field is already filled. 690 // See MarkLive<ELFT>::resolveReloc(). 691 if (config->gcSections) 692 return; 693 for (ELFFileBase *file : ctx.objectFiles) { 694 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 695 for (InputSectionBase *s : f->getSections()) { 696 InputSection *isec = dyn_cast_or_null<InputSection>(s); 697 if (!isec) 698 continue; 699 if (isec->type == SHT_REL) 700 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 701 else if (isec->type == SHT_RELA) 702 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 703 } 704 } 705 } 706 707 static bool shouldKeepInSymtab(const Defined &sym) { 708 if (sym.isSection()) 709 return false; 710 711 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 712 // from live sections. 713 if (sym.used && config->copyRelocs) 714 return true; 715 716 // Exclude local symbols pointing to .ARM.exidx sections. 717 // They are probably mapping symbols "$d", which are optional for these 718 // sections. After merging the .ARM.exidx sections, some of these symbols 719 // may become dangling. The easiest way to avoid the issue is not to add 720 // them to the symbol table from the beginning. 721 if (config->emachine == EM_ARM && sym.section && 722 sym.section->type == SHT_ARM_EXIDX) 723 return false; 724 725 if (config->discard == DiscardPolicy::None) 726 return true; 727 if (config->discard == DiscardPolicy::All) 728 return false; 729 730 // In ELF assembly .L symbols are normally discarded by the assembler. 731 // If the assembler fails to do so, the linker discards them if 732 // * --discard-locals is used. 733 // * The symbol is in a SHF_MERGE section, which is normally the reason for 734 // the assembler keeping the .L symbol. 735 if (sym.getName().starts_with(".L") && 736 (config->discard == DiscardPolicy::Locals || 737 (sym.section && (sym.section->flags & SHF_MERGE)))) 738 return false; 739 return true; 740 } 741 742 bool lld::elf::includeInSymtab(const Symbol &b) { 743 if (auto *d = dyn_cast<Defined>(&b)) { 744 // Always include absolute symbols. 745 SectionBase *sec = d->section; 746 if (!sec) 747 return true; 748 assert(sec->isLive()); 749 750 if (auto *s = dyn_cast<MergeInputSection>(sec)) 751 return s->getSectionPiece(d->value).live; 752 return true; 753 } 754 return b.used || !config->gcSections; 755 } 756 757 // Scan local symbols to: 758 // 759 // - demote symbols defined relative to /DISCARD/ discarded input sections so 760 // that relocations referencing them will lead to errors. 761 // - copy eligible symbols to .symTab 762 static void demoteAndCopyLocalSymbols() { 763 llvm::TimeTraceScope timeScope("Add local symbols"); 764 for (ELFFileBase *file : ctx.objectFiles) { 765 DenseMap<SectionBase *, size_t> sectionIndexMap; 766 for (Symbol *b : file->getLocalSymbols()) { 767 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 768 auto *dr = dyn_cast<Defined>(b); 769 if (!dr) 770 continue; 771 772 if (dr->section && !dr->section->isLive()) 773 demoteDefined(*dr, sectionIndexMap); 774 else if (in.symTab && includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 775 in.symTab->addSymbol(b); 776 } 777 } 778 } 779 780 // Create a section symbol for each output section so that we can represent 781 // relocations that point to the section. If we know that no relocation is 782 // referring to a section (that happens if the section is a synthetic one), we 783 // don't create a section symbol for that section. 784 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 785 for (SectionCommand *cmd : script->sectionCommands) { 786 auto *osd = dyn_cast<OutputDesc>(cmd); 787 if (!osd) 788 continue; 789 OutputSection &osec = osd->osec; 790 InputSectionBase *isec = nullptr; 791 // Iterate over all input sections and add a STT_SECTION symbol if any input 792 // section may be a relocation target. 793 for (SectionCommand *cmd : osec.commands) { 794 auto *isd = dyn_cast<InputSectionDescription>(cmd); 795 if (!isd) 796 continue; 797 for (InputSectionBase *s : isd->sections) { 798 // Relocations are not using REL[A] section symbols. 799 if (s->type == SHT_REL || s->type == SHT_RELA) 800 continue; 801 802 // Unlike other synthetic sections, mergeable output sections contain 803 // data copied from input sections, and there may be a relocation 804 // pointing to its contents if -r or --emit-reloc is given. 805 if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE)) 806 continue; 807 808 isec = s; 809 break; 810 } 811 } 812 if (!isec) 813 continue; 814 815 // Set the symbol to be relative to the output section so that its st_value 816 // equals the output section address. Note, there may be a gap between the 817 // start of the output section and isec. 818 in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, 819 STT_SECTION, 820 /*value=*/0, /*size=*/0, &osec)); 821 } 822 } 823 824 // Today's loaders have a feature to make segments read-only after 825 // processing dynamic relocations to enhance security. PT_GNU_RELRO 826 // is defined for that. 827 // 828 // This function returns true if a section needs to be put into a 829 // PT_GNU_RELRO segment. 830 static bool isRelroSection(const OutputSection *sec) { 831 if (!config->zRelro) 832 return false; 833 if (sec->relro) 834 return true; 835 836 uint64_t flags = sec->flags; 837 838 // Non-allocatable or non-writable sections don't need RELRO because 839 // they are not writable or not even mapped to memory in the first place. 840 // RELRO is for sections that are essentially read-only but need to 841 // be writable only at process startup to allow dynamic linker to 842 // apply relocations. 843 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 844 return false; 845 846 // Once initialized, TLS data segments are used as data templates 847 // for a thread-local storage. For each new thread, runtime 848 // allocates memory for a TLS and copy templates there. No thread 849 // are supposed to use templates directly. Thus, it can be in RELRO. 850 if (flags & SHF_TLS) 851 return true; 852 853 // .init_array, .preinit_array and .fini_array contain pointers to 854 // functions that are executed on process startup or exit. These 855 // pointers are set by the static linker, and they are not expected 856 // to change at runtime. But if you are an attacker, you could do 857 // interesting things by manipulating pointers in .fini_array, for 858 // example. So they are put into RELRO. 859 uint32_t type = sec->type; 860 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 861 type == SHT_PREINIT_ARRAY) 862 return true; 863 864 // .got contains pointers to external symbols. They are resolved by 865 // the dynamic linker when a module is loaded into memory, and after 866 // that they are not expected to change. So, it can be in RELRO. 867 if (in.got && sec == in.got->getParent()) 868 return true; 869 870 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 871 // through r2 register, which is reserved for that purpose. Since r2 is used 872 // for accessing .got as well, .got and .toc need to be close enough in the 873 // virtual address space. Usually, .toc comes just after .got. Since we place 874 // .got into RELRO, .toc needs to be placed into RELRO too. 875 if (sec->name.equals(".toc")) 876 return true; 877 878 // .got.plt contains pointers to external function symbols. They are 879 // by default resolved lazily, so we usually cannot put it into RELRO. 880 // However, if "-z now" is given, the lazy symbol resolution is 881 // disabled, which enables us to put it into RELRO. 882 if (sec == in.gotPlt->getParent()) 883 return config->zNow; 884 885 if (in.relroPadding && sec == in.relroPadding->getParent()) 886 return true; 887 888 // .dynamic section contains data for the dynamic linker, and 889 // there's no need to write to it at runtime, so it's better to put 890 // it into RELRO. 891 if (sec->name == ".dynamic") 892 return true; 893 894 // Sections with some special names are put into RELRO. This is a 895 // bit unfortunate because section names shouldn't be significant in 896 // ELF in spirit. But in reality many linker features depend on 897 // magic section names. 898 StringRef s = sec->name; 899 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 900 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 901 s == ".fini_array" || s == ".init_array" || 902 s == ".openbsd.randomdata" || s == ".preinit_array"; 903 } 904 905 // We compute a rank for each section. The rank indicates where the 906 // section should be placed in the file. Instead of using simple 907 // numbers (0,1,2...), we use a series of flags. One for each decision 908 // point when placing the section. 909 // Using flags has two key properties: 910 // * It is easy to check if a give branch was taken. 911 // * It is easy two see how similar two ranks are (see getRankProximity). 912 enum RankFlags { 913 RF_NOT_ADDR_SET = 1 << 27, 914 RF_NOT_ALLOC = 1 << 26, 915 RF_PARTITION = 1 << 18, // Partition number (8 bits) 916 RF_NOT_SPECIAL = 1 << 17, 917 RF_WRITE = 1 << 16, 918 RF_EXEC_WRITE = 1 << 15, 919 RF_EXEC = 1 << 14, 920 RF_RODATA = 1 << 13, 921 RF_LARGE = 1 << 12, 922 RF_NOT_RELRO = 1 << 9, 923 RF_NOT_TLS = 1 << 8, 924 RF_BSS = 1 << 7, 925 }; 926 927 static unsigned getSectionRank(OutputSection &osec) { 928 unsigned rank = osec.partition * RF_PARTITION; 929 930 // We want to put section specified by -T option first, so we 931 // can start assigning VA starting from them later. 932 if (config->sectionStartMap.count(osec.name)) 933 return rank; 934 rank |= RF_NOT_ADDR_SET; 935 936 // Allocatable sections go first to reduce the total PT_LOAD size and 937 // so debug info doesn't change addresses in actual code. 938 if (!(osec.flags & SHF_ALLOC)) 939 return rank | RF_NOT_ALLOC; 940 941 if (osec.type == SHT_LLVM_PART_EHDR) 942 return rank; 943 if (osec.type == SHT_LLVM_PART_PHDR) 944 return rank | 1; 945 946 // Put .interp first because some loaders want to see that section 947 // on the first page of the executable file when loaded into memory. 948 if (osec.name == ".interp") 949 return rank | 2; 950 951 // Put .note sections at the beginning so that they are likely to be included 952 // in a truncate core file. In particular, .note.gnu.build-id, if available, 953 // can identify the object file. 954 if (osec.type == SHT_NOTE) 955 return rank | 3; 956 957 rank |= RF_NOT_SPECIAL; 958 959 // Sort sections based on their access permission in the following 960 // order: R, RX, RXW, RW(RELRO), RW(non-RELRO). 961 // 962 // Read-only sections come first such that they go in the PT_LOAD covering the 963 // program headers at the start of the file. 964 // 965 // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro 966 // .bss.rel.ro) | .data .bss), where | marks where page alignment happens. 967 // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro 968 // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment 969 // places. 970 bool isExec = osec.flags & SHF_EXECINSTR; 971 bool isWrite = osec.flags & SHF_WRITE; 972 973 if (!isWrite && !isExec) { 974 // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to 975 // alleviate relocation overflow pressure. Large special sections such as 976 // .dynstr and .dynsym can be away from .text. 977 if (osec.type == SHT_PROGBITS) 978 rank |= RF_RODATA; 979 // Among PROGBITS sections, place .lrodata further from .text. 980 if (!(osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64)) 981 rank |= RF_LARGE; 982 } else if (isExec) { 983 rank |= isWrite ? RF_EXEC_WRITE : RF_EXEC; 984 } else { 985 rank |= RF_WRITE; 986 // The TLS initialization block needs to be a single contiguous block. Place 987 // TLS sections directly before the other RELRO sections. 988 if (!(osec.flags & SHF_TLS)) 989 rank |= RF_NOT_TLS; 990 if (isRelroSection(&osec)) 991 osec.relro = true; 992 else 993 rank |= RF_NOT_RELRO; 994 // Place .ldata and .lbss after .bss. Making .bss closer to .text alleviates 995 // relocation overflow pressure. 996 if (osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64) 997 rank |= RF_LARGE; 998 } 999 1000 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1001 // sections, place non-NOBITS sections first. 1002 if (osec.type == SHT_NOBITS) 1003 rank |= RF_BSS; 1004 1005 // Some architectures have additional ordering restrictions for sections 1006 // within the same PT_LOAD. 1007 if (config->emachine == EM_PPC64) { 1008 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1009 // that we would like to make sure appear is a specific order to maximize 1010 // their coverage by a single signed 16-bit offset from the TOC base 1011 // pointer. 1012 StringRef name = osec.name; 1013 if (name == ".got") 1014 rank |= 1; 1015 else if (name == ".toc") 1016 rank |= 2; 1017 } 1018 1019 if (config->emachine == EM_MIPS) { 1020 if (osec.name != ".got") 1021 rank |= 1; 1022 // All sections with SHF_MIPS_GPREL flag should be grouped together 1023 // because data in these sections is addressable with a gp relative address. 1024 if (osec.flags & SHF_MIPS_GPREL) 1025 rank |= 2; 1026 } 1027 1028 if (config->emachine == EM_RISCV) { 1029 // .sdata and .sbss are placed closer to make GP relaxation more profitable 1030 // and match GNU ld. 1031 StringRef name = osec.name; 1032 if (name == ".sdata" || (osec.type == SHT_NOBITS && name != ".sbss")) 1033 rank |= 1; 1034 } 1035 1036 return rank; 1037 } 1038 1039 static bool compareSections(const SectionCommand *aCmd, 1040 const SectionCommand *bCmd) { 1041 const OutputSection *a = &cast<OutputDesc>(aCmd)->osec; 1042 const OutputSection *b = &cast<OutputDesc>(bCmd)->osec; 1043 1044 if (a->sortRank != b->sortRank) 1045 return a->sortRank < b->sortRank; 1046 1047 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1048 return config->sectionStartMap.lookup(a->name) < 1049 config->sectionStartMap.lookup(b->name); 1050 return false; 1051 } 1052 1053 void PhdrEntry::add(OutputSection *sec) { 1054 lastSec = sec; 1055 if (!firstSec) 1056 firstSec = sec; 1057 p_align = std::max(p_align, sec->addralign); 1058 if (p_type == PT_LOAD) 1059 sec->ptLoad = this; 1060 } 1061 1062 // The beginning and the ending of .rel[a].plt section are marked 1063 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1064 // executable. The runtime needs these symbols in order to resolve 1065 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1066 // need these symbols, since IRELATIVE relocs are resolved through GOT 1067 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1068 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1069 if (config->isPic) 1070 return; 1071 1072 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1073 // because .rela.plt might be empty and thus removed from output. 1074 // We'll override Out::elfHeader with In.relaIplt later when we are 1075 // sure that .rela.plt exists in output. 1076 ElfSym::relaIpltStart = addOptionalRegular( 1077 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1078 Out::elfHeader, 0, STV_HIDDEN); 1079 1080 ElfSym::relaIpltEnd = addOptionalRegular( 1081 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1082 Out::elfHeader, 0, STV_HIDDEN); 1083 } 1084 1085 // This function generates assignments for predefined symbols (e.g. _end or 1086 // _etext) and inserts them into the commands sequence to be processed at the 1087 // appropriate time. This ensures that the value is going to be correct by the 1088 // time any references to these symbols are processed and is equivalent to 1089 // defining these symbols explicitly in the linker script. 1090 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1091 if (ElfSym::globalOffsetTable) { 1092 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1093 // to the start of the .got or .got.plt section. 1094 InputSection *sec = in.gotPlt.get(); 1095 if (!target->gotBaseSymInGotPlt) 1096 sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get()) 1097 : cast<InputSection>(in.got.get()); 1098 ElfSym::globalOffsetTable->section = sec; 1099 } 1100 1101 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1102 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1103 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1104 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1105 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1106 } 1107 1108 PhdrEntry *last = nullptr; 1109 PhdrEntry *lastRO = nullptr; 1110 1111 for (Partition &part : partitions) { 1112 for (PhdrEntry *p : part.phdrs) { 1113 if (p->p_type != PT_LOAD) 1114 continue; 1115 last = p; 1116 if (!(p->p_flags & PF_W)) 1117 lastRO = p; 1118 } 1119 } 1120 1121 if (lastRO) { 1122 // _etext is the first location after the last read-only loadable segment. 1123 if (ElfSym::etext1) 1124 ElfSym::etext1->section = lastRO->lastSec; 1125 if (ElfSym::etext2) 1126 ElfSym::etext2->section = lastRO->lastSec; 1127 } 1128 1129 if (last) { 1130 // _edata points to the end of the last mapped initialized section. 1131 OutputSection *edata = nullptr; 1132 for (OutputSection *os : outputSections) { 1133 if (os->type != SHT_NOBITS) 1134 edata = os; 1135 if (os == last->lastSec) 1136 break; 1137 } 1138 1139 if (ElfSym::edata1) 1140 ElfSym::edata1->section = edata; 1141 if (ElfSym::edata2) 1142 ElfSym::edata2->section = edata; 1143 1144 // _end is the first location after the uninitialized data region. 1145 if (ElfSym::end1) 1146 ElfSym::end1->section = last->lastSec; 1147 if (ElfSym::end2) 1148 ElfSym::end2->section = last->lastSec; 1149 } 1150 1151 if (ElfSym::bss) { 1152 // On RISC-V, set __bss_start to the start of .sbss if present. 1153 OutputSection *sbss = 1154 config->emachine == EM_RISCV ? findSection(".sbss") : nullptr; 1155 ElfSym::bss->section = sbss ? sbss : findSection(".bss"); 1156 } 1157 1158 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1159 // be equal to the _gp symbol's value. 1160 if (ElfSym::mipsGp) { 1161 // Find GP-relative section with the lowest address 1162 // and use this address to calculate default _gp value. 1163 for (OutputSection *os : outputSections) { 1164 if (os->flags & SHF_MIPS_GPREL) { 1165 ElfSym::mipsGp->section = os; 1166 ElfSym::mipsGp->value = 0x7ff0; 1167 break; 1168 } 1169 } 1170 } 1171 } 1172 1173 // We want to find how similar two ranks are. 1174 // The more branches in getSectionRank that match, the more similar they are. 1175 // Since each branch corresponds to a bit flag, we can just use 1176 // countLeadingZeros. 1177 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1178 auto *osd = dyn_cast<OutputDesc>(b); 1179 return (osd && osd->osec.hasInputSections) 1180 ? llvm::countl_zero(a->sortRank ^ osd->osec.sortRank) 1181 : -1; 1182 } 1183 1184 // When placing orphan sections, we want to place them after symbol assignments 1185 // so that an orphan after 1186 // begin_foo = .; 1187 // foo : { *(foo) } 1188 // end_foo = .; 1189 // doesn't break the intended meaning of the begin/end symbols. 1190 // We don't want to go over sections since findOrphanPos is the 1191 // one in charge of deciding the order of the sections. 1192 // We don't want to go over changes to '.', since doing so in 1193 // rx_sec : { *(rx_sec) } 1194 // . = ALIGN(0x1000); 1195 // /* The RW PT_LOAD starts here*/ 1196 // rw_sec : { *(rw_sec) } 1197 // would mean that the RW PT_LOAD would become unaligned. 1198 static bool shouldSkip(SectionCommand *cmd) { 1199 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1200 return assign->name != "."; 1201 return false; 1202 } 1203 1204 // We want to place orphan sections so that they share as much 1205 // characteristics with their neighbors as possible. For example, if 1206 // both are rw, or both are tls. 1207 static SmallVectorImpl<SectionCommand *>::iterator 1208 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1209 SmallVectorImpl<SectionCommand *>::iterator e) { 1210 OutputSection *sec = &cast<OutputDesc>(*e)->osec; 1211 1212 // As a special case, place .relro_padding before the SymbolAssignment using 1213 // DATA_SEGMENT_RELRO_END, if present. 1214 if (in.relroPadding && sec == in.relroPadding->getParent()) { 1215 auto i = std::find_if(b, e, [=](SectionCommand *a) { 1216 if (auto *assign = dyn_cast<SymbolAssignment>(a)) 1217 return assign->dataSegmentRelroEnd; 1218 return false; 1219 }); 1220 if (i != e) 1221 return i; 1222 } 1223 1224 // Find the first element that has as close a rank as possible. 1225 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1226 return getRankProximity(sec, a) < getRankProximity(sec, b); 1227 }); 1228 if (i == e) 1229 return e; 1230 if (!isa<OutputDesc>(*i)) 1231 return e; 1232 auto foundSec = &cast<OutputDesc>(*i)->osec; 1233 1234 // Consider all existing sections with the same proximity. 1235 int proximity = getRankProximity(sec, *i); 1236 unsigned sortRank = sec->sortRank; 1237 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1238 // Prevent the orphan section to be placed before the found section. If 1239 // custom program headers are defined, that helps to avoid adding it to a 1240 // previous segment and changing flags of that segment, for example, making 1241 // a read-only segment writable. If memory regions are defined, an orphan 1242 // section should continue the same region as the found section to better 1243 // resemble the behavior of GNU ld. 1244 sortRank = std::max(sortRank, foundSec->sortRank); 1245 for (; i != e; ++i) { 1246 auto *curSecDesc = dyn_cast<OutputDesc>(*i); 1247 if (!curSecDesc || !curSecDesc->osec.hasInputSections) 1248 continue; 1249 if (getRankProximity(sec, curSecDesc) != proximity || 1250 sortRank < curSecDesc->osec.sortRank) 1251 break; 1252 } 1253 1254 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1255 auto *osd = dyn_cast<OutputDesc>(cmd); 1256 return osd && osd->osec.hasInputSections; 1257 }; 1258 auto j = 1259 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1260 isOutputSecWithInputSections); 1261 i = j.base(); 1262 1263 // As a special case, if the orphan section is the last section, put 1264 // it at the very end, past any other commands. 1265 // This matches bfd's behavior and is convenient when the linker script fully 1266 // specifies the start of the file, but doesn't care about the end (the non 1267 // alloc sections for example). 1268 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1269 if (nextSec == e) 1270 return e; 1271 1272 while (i != e && shouldSkip(*i)) 1273 ++i; 1274 return i; 1275 } 1276 1277 // Adds random priorities to sections not already in the map. 1278 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1279 if (config->shuffleSections.empty()) 1280 return; 1281 1282 SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections; 1283 matched.reserve(sections.size()); 1284 for (const auto &patAndSeed : config->shuffleSections) { 1285 matched.clear(); 1286 for (InputSectionBase *sec : sections) 1287 if (patAndSeed.first.match(sec->name)) 1288 matched.push_back(sec); 1289 const uint32_t seed = patAndSeed.second; 1290 if (seed == UINT32_MAX) { 1291 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1292 // section order is stable even if the number of sections changes. This is 1293 // useful to catch issues like static initialization order fiasco 1294 // reliably. 1295 std::reverse(matched.begin(), matched.end()); 1296 } else { 1297 std::mt19937 g(seed ? seed : std::random_device()()); 1298 llvm::shuffle(matched.begin(), matched.end(), g); 1299 } 1300 size_t i = 0; 1301 for (InputSectionBase *&sec : sections) 1302 if (patAndSeed.first.match(sec->name)) 1303 sec = matched[i++]; 1304 } 1305 1306 // Existing priorities are < 0, so use priorities >= 0 for the missing 1307 // sections. 1308 int prio = 0; 1309 for (InputSectionBase *sec : sections) { 1310 if (order.try_emplace(sec, prio).second) 1311 ++prio; 1312 } 1313 } 1314 1315 // Builds section order for handling --symbol-ordering-file. 1316 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1317 DenseMap<const InputSectionBase *, int> sectionOrder; 1318 // Use the rarely used option --call-graph-ordering-file to sort sections. 1319 if (!config->callGraphProfile.empty()) 1320 return computeCallGraphProfileOrder(); 1321 1322 if (config->symbolOrderingFile.empty()) 1323 return sectionOrder; 1324 1325 struct SymbolOrderEntry { 1326 int priority; 1327 bool present; 1328 }; 1329 1330 // Build a map from symbols to their priorities. Symbols that didn't 1331 // appear in the symbol ordering file have the lowest priority 0. 1332 // All explicitly mentioned symbols have negative (higher) priorities. 1333 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1334 int priority = -config->symbolOrderingFile.size(); 1335 for (StringRef s : config->symbolOrderingFile) 1336 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1337 1338 // Build a map from sections to their priorities. 1339 auto addSym = [&](Symbol &sym) { 1340 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1341 if (it == symbolOrder.end()) 1342 return; 1343 SymbolOrderEntry &ent = it->second; 1344 ent.present = true; 1345 1346 maybeWarnUnorderableSymbol(&sym); 1347 1348 if (auto *d = dyn_cast<Defined>(&sym)) { 1349 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1350 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1351 priority = std::min(priority, ent.priority); 1352 } 1353 } 1354 }; 1355 1356 // We want both global and local symbols. We get the global ones from the 1357 // symbol table and iterate the object files for the local ones. 1358 for (Symbol *sym : symtab.getSymbols()) 1359 addSym(*sym); 1360 1361 for (ELFFileBase *file : ctx.objectFiles) 1362 for (Symbol *sym : file->getLocalSymbols()) 1363 addSym(*sym); 1364 1365 if (config->warnSymbolOrdering) 1366 for (auto orderEntry : symbolOrder) 1367 if (!orderEntry.second.present) 1368 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1369 1370 return sectionOrder; 1371 } 1372 1373 // Sorts the sections in ISD according to the provided section order. 1374 static void 1375 sortISDBySectionOrder(InputSectionDescription *isd, 1376 const DenseMap<const InputSectionBase *, int> &order, 1377 bool executableOutputSection) { 1378 SmallVector<InputSection *, 0> unorderedSections; 1379 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1380 uint64_t unorderedSize = 0; 1381 uint64_t totalSize = 0; 1382 1383 for (InputSection *isec : isd->sections) { 1384 if (executableOutputSection) 1385 totalSize += isec->getSize(); 1386 auto i = order.find(isec); 1387 if (i == order.end()) { 1388 unorderedSections.push_back(isec); 1389 unorderedSize += isec->getSize(); 1390 continue; 1391 } 1392 orderedSections.push_back({isec, i->second}); 1393 } 1394 llvm::sort(orderedSections, llvm::less_second()); 1395 1396 // Find an insertion point for the ordered section list in the unordered 1397 // section list. On targets with limited-range branches, this is the mid-point 1398 // of the unordered section list. This decreases the likelihood that a range 1399 // extension thunk will be needed to enter or exit the ordered region. If the 1400 // ordered section list is a list of hot functions, we can generally expect 1401 // the ordered functions to be called more often than the unordered functions, 1402 // making it more likely that any particular call will be within range, and 1403 // therefore reducing the number of thunks required. 1404 // 1405 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1406 // If the layout is: 1407 // 1408 // 8MB hot 1409 // 32MB cold 1410 // 1411 // only the first 8-16MB of the cold code (depending on which hot function it 1412 // is actually calling) can call the hot code without a range extension thunk. 1413 // However, if we use this layout: 1414 // 1415 // 16MB cold 1416 // 8MB hot 1417 // 16MB cold 1418 // 1419 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1420 // of the second block of cold code can call the hot code without a thunk. So 1421 // we effectively double the amount of code that could potentially call into 1422 // the hot code without a thunk. 1423 // 1424 // The above is not necessary if total size of input sections in this "isd" 1425 // is small. Note that we assume all input sections are executable if the 1426 // output section is executable (which is not always true but supposed to 1427 // cover most cases). 1428 size_t insPt = 0; 1429 if (executableOutputSection && !orderedSections.empty() && 1430 target->getThunkSectionSpacing() && 1431 totalSize >= target->getThunkSectionSpacing()) { 1432 uint64_t unorderedPos = 0; 1433 for (; insPt != unorderedSections.size(); ++insPt) { 1434 unorderedPos += unorderedSections[insPt]->getSize(); 1435 if (unorderedPos > unorderedSize / 2) 1436 break; 1437 } 1438 } 1439 1440 isd->sections.clear(); 1441 for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt)) 1442 isd->sections.push_back(isec); 1443 for (std::pair<InputSection *, int> p : orderedSections) 1444 isd->sections.push_back(p.first); 1445 for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt)) 1446 isd->sections.push_back(isec); 1447 } 1448 1449 static void sortSection(OutputSection &osec, 1450 const DenseMap<const InputSectionBase *, int> &order) { 1451 StringRef name = osec.name; 1452 1453 // Never sort these. 1454 if (name == ".init" || name == ".fini") 1455 return; 1456 1457 // IRelative relocations that usually live in the .rel[a].dyn section should 1458 // be processed last by the dynamic loader. To achieve that we add synthetic 1459 // sections in the required order from the beginning so that the in.relaIplt 1460 // section is placed last in an output section. Here we just do not apply 1461 // sorting for an output section which holds the in.relaIplt section. 1462 if (in.relaIplt->getParent() == &osec) 1463 return; 1464 1465 // Sort input sections by priority using the list provided by 1466 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1467 // digit radix sort. The sections may be sorted stably again by a more 1468 // significant key. 1469 if (!order.empty()) 1470 for (SectionCommand *b : osec.commands) 1471 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1472 sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR); 1473 1474 if (script->hasSectionsCommand) 1475 return; 1476 1477 if (name == ".init_array" || name == ".fini_array") { 1478 osec.sortInitFini(); 1479 } else if (name == ".ctors" || name == ".dtors") { 1480 osec.sortCtorsDtors(); 1481 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1482 // .toc is allocated just after .got and is accessed using GOT-relative 1483 // relocations. Object files compiled with small code model have an 1484 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1485 // To reduce the risk of relocation overflow, .toc contents are sorted so 1486 // that sections having smaller relocation offsets are at beginning of .toc 1487 assert(osec.commands.size() == 1); 1488 auto *isd = cast<InputSectionDescription>(osec.commands[0]); 1489 llvm::stable_sort(isd->sections, 1490 [](const InputSection *a, const InputSection *b) -> bool { 1491 return a->file->ppc64SmallCodeModelTocRelocs && 1492 !b->file->ppc64SmallCodeModelTocRelocs; 1493 }); 1494 } 1495 } 1496 1497 // If no layout was provided by linker script, we want to apply default 1498 // sorting for special input sections. This also handles --symbol-ordering-file. 1499 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1500 // Build the order once since it is expensive. 1501 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1502 maybeShuffle(order); 1503 for (SectionCommand *cmd : script->sectionCommands) 1504 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1505 sortSection(osd->osec, order); 1506 } 1507 1508 template <class ELFT> void Writer<ELFT>::sortSections() { 1509 llvm::TimeTraceScope timeScope("Sort sections"); 1510 1511 // Don't sort if using -r. It is not necessary and we want to preserve the 1512 // relative order for SHF_LINK_ORDER sections. 1513 if (config->relocatable) { 1514 script->adjustOutputSections(); 1515 return; 1516 } 1517 1518 sortInputSections(); 1519 1520 for (SectionCommand *cmd : script->sectionCommands) 1521 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1522 osd->osec.sortRank = getSectionRank(osd->osec); 1523 if (!script->hasSectionsCommand) { 1524 // OutputDescs are mostly contiguous, but may be interleaved with 1525 // SymbolAssignments in the presence of INSERT commands. 1526 auto mid = std::stable_partition( 1527 script->sectionCommands.begin(), script->sectionCommands.end(), 1528 [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); }); 1529 std::stable_sort(script->sectionCommands.begin(), mid, compareSections); 1530 } 1531 1532 // Process INSERT commands and update output section attributes. From this 1533 // point onwards the order of script->sectionCommands is fixed. 1534 script->processInsertCommands(); 1535 script->adjustOutputSections(); 1536 1537 if (script->hasSectionsCommand) 1538 sortOrphanSections(); 1539 1540 script->adjustSectionsAfterSorting(); 1541 } 1542 1543 template <class ELFT> void Writer<ELFT>::sortOrphanSections() { 1544 // Orphan sections are sections present in the input files which are 1545 // not explicitly placed into the output file by the linker script. 1546 // 1547 // The sections in the linker script are already in the correct 1548 // order. We have to figuere out where to insert the orphan 1549 // sections. 1550 // 1551 // The order of the sections in the script is arbitrary and may not agree with 1552 // compareSections. This means that we cannot easily define a strict weak 1553 // ordering. To see why, consider a comparison of a section in the script and 1554 // one not in the script. We have a two simple options: 1555 // * Make them equivalent (a is not less than b, and b is not less than a). 1556 // The problem is then that equivalence has to be transitive and we can 1557 // have sections a, b and c with only b in a script and a less than c 1558 // which breaks this property. 1559 // * Use compareSectionsNonScript. Given that the script order doesn't have 1560 // to match, we can end up with sections a, b, c, d where b and c are in the 1561 // script and c is compareSectionsNonScript less than b. In which case d 1562 // can be equivalent to c, a to b and d < a. As a concrete example: 1563 // .a (rx) # not in script 1564 // .b (rx) # in script 1565 // .c (ro) # in script 1566 // .d (ro) # not in script 1567 // 1568 // The way we define an order then is: 1569 // * Sort only the orphan sections. They are in the end right now. 1570 // * Move each orphan section to its preferred position. We try 1571 // to put each section in the last position where it can share 1572 // a PT_LOAD. 1573 // 1574 // There is some ambiguity as to where exactly a new entry should be 1575 // inserted, because Commands contains not only output section 1576 // commands but also other types of commands such as symbol assignment 1577 // expressions. There's no correct answer here due to the lack of the 1578 // formal specification of the linker script. We use heuristics to 1579 // determine whether a new output command should be added before or 1580 // after another commands. For the details, look at shouldSkip 1581 // function. 1582 1583 auto i = script->sectionCommands.begin(); 1584 auto e = script->sectionCommands.end(); 1585 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1586 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1587 return osd->osec.sectionIndex == UINT32_MAX; 1588 return false; 1589 }); 1590 1591 // Sort the orphan sections. 1592 std::stable_sort(nonScriptI, e, compareSections); 1593 1594 // As a horrible special case, skip the first . assignment if it is before any 1595 // section. We do this because it is common to set a load address by starting 1596 // the script with ". = 0xabcd" and the expectation is that every section is 1597 // after that. 1598 auto firstSectionOrDotAssignment = 1599 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1600 if (firstSectionOrDotAssignment != e && 1601 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1602 ++firstSectionOrDotAssignment; 1603 i = firstSectionOrDotAssignment; 1604 1605 while (nonScriptI != e) { 1606 auto pos = findOrphanPos(i, nonScriptI); 1607 OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec; 1608 1609 // As an optimization, find all sections with the same sort rank 1610 // and insert them with one rotate. 1611 unsigned rank = orphan->sortRank; 1612 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1613 return cast<OutputDesc>(cmd)->osec.sortRank != rank; 1614 }); 1615 std::rotate(pos, nonScriptI, end); 1616 nonScriptI = end; 1617 } 1618 } 1619 1620 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1621 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1622 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1623 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1624 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1625 if (!la || !lb) 1626 return la && !lb; 1627 OutputSection *aOut = la->getParent(); 1628 OutputSection *bOut = lb->getParent(); 1629 1630 if (aOut != bOut) 1631 return aOut->addr < bOut->addr; 1632 return la->outSecOff < lb->outSecOff; 1633 } 1634 1635 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1636 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1637 for (OutputSection *sec : outputSections) { 1638 if (!(sec->flags & SHF_LINK_ORDER)) 1639 continue; 1640 1641 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1642 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1643 if (!config->relocatable && config->emachine == EM_ARM && 1644 sec->type == SHT_ARM_EXIDX) 1645 continue; 1646 1647 // Link order may be distributed across several InputSectionDescriptions. 1648 // Sorting is performed separately. 1649 SmallVector<InputSection **, 0> scriptSections; 1650 SmallVector<InputSection *, 0> sections; 1651 for (SectionCommand *cmd : sec->commands) { 1652 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1653 if (!isd) 1654 continue; 1655 bool hasLinkOrder = false; 1656 scriptSections.clear(); 1657 sections.clear(); 1658 for (InputSection *&isec : isd->sections) { 1659 if (isec->flags & SHF_LINK_ORDER) { 1660 InputSection *link = isec->getLinkOrderDep(); 1661 if (link && !link->getParent()) 1662 error(toString(isec) + ": sh_link points to discarded section " + 1663 toString(link)); 1664 hasLinkOrder = true; 1665 } 1666 scriptSections.push_back(&isec); 1667 sections.push_back(isec); 1668 } 1669 if (hasLinkOrder && errorCount() == 0) { 1670 llvm::stable_sort(sections, compareByFilePosition); 1671 for (int i = 0, n = sections.size(); i != n; ++i) 1672 *scriptSections[i] = sections[i]; 1673 } 1674 } 1675 } 1676 } 1677 1678 static void finalizeSynthetic(SyntheticSection *sec) { 1679 if (sec && sec->isNeeded() && sec->getParent()) { 1680 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1681 sec->finalizeContents(); 1682 } 1683 } 1684 1685 // We need to generate and finalize the content that depends on the address of 1686 // InputSections. As the generation of the content may also alter InputSection 1687 // addresses we must converge to a fixed point. We do that here. See the comment 1688 // in Writer<ELFT>::finalizeSections(). 1689 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1690 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1691 ThunkCreator tc; 1692 AArch64Err843419Patcher a64p; 1693 ARMErr657417Patcher a32p; 1694 script->assignAddresses(); 1695 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1696 // do require the relative addresses of OutputSections because linker scripts 1697 // can assign Virtual Addresses to OutputSections that are not monotonically 1698 // increasing. 1699 for (Partition &part : partitions) 1700 finalizeSynthetic(part.armExidx.get()); 1701 resolveShfLinkOrder(); 1702 1703 // Converts call x@GDPLT to call __tls_get_addr 1704 if (config->emachine == EM_HEXAGON) 1705 hexagonTLSSymbolUpdate(outputSections); 1706 1707 uint32_t pass = 0, assignPasses = 0; 1708 for (;;) { 1709 bool changed = target->needsThunks ? tc.createThunks(pass, outputSections) 1710 : target->relaxOnce(pass); 1711 ++pass; 1712 1713 // With Thunk Size much smaller than branch range we expect to 1714 // converge quickly; if we get to 30 something has gone wrong. 1715 if (changed && pass >= 30) { 1716 error(target->needsThunks ? "thunk creation not converged" 1717 : "relaxation not converged"); 1718 break; 1719 } 1720 1721 if (config->fixCortexA53Errata843419) { 1722 if (changed) 1723 script->assignAddresses(); 1724 changed |= a64p.createFixes(); 1725 } 1726 if (config->fixCortexA8) { 1727 if (changed) 1728 script->assignAddresses(); 1729 changed |= a32p.createFixes(); 1730 } 1731 1732 finalizeSynthetic(in.got.get()); 1733 if (in.mipsGot) 1734 in.mipsGot->updateAllocSize(); 1735 1736 for (Partition &part : partitions) { 1737 changed |= part.relaDyn->updateAllocSize(); 1738 if (part.relrDyn) 1739 changed |= part.relrDyn->updateAllocSize(); 1740 if (part.memtagGlobalDescriptors) 1741 changed |= part.memtagGlobalDescriptors->updateAllocSize(); 1742 } 1743 1744 const Defined *changedSym = script->assignAddresses(); 1745 if (!changed) { 1746 // Some symbols may be dependent on section addresses. When we break the 1747 // loop, the symbol values are finalized because a previous 1748 // assignAddresses() finalized section addresses. 1749 if (!changedSym) 1750 break; 1751 if (++assignPasses == 5) { 1752 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1753 " does not converge"); 1754 break; 1755 } 1756 } 1757 } 1758 if (!config->relocatable) 1759 target->finalizeRelax(pass); 1760 1761 if (config->relocatable) 1762 for (OutputSection *sec : outputSections) 1763 sec->addr = 0; 1764 1765 // If addrExpr is set, the address may not be a multiple of the alignment. 1766 // Warn because this is error-prone. 1767 for (SectionCommand *cmd : script->sectionCommands) 1768 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1769 OutputSection *osec = &osd->osec; 1770 if (osec->addr % osec->addralign != 0) 1771 warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " + 1772 osec->name + " is not a multiple of alignment (" + 1773 Twine(osec->addralign) + ")"); 1774 } 1775 } 1776 1777 // If Input Sections have been shrunk (basic block sections) then 1778 // update symbol values and sizes associated with these sections. With basic 1779 // block sections, input sections can shrink when the jump instructions at 1780 // the end of the section are relaxed. 1781 static void fixSymbolsAfterShrinking() { 1782 for (InputFile *File : ctx.objectFiles) { 1783 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1784 auto *def = dyn_cast<Defined>(Sym); 1785 if (!def) 1786 return; 1787 1788 const SectionBase *sec = def->section; 1789 if (!sec) 1790 return; 1791 1792 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1793 if (!inputSec || !inputSec->bytesDropped) 1794 return; 1795 1796 const size_t OldSize = inputSec->content().size(); 1797 const size_t NewSize = OldSize - inputSec->bytesDropped; 1798 1799 if (def->value > NewSize && def->value <= OldSize) { 1800 LLVM_DEBUG(llvm::dbgs() 1801 << "Moving symbol " << Sym->getName() << " from " 1802 << def->value << " to " 1803 << def->value - inputSec->bytesDropped << " bytes\n"); 1804 def->value -= inputSec->bytesDropped; 1805 return; 1806 } 1807 1808 if (def->value + def->size > NewSize && def->value <= OldSize && 1809 def->value + def->size <= OldSize) { 1810 LLVM_DEBUG(llvm::dbgs() 1811 << "Shrinking symbol " << Sym->getName() << " from " 1812 << def->size << " to " << def->size - inputSec->bytesDropped 1813 << " bytes\n"); 1814 def->size -= inputSec->bytesDropped; 1815 } 1816 }); 1817 } 1818 } 1819 1820 // If basic block sections exist, there are opportunities to delete fall thru 1821 // jumps and shrink jump instructions after basic block reordering. This 1822 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1823 // option is used. 1824 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1825 assert(config->optimizeBBJumps); 1826 SmallVector<InputSection *, 0> storage; 1827 1828 script->assignAddresses(); 1829 // For every output section that has executable input sections, this 1830 // does the following: 1831 // 1. Deletes all direct jump instructions in input sections that 1832 // jump to the following section as it is not required. 1833 // 2. If there are two consecutive jump instructions, it checks 1834 // if they can be flipped and one can be deleted. 1835 for (OutputSection *osec : outputSections) { 1836 if (!(osec->flags & SHF_EXECINSTR)) 1837 continue; 1838 ArrayRef<InputSection *> sections = getInputSections(*osec, storage); 1839 size_t numDeleted = 0; 1840 // Delete all fall through jump instructions. Also, check if two 1841 // consecutive jump instructions can be flipped so that a fall 1842 // through jmp instruction can be deleted. 1843 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1844 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1845 InputSection &sec = *sections[i]; 1846 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1847 } 1848 if (numDeleted > 0) { 1849 script->assignAddresses(); 1850 LLVM_DEBUG(llvm::dbgs() 1851 << "Removing " << numDeleted << " fall through jumps\n"); 1852 } 1853 } 1854 1855 fixSymbolsAfterShrinking(); 1856 1857 for (OutputSection *osec : outputSections) 1858 for (InputSection *is : getInputSections(*osec, storage)) 1859 is->trim(); 1860 } 1861 1862 // In order to allow users to manipulate linker-synthesized sections, 1863 // we had to add synthetic sections to the input section list early, 1864 // even before we make decisions whether they are needed. This allows 1865 // users to write scripts like this: ".mygot : { .got }". 1866 // 1867 // Doing it has an unintended side effects. If it turns out that we 1868 // don't need a .got (for example) at all because there's no 1869 // relocation that needs a .got, we don't want to emit .got. 1870 // 1871 // To deal with the above problem, this function is called after 1872 // scanRelocations is called to remove synthetic sections that turn 1873 // out to be empty. 1874 static void removeUnusedSyntheticSections() { 1875 // All input synthetic sections that can be empty are placed after 1876 // all regular ones. Reverse iterate to find the first synthetic section 1877 // after a non-synthetic one which will be our starting point. 1878 auto start = 1879 llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) { 1880 return !isa<SyntheticSection>(s); 1881 }).base(); 1882 1883 // Remove unused synthetic sections from ctx.inputSections; 1884 DenseSet<InputSectionBase *> unused; 1885 auto end = 1886 std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) { 1887 auto *sec = cast<SyntheticSection>(s); 1888 if (sec->getParent() && sec->isNeeded()) 1889 return false; 1890 unused.insert(sec); 1891 return true; 1892 }); 1893 ctx.inputSections.erase(end, ctx.inputSections.end()); 1894 1895 // Remove unused synthetic sections from the corresponding input section 1896 // description and orphanSections. 1897 for (auto *sec : unused) 1898 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1899 for (SectionCommand *cmd : osec->commands) 1900 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1901 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1902 return unused.count(isec); 1903 }); 1904 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1905 return unused.count(sec); 1906 }); 1907 } 1908 1909 // Create output section objects and add them to OutputSections. 1910 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1911 if (!config->relocatable) { 1912 Out::preinitArray = findSection(".preinit_array"); 1913 Out::initArray = findSection(".init_array"); 1914 Out::finiArray = findSection(".fini_array"); 1915 1916 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1917 // symbols for sections, so that the runtime can get the start and end 1918 // addresses of each section by section name. Add such symbols. 1919 addStartEndSymbols(); 1920 for (SectionCommand *cmd : script->sectionCommands) 1921 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1922 addStartStopSymbols(osd->osec); 1923 1924 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1925 // It should be okay as no one seems to care about the type. 1926 // Even the author of gold doesn't remember why gold behaves that way. 1927 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1928 if (mainPart->dynamic->parent) { 1929 Symbol *s = symtab.addSymbol(Defined{ 1930 ctx.internalFile, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1931 /*value=*/0, /*size=*/0, mainPart->dynamic.get()}); 1932 s->isUsedInRegularObj = true; 1933 } 1934 1935 // Define __rel[a]_iplt_{start,end} symbols if needed. 1936 addRelIpltSymbols(); 1937 1938 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1939 // should only be defined in an executable. If .sdata does not exist, its 1940 // value/section does not matter but it has to be relative, so set its 1941 // st_shndx arbitrarily to 1 (Out::elfHeader). 1942 if (config->emachine == EM_RISCV) { 1943 ElfSym::riscvGlobalPointer = nullptr; 1944 if (!config->shared) { 1945 OutputSection *sec = findSection(".sdata"); 1946 addOptionalRegular( 1947 "__global_pointer$", sec ? sec : Out::elfHeader, 0x800, STV_DEFAULT); 1948 // Set riscvGlobalPointer to be used by the optional global pointer 1949 // relaxation. 1950 if (config->relaxGP) { 1951 Symbol *s = symtab.find("__global_pointer$"); 1952 if (s && s->isDefined()) 1953 ElfSym::riscvGlobalPointer = cast<Defined>(s); 1954 } 1955 } 1956 } 1957 1958 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1959 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1960 // way that: 1961 // 1962 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1963 // computes 0. 1964 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address 1965 // in the TLS block). 1966 // 1967 // 2) is special cased in @tpoff computation. To satisfy 1), we define it 1968 // as an absolute symbol of zero. This is different from GNU linkers which 1969 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1970 Symbol *s = symtab.find("_TLS_MODULE_BASE_"); 1971 if (s && s->isUndefined()) { 1972 s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, 1973 STV_HIDDEN, STT_TLS, /*value=*/0, 0, 1974 /*section=*/nullptr}); 1975 ElfSym::tlsModuleBase = cast<Defined>(s); 1976 } 1977 } 1978 1979 // This responsible for splitting up .eh_frame section into 1980 // pieces. The relocation scan uses those pieces, so this has to be 1981 // earlier. 1982 { 1983 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1984 for (Partition &part : partitions) 1985 finalizeSynthetic(part.ehFrame.get()); 1986 } 1987 } 1988 1989 demoteSymbolsAndComputeIsPreemptible(); 1990 1991 if (config->copyRelocs && config->discard != DiscardPolicy::None) 1992 markUsedLocalSymbols<ELFT>(); 1993 demoteAndCopyLocalSymbols(); 1994 1995 if (config->copyRelocs) 1996 addSectionSymbols(); 1997 1998 // Change values of linker-script-defined symbols from placeholders (assigned 1999 // by declareSymbols) to actual definitions. 2000 script->processSymbolAssignments(); 2001 2002 if (!config->relocatable) { 2003 llvm::TimeTraceScope timeScope("Scan relocations"); 2004 // Scan relocations. This must be done after every symbol is declared so 2005 // that we can correctly decide if a dynamic relocation is needed. This is 2006 // called after processSymbolAssignments() because it needs to know whether 2007 // a linker-script-defined symbol is absolute. 2008 ppc64noTocRelax.clear(); 2009 scanRelocations<ELFT>(); 2010 reportUndefinedSymbols(); 2011 postScanRelocations(); 2012 2013 if (in.plt && in.plt->isNeeded()) 2014 in.plt->addSymbols(); 2015 if (in.iplt && in.iplt->isNeeded()) 2016 in.iplt->addSymbols(); 2017 2018 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 2019 auto diagnose = 2020 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 2021 ? errorOrWarn 2022 : warn; 2023 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 2024 // entries are seen. These cases would otherwise lead to runtime errors 2025 // reported by the dynamic linker. 2026 // 2027 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker 2028 // to catch more cases. That is too much for us. Our approach resembles 2029 // the one used in ld.gold, achieves a good balance to be useful but not 2030 // too smart. 2031 // 2032 // If a DSO reference is resolved by a SharedSymbol, but the SharedSymbol 2033 // is overridden by a hidden visibility Defined (which is later discarded 2034 // due to GC), don't report the diagnostic. However, this may indicate an 2035 // unintended SharedSymbol. 2036 for (SharedFile *file : ctx.sharedFiles) { 2037 bool allNeededIsKnown = 2038 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2039 return symtab.soNames.count(CachedHashStringRef(needed)); 2040 }); 2041 if (!allNeededIsKnown) 2042 continue; 2043 for (Symbol *sym : file->requiredSymbols) { 2044 if (sym->dsoDefined) 2045 continue; 2046 if (sym->isUndefined() && !sym->isWeak()) { 2047 diagnose("undefined reference due to --no-allow-shlib-undefined: " + 2048 toString(*sym) + "\n>>> referenced by " + toString(file)); 2049 } else if (sym->isDefined() && sym->computeBinding() == STB_LOCAL) { 2050 diagnose("non-exported symbol '" + toString(*sym) + "' in '" + 2051 toString(sym->file) + "' is referenced by DSO '" + 2052 toString(file) + "'"); 2053 } 2054 } 2055 } 2056 } 2057 } 2058 2059 { 2060 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2061 // Now that we have defined all possible global symbols including linker- 2062 // synthesized ones. Visit all symbols to give the finishing touches. 2063 for (Symbol *sym : symtab.getSymbols()) { 2064 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 2065 continue; 2066 if (!config->relocatable) 2067 sym->binding = sym->computeBinding(); 2068 if (in.symTab) 2069 in.symTab->addSymbol(sym); 2070 2071 if (sym->includeInDynsym()) { 2072 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2073 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2074 if (file->isNeeded && !sym->isUndefined()) 2075 addVerneed(sym); 2076 } 2077 } 2078 2079 // We also need to scan the dynamic relocation tables of the other 2080 // partitions and add any referenced symbols to the partition's dynsym. 2081 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2082 DenseSet<Symbol *> syms; 2083 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2084 syms.insert(e.sym); 2085 for (DynamicReloc &reloc : part.relaDyn->relocs) 2086 if (reloc.sym && reloc.needsDynSymIndex() && 2087 syms.insert(reloc.sym).second) 2088 part.dynSymTab->addSymbol(reloc.sym); 2089 } 2090 } 2091 2092 if (in.mipsGot) 2093 in.mipsGot->build(); 2094 2095 removeUnusedSyntheticSections(); 2096 script->diagnoseOrphanHandling(); 2097 script->diagnoseMissingSGSectionAddress(); 2098 2099 sortSections(); 2100 2101 // Create a list of OutputSections, assign sectionIndex, and populate 2102 // in.shStrTab. 2103 for (SectionCommand *cmd : script->sectionCommands) 2104 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 2105 OutputSection *osec = &osd->osec; 2106 outputSections.push_back(osec); 2107 osec->sectionIndex = outputSections.size(); 2108 osec->shName = in.shStrTab->addString(osec->name); 2109 } 2110 2111 // Prefer command line supplied address over other constraints. 2112 for (OutputSection *sec : outputSections) { 2113 auto i = config->sectionStartMap.find(sec->name); 2114 if (i != config->sectionStartMap.end()) 2115 sec->addrExpr = [=] { return i->second; }; 2116 } 2117 2118 // With the outputSections available check for GDPLT relocations 2119 // and add __tls_get_addr symbol if needed. 2120 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2121 Symbol *sym = 2122 symtab.addSymbol(Undefined{ctx.internalFile, "__tls_get_addr", 2123 STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2124 sym->isPreemptible = true; 2125 partitions[0].dynSymTab->addSymbol(sym); 2126 } 2127 2128 // This is a bit of a hack. A value of 0 means undef, so we set it 2129 // to 1 to make __ehdr_start defined. The section number is not 2130 // particularly relevant. 2131 Out::elfHeader->sectionIndex = 1; 2132 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2133 2134 // Binary and relocatable output does not have PHDRS. 2135 // The headers have to be created before finalize as that can influence the 2136 // image base and the dynamic section on mips includes the image base. 2137 if (!config->relocatable && !config->oFormatBinary) { 2138 for (Partition &part : partitions) { 2139 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2140 : createPhdrs(part); 2141 if (config->emachine == EM_ARM) { 2142 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2143 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2144 } 2145 if (config->emachine == EM_MIPS) { 2146 // Add separate segments for MIPS-specific sections. 2147 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2148 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2149 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2150 } 2151 if (config->emachine == EM_RISCV) 2152 addPhdrForSection(part, SHT_RISCV_ATTRIBUTES, PT_RISCV_ATTRIBUTES, 2153 PF_R); 2154 } 2155 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2156 2157 // Find the TLS segment. This happens before the section layout loop so that 2158 // Android relocation packing can look up TLS symbol addresses. We only need 2159 // to care about the main partition here because all TLS symbols were moved 2160 // to the main partition (see MarkLive.cpp). 2161 for (PhdrEntry *p : mainPart->phdrs) 2162 if (p->p_type == PT_TLS) 2163 Out::tlsPhdr = p; 2164 } 2165 2166 // Some symbols are defined in term of program headers. Now that we 2167 // have the headers, we can find out which sections they point to. 2168 setReservedSymbolSections(); 2169 2170 { 2171 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2172 2173 finalizeSynthetic(in.bss.get()); 2174 finalizeSynthetic(in.bssRelRo.get()); 2175 finalizeSynthetic(in.symTabShndx.get()); 2176 finalizeSynthetic(in.shStrTab.get()); 2177 finalizeSynthetic(in.strTab.get()); 2178 finalizeSynthetic(in.got.get()); 2179 finalizeSynthetic(in.mipsGot.get()); 2180 finalizeSynthetic(in.igotPlt.get()); 2181 finalizeSynthetic(in.gotPlt.get()); 2182 finalizeSynthetic(in.relaIplt.get()); 2183 finalizeSynthetic(in.relaPlt.get()); 2184 finalizeSynthetic(in.plt.get()); 2185 finalizeSynthetic(in.iplt.get()); 2186 finalizeSynthetic(in.ppc32Got2.get()); 2187 finalizeSynthetic(in.partIndex.get()); 2188 2189 // Dynamic section must be the last one in this list and dynamic 2190 // symbol table section (dynSymTab) must be the first one. 2191 for (Partition &part : partitions) { 2192 if (part.relaDyn) { 2193 part.relaDyn->mergeRels(); 2194 // Compute DT_RELACOUNT to be used by part.dynamic. 2195 part.relaDyn->partitionRels(); 2196 finalizeSynthetic(part.relaDyn.get()); 2197 } 2198 if (part.relrDyn) { 2199 part.relrDyn->mergeRels(); 2200 finalizeSynthetic(part.relrDyn.get()); 2201 } 2202 2203 finalizeSynthetic(part.dynSymTab.get()); 2204 finalizeSynthetic(part.gnuHashTab.get()); 2205 finalizeSynthetic(part.hashTab.get()); 2206 finalizeSynthetic(part.verDef.get()); 2207 finalizeSynthetic(part.ehFrameHdr.get()); 2208 finalizeSynthetic(part.verSym.get()); 2209 finalizeSynthetic(part.verNeed.get()); 2210 finalizeSynthetic(part.dynamic.get()); 2211 } 2212 } 2213 2214 if (!script->hasSectionsCommand && !config->relocatable) 2215 fixSectionAlignments(); 2216 2217 // This is used to: 2218 // 1) Create "thunks": 2219 // Jump instructions in many ISAs have small displacements, and therefore 2220 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2221 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2222 // responsibility to create and insert small pieces of code between 2223 // sections to extend the ranges if jump targets are out of range. Such 2224 // code pieces are called "thunks". 2225 // 2226 // We add thunks at this stage. We couldn't do this before this point 2227 // because this is the earliest point where we know sizes of sections and 2228 // their layouts (that are needed to determine if jump targets are in 2229 // range). 2230 // 2231 // 2) Update the sections. We need to generate content that depends on the 2232 // address of InputSections. For example, MIPS GOT section content or 2233 // android packed relocations sections content. 2234 // 2235 // 3) Assign the final values for the linker script symbols. Linker scripts 2236 // sometimes using forward symbol declarations. We want to set the correct 2237 // values. They also might change after adding the thunks. 2238 finalizeAddressDependentContent(); 2239 2240 // All information needed for OutputSection part of Map file is available. 2241 if (errorCount()) 2242 return; 2243 2244 { 2245 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2246 // finalizeAddressDependentContent may have added local symbols to the 2247 // static symbol table. 2248 finalizeSynthetic(in.symTab.get()); 2249 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2250 finalizeSynthetic(in.armCmseSGSection.get()); 2251 } 2252 2253 // Relaxation to delete inter-basic block jumps created by basic block 2254 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2255 // can relax jump instructions based on symbol offset. 2256 if (config->optimizeBBJumps) 2257 optimizeBasicBlockJumps(); 2258 2259 // Fill other section headers. The dynamic table is finalized 2260 // at the end because some tags like RELSZ depend on result 2261 // of finalizing other sections. 2262 for (OutputSection *sec : outputSections) 2263 sec->finalize(); 2264 2265 script->checkFinalScriptConditions(); 2266 2267 if (config->emachine == EM_ARM && !config->isLE && config->armBe8) { 2268 addArmInputSectionMappingSymbols(); 2269 sortArmMappingSymbols(); 2270 } 2271 } 2272 2273 // Ensure data sections are not mixed with executable sections when 2274 // --execute-only is used. --execute-only make pages executable but not 2275 // readable. 2276 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2277 if (!config->executeOnly) 2278 return; 2279 2280 SmallVector<InputSection *, 0> storage; 2281 for (OutputSection *osec : outputSections) 2282 if (osec->flags & SHF_EXECINSTR) 2283 for (InputSection *isec : getInputSections(*osec, storage)) 2284 if (!(isec->flags & SHF_EXECINSTR)) 2285 error("cannot place " + toString(isec) + " into " + 2286 toString(osec->name) + 2287 ": --execute-only does not support intermingling data and code"); 2288 } 2289 2290 // The linker is expected to define SECNAME_start and SECNAME_end 2291 // symbols for a few sections. This function defines them. 2292 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2293 // If a section does not exist, there's ambiguity as to how we 2294 // define _start and _end symbols for an init/fini section. Since 2295 // the loader assume that the symbols are always defined, we need to 2296 // always define them. But what value? The loader iterates over all 2297 // pointers between _start and _end to run global ctors/dtors, so if 2298 // the section is empty, their symbol values don't actually matter 2299 // as long as _start and _end point to the same location. 2300 // 2301 // That said, we don't want to set the symbols to 0 (which is 2302 // probably the simplest value) because that could cause some 2303 // program to fail to link due to relocation overflow, if their 2304 // program text is above 2 GiB. We use the address of the .text 2305 // section instead to prevent that failure. 2306 // 2307 // In rare situations, the .text section may not exist. If that's the 2308 // case, use the image base address as a last resort. 2309 OutputSection *Default = findSection(".text"); 2310 if (!Default) 2311 Default = Out::elfHeader; 2312 2313 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2314 if (os && !script->isDiscarded(os)) { 2315 addOptionalRegular(start, os, 0); 2316 addOptionalRegular(end, os, -1); 2317 } else { 2318 addOptionalRegular(start, Default, 0); 2319 addOptionalRegular(end, Default, 0); 2320 } 2321 }; 2322 2323 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2324 define("__init_array_start", "__init_array_end", Out::initArray); 2325 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2326 2327 if (OutputSection *sec = findSection(".ARM.exidx")) 2328 define("__exidx_start", "__exidx_end", sec); 2329 } 2330 2331 // If a section name is valid as a C identifier (which is rare because of 2332 // the leading '.'), linkers are expected to define __start_<secname> and 2333 // __stop_<secname> symbols. They are at beginning and end of the section, 2334 // respectively. This is not requested by the ELF standard, but GNU ld and 2335 // gold provide the feature, and used by many programs. 2336 template <class ELFT> 2337 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) { 2338 StringRef s = osec.name; 2339 if (!isValidCIdentifier(s)) 2340 return; 2341 addOptionalRegular(saver().save("__start_" + s), &osec, 0, 2342 config->zStartStopVisibility); 2343 addOptionalRegular(saver().save("__stop_" + s), &osec, -1, 2344 config->zStartStopVisibility); 2345 } 2346 2347 static bool needsPtLoad(OutputSection *sec) { 2348 if (!(sec->flags & SHF_ALLOC)) 2349 return false; 2350 2351 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2352 // responsible for allocating space for them, not the PT_LOAD that 2353 // contains the TLS initialization image. 2354 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2355 return false; 2356 return true; 2357 } 2358 2359 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2360 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2361 // RW. This means that there is no alignment in the RO to RX transition and we 2362 // cannot create a PT_LOAD there. 2363 static uint64_t computeFlags(uint64_t flags) { 2364 if (config->omagic) 2365 return PF_R | PF_W | PF_X; 2366 if (config->executeOnly && (flags & PF_X)) 2367 return flags & ~PF_R; 2368 if (config->singleRoRx && !(flags & PF_W)) 2369 return flags | PF_X; 2370 return flags; 2371 } 2372 2373 // Decide which program headers to create and which sections to include in each 2374 // one. 2375 template <class ELFT> 2376 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2377 SmallVector<PhdrEntry *, 0> ret; 2378 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2379 ret.push_back(make<PhdrEntry>(type, flags)); 2380 return ret.back(); 2381 }; 2382 2383 unsigned partNo = part.getNumber(); 2384 bool isMain = partNo == 1; 2385 2386 // Add the first PT_LOAD segment for regular output sections. 2387 uint64_t flags = computeFlags(PF_R); 2388 PhdrEntry *load = nullptr; 2389 2390 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2391 // PT_LOAD. 2392 if (!config->nmagic && !config->omagic) { 2393 // The first phdr entry is PT_PHDR which describes the program header 2394 // itself. 2395 if (isMain) 2396 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2397 else 2398 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2399 2400 // PT_INTERP must be the second entry if exists. 2401 if (OutputSection *cmd = findSection(".interp", partNo)) 2402 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2403 2404 // Add the headers. We will remove them if they don't fit. 2405 // In the other partitions the headers are ordinary sections, so they don't 2406 // need to be added here. 2407 if (isMain) { 2408 load = addHdr(PT_LOAD, flags); 2409 load->add(Out::elfHeader); 2410 load->add(Out::programHeaders); 2411 } 2412 } 2413 2414 // PT_GNU_RELRO includes all sections that should be marked as 2415 // read-only by dynamic linker after processing relocations. 2416 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2417 // an error message if more than one PT_GNU_RELRO PHDR is required. 2418 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2419 bool inRelroPhdr = false; 2420 OutputSection *relroEnd = nullptr; 2421 for (OutputSection *sec : outputSections) { 2422 if (sec->partition != partNo || !needsPtLoad(sec)) 2423 continue; 2424 if (isRelroSection(sec)) { 2425 inRelroPhdr = true; 2426 if (!relroEnd) 2427 relRo->add(sec); 2428 else 2429 error("section: " + sec->name + " is not contiguous with other relro" + 2430 " sections"); 2431 } else if (inRelroPhdr) { 2432 inRelroPhdr = false; 2433 relroEnd = sec; 2434 } 2435 } 2436 relRo->p_align = 1; 2437 2438 for (OutputSection *sec : outputSections) { 2439 if (!needsPtLoad(sec)) 2440 continue; 2441 2442 // Normally, sections in partitions other than the current partition are 2443 // ignored. But partition number 255 is a special case: it contains the 2444 // partition end marker (.part.end). It needs to be added to the main 2445 // partition so that a segment is created for it in the main partition, 2446 // which will cause the dynamic loader to reserve space for the other 2447 // partitions. 2448 if (sec->partition != partNo) { 2449 if (isMain && sec->partition == 255) 2450 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2451 continue; 2452 } 2453 2454 // Segments are contiguous memory regions that has the same attributes 2455 // (e.g. executable or writable). There is one phdr for each segment. 2456 // Therefore, we need to create a new phdr when the next section has 2457 // different flags or is loaded at a discontiguous address or memory region 2458 // using AT or AT> linker script command, respectively. 2459 // 2460 // As an exception, we don't create a separate load segment for the ELF 2461 // headers, even if the first "real" output has an AT or AT> attribute. 2462 // 2463 // In addition, NOBITS sections should only be placed at the end of a LOAD 2464 // segment (since it's represented as p_filesz < p_memsz). If we have a 2465 // not-NOBITS section after a NOBITS, we create a new LOAD for the latter 2466 // even if flags match, so as not to require actually writing the 2467 // supposed-to-be-NOBITS section to the output file. (However, we cannot do 2468 // so when hasSectionsCommand, since we cannot introduce the extra alignment 2469 // needed to create a new LOAD) 2470 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2471 bool sameLMARegion = 2472 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2473 if (!(load && newFlags == flags && sec != relroEnd && 2474 sec->memRegion == load->firstSec->memRegion && 2475 (sameLMARegion || load->lastSec == Out::programHeaders) && 2476 (script->hasSectionsCommand || sec->type == SHT_NOBITS || 2477 load->lastSec->type != SHT_NOBITS))) { 2478 load = addHdr(PT_LOAD, newFlags); 2479 flags = newFlags; 2480 } 2481 2482 load->add(sec); 2483 } 2484 2485 // Add a TLS segment if any. 2486 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2487 for (OutputSection *sec : outputSections) 2488 if (sec->partition == partNo && sec->flags & SHF_TLS) 2489 tlsHdr->add(sec); 2490 if (tlsHdr->firstSec) 2491 ret.push_back(tlsHdr); 2492 2493 // Add an entry for .dynamic. 2494 if (OutputSection *sec = part.dynamic->getParent()) 2495 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2496 2497 if (relRo->firstSec) 2498 ret.push_back(relRo); 2499 2500 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2501 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2502 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2503 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2504 ->add(part.ehFrameHdr->getParent()); 2505 2506 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2507 // the dynamic linker fill the segment with random data. 2508 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2509 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2510 2511 if (config->zGnustack != GnuStackKind::None) { 2512 // PT_GNU_STACK is a special section to tell the loader to make the 2513 // pages for the stack non-executable. If you really want an executable 2514 // stack, you can pass -z execstack, but that's not recommended for 2515 // security reasons. 2516 unsigned perm = PF_R | PF_W; 2517 if (config->zGnustack == GnuStackKind::Exec) 2518 perm |= PF_X; 2519 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2520 } 2521 2522 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2523 // is expected to perform W^X violations, such as calling mprotect(2) or 2524 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2525 // OpenBSD. 2526 if (config->zWxneeded) 2527 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2528 2529 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2530 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2531 2532 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2533 // same alignment. 2534 PhdrEntry *note = nullptr; 2535 for (OutputSection *sec : outputSections) { 2536 if (sec->partition != partNo) 2537 continue; 2538 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2539 if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign) 2540 note = addHdr(PT_NOTE, PF_R); 2541 note->add(sec); 2542 } else { 2543 note = nullptr; 2544 } 2545 } 2546 return ret; 2547 } 2548 2549 template <class ELFT> 2550 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2551 unsigned pType, unsigned pFlags) { 2552 unsigned partNo = part.getNumber(); 2553 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2554 return cmd->partition == partNo && cmd->type == shType; 2555 }); 2556 if (i == outputSections.end()) 2557 return; 2558 2559 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2560 entry->add(*i); 2561 part.phdrs.push_back(entry); 2562 } 2563 2564 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2565 // This is achieved by assigning an alignment expression to addrExpr of each 2566 // such section. 2567 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2568 const PhdrEntry *prev; 2569 auto pageAlign = [&](const PhdrEntry *p) { 2570 OutputSection *cmd = p->firstSec; 2571 if (!cmd) 2572 return; 2573 cmd->alignExpr = [align = cmd->addralign]() { return align; }; 2574 if (!cmd->addrExpr) { 2575 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2576 // padding in the file contents. 2577 // 2578 // When -z separate-code is used we must not have any overlap in pages 2579 // between an executable segment and a non-executable segment. We align to 2580 // the next maximum page size boundary on transitions between executable 2581 // and non-executable segments. 2582 // 2583 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2584 // sections will be extracted to a separate file. Align to the next 2585 // maximum page size boundary so that we can find the ELF header at the 2586 // start. We cannot benefit from overlapping p_offset ranges with the 2587 // previous segment anyway. 2588 if (config->zSeparate == SeparateSegmentKind::Loadable || 2589 (config->zSeparate == SeparateSegmentKind::Code && prev && 2590 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2591 cmd->type == SHT_LLVM_PART_EHDR) 2592 cmd->addrExpr = [] { 2593 return alignToPowerOf2(script->getDot(), config->maxPageSize); 2594 }; 2595 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2596 // it must be the RW. Align to p_align(PT_TLS) to make sure 2597 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2598 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2599 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2600 // be congruent to 0 modulo p_align(PT_TLS). 2601 // 2602 // Technically this is not required, but as of 2019, some dynamic loaders 2603 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2604 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2605 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2606 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2607 // blocks correctly. We need to keep the workaround for a while. 2608 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2609 cmd->addrExpr = [] { 2610 return alignToPowerOf2(script->getDot(), config->maxPageSize) + 2611 alignToPowerOf2(script->getDot() % config->maxPageSize, 2612 Out::tlsPhdr->p_align); 2613 }; 2614 else 2615 cmd->addrExpr = [] { 2616 return alignToPowerOf2(script->getDot(), config->maxPageSize) + 2617 script->getDot() % config->maxPageSize; 2618 }; 2619 } 2620 }; 2621 2622 for (Partition &part : partitions) { 2623 prev = nullptr; 2624 for (const PhdrEntry *p : part.phdrs) 2625 if (p->p_type == PT_LOAD && p->firstSec) { 2626 pageAlign(p); 2627 prev = p; 2628 } 2629 } 2630 } 2631 2632 // Compute an in-file position for a given section. The file offset must be the 2633 // same with its virtual address modulo the page size, so that the loader can 2634 // load executables without any address adjustment. 2635 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2636 // The first section in a PT_LOAD has to have congruent offset and address 2637 // modulo the maximum page size. 2638 if (os->ptLoad && os->ptLoad->firstSec == os) 2639 return alignTo(off, os->ptLoad->p_align, os->addr); 2640 2641 // File offsets are not significant for .bss sections other than the first one 2642 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2643 // increasing rather than setting to zero. 2644 if (os->type == SHT_NOBITS && 2645 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2646 return off; 2647 2648 // If the section is not in a PT_LOAD, we just have to align it. 2649 if (!os->ptLoad) 2650 return alignToPowerOf2(off, os->addralign); 2651 2652 // If two sections share the same PT_LOAD the file offset is calculated 2653 // using this formula: Off2 = Off1 + (VA2 - VA1). 2654 OutputSection *first = os->ptLoad->firstSec; 2655 return first->offset + os->addr - first->addr; 2656 } 2657 2658 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2659 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2660 auto needsOffset = [](OutputSection &sec) { 2661 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2662 }; 2663 uint64_t minAddr = UINT64_MAX; 2664 for (OutputSection *sec : outputSections) 2665 if (needsOffset(*sec)) { 2666 sec->offset = sec->getLMA(); 2667 minAddr = std::min(minAddr, sec->offset); 2668 } 2669 2670 // Sections are laid out at LMA minus minAddr. 2671 fileSize = 0; 2672 for (OutputSection *sec : outputSections) 2673 if (needsOffset(*sec)) { 2674 sec->offset -= minAddr; 2675 fileSize = std::max(fileSize, sec->offset + sec->size); 2676 } 2677 } 2678 2679 static std::string rangeToString(uint64_t addr, uint64_t len) { 2680 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2681 } 2682 2683 // Assign file offsets to output sections. 2684 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2685 Out::programHeaders->offset = Out::elfHeader->size; 2686 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2687 2688 PhdrEntry *lastRX = nullptr; 2689 for (Partition &part : partitions) 2690 for (PhdrEntry *p : part.phdrs) 2691 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2692 lastRX = p; 2693 2694 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2695 // will not occupy file offsets contained by a PT_LOAD. 2696 for (OutputSection *sec : outputSections) { 2697 if (!(sec->flags & SHF_ALLOC)) 2698 continue; 2699 off = computeFileOffset(sec, off); 2700 sec->offset = off; 2701 if (sec->type != SHT_NOBITS) 2702 off += sec->size; 2703 2704 // If this is a last section of the last executable segment and that 2705 // segment is the last loadable segment, align the offset of the 2706 // following section to avoid loading non-segments parts of the file. 2707 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2708 lastRX->lastSec == sec) 2709 off = alignToPowerOf2(off, config->maxPageSize); 2710 } 2711 for (OutputSection *osec : outputSections) 2712 if (!(osec->flags & SHF_ALLOC)) { 2713 osec->offset = alignToPowerOf2(off, osec->addralign); 2714 off = osec->offset + osec->size; 2715 } 2716 2717 sectionHeaderOff = alignToPowerOf2(off, config->wordsize); 2718 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2719 2720 // Our logic assumes that sections have rising VA within the same segment. 2721 // With use of linker scripts it is possible to violate this rule and get file 2722 // offset overlaps or overflows. That should never happen with a valid script 2723 // which does not move the location counter backwards and usually scripts do 2724 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2725 // kernel, which control segment distribution explicitly and move the counter 2726 // backwards, so we have to allow doing that to support linking them. We 2727 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2728 // we want to prevent file size overflows because it would crash the linker. 2729 for (OutputSection *sec : outputSections) { 2730 if (sec->type == SHT_NOBITS) 2731 continue; 2732 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2733 error("unable to place section " + sec->name + " at file offset " + 2734 rangeToString(sec->offset, sec->size) + 2735 "; check your linker script for overflows"); 2736 } 2737 } 2738 2739 // Finalize the program headers. We call this function after we assign 2740 // file offsets and VAs to all sections. 2741 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2742 for (PhdrEntry *p : part.phdrs) { 2743 OutputSection *first = p->firstSec; 2744 OutputSection *last = p->lastSec; 2745 2746 // .ARM.exidx sections may not be within a single .ARM.exidx 2747 // output section. We always want to describe just the 2748 // SyntheticSection. 2749 if (part.armExidx && p->p_type == PT_ARM_EXIDX) { 2750 p->p_filesz = part.armExidx->getSize(); 2751 p->p_memsz = part.armExidx->getSize(); 2752 p->p_offset = first->offset + part.armExidx->outSecOff; 2753 p->p_vaddr = first->addr + part.armExidx->outSecOff; 2754 p->p_align = part.armExidx->addralign; 2755 if (part.elfHeader) 2756 p->p_offset -= part.elfHeader->getParent()->offset; 2757 2758 if (!p->hasLMA) 2759 p->p_paddr = first->getLMA() + part.armExidx->outSecOff; 2760 return; 2761 } 2762 2763 if (first) { 2764 p->p_filesz = last->offset - first->offset; 2765 if (last->type != SHT_NOBITS) 2766 p->p_filesz += last->size; 2767 2768 p->p_memsz = last->addr + last->size - first->addr; 2769 p->p_offset = first->offset; 2770 p->p_vaddr = first->addr; 2771 2772 // File offsets in partitions other than the main partition are relative 2773 // to the offset of the ELF headers. Perform that adjustment now. 2774 if (part.elfHeader) 2775 p->p_offset -= part.elfHeader->getParent()->offset; 2776 2777 if (!p->hasLMA) 2778 p->p_paddr = first->getLMA(); 2779 } 2780 } 2781 } 2782 2783 // A helper struct for checkSectionOverlap. 2784 namespace { 2785 struct SectionOffset { 2786 OutputSection *sec; 2787 uint64_t offset; 2788 }; 2789 } // namespace 2790 2791 // Check whether sections overlap for a specific address range (file offsets, 2792 // load and virtual addresses). 2793 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2794 bool isVirtualAddr) { 2795 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2796 return a.offset < b.offset; 2797 }); 2798 2799 // Finding overlap is easy given a vector is sorted by start position. 2800 // If an element starts before the end of the previous element, they overlap. 2801 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2802 SectionOffset a = sections[i - 1]; 2803 SectionOffset b = sections[i]; 2804 if (b.offset >= a.offset + a.sec->size) 2805 continue; 2806 2807 // If both sections are in OVERLAY we allow the overlapping of virtual 2808 // addresses, because it is what OVERLAY was designed for. 2809 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2810 continue; 2811 2812 errorOrWarn("section " + a.sec->name + " " + name + 2813 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2814 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2815 b.sec->name + " range is " + 2816 rangeToString(b.offset, b.sec->size)); 2817 } 2818 } 2819 2820 // Check for overlapping sections and address overflows. 2821 // 2822 // In this function we check that none of the output sections have overlapping 2823 // file offsets. For SHF_ALLOC sections we also check that the load address 2824 // ranges and the virtual address ranges don't overlap 2825 template <class ELFT> void Writer<ELFT>::checkSections() { 2826 // First, check that section's VAs fit in available address space for target. 2827 for (OutputSection *os : outputSections) 2828 if ((os->addr + os->size < os->addr) || 2829 (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1)) 2830 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2831 " of size 0x" + utohexstr(os->size) + 2832 " exceeds available address space"); 2833 2834 // Check for overlapping file offsets. In this case we need to skip any 2835 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2836 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2837 // binary is specified only add SHF_ALLOC sections are added to the output 2838 // file so we skip any non-allocated sections in that case. 2839 std::vector<SectionOffset> fileOffs; 2840 for (OutputSection *sec : outputSections) 2841 if (sec->size > 0 && sec->type != SHT_NOBITS && 2842 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2843 fileOffs.push_back({sec, sec->offset}); 2844 checkOverlap("file", fileOffs, false); 2845 2846 // When linking with -r there is no need to check for overlapping virtual/load 2847 // addresses since those addresses will only be assigned when the final 2848 // executable/shared object is created. 2849 if (config->relocatable) 2850 return; 2851 2852 // Checking for overlapping virtual and load addresses only needs to take 2853 // into account SHF_ALLOC sections since others will not be loaded. 2854 // Furthermore, we also need to skip SHF_TLS sections since these will be 2855 // mapped to other addresses at runtime and can therefore have overlapping 2856 // ranges in the file. 2857 std::vector<SectionOffset> vmas; 2858 for (OutputSection *sec : outputSections) 2859 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2860 vmas.push_back({sec, sec->addr}); 2861 checkOverlap("virtual address", vmas, true); 2862 2863 // Finally, check that the load addresses don't overlap. This will usually be 2864 // the same as the virtual addresses but can be different when using a linker 2865 // script with AT(). 2866 std::vector<SectionOffset> lmas; 2867 for (OutputSection *sec : outputSections) 2868 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2869 lmas.push_back({sec, sec->getLMA()}); 2870 checkOverlap("load address", lmas, false); 2871 } 2872 2873 // The entry point address is chosen in the following ways. 2874 // 2875 // 1. the '-e' entry command-line option; 2876 // 2. the ENTRY(symbol) command in a linker control script; 2877 // 3. the value of the symbol _start, if present; 2878 // 4. the number represented by the entry symbol, if it is a number; 2879 // 5. the address 0. 2880 static uint64_t getEntryAddr() { 2881 // Case 1, 2 or 3 2882 if (Symbol *b = symtab.find(config->entry)) 2883 return b->getVA(); 2884 2885 // Case 4 2886 uint64_t addr; 2887 if (to_integer(config->entry, addr)) 2888 return addr; 2889 2890 // Case 5 2891 if (config->warnMissingEntry) 2892 warn("cannot find entry symbol " + config->entry + 2893 "; not setting start address"); 2894 return 0; 2895 } 2896 2897 static uint16_t getELFType() { 2898 if (config->isPic) 2899 return ET_DYN; 2900 if (config->relocatable) 2901 return ET_REL; 2902 return ET_EXEC; 2903 } 2904 2905 template <class ELFT> void Writer<ELFT>::writeHeader() { 2906 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2907 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2908 2909 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2910 eHdr->e_type = getELFType(); 2911 eHdr->e_entry = getEntryAddr(); 2912 eHdr->e_shoff = sectionHeaderOff; 2913 2914 // Write the section header table. 2915 // 2916 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2917 // and e_shstrndx fields. When the value of one of these fields exceeds 2918 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2919 // use fields in the section header at index 0 to store 2920 // the value. The sentinel values and fields are: 2921 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2922 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2923 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2924 size_t num = outputSections.size() + 1; 2925 if (num >= SHN_LORESERVE) 2926 sHdrs->sh_size = num; 2927 else 2928 eHdr->e_shnum = num; 2929 2930 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2931 if (strTabIndex >= SHN_LORESERVE) { 2932 sHdrs->sh_link = strTabIndex; 2933 eHdr->e_shstrndx = SHN_XINDEX; 2934 } else { 2935 eHdr->e_shstrndx = strTabIndex; 2936 } 2937 2938 for (OutputSection *sec : outputSections) 2939 sec->writeHeaderTo<ELFT>(++sHdrs); 2940 } 2941 2942 // Open a result file. 2943 template <class ELFT> void Writer<ELFT>::openFile() { 2944 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2945 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2946 std::string msg; 2947 raw_string_ostream s(msg); 2948 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2949 << "section sizes:\n"; 2950 for (OutputSection *os : outputSections) 2951 s << os->name << ' ' << os->size << "\n"; 2952 error(s.str()); 2953 return; 2954 } 2955 2956 unlinkAsync(config->outputFile); 2957 unsigned flags = 0; 2958 if (!config->relocatable) 2959 flags |= FileOutputBuffer::F_executable; 2960 if (!config->mmapOutputFile) 2961 flags |= FileOutputBuffer::F_no_mmap; 2962 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2963 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2964 2965 if (!bufferOrErr) { 2966 error("failed to open " + config->outputFile + ": " + 2967 llvm::toString(bufferOrErr.takeError())); 2968 return; 2969 } 2970 buffer = std::move(*bufferOrErr); 2971 Out::bufferStart = buffer->getBufferStart(); 2972 } 2973 2974 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2975 parallel::TaskGroup tg; 2976 for (OutputSection *sec : outputSections) 2977 if (sec->flags & SHF_ALLOC) 2978 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); 2979 } 2980 2981 static void fillTrap(uint8_t *i, uint8_t *end) { 2982 for (; i + 4 <= end; i += 4) 2983 memcpy(i, &target->trapInstr, 4); 2984 } 2985 2986 // Fill the last page of executable segments with trap instructions 2987 // instead of leaving them as zero. Even though it is not required by any 2988 // standard, it is in general a good thing to do for security reasons. 2989 // 2990 // We'll leave other pages in segments as-is because the rest will be 2991 // overwritten by output sections. 2992 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2993 for (Partition &part : partitions) { 2994 // Fill the last page. 2995 for (PhdrEntry *p : part.phdrs) 2996 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2997 fillTrap(Out::bufferStart + 2998 alignDown(p->firstSec->offset + p->p_filesz, 4), 2999 Out::bufferStart + 3000 alignToPowerOf2(p->firstSec->offset + p->p_filesz, 3001 config->maxPageSize)); 3002 3003 // Round up the file size of the last segment to the page boundary iff it is 3004 // an executable segment to ensure that other tools don't accidentally 3005 // trim the instruction padding (e.g. when stripping the file). 3006 PhdrEntry *last = nullptr; 3007 for (PhdrEntry *p : part.phdrs) 3008 if (p->p_type == PT_LOAD) 3009 last = p; 3010 3011 if (last && (last->p_flags & PF_X)) 3012 last->p_memsz = last->p_filesz = 3013 alignToPowerOf2(last->p_filesz, config->maxPageSize); 3014 } 3015 } 3016 3017 // Write section contents to a mmap'ed file. 3018 template <class ELFT> void Writer<ELFT>::writeSections() { 3019 llvm::TimeTraceScope timeScope("Write sections"); 3020 3021 { 3022 // In -r or --emit-relocs mode, write the relocation sections first as in 3023 // ELf_Rel targets we might find out that we need to modify the relocated 3024 // section while doing it. 3025 parallel::TaskGroup tg; 3026 for (OutputSection *sec : outputSections) 3027 if (sec->type == SHT_REL || sec->type == SHT_RELA) 3028 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); 3029 } 3030 { 3031 parallel::TaskGroup tg; 3032 for (OutputSection *sec : outputSections) 3033 if (sec->type != SHT_REL && sec->type != SHT_RELA) 3034 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); 3035 } 3036 3037 // Finally, check that all dynamic relocation addends were written correctly. 3038 if (config->checkDynamicRelocs && config->writeAddends) { 3039 for (OutputSection *sec : outputSections) 3040 if (sec->type == SHT_REL || sec->type == SHT_RELA) 3041 sec->checkDynRelAddends(Out::bufferStart); 3042 } 3043 } 3044 3045 // Computes a hash value of Data using a given hash function. 3046 // In order to utilize multiple cores, we first split data into 1MB 3047 // chunks, compute a hash for each chunk, and then compute a hash value 3048 // of the hash values. 3049 static void 3050 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 3051 llvm::ArrayRef<uint8_t> data, 3052 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 3053 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 3054 const size_t hashesSize = chunks.size() * hashBuf.size(); 3055 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 3056 3057 // Compute hash values. 3058 parallelFor(0, chunks.size(), [&](size_t i) { 3059 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 3060 }); 3061 3062 // Write to the final output buffer. 3063 hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize)); 3064 } 3065 3066 template <class ELFT> void Writer<ELFT>::writeBuildId() { 3067 if (!mainPart->buildId || !mainPart->buildId->getParent()) 3068 return; 3069 3070 if (config->buildId == BuildIdKind::Hexstring) { 3071 for (Partition &part : partitions) 3072 part.buildId->writeBuildId(config->buildIdVector); 3073 return; 3074 } 3075 3076 // Compute a hash of all sections of the output file. 3077 size_t hashSize = mainPart->buildId->hashSize; 3078 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 3079 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 3080 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 3081 3082 // Fedora introduced build ID as "approximation of true uniqueness across all 3083 // binaries that might be used by overlapping sets of people". It does not 3084 // need some security goals that some hash algorithms strive to provide, e.g. 3085 // (second-)preimage and collision resistance. In practice people use 'md5' 3086 // and 'sha1' just for different lengths. Implement them with the more 3087 // efficient BLAKE3. 3088 switch (config->buildId) { 3089 case BuildIdKind::Fast: 3090 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3091 write64le(dest, xxh3_64bits(arr)); 3092 }); 3093 break; 3094 case BuildIdKind::Md5: 3095 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3096 memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize); 3097 }); 3098 break; 3099 case BuildIdKind::Sha1: 3100 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3101 memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize); 3102 }); 3103 break; 3104 case BuildIdKind::Uuid: 3105 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 3106 error("entropy source failure: " + ec.message()); 3107 break; 3108 default: 3109 llvm_unreachable("unknown BuildIdKind"); 3110 } 3111 for (Partition &part : partitions) 3112 part.buildId->writeBuildId(output); 3113 } 3114 3115 template void elf::createSyntheticSections<ELF32LE>(); 3116 template void elf::createSyntheticSections<ELF32BE>(); 3117 template void elf::createSyntheticSections<ELF64LE>(); 3118 template void elf::createSyntheticSections<ELF64BE>(); 3119 3120 template void elf::writeResult<ELF32LE>(); 3121 template void elf::writeResult<ELF32BE>(); 3122 template void elf::writeResult<ELF64LE>(); 3123 template void elf::writeResult<ELF64BE>(); 3124