1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "CallGraphSort.h" 12 #include "Config.h" 13 #include "LinkerScript.h" 14 #include "MapFile.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "lld/Common/Filesystem.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/RandomNumberGenerator.h" 28 #include "llvm/Support/SHA1.h" 29 #include "llvm/Support/xxhash.h" 30 #include <climits> 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::support; 36 using namespace llvm::support::endian; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 namespace { 42 // The writer writes a SymbolTable result to a file. 43 template <class ELFT> class Writer { 44 public: 45 Writer() : buffer(errorHandler().outputBuffer) {} 46 using Elf_Shdr = typename ELFT::Shdr; 47 using Elf_Ehdr = typename ELFT::Ehdr; 48 using Elf_Phdr = typename ELFT::Phdr; 49 50 void run(); 51 52 private: 53 void copyLocalSymbols(); 54 void addSectionSymbols(); 55 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 56 void sortSections(); 57 void resolveShfLinkOrder(); 58 void finalizeAddressDependentContent(); 59 void sortInputSections(); 60 void finalizeSections(); 61 void checkExecuteOnly(); 62 void setReservedSymbolSections(); 63 64 std::vector<PhdrEntry *> createPhdrs(Partition &part); 65 void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrEntry); 66 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 67 unsigned pFlags); 68 void assignFileOffsets(); 69 void assignFileOffsetsBinary(); 70 void setPhdrs(Partition &part); 71 void checkSections(); 72 void fixSectionAlignments(); 73 void openFile(); 74 void writeTrapInstr(); 75 void writeHeader(); 76 void writeSections(); 77 void writeSectionsBinary(); 78 void writeBuildId(); 79 80 std::unique_ptr<FileOutputBuffer> &buffer; 81 82 void addRelIpltSymbols(); 83 void addStartEndSymbols(); 84 void addStartStopSymbols(OutputSection *sec); 85 86 uint64_t fileSize; 87 uint64_t sectionHeaderOff; 88 }; 89 } // anonymous namespace 90 91 static bool isSectionPrefix(StringRef prefix, StringRef name) { 92 return name.startswith(prefix) || name == prefix.drop_back(); 93 } 94 95 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 96 if (config->relocatable) 97 return s->name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if (auto *isec = dyn_cast<InputSection>(s)) { 103 if (InputSectionBase *rel = isec->getRelocatedSection()) { 104 OutputSection *out = rel->getOutputSection(); 105 if (s->type == SHT_RELA) 106 return saver.save(".rela" + out->name); 107 return saver.save(".rel" + out->name); 108 } 109 } 110 111 // This check is for -z keep-text-section-prefix. This option separates text 112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 113 // ".text.exit". 114 // When enabled, this allows identifying the hot code region (.text.hot) in 115 // the final binary which can be selectively mapped to huge pages or mlocked, 116 // for instance. 117 if (config->zKeepTextSectionPrefix) 118 for (StringRef v : 119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 120 if (isSectionPrefix(v, s->name)) 121 return v.drop_back(); 122 123 for (StringRef v : 124 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 125 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 126 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 127 if (isSectionPrefix(v, s->name)) 128 return v.drop_back(); 129 130 // CommonSection is identified as "COMMON" in linker scripts. 131 // By default, it should go to .bss section. 132 if (s->name == "COMMON") 133 return ".bss"; 134 135 return s->name; 136 } 137 138 static bool needsInterpSection() { 139 return !sharedFiles.empty() && !config->dynamicLinker.empty() && 140 script->needsInterpSection(); 141 } 142 143 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 144 145 template <class ELFT> 146 void Writer<ELFT>::removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 147 llvm::erase_if(phdrs, [&](const PhdrEntry *p) { 148 if (p->p_type != PT_LOAD) 149 return false; 150 if (!p->firstSec) 151 return true; 152 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 153 return size == 0; 154 }); 155 } 156 157 template <class ELFT> static void copySectionsIntoPartitions() { 158 std::vector<InputSectionBase *> newSections; 159 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 160 for (InputSectionBase *s : inputSections) { 161 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 162 continue; 163 InputSectionBase *copy; 164 if (s->type == SHT_NOTE) 165 copy = make<InputSection>(cast<InputSection>(*s)); 166 else if (auto *es = dyn_cast<EhInputSection>(s)) 167 copy = make<EhInputSection>(*es); 168 else 169 continue; 170 copy->partition = part; 171 newSections.push_back(copy); 172 } 173 } 174 175 inputSections.insert(inputSections.end(), newSections.begin(), 176 newSections.end()); 177 } 178 179 template <class ELFT> static void combineEhSections() { 180 for (InputSectionBase *&s : inputSections) { 181 // Ignore dead sections and the partition end marker (.part.end), 182 // whose partition number is out of bounds. 183 if (!s->isLive() || s->partition == 255) 184 continue; 185 186 Partition &part = s->getPartition(); 187 if (auto *es = dyn_cast<EhInputSection>(s)) { 188 part.ehFrame->addSection<ELFT>(es); 189 s = nullptr; 190 } else if (s->kind() == SectionBase::Regular && part.armExidx && 191 part.armExidx->addSection(cast<InputSection>(s))) { 192 s = nullptr; 193 } 194 } 195 196 std::vector<InputSectionBase *> &v = inputSections; 197 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 198 } 199 200 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 201 uint64_t val, uint8_t stOther = STV_HIDDEN, 202 uint8_t binding = STB_GLOBAL) { 203 Symbol *s = symtab->find(name); 204 if (!s || s->isDefined()) 205 return nullptr; 206 207 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 208 /*size=*/0, sec}); 209 return cast<Defined>(s); 210 } 211 212 static Defined *addAbsolute(StringRef name) { 213 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 214 STT_NOTYPE, 0, 0, nullptr}); 215 return cast<Defined>(sym); 216 } 217 218 // The linker is expected to define some symbols depending on 219 // the linking result. This function defines such symbols. 220 void elf::addReservedSymbols() { 221 if (config->emachine == EM_MIPS) { 222 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 223 // so that it points to an absolute address which by default is relative 224 // to GOT. Default offset is 0x7ff0. 225 // See "Global Data Symbols" in Chapter 6 in the following document: 226 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 227 ElfSym::mipsGp = addAbsolute("_gp"); 228 229 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 230 // start of function and 'gp' pointer into GOT. 231 if (symtab->find("_gp_disp")) 232 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 233 234 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 235 // pointer. This symbol is used in the code generated by .cpload pseudo-op 236 // in case of using -mno-shared option. 237 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 238 if (symtab->find("__gnu_local_gp")) 239 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 240 } else if (config->emachine == EM_PPC) { 241 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 242 // support Small Data Area, define it arbitrarily as 0. 243 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 244 } 245 246 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 247 // combines the typical ELF GOT with the small data sections. It commonly 248 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 249 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 250 // represent the TOC base which is offset by 0x8000 bytes from the start of 251 // the .got section. 252 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 253 // correctness of some relocations depends on its value. 254 StringRef gotSymName = 255 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 256 257 if (Symbol *s = symtab->find(gotSymName)) { 258 if (s->isDefined()) { 259 error(toString(s->file) + " cannot redefine linker defined symbol '" + 260 gotSymName + "'"); 261 return; 262 } 263 264 uint64_t gotOff = 0; 265 if (config->emachine == EM_PPC64) 266 gotOff = 0x8000; 267 268 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 269 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 270 ElfSym::globalOffsetTable = cast<Defined>(s); 271 } 272 273 // __ehdr_start is the location of ELF file headers. Note that we define 274 // this symbol unconditionally even when using a linker script, which 275 // differs from the behavior implemented by GNU linker which only define 276 // this symbol if ELF headers are in the memory mapped segment. 277 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 278 279 // __executable_start is not documented, but the expectation of at 280 // least the Android libc is that it points to the ELF header. 281 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 282 283 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 284 // each DSO. The address of the symbol doesn't matter as long as they are 285 // different in different DSOs, so we chose the start address of the DSO. 286 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 287 288 // If linker script do layout we do not need to create any standart symbols. 289 if (script->hasSectionsCommand) 290 return; 291 292 auto add = [](StringRef s, int64_t pos) { 293 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 294 }; 295 296 ElfSym::bss = add("__bss_start", 0); 297 ElfSym::end1 = add("end", -1); 298 ElfSym::end2 = add("_end", -1); 299 ElfSym::etext1 = add("etext", -1); 300 ElfSym::etext2 = add("_etext", -1); 301 ElfSym::edata1 = add("edata", -1); 302 ElfSym::edata2 = add("_edata", -1); 303 } 304 305 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 306 for (BaseCommand *base : script->sectionCommands) 307 if (auto *sec = dyn_cast<OutputSection>(base)) 308 if (sec->name == name && sec->partition == partition) 309 return sec; 310 return nullptr; 311 } 312 313 // Initialize Out members. 314 template <class ELFT> static void createSyntheticSections() { 315 // Initialize all pointers with NULL. This is needed because 316 // you can call lld::elf::main more than once as a library. 317 memset(&Out::first, 0, sizeof(Out)); 318 319 auto add = [](InputSectionBase *sec) { inputSections.push_back(sec); }; 320 321 in.shStrTab = make<StringTableSection>(".shstrtab", false); 322 323 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 324 Out::programHeaders->alignment = config->wordsize; 325 326 if (config->strip != StripPolicy::All) { 327 in.strTab = make<StringTableSection>(".strtab", false); 328 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 329 in.symTabShndx = make<SymtabShndxSection>(); 330 } 331 332 in.bss = make<BssSection>(".bss", 0, 1); 333 add(in.bss); 334 335 // If there is a SECTIONS command and a .data.rel.ro section name use name 336 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 337 // This makes sure our relro is contiguous. 338 bool hasDataRelRo = 339 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 340 in.bssRelRo = 341 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 342 add(in.bssRelRo); 343 344 // Add MIPS-specific sections. 345 if (config->emachine == EM_MIPS) { 346 if (!config->shared && config->hasDynSymTab) { 347 in.mipsRldMap = make<MipsRldMapSection>(); 348 add(in.mipsRldMap); 349 } 350 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 351 add(sec); 352 if (auto *sec = MipsOptionsSection<ELFT>::create()) 353 add(sec); 354 if (auto *sec = MipsReginfoSection<ELFT>::create()) 355 add(sec); 356 } 357 358 for (Partition &part : partitions) { 359 auto add = [&](InputSectionBase *sec) { 360 sec->partition = part.getNumber(); 361 inputSections.push_back(sec); 362 }; 363 364 if (!part.name.empty()) { 365 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 366 part.elfHeader->name = part.name; 367 add(part.elfHeader); 368 369 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 370 add(part.programHeaders); 371 } 372 373 if (config->buildId != BuildIdKind::None) { 374 part.buildId = make<BuildIdSection>(); 375 add(part.buildId); 376 } 377 378 part.dynStrTab = make<StringTableSection>(".dynstr", true); 379 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 380 part.dynamic = make<DynamicSection<ELFT>>(); 381 if (config->androidPackDynRelocs) { 382 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>( 383 config->isRela ? ".rela.dyn" : ".rel.dyn"); 384 } else { 385 part.relaDyn = make<RelocationSection<ELFT>>( 386 config->isRela ? ".rela.dyn" : ".rel.dyn", config->zCombreloc); 387 } 388 389 if (needsInterpSection()) 390 add(createInterpSection()); 391 392 if (config->hasDynSymTab) { 393 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 394 add(part.dynSymTab); 395 396 part.verSym = make<VersionTableSection>(); 397 add(part.verSym); 398 399 if (!config->versionDefinitions.empty()) { 400 part.verDef = make<VersionDefinitionSection>(); 401 add(part.verDef); 402 } 403 404 part.verNeed = make<VersionNeedSection<ELFT>>(); 405 add(part.verNeed); 406 407 if (config->gnuHash) { 408 part.gnuHashTab = make<GnuHashTableSection>(); 409 add(part.gnuHashTab); 410 } 411 412 if (config->sysvHash) { 413 part.hashTab = make<HashTableSection>(); 414 add(part.hashTab); 415 } 416 417 add(part.dynamic); 418 add(part.dynStrTab); 419 add(part.relaDyn); 420 } 421 422 if (config->relrPackDynRelocs) { 423 part.relrDyn = make<RelrSection<ELFT>>(); 424 add(part.relrDyn); 425 } 426 427 if (!config->relocatable) { 428 if (config->ehFrameHdr) { 429 part.ehFrameHdr = make<EhFrameHeader>(); 430 add(part.ehFrameHdr); 431 } 432 part.ehFrame = make<EhFrameSection>(); 433 add(part.ehFrame); 434 } 435 436 if (config->emachine == EM_ARM && !config->relocatable) { 437 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 438 // InputSections. 439 part.armExidx = make<ARMExidxSyntheticSection>(); 440 add(part.armExidx); 441 } 442 } 443 444 if (partitions.size() != 1) { 445 // Create the partition end marker. This needs to be in partition number 255 446 // so that it is sorted after all other partitions. It also has other 447 // special handling (see createPhdrs() and combineEhSections()). 448 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 449 in.partEnd->partition = 255; 450 add(in.partEnd); 451 452 in.partIndex = make<PartitionIndexSection>(); 453 addOptionalRegular("__part_index_begin", in.partIndex, 0); 454 addOptionalRegular("__part_index_end", in.partIndex, 455 in.partIndex->getSize()); 456 add(in.partIndex); 457 } 458 459 // Add .got. MIPS' .got is so different from the other archs, 460 // it has its own class. 461 if (config->emachine == EM_MIPS) { 462 in.mipsGot = make<MipsGotSection>(); 463 add(in.mipsGot); 464 } else { 465 in.got = make<GotSection>(); 466 add(in.got); 467 } 468 469 if (config->emachine == EM_PPC) { 470 in.ppc32Got2 = make<PPC32Got2Section>(); 471 add(in.ppc32Got2); 472 } 473 474 if (config->emachine == EM_PPC64) { 475 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 476 add(in.ppc64LongBranchTarget); 477 } 478 479 if (config->emachine == EM_RISCV) { 480 in.riscvSdata = make<RISCVSdataSection>(); 481 add(in.riscvSdata); 482 } 483 484 in.gotPlt = make<GotPltSection>(); 485 add(in.gotPlt); 486 in.igotPlt = make<IgotPltSection>(); 487 add(in.igotPlt); 488 489 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 490 // it as a relocation and ensure the referenced section is created. 491 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 492 if (target->gotBaseSymInGotPlt) 493 in.gotPlt->hasGotPltOffRel = true; 494 else 495 in.got->hasGotOffRel = true; 496 } 497 498 if (config->gdbIndex) 499 add(GdbIndexSection::create<ELFT>()); 500 501 // We always need to add rel[a].plt to output if it has entries. 502 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 503 in.relaPlt = make<RelocationSection<ELFT>>( 504 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 505 add(in.relaPlt); 506 507 // The relaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 508 // that the IRelative relocations are processed last by the dynamic loader. 509 // We cannot place the iplt section in .rel.dyn when Android relocation 510 // packing is enabled because that would cause a section type mismatch. 511 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 512 // we can get the desired behaviour by placing the iplt section in .rel.plt. 513 in.relaIplt = make<RelocationSection<ELFT>>( 514 (config->emachine == EM_ARM && !config->androidPackDynRelocs) 515 ? ".rel.dyn" 516 : in.relaPlt->name, 517 /*sort=*/false); 518 add(in.relaIplt); 519 520 in.plt = make<PltSection>(false); 521 add(in.plt); 522 in.iplt = make<PltSection>(true); 523 add(in.iplt); 524 525 if (config->andFeatures) 526 add(make<GnuPropertySection>()); 527 528 // .note.GNU-stack is always added when we are creating a re-linkable 529 // object file. Other linkers are using the presence of this marker 530 // section to control the executable-ness of the stack area, but that 531 // is irrelevant these days. Stack area should always be non-executable 532 // by default. So we emit this section unconditionally. 533 if (config->relocatable) 534 add(make<GnuStackSection>()); 535 536 if (in.symTab) 537 add(in.symTab); 538 if (in.symTabShndx) 539 add(in.symTabShndx); 540 add(in.shStrTab); 541 if (in.strTab) 542 add(in.strTab); 543 } 544 545 // The main function of the writer. 546 template <class ELFT> void Writer<ELFT>::run() { 547 // Make copies of any input sections that need to be copied into each 548 // partition. 549 copySectionsIntoPartitions<ELFT>(); 550 551 // Create linker-synthesized sections such as .got or .plt. 552 // Such sections are of type input section. 553 createSyntheticSections<ELFT>(); 554 555 // Some input sections that are used for exception handling need to be moved 556 // into synthetic sections. Do that now so that they aren't assigned to 557 // output sections in the usual way. 558 if (!config->relocatable) 559 combineEhSections<ELFT>(); 560 561 // We want to process linker script commands. When SECTIONS command 562 // is given we let it create sections. 563 script->processSectionCommands(); 564 565 // Linker scripts controls how input sections are assigned to output sections. 566 // Input sections that were not handled by scripts are called "orphans", and 567 // they are assigned to output sections by the default rule. Process that. 568 script->addOrphanSections(); 569 570 if (config->discard != DiscardPolicy::All) 571 copyLocalSymbols(); 572 573 if (config->copyRelocs) 574 addSectionSymbols(); 575 576 // Now that we have a complete set of output sections. This function 577 // completes section contents. For example, we need to add strings 578 // to the string table, and add entries to .got and .plt. 579 // finalizeSections does that. 580 finalizeSections(); 581 checkExecuteOnly(); 582 if (errorCount()) 583 return; 584 585 script->assignAddresses(); 586 587 // If -compressed-debug-sections is specified, we need to compress 588 // .debug_* sections. Do it right now because it changes the size of 589 // output sections. 590 for (OutputSection *sec : outputSections) 591 sec->maybeCompress<ELFT>(); 592 593 script->allocateHeaders(mainPart->phdrs); 594 595 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 596 // 0 sized region. This has to be done late since only after assignAddresses 597 // we know the size of the sections. 598 for (Partition &part : partitions) 599 removeEmptyPTLoad(part.phdrs); 600 601 if (!config->oFormatBinary) 602 assignFileOffsets(); 603 else 604 assignFileOffsetsBinary(); 605 606 for (Partition &part : partitions) 607 setPhdrs(part); 608 609 if (config->relocatable) 610 for (OutputSection *sec : outputSections) 611 sec->addr = 0; 612 613 if (config->checkSections) 614 checkSections(); 615 616 // It does not make sense try to open the file if we have error already. 617 if (errorCount()) 618 return; 619 // Write the result down to a file. 620 openFile(); 621 if (errorCount()) 622 return; 623 624 if (!config->oFormatBinary) { 625 writeTrapInstr(); 626 writeHeader(); 627 writeSections(); 628 } else { 629 writeSectionsBinary(); 630 } 631 632 // Backfill .note.gnu.build-id section content. This is done at last 633 // because the content is usually a hash value of the entire output file. 634 writeBuildId(); 635 if (errorCount()) 636 return; 637 638 // Handle -Map and -cref options. 639 writeMapFile(); 640 writeCrossReferenceTable(); 641 if (errorCount()) 642 return; 643 644 if (auto e = buffer->commit()) 645 error("failed to write to the output file: " + toString(std::move(e))); 646 } 647 648 static bool shouldKeepInSymtab(const Defined &sym) { 649 if (sym.isSection()) 650 return false; 651 652 if (config->discard == DiscardPolicy::None) 653 return true; 654 655 // If -emit-reloc is given, all symbols including local ones need to be 656 // copied because they may be referenced by relocations. 657 if (config->emitRelocs) 658 return true; 659 660 // In ELF assembly .L symbols are normally discarded by the assembler. 661 // If the assembler fails to do so, the linker discards them if 662 // * --discard-locals is used. 663 // * The symbol is in a SHF_MERGE section, which is normally the reason for 664 // the assembler keeping the .L symbol. 665 StringRef name = sym.getName(); 666 bool isLocal = name.startswith(".L") || name.empty(); 667 if (!isLocal) 668 return true; 669 670 if (config->discard == DiscardPolicy::Locals) 671 return false; 672 673 SectionBase *sec = sym.section; 674 return !sec || !(sec->flags & SHF_MERGE); 675 } 676 677 static bool includeInSymtab(const Symbol &b) { 678 if (!b.isLocal() && !b.isUsedInRegularObj) 679 return false; 680 681 if (auto *d = dyn_cast<Defined>(&b)) { 682 // Always include absolute symbols. 683 SectionBase *sec = d->section; 684 if (!sec) 685 return true; 686 sec = sec->repl; 687 688 // Exclude symbols pointing to garbage-collected sections. 689 if (isa<InputSectionBase>(sec) && !sec->isLive()) 690 return false; 691 692 if (auto *s = dyn_cast<MergeInputSection>(sec)) 693 if (!s->getSectionPiece(d->value)->live) 694 return false; 695 return true; 696 } 697 return b.used; 698 } 699 700 // Local symbols are not in the linker's symbol table. This function scans 701 // each object file's symbol table to copy local symbols to the output. 702 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 703 if (!in.symTab) 704 return; 705 for (InputFile *file : objectFiles) { 706 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 707 for (Symbol *b : f->getLocalSymbols()) { 708 if (!b->isLocal()) 709 fatal(toString(f) + 710 ": broken object: getLocalSymbols returns a non-local symbol"); 711 auto *dr = dyn_cast<Defined>(b); 712 713 // No reason to keep local undefined symbol in symtab. 714 if (!dr) 715 continue; 716 if (!includeInSymtab(*b)) 717 continue; 718 if (!shouldKeepInSymtab(*dr)) 719 continue; 720 in.symTab->addSymbol(b); 721 } 722 } 723 } 724 725 // Create a section symbol for each output section so that we can represent 726 // relocations that point to the section. If we know that no relocation is 727 // referring to a section (that happens if the section is a synthetic one), we 728 // don't create a section symbol for that section. 729 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 730 for (BaseCommand *base : script->sectionCommands) { 731 auto *sec = dyn_cast<OutputSection>(base); 732 if (!sec) 733 continue; 734 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 735 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 736 return !isd->sections.empty(); 737 return false; 738 }); 739 if (i == sec->sectionCommands.end()) 740 continue; 741 InputSection *isec = cast<InputSectionDescription>(*i)->sections[0]; 742 743 // Relocations are not using REL[A] section symbols. 744 if (isec->type == SHT_REL || isec->type == SHT_RELA) 745 continue; 746 747 // Unlike other synthetic sections, mergeable output sections contain data 748 // copied from input sections, and there may be a relocation pointing to its 749 // contents if -r or -emit-reloc are given. 750 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 751 continue; 752 753 auto *sym = 754 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 755 /*value=*/0, /*size=*/0, isec); 756 in.symTab->addSymbol(sym); 757 } 758 } 759 760 // Today's loaders have a feature to make segments read-only after 761 // processing dynamic relocations to enhance security. PT_GNU_RELRO 762 // is defined for that. 763 // 764 // This function returns true if a section needs to be put into a 765 // PT_GNU_RELRO segment. 766 static bool isRelroSection(const OutputSection *sec) { 767 if (!config->zRelro) 768 return false; 769 770 uint64_t flags = sec->flags; 771 772 // Non-allocatable or non-writable sections don't need RELRO because 773 // they are not writable or not even mapped to memory in the first place. 774 // RELRO is for sections that are essentially read-only but need to 775 // be writable only at process startup to allow dynamic linker to 776 // apply relocations. 777 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 778 return false; 779 780 // Once initialized, TLS data segments are used as data templates 781 // for a thread-local storage. For each new thread, runtime 782 // allocates memory for a TLS and copy templates there. No thread 783 // are supposed to use templates directly. Thus, it can be in RELRO. 784 if (flags & SHF_TLS) 785 return true; 786 787 // .init_array, .preinit_array and .fini_array contain pointers to 788 // functions that are executed on process startup or exit. These 789 // pointers are set by the static linker, and they are not expected 790 // to change at runtime. But if you are an attacker, you could do 791 // interesting things by manipulating pointers in .fini_array, for 792 // example. So they are put into RELRO. 793 uint32_t type = sec->type; 794 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 795 type == SHT_PREINIT_ARRAY) 796 return true; 797 798 // .got contains pointers to external symbols. They are resolved by 799 // the dynamic linker when a module is loaded into memory, and after 800 // that they are not expected to change. So, it can be in RELRO. 801 if (in.got && sec == in.got->getParent()) 802 return true; 803 804 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 805 // through r2 register, which is reserved for that purpose. Since r2 is used 806 // for accessing .got as well, .got and .toc need to be close enough in the 807 // virtual address space. Usually, .toc comes just after .got. Since we place 808 // .got into RELRO, .toc needs to be placed into RELRO too. 809 if (sec->name.equals(".toc")) 810 return true; 811 812 // .got.plt contains pointers to external function symbols. They are 813 // by default resolved lazily, so we usually cannot put it into RELRO. 814 // However, if "-z now" is given, the lazy symbol resolution is 815 // disabled, which enables us to put it into RELRO. 816 if (sec == in.gotPlt->getParent()) 817 return config->zNow; 818 819 // .dynamic section contains data for the dynamic linker, and 820 // there's no need to write to it at runtime, so it's better to put 821 // it into RELRO. 822 if (sec->name == ".dynamic") 823 return true; 824 825 // Sections with some special names are put into RELRO. This is a 826 // bit unfortunate because section names shouldn't be significant in 827 // ELF in spirit. But in reality many linker features depend on 828 // magic section names. 829 StringRef s = sec->name; 830 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 831 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 832 s == ".openbsd.randomdata"; 833 } 834 835 // We compute a rank for each section. The rank indicates where the 836 // section should be placed in the file. Instead of using simple 837 // numbers (0,1,2...), we use a series of flags. One for each decision 838 // point when placing the section. 839 // Using flags has two key properties: 840 // * It is easy to check if a give branch was taken. 841 // * It is easy two see how similar two ranks are (see getRankProximity). 842 enum RankFlags { 843 RF_NOT_ADDR_SET = 1 << 27, 844 RF_NOT_ALLOC = 1 << 26, 845 RF_PARTITION = 1 << 18, // Partition number (8 bits) 846 RF_NOT_PART_EHDR = 1 << 17, 847 RF_NOT_PART_PHDR = 1 << 16, 848 RF_NOT_INTERP = 1 << 15, 849 RF_NOT_NOTE = 1 << 14, 850 RF_WRITE = 1 << 13, 851 RF_EXEC_WRITE = 1 << 12, 852 RF_EXEC = 1 << 11, 853 RF_RODATA = 1 << 10, 854 RF_NOT_RELRO = 1 << 9, 855 RF_NOT_TLS = 1 << 8, 856 RF_BSS = 1 << 7, 857 RF_PPC_NOT_TOCBSS = 1 << 6, 858 RF_PPC_TOCL = 1 << 5, 859 RF_PPC_TOC = 1 << 4, 860 RF_PPC_GOT = 1 << 3, 861 RF_PPC_BRANCH_LT = 1 << 2, 862 RF_MIPS_GPREL = 1 << 1, 863 RF_MIPS_NOT_GOT = 1 << 0 864 }; 865 866 static unsigned getSectionRank(const OutputSection *sec) { 867 unsigned rank = sec->partition * RF_PARTITION; 868 869 // We want to put section specified by -T option first, so we 870 // can start assigning VA starting from them later. 871 if (config->sectionStartMap.count(sec->name)) 872 return rank; 873 rank |= RF_NOT_ADDR_SET; 874 875 // Allocatable sections go first to reduce the total PT_LOAD size and 876 // so debug info doesn't change addresses in actual code. 877 if (!(sec->flags & SHF_ALLOC)) 878 return rank | RF_NOT_ALLOC; 879 880 if (sec->type == SHT_LLVM_PART_EHDR) 881 return rank; 882 rank |= RF_NOT_PART_EHDR; 883 884 if (sec->type == SHT_LLVM_PART_PHDR) 885 return rank; 886 rank |= RF_NOT_PART_PHDR; 887 888 // Put .interp first because some loaders want to see that section 889 // on the first page of the executable file when loaded into memory. 890 if (sec->name == ".interp") 891 return rank; 892 rank |= RF_NOT_INTERP; 893 894 // Put .note sections (which make up one PT_NOTE) at the beginning so that 895 // they are likely to be included in a core file even if core file size is 896 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 897 // included in a core to match core files with executables. 898 if (sec->type == SHT_NOTE) 899 return rank; 900 rank |= RF_NOT_NOTE; 901 902 // Sort sections based on their access permission in the following 903 // order: R, RX, RWX, RW. This order is based on the following 904 // considerations: 905 // * Read-only sections come first such that they go in the 906 // PT_LOAD covering the program headers at the start of the file. 907 // * Read-only, executable sections come next. 908 // * Writable, executable sections follow such that .plt on 909 // architectures where it needs to be writable will be placed 910 // between .text and .data. 911 // * Writable sections come last, such that .bss lands at the very 912 // end of the last PT_LOAD. 913 bool isExec = sec->flags & SHF_EXECINSTR; 914 bool isWrite = sec->flags & SHF_WRITE; 915 916 if (isExec) { 917 if (isWrite) 918 rank |= RF_EXEC_WRITE; 919 else 920 rank |= RF_EXEC; 921 } else if (isWrite) { 922 rank |= RF_WRITE; 923 } else if (sec->type == SHT_PROGBITS) { 924 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 925 // .eh_frame) closer to .text. They likely contain PC or GOT relative 926 // relocations and there could be relocation overflow if other huge sections 927 // (.dynstr .dynsym) were placed in between. 928 rank |= RF_RODATA; 929 } 930 931 // Place RelRo sections first. After considering SHT_NOBITS below, the 932 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 933 // where | marks where page alignment happens. An alternative ordering is 934 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 935 // waste more bytes due to 2 alignment places. 936 if (!isRelroSection(sec)) 937 rank |= RF_NOT_RELRO; 938 939 // If we got here we know that both A and B are in the same PT_LOAD. 940 941 // The TLS initialization block needs to be a single contiguous block in a R/W 942 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 943 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 944 // after PROGBITS. 945 if (!(sec->flags & SHF_TLS)) 946 rank |= RF_NOT_TLS; 947 948 // Within TLS sections, or within other RelRo sections, or within non-RelRo 949 // sections, place non-NOBITS sections first. 950 if (sec->type == SHT_NOBITS) 951 rank |= RF_BSS; 952 953 // Some architectures have additional ordering restrictions for sections 954 // within the same PT_LOAD. 955 if (config->emachine == EM_PPC64) { 956 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 957 // that we would like to make sure appear is a specific order to maximize 958 // their coverage by a single signed 16-bit offset from the TOC base 959 // pointer. Conversely, the special .tocbss section should be first among 960 // all SHT_NOBITS sections. This will put it next to the loaded special 961 // PPC64 sections (and, thus, within reach of the TOC base pointer). 962 StringRef name = sec->name; 963 if (name != ".tocbss") 964 rank |= RF_PPC_NOT_TOCBSS; 965 966 if (name == ".toc1") 967 rank |= RF_PPC_TOCL; 968 969 if (name == ".toc") 970 rank |= RF_PPC_TOC; 971 972 if (name == ".got") 973 rank |= RF_PPC_GOT; 974 975 if (name == ".branch_lt") 976 rank |= RF_PPC_BRANCH_LT; 977 } 978 979 if (config->emachine == EM_MIPS) { 980 // All sections with SHF_MIPS_GPREL flag should be grouped together 981 // because data in these sections is addressable with a gp relative address. 982 if (sec->flags & SHF_MIPS_GPREL) 983 rank |= RF_MIPS_GPREL; 984 985 if (sec->name != ".got") 986 rank |= RF_MIPS_NOT_GOT; 987 } 988 989 return rank; 990 } 991 992 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 993 const OutputSection *a = cast<OutputSection>(aCmd); 994 const OutputSection *b = cast<OutputSection>(bCmd); 995 996 if (a->sortRank != b->sortRank) 997 return a->sortRank < b->sortRank; 998 999 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1000 return config->sectionStartMap.lookup(a->name) < 1001 config->sectionStartMap.lookup(b->name); 1002 return false; 1003 } 1004 1005 void PhdrEntry::add(OutputSection *sec) { 1006 lastSec = sec; 1007 if (!firstSec) 1008 firstSec = sec; 1009 p_align = std::max(p_align, sec->alignment); 1010 if (p_type == PT_LOAD) 1011 sec->ptLoad = this; 1012 } 1013 1014 // The beginning and the ending of .rel[a].plt section are marked 1015 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1016 // executable. The runtime needs these symbols in order to resolve 1017 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1018 // need these symbols, since IRELATIVE relocs are resolved through GOT 1019 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1020 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1021 if (config->relocatable || needsInterpSection()) 1022 return; 1023 1024 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1025 // because .rela.plt might be empty and thus removed from output. 1026 // We'll override Out::elfHeader with In.relaIplt later when we are 1027 // sure that .rela.plt exists in output. 1028 ElfSym::relaIpltStart = addOptionalRegular( 1029 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1030 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1031 1032 ElfSym::relaIpltEnd = addOptionalRegular( 1033 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1034 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1035 } 1036 1037 template <class ELFT> 1038 void Writer<ELFT>::forEachRelSec( 1039 llvm::function_ref<void(InputSectionBase &)> fn) { 1040 // Scan all relocations. Each relocation goes through a series 1041 // of tests to determine if it needs special treatment, such as 1042 // creating GOT, PLT, copy relocations, etc. 1043 // Note that relocations for non-alloc sections are directly 1044 // processed by InputSection::relocateNonAlloc. 1045 for (InputSectionBase *isec : inputSections) 1046 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1047 fn(*isec); 1048 for (Partition &part : partitions) { 1049 for (EhInputSection *es : part.ehFrame->sections) 1050 fn(*es); 1051 if (part.armExidx && part.armExidx->isLive()) 1052 for (InputSection *ex : part.armExidx->exidxSections) 1053 fn(*ex); 1054 } 1055 } 1056 1057 // This function generates assignments for predefined symbols (e.g. _end or 1058 // _etext) and inserts them into the commands sequence to be processed at the 1059 // appropriate time. This ensures that the value is going to be correct by the 1060 // time any references to these symbols are processed and is equivalent to 1061 // defining these symbols explicitly in the linker script. 1062 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1063 if (ElfSym::globalOffsetTable) { 1064 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1065 // to the start of the .got or .got.plt section. 1066 InputSection *gotSection = in.gotPlt; 1067 if (!target->gotBaseSymInGotPlt) 1068 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1069 : cast<InputSection>(in.got); 1070 ElfSym::globalOffsetTable->section = gotSection; 1071 } 1072 1073 // .rela_iplt_{start,end} mark the start and the end of .rela.plt section. 1074 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1075 ElfSym::relaIpltStart->section = in.relaIplt; 1076 ElfSym::relaIpltEnd->section = in.relaIplt; 1077 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1078 } 1079 1080 PhdrEntry *last = nullptr; 1081 PhdrEntry *lastRO = nullptr; 1082 1083 for (Partition &part : partitions) { 1084 for (PhdrEntry *p : part.phdrs) { 1085 if (p->p_type != PT_LOAD) 1086 continue; 1087 last = p; 1088 if (!(p->p_flags & PF_W)) 1089 lastRO = p; 1090 } 1091 } 1092 1093 if (lastRO) { 1094 // _etext is the first location after the last read-only loadable segment. 1095 if (ElfSym::etext1) 1096 ElfSym::etext1->section = lastRO->lastSec; 1097 if (ElfSym::etext2) 1098 ElfSym::etext2->section = lastRO->lastSec; 1099 } 1100 1101 if (last) { 1102 // _edata points to the end of the last mapped initialized section. 1103 OutputSection *edata = nullptr; 1104 for (OutputSection *os : outputSections) { 1105 if (os->type != SHT_NOBITS) 1106 edata = os; 1107 if (os == last->lastSec) 1108 break; 1109 } 1110 1111 if (ElfSym::edata1) 1112 ElfSym::edata1->section = edata; 1113 if (ElfSym::edata2) 1114 ElfSym::edata2->section = edata; 1115 1116 // _end is the first location after the uninitialized data region. 1117 if (ElfSym::end1) 1118 ElfSym::end1->section = last->lastSec; 1119 if (ElfSym::end2) 1120 ElfSym::end2->section = last->lastSec; 1121 } 1122 1123 if (ElfSym::bss) 1124 ElfSym::bss->section = findSection(".bss"); 1125 1126 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1127 // be equal to the _gp symbol's value. 1128 if (ElfSym::mipsGp) { 1129 // Find GP-relative section with the lowest address 1130 // and use this address to calculate default _gp value. 1131 for (OutputSection *os : outputSections) { 1132 if (os->flags & SHF_MIPS_GPREL) { 1133 ElfSym::mipsGp->section = os; 1134 ElfSym::mipsGp->value = 0x7ff0; 1135 break; 1136 } 1137 } 1138 } 1139 } 1140 1141 // We want to find how similar two ranks are. 1142 // The more branches in getSectionRank that match, the more similar they are. 1143 // Since each branch corresponds to a bit flag, we can just use 1144 // countLeadingZeros. 1145 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1146 return countLeadingZeros(a->sortRank ^ b->sortRank); 1147 } 1148 1149 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1150 auto *sec = dyn_cast<OutputSection>(b); 1151 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1152 } 1153 1154 // When placing orphan sections, we want to place them after symbol assignments 1155 // so that an orphan after 1156 // begin_foo = .; 1157 // foo : { *(foo) } 1158 // end_foo = .; 1159 // doesn't break the intended meaning of the begin/end symbols. 1160 // We don't want to go over sections since findOrphanPos is the 1161 // one in charge of deciding the order of the sections. 1162 // We don't want to go over changes to '.', since doing so in 1163 // rx_sec : { *(rx_sec) } 1164 // . = ALIGN(0x1000); 1165 // /* The RW PT_LOAD starts here*/ 1166 // rw_sec : { *(rw_sec) } 1167 // would mean that the RW PT_LOAD would become unaligned. 1168 static bool shouldSkip(BaseCommand *cmd) { 1169 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1170 return assign->name != "."; 1171 return false; 1172 } 1173 1174 // We want to place orphan sections so that they share as much 1175 // characteristics with their neighbors as possible. For example, if 1176 // both are rw, or both are tls. 1177 static std::vector<BaseCommand *>::iterator 1178 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1179 std::vector<BaseCommand *>::iterator e) { 1180 OutputSection *sec = cast<OutputSection>(*e); 1181 1182 // Find the first element that has as close a rank as possible. 1183 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1184 return getRankProximity(sec, a) < getRankProximity(sec, b); 1185 }); 1186 if (i == e) 1187 return e; 1188 1189 // Consider all existing sections with the same proximity. 1190 int proximity = getRankProximity(sec, *i); 1191 for (; i != e; ++i) { 1192 auto *curSec = dyn_cast<OutputSection>(*i); 1193 if (!curSec || !curSec->hasInputSections) 1194 continue; 1195 if (getRankProximity(sec, curSec) != proximity || 1196 sec->sortRank < curSec->sortRank) 1197 break; 1198 } 1199 1200 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1201 auto *os = dyn_cast<OutputSection>(cmd); 1202 return os && os->hasInputSections; 1203 }; 1204 auto j = std::find_if(llvm::make_reverse_iterator(i), 1205 llvm::make_reverse_iterator(b), 1206 isOutputSecWithInputSections); 1207 i = j.base(); 1208 1209 // As a special case, if the orphan section is the last section, put 1210 // it at the very end, past any other commands. 1211 // This matches bfd's behavior and is convenient when the linker script fully 1212 // specifies the start of the file, but doesn't care about the end (the non 1213 // alloc sections for example). 1214 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1215 if (nextSec == e) 1216 return e; 1217 1218 while (i != e && shouldSkip(*i)) 1219 ++i; 1220 return i; 1221 } 1222 1223 // Builds section order for handling --symbol-ordering-file. 1224 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1225 DenseMap<const InputSectionBase *, int> sectionOrder; 1226 // Use the rarely used option -call-graph-ordering-file to sort sections. 1227 if (!config->callGraphProfile.empty()) 1228 return computeCallGraphProfileOrder(); 1229 1230 if (config->symbolOrderingFile.empty()) 1231 return sectionOrder; 1232 1233 struct SymbolOrderEntry { 1234 int priority; 1235 bool present; 1236 }; 1237 1238 // Build a map from symbols to their priorities. Symbols that didn't 1239 // appear in the symbol ordering file have the lowest priority 0. 1240 // All explicitly mentioned symbols have negative (higher) priorities. 1241 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1242 int priority = -config->symbolOrderingFile.size(); 1243 for (StringRef s : config->symbolOrderingFile) 1244 symbolOrder.insert({s, {priority++, false}}); 1245 1246 // Build a map from sections to their priorities. 1247 auto addSym = [&](Symbol &sym) { 1248 auto it = symbolOrder.find(sym.getName()); 1249 if (it == symbolOrder.end()) 1250 return; 1251 SymbolOrderEntry &ent = it->second; 1252 ent.present = true; 1253 1254 maybeWarnUnorderableSymbol(&sym); 1255 1256 if (auto *d = dyn_cast<Defined>(&sym)) { 1257 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1258 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1259 priority = std::min(priority, ent.priority); 1260 } 1261 } 1262 }; 1263 1264 // We want both global and local symbols. We get the global ones from the 1265 // symbol table and iterate the object files for the local ones. 1266 symtab->forEachSymbol([&](Symbol *sym) { 1267 if (!sym->isLazy()) 1268 addSym(*sym); 1269 }); 1270 1271 for (InputFile *file : objectFiles) 1272 for (Symbol *sym : file->getSymbols()) 1273 if (sym->isLocal()) 1274 addSym(*sym); 1275 1276 if (config->warnSymbolOrdering) 1277 for (auto orderEntry : symbolOrder) 1278 if (!orderEntry.second.present) 1279 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1280 1281 return sectionOrder; 1282 } 1283 1284 // Sorts the sections in ISD according to the provided section order. 1285 static void 1286 sortISDBySectionOrder(InputSectionDescription *isd, 1287 const DenseMap<const InputSectionBase *, int> &order) { 1288 std::vector<InputSection *> unorderedSections; 1289 std::vector<std::pair<InputSection *, int>> orderedSections; 1290 uint64_t unorderedSize = 0; 1291 1292 for (InputSection *isec : isd->sections) { 1293 auto i = order.find(isec); 1294 if (i == order.end()) { 1295 unorderedSections.push_back(isec); 1296 unorderedSize += isec->getSize(); 1297 continue; 1298 } 1299 orderedSections.push_back({isec, i->second}); 1300 } 1301 llvm::sort(orderedSections, [&](std::pair<InputSection *, int> a, 1302 std::pair<InputSection *, int> b) { 1303 return a.second < b.second; 1304 }); 1305 1306 // Find an insertion point for the ordered section list in the unordered 1307 // section list. On targets with limited-range branches, this is the mid-point 1308 // of the unordered section list. This decreases the likelihood that a range 1309 // extension thunk will be needed to enter or exit the ordered region. If the 1310 // ordered section list is a list of hot functions, we can generally expect 1311 // the ordered functions to be called more often than the unordered functions, 1312 // making it more likely that any particular call will be within range, and 1313 // therefore reducing the number of thunks required. 1314 // 1315 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1316 // If the layout is: 1317 // 1318 // 8MB hot 1319 // 32MB cold 1320 // 1321 // only the first 8-16MB of the cold code (depending on which hot function it 1322 // is actually calling) can call the hot code without a range extension thunk. 1323 // However, if we use this layout: 1324 // 1325 // 16MB cold 1326 // 8MB hot 1327 // 16MB cold 1328 // 1329 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1330 // of the second block of cold code can call the hot code without a thunk. So 1331 // we effectively double the amount of code that could potentially call into 1332 // the hot code without a thunk. 1333 size_t insPt = 0; 1334 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1335 uint64_t unorderedPos = 0; 1336 for (; insPt != unorderedSections.size(); ++insPt) { 1337 unorderedPos += unorderedSections[insPt]->getSize(); 1338 if (unorderedPos > unorderedSize / 2) 1339 break; 1340 } 1341 } 1342 1343 isd->sections.clear(); 1344 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1345 isd->sections.push_back(isec); 1346 for (std::pair<InputSection *, int> p : orderedSections) 1347 isd->sections.push_back(p.first); 1348 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1349 isd->sections.push_back(isec); 1350 } 1351 1352 static void sortSection(OutputSection *sec, 1353 const DenseMap<const InputSectionBase *, int> &order) { 1354 StringRef name = sec->name; 1355 1356 // Sort input sections by section name suffixes for 1357 // __attribute__((init_priority(N))). 1358 if (name == ".init_array" || name == ".fini_array") { 1359 if (!script->hasSectionsCommand) 1360 sec->sortInitFini(); 1361 return; 1362 } 1363 1364 // Sort input sections by the special rule for .ctors and .dtors. 1365 if (name == ".ctors" || name == ".dtors") { 1366 if (!script->hasSectionsCommand) 1367 sec->sortCtorsDtors(); 1368 return; 1369 } 1370 1371 // Never sort these. 1372 if (name == ".init" || name == ".fini") 1373 return; 1374 1375 // .toc is allocated just after .got and is accessed using GOT-relative 1376 // relocations. Object files compiled with small code model have an 1377 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1378 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1379 // sections having smaller relocation offsets are at beginning of .toc 1380 if (config->emachine == EM_PPC64 && name == ".toc") { 1381 if (script->hasSectionsCommand) 1382 return; 1383 assert(sec->sectionCommands.size() == 1); 1384 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1385 llvm::stable_sort(isd->sections, 1386 [](const InputSection *a, const InputSection *b) -> bool { 1387 return a->file->ppc64SmallCodeModelTocRelocs && 1388 !b->file->ppc64SmallCodeModelTocRelocs; 1389 }); 1390 return; 1391 } 1392 1393 // Sort input sections by priority using the list provided 1394 // by --symbol-ordering-file. 1395 if (!order.empty()) 1396 for (BaseCommand *b : sec->sectionCommands) 1397 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1398 sortISDBySectionOrder(isd, order); 1399 } 1400 1401 // If no layout was provided by linker script, we want to apply default 1402 // sorting for special input sections. This also handles --symbol-ordering-file. 1403 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1404 // Build the order once since it is expensive. 1405 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1406 for (BaseCommand *base : script->sectionCommands) 1407 if (auto *sec = dyn_cast<OutputSection>(base)) 1408 sortSection(sec, order); 1409 } 1410 1411 template <class ELFT> void Writer<ELFT>::sortSections() { 1412 script->adjustSectionsBeforeSorting(); 1413 1414 // Don't sort if using -r. It is not necessary and we want to preserve the 1415 // relative order for SHF_LINK_ORDER sections. 1416 if (config->relocatable) 1417 return; 1418 1419 sortInputSections(); 1420 1421 for (BaseCommand *base : script->sectionCommands) { 1422 auto *os = dyn_cast<OutputSection>(base); 1423 if (!os) 1424 continue; 1425 os->sortRank = getSectionRank(os); 1426 1427 // We want to assign rude approximation values to outSecOff fields 1428 // to know the relative order of the input sections. We use it for 1429 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1430 uint64_t i = 0; 1431 for (InputSection *sec : getInputSections(os)) 1432 sec->outSecOff = i++; 1433 } 1434 1435 if (!script->hasSectionsCommand) { 1436 // We know that all the OutputSections are contiguous in this case. 1437 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1438 std::stable_sort( 1439 llvm::find_if(script->sectionCommands, isSection), 1440 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1441 compareSections); 1442 return; 1443 } 1444 1445 // Orphan sections are sections present in the input files which are 1446 // not explicitly placed into the output file by the linker script. 1447 // 1448 // The sections in the linker script are already in the correct 1449 // order. We have to figuere out where to insert the orphan 1450 // sections. 1451 // 1452 // The order of the sections in the script is arbitrary and may not agree with 1453 // compareSections. This means that we cannot easily define a strict weak 1454 // ordering. To see why, consider a comparison of a section in the script and 1455 // one not in the script. We have a two simple options: 1456 // * Make them equivalent (a is not less than b, and b is not less than a). 1457 // The problem is then that equivalence has to be transitive and we can 1458 // have sections a, b and c with only b in a script and a less than c 1459 // which breaks this property. 1460 // * Use compareSectionsNonScript. Given that the script order doesn't have 1461 // to match, we can end up with sections a, b, c, d where b and c are in the 1462 // script and c is compareSectionsNonScript less than b. In which case d 1463 // can be equivalent to c, a to b and d < a. As a concrete example: 1464 // .a (rx) # not in script 1465 // .b (rx) # in script 1466 // .c (ro) # in script 1467 // .d (ro) # not in script 1468 // 1469 // The way we define an order then is: 1470 // * Sort only the orphan sections. They are in the end right now. 1471 // * Move each orphan section to its preferred position. We try 1472 // to put each section in the last position where it can share 1473 // a PT_LOAD. 1474 // 1475 // There is some ambiguity as to where exactly a new entry should be 1476 // inserted, because Commands contains not only output section 1477 // commands but also other types of commands such as symbol assignment 1478 // expressions. There's no correct answer here due to the lack of the 1479 // formal specification of the linker script. We use heuristics to 1480 // determine whether a new output command should be added before or 1481 // after another commands. For the details, look at shouldSkip 1482 // function. 1483 1484 auto i = script->sectionCommands.begin(); 1485 auto e = script->sectionCommands.end(); 1486 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1487 if (auto *sec = dyn_cast<OutputSection>(base)) 1488 return sec->sectionIndex == UINT32_MAX; 1489 return false; 1490 }); 1491 1492 // Sort the orphan sections. 1493 std::stable_sort(nonScriptI, e, compareSections); 1494 1495 // As a horrible special case, skip the first . assignment if it is before any 1496 // section. We do this because it is common to set a load address by starting 1497 // the script with ". = 0xabcd" and the expectation is that every section is 1498 // after that. 1499 auto firstSectionOrDotAssignment = 1500 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1501 if (firstSectionOrDotAssignment != e && 1502 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1503 ++firstSectionOrDotAssignment; 1504 i = firstSectionOrDotAssignment; 1505 1506 while (nonScriptI != e) { 1507 auto pos = findOrphanPos(i, nonScriptI); 1508 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1509 1510 // As an optimization, find all sections with the same sort rank 1511 // and insert them with one rotate. 1512 unsigned rank = orphan->sortRank; 1513 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1514 return cast<OutputSection>(cmd)->sortRank != rank; 1515 }); 1516 std::rotate(pos, nonScriptI, end); 1517 nonScriptI = end; 1518 } 1519 1520 script->adjustSectionsAfterSorting(); 1521 } 1522 1523 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1524 InputSection *la = a->getLinkOrderDep(); 1525 InputSection *lb = b->getLinkOrderDep(); 1526 OutputSection *aOut = la->getParent(); 1527 OutputSection *bOut = lb->getParent(); 1528 1529 if (aOut != bOut) 1530 return aOut->sectionIndex < bOut->sectionIndex; 1531 return la->outSecOff < lb->outSecOff; 1532 } 1533 1534 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1535 for (OutputSection *sec : outputSections) { 1536 if (!(sec->flags & SHF_LINK_ORDER)) 1537 continue; 1538 1539 // Link order may be distributed across several InputSectionDescriptions 1540 // but sort must consider them all at once. 1541 std::vector<InputSection **> scriptSections; 1542 std::vector<InputSection *> sections; 1543 for (BaseCommand *base : sec->sectionCommands) { 1544 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1545 for (InputSection *&isec : isd->sections) { 1546 scriptSections.push_back(&isec); 1547 sections.push_back(isec); 1548 } 1549 } 1550 } 1551 1552 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1553 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1554 if (!config->relocatable && config->emachine == EM_ARM && 1555 sec->type == SHT_ARM_EXIDX) 1556 continue; 1557 1558 llvm::stable_sort(sections, compareByFilePosition); 1559 1560 for (int i = 0, n = sections.size(); i < n; ++i) 1561 *scriptSections[i] = sections[i]; 1562 } 1563 } 1564 1565 // We need to generate and finalize the content that depends on the address of 1566 // InputSections. As the generation of the content may also alter InputSection 1567 // addresses we must converge to a fixed point. We do that here. See the comment 1568 // in Writer<ELFT>::finalizeSections(). 1569 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1570 ThunkCreator tc; 1571 AArch64Err843419Patcher a64p; 1572 1573 // For some targets, like x86, this loop iterates only once. 1574 for (;;) { 1575 bool changed = false; 1576 1577 script->assignAddresses(); 1578 1579 if (target->needsThunks) 1580 changed |= tc.createThunks(outputSections); 1581 1582 if (config->fixCortexA53Errata843419) { 1583 if (changed) 1584 script->assignAddresses(); 1585 changed |= a64p.createFixes(); 1586 } 1587 1588 if (in.mipsGot) 1589 in.mipsGot->updateAllocSize(); 1590 1591 for (Partition &part : partitions) { 1592 changed |= part.relaDyn->updateAllocSize(); 1593 if (part.relrDyn) 1594 changed |= part.relrDyn->updateAllocSize(); 1595 } 1596 1597 if (!changed) 1598 return; 1599 } 1600 } 1601 1602 static void finalizeSynthetic(SyntheticSection *sec) { 1603 if (sec && sec->isNeeded() && sec->getParent()) 1604 sec->finalizeContents(); 1605 } 1606 1607 // In order to allow users to manipulate linker-synthesized sections, 1608 // we had to add synthetic sections to the input section list early, 1609 // even before we make decisions whether they are needed. This allows 1610 // users to write scripts like this: ".mygot : { .got }". 1611 // 1612 // Doing it has an unintended side effects. If it turns out that we 1613 // don't need a .got (for example) at all because there's no 1614 // relocation that needs a .got, we don't want to emit .got. 1615 // 1616 // To deal with the above problem, this function is called after 1617 // scanRelocations is called to remove synthetic sections that turn 1618 // out to be empty. 1619 static void removeUnusedSyntheticSections() { 1620 // All input synthetic sections that can be empty are placed after 1621 // all regular ones. We iterate over them all and exit at first 1622 // non-synthetic. 1623 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1624 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1625 if (!ss) 1626 return; 1627 OutputSection *os = ss->getParent(); 1628 if (!os || ss->isNeeded()) 1629 continue; 1630 1631 // If we reach here, then SS is an unused synthetic section and we want to 1632 // remove it from corresponding input section description of output section. 1633 for (BaseCommand *b : os->sectionCommands) 1634 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1635 llvm::erase_if(isd->sections, 1636 [=](InputSection *isec) { return isec == ss; }); 1637 } 1638 } 1639 1640 // Returns true if a symbol can be replaced at load-time by a symbol 1641 // with the same name defined in other ELF executable or DSO. 1642 static bool computeIsPreemptible(const Symbol &b) { 1643 assert(!b.isLocal()); 1644 1645 // Only symbols that appear in dynsym can be preempted. 1646 if (!b.includeInDynsym()) 1647 return false; 1648 1649 // Only default visibility symbols can be preempted. 1650 if (b.visibility != STV_DEFAULT) 1651 return false; 1652 1653 // At this point copy relocations have not been created yet, so any 1654 // symbol that is not defined locally is preemptible. 1655 if (!b.isDefined()) 1656 return true; 1657 1658 // If we have a dynamic list it specifies which local symbols are preemptible. 1659 if (config->hasDynamicList) 1660 return false; 1661 1662 if (!config->shared) 1663 return false; 1664 1665 // -Bsymbolic means that definitions are not preempted. 1666 if (config->bsymbolic || (config->bsymbolicFunctions && b.isFunc())) 1667 return false; 1668 return true; 1669 } 1670 1671 // Create output section objects and add them to OutputSections. 1672 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1673 Out::preinitArray = findSection(".preinit_array"); 1674 Out::initArray = findSection(".init_array"); 1675 Out::finiArray = findSection(".fini_array"); 1676 1677 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1678 // symbols for sections, so that the runtime can get the start and end 1679 // addresses of each section by section name. Add such symbols. 1680 if (!config->relocatable) { 1681 addStartEndSymbols(); 1682 for (BaseCommand *base : script->sectionCommands) 1683 if (auto *sec = dyn_cast<OutputSection>(base)) 1684 addStartStopSymbols(sec); 1685 } 1686 1687 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1688 // It should be okay as no one seems to care about the type. 1689 // Even the author of gold doesn't remember why gold behaves that way. 1690 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1691 if (mainPart->dynamic->parent) 1692 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1693 STV_HIDDEN, STT_NOTYPE, 1694 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1695 1696 // Define __rel[a]_iplt_{start,end} symbols if needed. 1697 addRelIpltSymbols(); 1698 1699 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined. 1700 // This symbol should only be defined in an executable. 1701 if (config->emachine == EM_RISCV && !config->shared) 1702 ElfSym::riscvGlobalPointer = 1703 addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800, 1704 STV_DEFAULT, STB_GLOBAL); 1705 1706 if (config->emachine == EM_X86_64) { 1707 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1708 // way that: 1709 // 1710 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1711 // computes 0. 1712 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1713 // the TLS block). 1714 // 1715 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1716 // an absolute symbol of zero. This is different from GNU linkers which 1717 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1718 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1719 if (s && s->isUndefined()) { 1720 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1721 STT_TLS, /*value=*/0, 0, 1722 /*section=*/nullptr}); 1723 ElfSym::tlsModuleBase = cast<Defined>(s); 1724 } 1725 } 1726 1727 // This responsible for splitting up .eh_frame section into 1728 // pieces. The relocation scan uses those pieces, so this has to be 1729 // earlier. 1730 for (Partition &part : partitions) 1731 finalizeSynthetic(part.ehFrame); 1732 1733 symtab->forEachSymbol([](Symbol *s) { 1734 if (!s->isPreemptible) 1735 s->isPreemptible = computeIsPreemptible(*s); 1736 }); 1737 1738 // Scan relocations. This must be done after every symbol is declared so that 1739 // we can correctly decide if a dynamic relocation is needed. 1740 if (!config->relocatable) { 1741 forEachRelSec(scanRelocations<ELFT>); 1742 reportUndefinedSymbols<ELFT>(); 1743 } 1744 1745 addIRelativeRelocs(); 1746 1747 if (in.plt && in.plt->isNeeded()) 1748 in.plt->addSymbols(); 1749 if (in.iplt && in.iplt->isNeeded()) 1750 in.iplt->addSymbols(); 1751 1752 if (!config->allowShlibUndefined) { 1753 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1754 // entires are seen. These cases would otherwise lead to runtime errors 1755 // reported by the dynamic linker. 1756 // 1757 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1758 // catch more cases. That is too much for us. Our approach resembles the one 1759 // used in ld.gold, achieves a good balance to be useful but not too smart. 1760 for (SharedFile *file : sharedFiles) 1761 file->allNeededIsKnown = 1762 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1763 return symtab->soNames.count(needed); 1764 }); 1765 1766 symtab->forEachSymbol([](Symbol *sym) { 1767 if (sym->isUndefined() && !sym->isWeak()) 1768 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1769 if (f->allNeededIsKnown) 1770 error(toString(f) + ": undefined reference to " + toString(*sym)); 1771 }); 1772 } 1773 1774 // Now that we have defined all possible global symbols including linker- 1775 // synthesized ones. Visit all symbols to give the finishing touches. 1776 symtab->forEachSymbol([](Symbol *sym) { 1777 if (!includeInSymtab(*sym)) 1778 return; 1779 if (in.symTab) 1780 in.symTab->addSymbol(sym); 1781 1782 if (sym->includeInDynsym()) { 1783 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1784 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1785 if (file->isNeeded && !sym->isUndefined()) 1786 addVerneed(sym); 1787 } 1788 }); 1789 1790 // We also need to scan the dynamic relocation tables of the other partitions 1791 // and add any referenced symbols to the partition's dynsym. 1792 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1793 DenseSet<Symbol *> syms; 1794 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1795 syms.insert(e.sym); 1796 for (DynamicReloc &reloc : part.relaDyn->relocs) 1797 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 1798 part.dynSymTab->addSymbol(reloc.sym); 1799 } 1800 1801 // Do not proceed if there was an undefined symbol. 1802 if (errorCount()) 1803 return; 1804 1805 if (in.mipsGot) 1806 in.mipsGot->build(); 1807 1808 removeUnusedSyntheticSections(); 1809 1810 sortSections(); 1811 1812 // Now that we have the final list, create a list of all the 1813 // OutputSections for convenience. 1814 for (BaseCommand *base : script->sectionCommands) 1815 if (auto *sec = dyn_cast<OutputSection>(base)) 1816 outputSections.push_back(sec); 1817 1818 // Prefer command line supplied address over other constraints. 1819 for (OutputSection *sec : outputSections) { 1820 auto i = config->sectionStartMap.find(sec->name); 1821 if (i != config->sectionStartMap.end()) 1822 sec->addrExpr = [=] { return i->second; }; 1823 } 1824 1825 // This is a bit of a hack. A value of 0 means undef, so we set it 1826 // to 1 to make __ehdr_start defined. The section number is not 1827 // particularly relevant. 1828 Out::elfHeader->sectionIndex = 1; 1829 1830 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 1831 OutputSection *sec = outputSections[i]; 1832 sec->sectionIndex = i + 1; 1833 sec->shName = in.shStrTab->addString(sec->name); 1834 } 1835 1836 // Binary and relocatable output does not have PHDRS. 1837 // The headers have to be created before finalize as that can influence the 1838 // image base and the dynamic section on mips includes the image base. 1839 if (!config->relocatable && !config->oFormatBinary) { 1840 for (Partition &part : partitions) { 1841 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 1842 : createPhdrs(part); 1843 if (config->emachine == EM_ARM) { 1844 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1845 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1846 } 1847 if (config->emachine == EM_MIPS) { 1848 // Add separate segments for MIPS-specific sections. 1849 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1850 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1851 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1852 } 1853 } 1854 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 1855 1856 // Find the TLS segment. This happens before the section layout loop so that 1857 // Android relocation packing can look up TLS symbol addresses. We only need 1858 // to care about the main partition here because all TLS symbols were moved 1859 // to the main partition (see MarkLive.cpp). 1860 for (PhdrEntry *p : mainPart->phdrs) 1861 if (p->p_type == PT_TLS) 1862 Out::tlsPhdr = p; 1863 } 1864 1865 // Some symbols are defined in term of program headers. Now that we 1866 // have the headers, we can find out which sections they point to. 1867 setReservedSymbolSections(); 1868 1869 finalizeSynthetic(in.bss); 1870 finalizeSynthetic(in.bssRelRo); 1871 finalizeSynthetic(in.symTabShndx); 1872 finalizeSynthetic(in.shStrTab); 1873 finalizeSynthetic(in.strTab); 1874 finalizeSynthetic(in.got); 1875 finalizeSynthetic(in.mipsGot); 1876 finalizeSynthetic(in.igotPlt); 1877 finalizeSynthetic(in.gotPlt); 1878 finalizeSynthetic(in.relaIplt); 1879 finalizeSynthetic(in.relaPlt); 1880 finalizeSynthetic(in.plt); 1881 finalizeSynthetic(in.iplt); 1882 finalizeSynthetic(in.ppc32Got2); 1883 finalizeSynthetic(in.riscvSdata); 1884 finalizeSynthetic(in.partIndex); 1885 1886 // Dynamic section must be the last one in this list and dynamic 1887 // symbol table section (dynSymTab) must be the first one. 1888 for (Partition &part : partitions) { 1889 finalizeSynthetic(part.armExidx); 1890 finalizeSynthetic(part.dynSymTab); 1891 finalizeSynthetic(part.gnuHashTab); 1892 finalizeSynthetic(part.hashTab); 1893 finalizeSynthetic(part.verDef); 1894 finalizeSynthetic(part.relaDyn); 1895 finalizeSynthetic(part.relrDyn); 1896 finalizeSynthetic(part.ehFrameHdr); 1897 finalizeSynthetic(part.verSym); 1898 finalizeSynthetic(part.verNeed); 1899 finalizeSynthetic(part.dynamic); 1900 } 1901 1902 if (!script->hasSectionsCommand && !config->relocatable) 1903 fixSectionAlignments(); 1904 1905 // SHFLinkOrder processing must be processed after relative section placements are 1906 // known but before addresses are allocated. 1907 resolveShfLinkOrder(); 1908 1909 // This is used to: 1910 // 1) Create "thunks": 1911 // Jump instructions in many ISAs have small displacements, and therefore 1912 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1913 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1914 // responsibility to create and insert small pieces of code between 1915 // sections to extend the ranges if jump targets are out of range. Such 1916 // code pieces are called "thunks". 1917 // 1918 // We add thunks at this stage. We couldn't do this before this point 1919 // because this is the earliest point where we know sizes of sections and 1920 // their layouts (that are needed to determine if jump targets are in 1921 // range). 1922 // 1923 // 2) Update the sections. We need to generate content that depends on the 1924 // address of InputSections. For example, MIPS GOT section content or 1925 // android packed relocations sections content. 1926 // 1927 // 3) Assign the final values for the linker script symbols. Linker scripts 1928 // sometimes using forward symbol declarations. We want to set the correct 1929 // values. They also might change after adding the thunks. 1930 finalizeAddressDependentContent(); 1931 1932 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1933 finalizeSynthetic(in.symTab); 1934 finalizeSynthetic(in.ppc64LongBranchTarget); 1935 1936 // Fill other section headers. The dynamic table is finalized 1937 // at the end because some tags like RELSZ depend on result 1938 // of finalizing other sections. 1939 for (OutputSection *sec : outputSections) 1940 sec->finalize(); 1941 } 1942 1943 // Ensure data sections are not mixed with executable sections when 1944 // -execute-only is used. -execute-only is a feature to make pages executable 1945 // but not readable, and the feature is currently supported only on AArch64. 1946 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1947 if (!config->executeOnly) 1948 return; 1949 1950 for (OutputSection *os : outputSections) 1951 if (os->flags & SHF_EXECINSTR) 1952 for (InputSection *isec : getInputSections(os)) 1953 if (!(isec->flags & SHF_EXECINSTR)) 1954 error("cannot place " + toString(isec) + " into " + toString(os->name) + 1955 ": -execute-only does not support intermingling data and code"); 1956 } 1957 1958 // The linker is expected to define SECNAME_start and SECNAME_end 1959 // symbols for a few sections. This function defines them. 1960 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1961 // If a section does not exist, there's ambiguity as to how we 1962 // define _start and _end symbols for an init/fini section. Since 1963 // the loader assume that the symbols are always defined, we need to 1964 // always define them. But what value? The loader iterates over all 1965 // pointers between _start and _end to run global ctors/dtors, so if 1966 // the section is empty, their symbol values don't actually matter 1967 // as long as _start and _end point to the same location. 1968 // 1969 // That said, we don't want to set the symbols to 0 (which is 1970 // probably the simplest value) because that could cause some 1971 // program to fail to link due to relocation overflow, if their 1972 // program text is above 2 GiB. We use the address of the .text 1973 // section instead to prevent that failure. 1974 // 1975 // In a rare sitaution, .text section may not exist. If that's the 1976 // case, use the image base address as a last resort. 1977 OutputSection *Default = findSection(".text"); 1978 if (!Default) 1979 Default = Out::elfHeader; 1980 1981 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 1982 if (os) { 1983 addOptionalRegular(start, os, 0); 1984 addOptionalRegular(end, os, -1); 1985 } else { 1986 addOptionalRegular(start, Default, 0); 1987 addOptionalRegular(end, Default, 0); 1988 } 1989 }; 1990 1991 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 1992 define("__init_array_start", "__init_array_end", Out::initArray); 1993 define("__fini_array_start", "__fini_array_end", Out::finiArray); 1994 1995 if (OutputSection *sec = findSection(".ARM.exidx")) 1996 define("__exidx_start", "__exidx_end", sec); 1997 } 1998 1999 // If a section name is valid as a C identifier (which is rare because of 2000 // the leading '.'), linkers are expected to define __start_<secname> and 2001 // __stop_<secname> symbols. They are at beginning and end of the section, 2002 // respectively. This is not requested by the ELF standard, but GNU ld and 2003 // gold provide the feature, and used by many programs. 2004 template <class ELFT> 2005 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2006 StringRef s = sec->name; 2007 if (!isValidCIdentifier(s)) 2008 return; 2009 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 2010 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 2011 } 2012 2013 static bool needsPtLoad(OutputSection *sec) { 2014 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2015 return false; 2016 2017 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2018 // responsible for allocating space for them, not the PT_LOAD that 2019 // contains the TLS initialization image. 2020 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2021 return false; 2022 return true; 2023 } 2024 2025 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2026 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2027 // RW. This means that there is no alignment in the RO to RX transition and we 2028 // cannot create a PT_LOAD there. 2029 static uint64_t computeFlags(uint64_t flags) { 2030 if (config->omagic) 2031 return PF_R | PF_W | PF_X; 2032 if (config->executeOnly && (flags & PF_X)) 2033 return flags & ~PF_R; 2034 if (config->singleRoRx && !(flags & PF_W)) 2035 return flags | PF_X; 2036 return flags; 2037 } 2038 2039 // Decide which program headers to create and which sections to include in each 2040 // one. 2041 template <class ELFT> 2042 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2043 std::vector<PhdrEntry *> ret; 2044 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2045 ret.push_back(make<PhdrEntry>(type, flags)); 2046 return ret.back(); 2047 }; 2048 2049 unsigned partNo = part.getNumber(); 2050 bool isMain = partNo == 1; 2051 2052 // The first phdr entry is PT_PHDR which describes the program header itself. 2053 if (isMain) 2054 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2055 else 2056 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2057 2058 // PT_INTERP must be the second entry if exists. 2059 if (OutputSection *cmd = findSection(".interp", partNo)) 2060 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2061 2062 // Add the first PT_LOAD segment for regular output sections. 2063 uint64_t flags = computeFlags(PF_R); 2064 PhdrEntry *load = nullptr; 2065 2066 // Add the headers. We will remove them if they don't fit. 2067 // In the other partitions the headers are ordinary sections, so they don't 2068 // need to be added here. 2069 if (isMain) { 2070 load = addHdr(PT_LOAD, flags); 2071 load->add(Out::elfHeader); 2072 load->add(Out::programHeaders); 2073 } 2074 2075 // PT_GNU_RELRO includes all sections that should be marked as 2076 // read-only by dynamic linker after proccessing relocations. 2077 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2078 // an error message if more than one PT_GNU_RELRO PHDR is required. 2079 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2080 bool inRelroPhdr = false; 2081 OutputSection *relroEnd = nullptr; 2082 for (OutputSection *sec : outputSections) { 2083 if (sec->partition != partNo || !needsPtLoad(sec)) 2084 continue; 2085 if (isRelroSection(sec)) { 2086 inRelroPhdr = true; 2087 if (!relroEnd) 2088 relRo->add(sec); 2089 else 2090 error("section: " + sec->name + " is not contiguous with other relro" + 2091 " sections"); 2092 } else if (inRelroPhdr) { 2093 inRelroPhdr = false; 2094 relroEnd = sec; 2095 } 2096 } 2097 2098 for (OutputSection *sec : outputSections) { 2099 if (!(sec->flags & SHF_ALLOC)) 2100 break; 2101 if (!needsPtLoad(sec)) 2102 continue; 2103 2104 // Normally, sections in partitions other than the current partition are 2105 // ignored. But partition number 255 is a special case: it contains the 2106 // partition end marker (.part.end). It needs to be added to the main 2107 // partition so that a segment is created for it in the main partition, 2108 // which will cause the dynamic loader to reserve space for the other 2109 // partitions. 2110 if (sec->partition != partNo) { 2111 if (isMain && sec->partition == 255) 2112 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2113 continue; 2114 } 2115 2116 // Segments are contiguous memory regions that has the same attributes 2117 // (e.g. executable or writable). There is one phdr for each segment. 2118 // Therefore, we need to create a new phdr when the next section has 2119 // different flags or is loaded at a discontiguous address or memory 2120 // region using AT or AT> linker script command, respectively. At the same 2121 // time, we don't want to create a separate load segment for the headers, 2122 // even if the first output section has an AT or AT> attribute. 2123 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2124 if (!load || 2125 ((sec->lmaExpr || 2126 (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) && 2127 load->lastSec != Out::programHeaders) || 2128 sec->memRegion != load->firstSec->memRegion || flags != newFlags || 2129 sec == relroEnd) { 2130 load = addHdr(PT_LOAD, newFlags); 2131 flags = newFlags; 2132 } 2133 2134 load->add(sec); 2135 } 2136 2137 // Add a TLS segment if any. 2138 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2139 for (OutputSection *sec : outputSections) 2140 if (sec->partition == partNo && sec->flags & SHF_TLS) 2141 tlsHdr->add(sec); 2142 if (tlsHdr->firstSec) 2143 ret.push_back(tlsHdr); 2144 2145 // Add an entry for .dynamic. 2146 if (OutputSection *sec = part.dynamic->getParent()) 2147 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2148 2149 if (relRo->firstSec) 2150 ret.push_back(relRo); 2151 2152 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2153 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2154 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2155 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2156 ->add(part.ehFrameHdr->getParent()); 2157 2158 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2159 // the dynamic linker fill the segment with random data. 2160 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2161 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2162 2163 // PT_GNU_STACK is a special section to tell the loader to make the 2164 // pages for the stack non-executable. If you really want an executable 2165 // stack, you can pass -z execstack, but that's not recommended for 2166 // security reasons. 2167 unsigned perm = PF_R | PF_W; 2168 if (config->zExecstack) 2169 perm |= PF_X; 2170 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2171 2172 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2173 // is expected to perform W^X violations, such as calling mprotect(2) or 2174 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2175 // OpenBSD. 2176 if (config->zWxneeded) 2177 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2178 2179 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2180 // same alignment. 2181 PhdrEntry *note = nullptr; 2182 for (OutputSection *sec : outputSections) { 2183 if (sec->partition != partNo) 2184 continue; 2185 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2186 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2187 note = addHdr(PT_NOTE, PF_R); 2188 note->add(sec); 2189 } else { 2190 note = nullptr; 2191 } 2192 } 2193 return ret; 2194 } 2195 2196 template <class ELFT> 2197 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2198 unsigned pType, unsigned pFlags) { 2199 unsigned partNo = part.getNumber(); 2200 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2201 return cmd->partition == partNo && cmd->type == shType; 2202 }); 2203 if (i == outputSections.end()) 2204 return; 2205 2206 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2207 entry->add(*i); 2208 part.phdrs.push_back(entry); 2209 } 2210 2211 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 2212 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 2213 // linker can set the permissions. 2214 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2215 auto pageAlign = [](OutputSection *cmd) { 2216 if (cmd && !cmd->addrExpr) 2217 cmd->addrExpr = [=] { 2218 return alignTo(script->getDot(), config->maxPageSize); 2219 }; 2220 }; 2221 2222 for (Partition &part : partitions) { 2223 for (const PhdrEntry *p : part.phdrs) 2224 if (p->p_type == PT_LOAD && p->firstSec) 2225 pageAlign(p->firstSec); 2226 } 2227 } 2228 2229 // Compute an in-file position for a given section. The file offset must be the 2230 // same with its virtual address modulo the page size, so that the loader can 2231 // load executables without any address adjustment. 2232 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2233 // The first section in a PT_LOAD has to have congruent offset and address 2234 // module the page size. 2235 if (os->ptLoad && os->ptLoad->firstSec == os) { 2236 uint64_t alignment = 2237 std::max<uint64_t>(os->ptLoad->p_align, config->maxPageSize); 2238 return alignTo(off, alignment, os->addr); 2239 } 2240 2241 // File offsets are not significant for .bss sections other than the first one 2242 // in a PT_LOAD. By convention, we keep section offsets monotonically 2243 // increasing rather than setting to zero. 2244 if (os->type == SHT_NOBITS) 2245 return off; 2246 2247 // If the section is not in a PT_LOAD, we just have to align it. 2248 if (!os->ptLoad) 2249 return alignTo(off, os->alignment); 2250 2251 // If two sections share the same PT_LOAD the file offset is calculated 2252 // using this formula: Off2 = Off1 + (VA2 - VA1). 2253 OutputSection *first = os->ptLoad->firstSec; 2254 return first->offset + os->addr - first->addr; 2255 } 2256 2257 // Set an in-file position to a given section and returns the end position of 2258 // the section. 2259 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2260 off = computeFileOffset(os, off); 2261 os->offset = off; 2262 2263 if (os->type == SHT_NOBITS) 2264 return off; 2265 return off + os->size; 2266 } 2267 2268 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2269 uint64_t off = 0; 2270 for (OutputSection *sec : outputSections) 2271 if (sec->flags & SHF_ALLOC) 2272 off = setFileOffset(sec, off); 2273 fileSize = alignTo(off, config->wordsize); 2274 } 2275 2276 static std::string rangeToString(uint64_t addr, uint64_t len) { 2277 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2278 } 2279 2280 // Assign file offsets to output sections. 2281 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2282 uint64_t off = 0; 2283 off = setFileOffset(Out::elfHeader, off); 2284 off = setFileOffset(Out::programHeaders, off); 2285 2286 PhdrEntry *lastRX = nullptr; 2287 for (Partition &part : partitions) 2288 for (PhdrEntry *p : part.phdrs) 2289 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2290 lastRX = p; 2291 2292 for (OutputSection *sec : outputSections) { 2293 off = setFileOffset(sec, off); 2294 if (script->hasSectionsCommand) 2295 continue; 2296 2297 // If this is a last section of the last executable segment and that 2298 // segment is the last loadable segment, align the offset of the 2299 // following section to avoid loading non-segments parts of the file. 2300 if (lastRX && lastRX->lastSec == sec) 2301 off = alignTo(off, config->commonPageSize); 2302 } 2303 2304 sectionHeaderOff = alignTo(off, config->wordsize); 2305 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2306 2307 // Our logic assumes that sections have rising VA within the same segment. 2308 // With use of linker scripts it is possible to violate this rule and get file 2309 // offset overlaps or overflows. That should never happen with a valid script 2310 // which does not move the location counter backwards and usually scripts do 2311 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2312 // kernel, which control segment distribution explicitly and move the counter 2313 // backwards, so we have to allow doing that to support linking them. We 2314 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2315 // we want to prevent file size overflows because it would crash the linker. 2316 for (OutputSection *sec : outputSections) { 2317 if (sec->type == SHT_NOBITS) 2318 continue; 2319 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2320 error("unable to place section " + sec->name + " at file offset " + 2321 rangeToString(sec->offset, sec->size) + 2322 "; check your linker script for overflows"); 2323 } 2324 } 2325 2326 // Finalize the program headers. We call this function after we assign 2327 // file offsets and VAs to all sections. 2328 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2329 for (PhdrEntry *p : part.phdrs) { 2330 OutputSection *first = p->firstSec; 2331 OutputSection *last = p->lastSec; 2332 2333 if (first) { 2334 p->p_filesz = last->offset - first->offset; 2335 if (last->type != SHT_NOBITS) 2336 p->p_filesz += last->size; 2337 2338 p->p_memsz = last->addr + last->size - first->addr; 2339 p->p_offset = first->offset; 2340 p->p_vaddr = first->addr; 2341 2342 // File offsets in partitions other than the main partition are relative 2343 // to the offset of the ELF headers. Perform that adjustment now. 2344 if (part.elfHeader) 2345 p->p_offset -= part.elfHeader->getParent()->offset; 2346 2347 if (!p->hasLMA) 2348 p->p_paddr = first->getLMA(); 2349 } 2350 2351 if (p->p_type == PT_LOAD) { 2352 p->p_align = std::max<uint64_t>(p->p_align, config->maxPageSize); 2353 } else if (p->p_type == PT_GNU_RELRO) { 2354 p->p_align = 1; 2355 // The glibc dynamic loader rounds the size down, so we need to round up 2356 // to protect the last page. This is a no-op on FreeBSD which always 2357 // rounds up. 2358 p->p_memsz = alignTo(p->p_memsz, config->commonPageSize); 2359 } 2360 } 2361 } 2362 2363 // A helper struct for checkSectionOverlap. 2364 namespace { 2365 struct SectionOffset { 2366 OutputSection *sec; 2367 uint64_t offset; 2368 }; 2369 } // namespace 2370 2371 // Check whether sections overlap for a specific address range (file offsets, 2372 // load and virtual adresses). 2373 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2374 bool isVirtualAddr) { 2375 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2376 return a.offset < b.offset; 2377 }); 2378 2379 // Finding overlap is easy given a vector is sorted by start position. 2380 // If an element starts before the end of the previous element, they overlap. 2381 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2382 SectionOffset a = sections[i - 1]; 2383 SectionOffset b = sections[i]; 2384 if (b.offset >= a.offset + a.sec->size) 2385 continue; 2386 2387 // If both sections are in OVERLAY we allow the overlapping of virtual 2388 // addresses, because it is what OVERLAY was designed for. 2389 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2390 continue; 2391 2392 errorOrWarn("section " + a.sec->name + " " + name + 2393 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2394 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2395 b.sec->name + " range is " + 2396 rangeToString(b.offset, b.sec->size)); 2397 } 2398 } 2399 2400 // Check for overlapping sections and address overflows. 2401 // 2402 // In this function we check that none of the output sections have overlapping 2403 // file offsets. For SHF_ALLOC sections we also check that the load address 2404 // ranges and the virtual address ranges don't overlap 2405 template <class ELFT> void Writer<ELFT>::checkSections() { 2406 // First, check that section's VAs fit in available address space for target. 2407 for (OutputSection *os : outputSections) 2408 if ((os->addr + os->size < os->addr) || 2409 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2410 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2411 " of size 0x" + utohexstr(os->size) + 2412 " exceeds available address space"); 2413 2414 // Check for overlapping file offsets. In this case we need to skip any 2415 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2416 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2417 // binary is specified only add SHF_ALLOC sections are added to the output 2418 // file so we skip any non-allocated sections in that case. 2419 std::vector<SectionOffset> fileOffs; 2420 for (OutputSection *sec : outputSections) 2421 if (sec->size > 0 && sec->type != SHT_NOBITS && 2422 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2423 fileOffs.push_back({sec, sec->offset}); 2424 checkOverlap("file", fileOffs, false); 2425 2426 // When linking with -r there is no need to check for overlapping virtual/load 2427 // addresses since those addresses will only be assigned when the final 2428 // executable/shared object is created. 2429 if (config->relocatable) 2430 return; 2431 2432 // Checking for overlapping virtual and load addresses only needs to take 2433 // into account SHF_ALLOC sections since others will not be loaded. 2434 // Furthermore, we also need to skip SHF_TLS sections since these will be 2435 // mapped to other addresses at runtime and can therefore have overlapping 2436 // ranges in the file. 2437 std::vector<SectionOffset> vmas; 2438 for (OutputSection *sec : outputSections) 2439 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2440 vmas.push_back({sec, sec->addr}); 2441 checkOverlap("virtual address", vmas, true); 2442 2443 // Finally, check that the load addresses don't overlap. This will usually be 2444 // the same as the virtual addresses but can be different when using a linker 2445 // script with AT(). 2446 std::vector<SectionOffset> lmas; 2447 for (OutputSection *sec : outputSections) 2448 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2449 lmas.push_back({sec, sec->getLMA()}); 2450 checkOverlap("load address", lmas, false); 2451 } 2452 2453 // The entry point address is chosen in the following ways. 2454 // 2455 // 1. the '-e' entry command-line option; 2456 // 2. the ENTRY(symbol) command in a linker control script; 2457 // 3. the value of the symbol _start, if present; 2458 // 4. the number represented by the entry symbol, if it is a number; 2459 // 5. the address of the first byte of the .text section, if present; 2460 // 6. the address 0. 2461 static uint64_t getEntryAddr() { 2462 // Case 1, 2 or 3 2463 if (Symbol *b = symtab->find(config->entry)) 2464 return b->getVA(); 2465 2466 // Case 4 2467 uint64_t addr; 2468 if (to_integer(config->entry, addr)) 2469 return addr; 2470 2471 // Case 5 2472 if (OutputSection *sec = findSection(".text")) { 2473 if (config->warnMissingEntry) 2474 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2475 utohexstr(sec->addr)); 2476 return sec->addr; 2477 } 2478 2479 // Case 6 2480 if (config->warnMissingEntry) 2481 warn("cannot find entry symbol " + config->entry + 2482 "; not setting start address"); 2483 return 0; 2484 } 2485 2486 static uint16_t getELFType() { 2487 if (config->isPic) 2488 return ET_DYN; 2489 if (config->relocatable) 2490 return ET_REL; 2491 return ET_EXEC; 2492 } 2493 2494 template <class ELFT> void Writer<ELFT>::writeHeader() { 2495 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2496 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2497 2498 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2499 eHdr->e_type = getELFType(); 2500 eHdr->e_entry = getEntryAddr(); 2501 eHdr->e_shoff = sectionHeaderOff; 2502 2503 // Write the section header table. 2504 // 2505 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2506 // and e_shstrndx fields. When the value of one of these fields exceeds 2507 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2508 // use fields in the section header at index 0 to store 2509 // the value. The sentinel values and fields are: 2510 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2511 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2512 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2513 size_t num = outputSections.size() + 1; 2514 if (num >= SHN_LORESERVE) 2515 sHdrs->sh_size = num; 2516 else 2517 eHdr->e_shnum = num; 2518 2519 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2520 if (strTabIndex >= SHN_LORESERVE) { 2521 sHdrs->sh_link = strTabIndex; 2522 eHdr->e_shstrndx = SHN_XINDEX; 2523 } else { 2524 eHdr->e_shstrndx = strTabIndex; 2525 } 2526 2527 for (OutputSection *sec : outputSections) 2528 sec->writeHeaderTo<ELFT>(++sHdrs); 2529 } 2530 2531 // Open a result file. 2532 template <class ELFT> void Writer<ELFT>::openFile() { 2533 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2534 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2535 error("output file too large: " + Twine(fileSize) + " bytes"); 2536 return; 2537 } 2538 2539 unlinkAsync(config->outputFile); 2540 unsigned flags = 0; 2541 if (!config->relocatable) 2542 flags = FileOutputBuffer::F_executable; 2543 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2544 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2545 2546 if (!bufferOrErr) { 2547 error("failed to open " + config->outputFile + ": " + 2548 llvm::toString(bufferOrErr.takeError())); 2549 return; 2550 } 2551 buffer = std::move(*bufferOrErr); 2552 Out::bufferStart = buffer->getBufferStart(); 2553 } 2554 2555 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2556 for (OutputSection *sec : outputSections) 2557 if (sec->flags & SHF_ALLOC) 2558 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2559 } 2560 2561 static void fillTrap(uint8_t *i, uint8_t *end) { 2562 for (; i + 4 <= end; i += 4) 2563 memcpy(i, &target->trapInstr, 4); 2564 } 2565 2566 // Fill the last page of executable segments with trap instructions 2567 // instead of leaving them as zero. Even though it is not required by any 2568 // standard, it is in general a good thing to do for security reasons. 2569 // 2570 // We'll leave other pages in segments as-is because the rest will be 2571 // overwritten by output sections. 2572 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2573 if (script->hasSectionsCommand) 2574 return; 2575 2576 for (Partition &part : partitions) { 2577 // Fill the last page. 2578 for (PhdrEntry *p : part.phdrs) 2579 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2580 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2581 config->commonPageSize), 2582 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2583 config->commonPageSize)); 2584 2585 // Round up the file size of the last segment to the page boundary iff it is 2586 // an executable segment to ensure that other tools don't accidentally 2587 // trim the instruction padding (e.g. when stripping the file). 2588 PhdrEntry *last = nullptr; 2589 for (PhdrEntry *p : part.phdrs) 2590 if (p->p_type == PT_LOAD) 2591 last = p; 2592 2593 if (last && (last->p_flags & PF_X)) 2594 last->p_memsz = last->p_filesz = 2595 alignTo(last->p_filesz, config->commonPageSize); 2596 } 2597 } 2598 2599 // Write section contents to a mmap'ed file. 2600 template <class ELFT> void Writer<ELFT>::writeSections() { 2601 // In -r or -emit-relocs mode, write the relocation sections first as in 2602 // ELf_Rel targets we might find out that we need to modify the relocated 2603 // section while doing it. 2604 for (OutputSection *sec : outputSections) 2605 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2606 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2607 2608 for (OutputSection *sec : outputSections) 2609 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2610 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2611 } 2612 2613 // Split one uint8 array into small pieces of uint8 arrays. 2614 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2615 size_t chunkSize) { 2616 std::vector<ArrayRef<uint8_t>> ret; 2617 while (arr.size() > chunkSize) { 2618 ret.push_back(arr.take_front(chunkSize)); 2619 arr = arr.drop_front(chunkSize); 2620 } 2621 if (!arr.empty()) 2622 ret.push_back(arr); 2623 return ret; 2624 } 2625 2626 // Computes a hash value of Data using a given hash function. 2627 // In order to utilize multiple cores, we first split data into 1MB 2628 // chunks, compute a hash for each chunk, and then compute a hash value 2629 // of the hash values. 2630 static void 2631 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2632 llvm::ArrayRef<uint8_t> data, 2633 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2634 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2635 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2636 2637 // Compute hash values. 2638 parallelForEachN(0, chunks.size(), [&](size_t i) { 2639 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2640 }); 2641 2642 // Write to the final output buffer. 2643 hashFn(hashBuf.data(), hashes); 2644 } 2645 2646 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2647 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2648 return; 2649 2650 if (config->buildId == BuildIdKind::Hexstring) { 2651 for (Partition &part : partitions) 2652 part.buildId->writeBuildId(config->buildIdVector); 2653 return; 2654 } 2655 2656 // Compute a hash of all sections of the output file. 2657 size_t hashSize = mainPart->buildId->hashSize; 2658 std::vector<uint8_t> buildId(hashSize); 2659 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2660 2661 switch (config->buildId) { 2662 case BuildIdKind::Fast: 2663 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2664 write64le(dest, xxHash64(arr)); 2665 }); 2666 break; 2667 case BuildIdKind::Md5: 2668 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2669 memcpy(dest, MD5::hash(arr).data(), hashSize); 2670 }); 2671 break; 2672 case BuildIdKind::Sha1: 2673 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2674 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2675 }); 2676 break; 2677 case BuildIdKind::Uuid: 2678 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2679 error("entropy source failure: " + ec.message()); 2680 break; 2681 default: 2682 llvm_unreachable("unknown BuildIdKind"); 2683 } 2684 for (Partition &part : partitions) 2685 part.buildId->writeBuildId(buildId); 2686 } 2687 2688 template void elf::writeResult<ELF32LE>(); 2689 template void elf::writeResult<ELF32BE>(); 2690 template void elf::writeResult<ELF64LE>(); 2691 template void elf::writeResult<ELF64BE>(); 2692