1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Arrays.h" 24 #include "lld/Common/CommonLinkerContext.h" 25 #include "lld/Common/Filesystem.h" 26 #include "lld/Common/Strings.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/Support/BLAKE3.h" 29 #include "llvm/Support/Parallel.h" 30 #include "llvm/Support/RandomNumberGenerator.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void addSectionSymbols(); 57 void sortSections(); 58 void resolveShfLinkOrder(); 59 void finalizeAddressDependentContent(); 60 void optimizeBasicBlockJumps(); 61 void sortInputSections(); 62 void sortOrphanSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection &osec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool needsInterpSection() { 94 return !config->relocatable && !config->shared && 95 !config->dynamicLinker.empty() && script->needsInterpSection(); 96 } 97 98 template <class ELFT> void elf::writeResult() { 99 Writer<ELFT>().run(); 100 } 101 102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 103 auto it = std::stable_partition( 104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 105 if (p->p_type != PT_LOAD) 106 return true; 107 if (!p->firstSec) 108 return false; 109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 110 return size != 0; 111 }); 112 113 // Clear OutputSection::ptLoad for sections contained in removed 114 // segments. 115 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 116 for (OutputSection *sec : outputSections) 117 if (removed.count(sec->ptLoad)) 118 sec->ptLoad = nullptr; 119 phdrs.erase(it, phdrs.end()); 120 } 121 122 void elf::copySectionsIntoPartitions() { 123 SmallVector<InputSectionBase *, 0> newSections; 124 const size_t ehSize = ctx.ehInputSections.size(); 125 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 126 for (InputSectionBase *s : ctx.inputSections) { 127 if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE) 128 continue; 129 auto *copy = make<InputSection>(cast<InputSection>(*s)); 130 copy->partition = part; 131 newSections.push_back(copy); 132 } 133 for (size_t i = 0; i != ehSize; ++i) { 134 assert(ctx.ehInputSections[i]->isLive()); 135 auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]); 136 copy->partition = part; 137 ctx.ehInputSections.push_back(copy); 138 } 139 } 140 141 ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(), 142 newSections.end()); 143 } 144 145 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 146 uint64_t val, uint8_t stOther = STV_HIDDEN) { 147 Symbol *s = symtab.find(name); 148 if (!s || s->isDefined() || s->isCommon()) 149 return nullptr; 150 151 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val, 152 /*size=*/0, sec}); 153 s->isUsedInRegularObj = true; 154 return cast<Defined>(s); 155 } 156 157 static Defined *addAbsolute(StringRef name) { 158 Symbol *sym = symtab.addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 159 STT_NOTYPE, 0, 0, nullptr}); 160 sym->isUsedInRegularObj = true; 161 return cast<Defined>(sym); 162 } 163 164 // The linker is expected to define some symbols depending on 165 // the linking result. This function defines such symbols. 166 void elf::addReservedSymbols() { 167 if (config->emachine == EM_MIPS) { 168 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 169 // so that it points to an absolute address which by default is relative 170 // to GOT. Default offset is 0x7ff0. 171 // See "Global Data Symbols" in Chapter 6 in the following document: 172 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 173 ElfSym::mipsGp = addAbsolute("_gp"); 174 175 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 176 // start of function and 'gp' pointer into GOT. 177 if (symtab.find("_gp_disp")) 178 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 179 180 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 181 // pointer. This symbol is used in the code generated by .cpload pseudo-op 182 // in case of using -mno-shared option. 183 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 184 if (symtab.find("__gnu_local_gp")) 185 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 186 } else if (config->emachine == EM_PPC) { 187 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 188 // support Small Data Area, define it arbitrarily as 0. 189 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 190 } else if (config->emachine == EM_PPC64) { 191 addPPC64SaveRestore(); 192 } 193 194 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 195 // combines the typical ELF GOT with the small data sections. It commonly 196 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 197 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 198 // represent the TOC base which is offset by 0x8000 bytes from the start of 199 // the .got section. 200 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 201 // correctness of some relocations depends on its value. 202 StringRef gotSymName = 203 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 204 205 if (Symbol *s = symtab.find(gotSymName)) { 206 if (s->isDefined()) { 207 error(toString(s->file) + " cannot redefine linker defined symbol '" + 208 gotSymName + "'"); 209 return; 210 } 211 212 uint64_t gotOff = 0; 213 if (config->emachine == EM_PPC64) 214 gotOff = 0x8000; 215 216 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 217 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 218 ElfSym::globalOffsetTable = cast<Defined>(s); 219 } 220 221 // __ehdr_start is the location of ELF file headers. Note that we define 222 // this symbol unconditionally even when using a linker script, which 223 // differs from the behavior implemented by GNU linker which only define 224 // this symbol if ELF headers are in the memory mapped segment. 225 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 226 227 // __executable_start is not documented, but the expectation of at 228 // least the Android libc is that it points to the ELF header. 229 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 230 231 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 232 // each DSO. The address of the symbol doesn't matter as long as they are 233 // different in different DSOs, so we chose the start address of the DSO. 234 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 235 236 // If linker script do layout we do not need to create any standard symbols. 237 if (script->hasSectionsCommand) 238 return; 239 240 auto add = [](StringRef s, int64_t pos) { 241 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 242 }; 243 244 ElfSym::bss = add("__bss_start", 0); 245 ElfSym::end1 = add("end", -1); 246 ElfSym::end2 = add("_end", -1); 247 ElfSym::etext1 = add("etext", -1); 248 ElfSym::etext2 = add("_etext", -1); 249 ElfSym::edata1 = add("edata", -1); 250 ElfSym::edata2 = add("_edata", -1); 251 } 252 253 static void demoteDefined(Defined &sym, DenseMap<SectionBase *, size_t> &map) { 254 if (map.empty()) 255 for (auto [i, sec] : llvm::enumerate(sym.file->getSections())) 256 map.try_emplace(sec, i); 257 // Change WEAK to GLOBAL so that if a scanned relocation references sym, 258 // maybeReportUndefined will report an error. 259 uint8_t binding = sym.isWeak() ? uint8_t(STB_GLOBAL) : sym.binding; 260 Undefined(sym.file, sym.getName(), binding, sym.stOther, sym.type, 261 /*discardedSecIdx=*/map.lookup(sym.section)) 262 .overwrite(sym); 263 } 264 265 // If all references to a DSO happen to be weak, the DSO is not added to 266 // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid 267 // dangling references to an unneeded DSO. Use a weak binding to avoid 268 // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols. 269 // 270 // In addition, demote symbols defined in discarded sections, so that 271 // references to /DISCARD/ discarded symbols will lead to errors. 272 static void demoteSymbolsAndComputeIsPreemptible() { 273 llvm::TimeTraceScope timeScope("Demote symbols"); 274 DenseMap<InputFile *, DenseMap<SectionBase *, size_t>> sectionIndexMap; 275 for (Symbol *sym : symtab.getSymbols()) { 276 if (auto *d = dyn_cast<Defined>(sym)) { 277 if (d->section && !d->section->isLive()) 278 demoteDefined(*d, sectionIndexMap[d->file]); 279 } else { 280 auto *s = dyn_cast<SharedSymbol>(sym); 281 if (sym->isLazy() || (s && !cast<SharedFile>(s->file)->isNeeded)) { 282 uint8_t binding = sym->isLazy() ? sym->binding : uint8_t(STB_WEAK); 283 Undefined(nullptr, sym->getName(), binding, sym->stOther, sym->type) 284 .overwrite(*sym); 285 sym->versionId = VER_NDX_GLOBAL; 286 } 287 } 288 289 if (config->hasDynSymTab) 290 sym->isPreemptible = computeIsPreemptible(*sym); 291 } 292 } 293 294 bool elf::hasMemtag() { 295 return config->emachine == EM_AARCH64 && 296 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE; 297 } 298 299 // Fully static executables don't support MTE globals at this point in time, as 300 // we currently rely on: 301 // - A dynamic loader to process relocations, and 302 // - Dynamic entries. 303 // This restriction could be removed in future by re-using some of the ideas 304 // that ifuncs use in fully static executables. 305 bool elf::canHaveMemtagGlobals() { 306 return hasMemtag() && 307 (config->relocatable || config->shared || needsInterpSection()); 308 } 309 310 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 311 for (SectionCommand *cmd : script->sectionCommands) 312 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 313 if (osd->osec.name == name && osd->osec.partition == partition) 314 return &osd->osec; 315 return nullptr; 316 } 317 318 template <class ELFT> void elf::createSyntheticSections() { 319 // Initialize all pointers with NULL. This is needed because 320 // you can call lld::elf::main more than once as a library. 321 Out::tlsPhdr = nullptr; 322 Out::preinitArray = nullptr; 323 Out::initArray = nullptr; 324 Out::finiArray = nullptr; 325 326 // Add the .interp section first because it is not a SyntheticSection. 327 // The removeUnusedSyntheticSections() function relies on the 328 // SyntheticSections coming last. 329 if (needsInterpSection()) { 330 for (size_t i = 1; i <= partitions.size(); ++i) { 331 InputSection *sec = createInterpSection(); 332 sec->partition = i; 333 ctx.inputSections.push_back(sec); 334 } 335 } 336 337 auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); }; 338 339 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 340 341 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 342 Out::programHeaders->addralign = config->wordsize; 343 344 if (config->strip != StripPolicy::All) { 345 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 346 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 347 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 348 } 349 350 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 351 add(*in.bss); 352 353 // If there is a SECTIONS command and a .data.rel.ro section name use name 354 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 355 // This makes sure our relro is contiguous. 356 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 357 in.bssRelRo = std::make_unique<BssSection>( 358 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 359 add(*in.bssRelRo); 360 361 // Add MIPS-specific sections. 362 if (config->emachine == EM_MIPS) { 363 if (!config->shared && config->hasDynSymTab) { 364 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 365 add(*in.mipsRldMap); 366 } 367 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 368 add(*in.mipsAbiFlags); 369 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 370 add(*in.mipsOptions); 371 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 372 add(*in.mipsReginfo); 373 } 374 375 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 376 377 const unsigned threadCount = config->threadCount; 378 for (Partition &part : partitions) { 379 auto add = [&](SyntheticSection &sec) { 380 sec.partition = part.getNumber(); 381 ctx.inputSections.push_back(&sec); 382 }; 383 384 if (!part.name.empty()) { 385 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 386 part.elfHeader->name = part.name; 387 add(*part.elfHeader); 388 389 part.programHeaders = 390 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 391 add(*part.programHeaders); 392 } 393 394 if (config->buildId != BuildIdKind::None) { 395 part.buildId = std::make_unique<BuildIdSection>(); 396 add(*part.buildId); 397 } 398 399 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 400 part.dynSymTab = 401 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 402 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 403 404 if (hasMemtag()) { 405 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(); 406 add(*part.memtagAndroidNote); 407 if (canHaveMemtagGlobals()) { 408 part.memtagGlobalDescriptors = 409 std::make_unique<MemtagGlobalDescriptors>(); 410 add(*part.memtagGlobalDescriptors); 411 } 412 } 413 414 if (config->androidPackDynRelocs) 415 part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>( 416 relaDynName, threadCount); 417 else 418 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 419 relaDynName, config->zCombreloc, threadCount); 420 421 if (config->hasDynSymTab) { 422 add(*part.dynSymTab); 423 424 part.verSym = std::make_unique<VersionTableSection>(); 425 add(*part.verSym); 426 427 if (!namedVersionDefs().empty()) { 428 part.verDef = std::make_unique<VersionDefinitionSection>(); 429 add(*part.verDef); 430 } 431 432 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 433 add(*part.verNeed); 434 435 if (config->gnuHash) { 436 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 437 add(*part.gnuHashTab); 438 } 439 440 if (config->sysvHash) { 441 part.hashTab = std::make_unique<HashTableSection>(); 442 add(*part.hashTab); 443 } 444 445 add(*part.dynamic); 446 add(*part.dynStrTab); 447 add(*part.relaDyn); 448 } 449 450 if (config->relrPackDynRelocs) { 451 part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount); 452 add(*part.relrDyn); 453 } 454 455 if (!config->relocatable) { 456 if (config->ehFrameHdr) { 457 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 458 add(*part.ehFrameHdr); 459 } 460 part.ehFrame = std::make_unique<EhFrameSection>(); 461 add(*part.ehFrame); 462 463 if (config->emachine == EM_ARM) { 464 // This section replaces all the individual .ARM.exidx InputSections. 465 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 466 add(*part.armExidx); 467 } 468 } 469 470 if (!config->packageMetadata.empty()) { 471 part.packageMetadataNote = std::make_unique<PackageMetadataNote>(); 472 add(*part.packageMetadataNote); 473 } 474 } 475 476 if (partitions.size() != 1) { 477 // Create the partition end marker. This needs to be in partition number 255 478 // so that it is sorted after all other partitions. It also has other 479 // special handling (see createPhdrs() and combineEhSections()). 480 in.partEnd = 481 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 482 in.partEnd->partition = 255; 483 add(*in.partEnd); 484 485 in.partIndex = std::make_unique<PartitionIndexSection>(); 486 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 487 addOptionalRegular("__part_index_end", in.partIndex.get(), 488 in.partIndex->getSize()); 489 add(*in.partIndex); 490 } 491 492 // Add .got. MIPS' .got is so different from the other archs, 493 // it has its own class. 494 if (config->emachine == EM_MIPS) { 495 in.mipsGot = std::make_unique<MipsGotSection>(); 496 add(*in.mipsGot); 497 } else { 498 in.got = std::make_unique<GotSection>(); 499 add(*in.got); 500 } 501 502 if (config->emachine == EM_PPC) { 503 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 504 add(*in.ppc32Got2); 505 } 506 507 if (config->emachine == EM_PPC64) { 508 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 509 add(*in.ppc64LongBranchTarget); 510 } 511 512 in.gotPlt = std::make_unique<GotPltSection>(); 513 add(*in.gotPlt); 514 in.igotPlt = std::make_unique<IgotPltSection>(); 515 add(*in.igotPlt); 516 // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the 517 // section in the absence of PHDRS/SECTIONS commands. 518 if (config->zRelro && ((script->phdrsCommands.empty() && 519 !script->hasSectionsCommand) || script->seenRelroEnd)) { 520 in.relroPadding = std::make_unique<RelroPaddingSection>(); 521 add(*in.relroPadding); 522 } 523 524 if (config->emachine == EM_ARM) { 525 in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(); 526 add(*in.armCmseSGSection); 527 } 528 529 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 530 // it as a relocation and ensure the referenced section is created. 531 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 532 if (target->gotBaseSymInGotPlt) 533 in.gotPlt->hasGotPltOffRel = true; 534 else 535 in.got->hasGotOffRel = true; 536 } 537 538 if (config->gdbIndex) 539 add(*GdbIndexSection::create<ELFT>()); 540 541 // We always need to add rel[a].plt to output if it has entries. 542 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 543 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 544 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false, 545 /*threadCount=*/1); 546 add(*in.relaPlt); 547 548 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 549 // relocations are processed last by the dynamic loader. We cannot place the 550 // iplt section in .rel.dyn when Android relocation packing is enabled because 551 // that would cause a section type mismatch. However, because the Android 552 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 553 // behaviour by placing the iplt section in .rel.plt. 554 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 555 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 556 /*sort=*/false, /*threadCount=*/1); 557 add(*in.relaIplt); 558 559 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 560 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 561 in.ibtPlt = std::make_unique<IBTPltSection>(); 562 add(*in.ibtPlt); 563 } 564 565 if (config->emachine == EM_PPC) 566 in.plt = std::make_unique<PPC32GlinkSection>(); 567 else 568 in.plt = std::make_unique<PltSection>(); 569 add(*in.plt); 570 in.iplt = std::make_unique<IpltSection>(); 571 add(*in.iplt); 572 573 if (config->andFeatures) 574 add(*make<GnuPropertySection>()); 575 576 // .note.GNU-stack is always added when we are creating a re-linkable 577 // object file. Other linkers are using the presence of this marker 578 // section to control the executable-ness of the stack area, but that 579 // is irrelevant these days. Stack area should always be non-executable 580 // by default. So we emit this section unconditionally. 581 if (config->relocatable) 582 add(*make<GnuStackSection>()); 583 584 if (in.symTab) 585 add(*in.symTab); 586 if (in.symTabShndx) 587 add(*in.symTabShndx); 588 add(*in.shStrTab); 589 if (in.strTab) 590 add(*in.strTab); 591 } 592 593 // The main function of the writer. 594 template <class ELFT> void Writer<ELFT>::run() { 595 // Now that we have a complete set of output sections. This function 596 // completes section contents. For example, we need to add strings 597 // to the string table, and add entries to .got and .plt. 598 // finalizeSections does that. 599 finalizeSections(); 600 checkExecuteOnly(); 601 602 // If --compressed-debug-sections is specified, compress .debug_* sections. 603 // Do it right now because it changes the size of output sections. 604 for (OutputSection *sec : outputSections) 605 sec->maybeCompress<ELFT>(); 606 607 if (script->hasSectionsCommand) 608 script->allocateHeaders(mainPart->phdrs); 609 610 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 611 // 0 sized region. This has to be done late since only after assignAddresses 612 // we know the size of the sections. 613 for (Partition &part : partitions) 614 removeEmptyPTLoad(part.phdrs); 615 616 if (!config->oFormatBinary) 617 assignFileOffsets(); 618 else 619 assignFileOffsetsBinary(); 620 621 for (Partition &part : partitions) 622 setPhdrs(part); 623 624 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections() 625 // because the files may be useful in case checkSections() or openFile() 626 // fails, for example, due to an erroneous file size. 627 writeMapAndCref(); 628 629 // Handle --print-memory-usage option. 630 if (config->printMemoryUsage) 631 script->printMemoryUsage(lld::outs()); 632 633 if (config->checkSections) 634 checkSections(); 635 636 // It does not make sense try to open the file if we have error already. 637 if (errorCount()) 638 return; 639 640 { 641 llvm::TimeTraceScope timeScope("Write output file"); 642 // Write the result down to a file. 643 openFile(); 644 if (errorCount()) 645 return; 646 647 if (!config->oFormatBinary) { 648 if (config->zSeparate != SeparateSegmentKind::None) 649 writeTrapInstr(); 650 writeHeader(); 651 writeSections(); 652 } else { 653 writeSectionsBinary(); 654 } 655 656 // Backfill .note.gnu.build-id section content. This is done at last 657 // because the content is usually a hash value of the entire output file. 658 writeBuildId(); 659 if (errorCount()) 660 return; 661 662 if (auto e = buffer->commit()) 663 fatal("failed to write output '" + buffer->getPath() + 664 "': " + toString(std::move(e))); 665 666 if (!config->cmseOutputLib.empty()) 667 writeARMCmseImportLib<ELFT>(); 668 } 669 } 670 671 template <class ELFT, class RelTy> 672 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 673 llvm::ArrayRef<RelTy> rels) { 674 for (const RelTy &rel : rels) { 675 Symbol &sym = file->getRelocTargetSym(rel); 676 if (sym.isLocal()) 677 sym.used = true; 678 } 679 } 680 681 // The function ensures that the "used" field of local symbols reflects the fact 682 // that the symbol is used in a relocation from a live section. 683 template <class ELFT> static void markUsedLocalSymbols() { 684 // With --gc-sections, the field is already filled. 685 // See MarkLive<ELFT>::resolveReloc(). 686 if (config->gcSections) 687 return; 688 for (ELFFileBase *file : ctx.objectFiles) { 689 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 690 for (InputSectionBase *s : f->getSections()) { 691 InputSection *isec = dyn_cast_or_null<InputSection>(s); 692 if (!isec) 693 continue; 694 if (isec->type == SHT_REL) 695 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 696 else if (isec->type == SHT_RELA) 697 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 698 } 699 } 700 } 701 702 static bool shouldKeepInSymtab(const Defined &sym) { 703 if (sym.isSection()) 704 return false; 705 706 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 707 // from live sections. 708 if (sym.used && config->copyRelocs) 709 return true; 710 711 // Exclude local symbols pointing to .ARM.exidx sections. 712 // They are probably mapping symbols "$d", which are optional for these 713 // sections. After merging the .ARM.exidx sections, some of these symbols 714 // may become dangling. The easiest way to avoid the issue is not to add 715 // them to the symbol table from the beginning. 716 if (config->emachine == EM_ARM && sym.section && 717 sym.section->type == SHT_ARM_EXIDX) 718 return false; 719 720 if (config->discard == DiscardPolicy::None) 721 return true; 722 if (config->discard == DiscardPolicy::All) 723 return false; 724 725 // In ELF assembly .L symbols are normally discarded by the assembler. 726 // If the assembler fails to do so, the linker discards them if 727 // * --discard-locals is used. 728 // * The symbol is in a SHF_MERGE section, which is normally the reason for 729 // the assembler keeping the .L symbol. 730 if (sym.getName().starts_with(".L") && 731 (config->discard == DiscardPolicy::Locals || 732 (sym.section && (sym.section->flags & SHF_MERGE)))) 733 return false; 734 return true; 735 } 736 737 bool lld::elf::includeInSymtab(const Symbol &b) { 738 if (auto *d = dyn_cast<Defined>(&b)) { 739 // Always include absolute symbols. 740 SectionBase *sec = d->section; 741 if (!sec) 742 return true; 743 assert(sec->isLive()); 744 745 if (auto *s = dyn_cast<MergeInputSection>(sec)) 746 return s->getSectionPiece(d->value).live; 747 return true; 748 } 749 return b.used || !config->gcSections; 750 } 751 752 // Scan local symbols to: 753 // 754 // - demote symbols defined relative to /DISCARD/ discarded input sections so 755 // that relocations referencing them will lead to errors. 756 // - copy eligible symbols to .symTab 757 static void demoteAndCopyLocalSymbols() { 758 llvm::TimeTraceScope timeScope("Add local symbols"); 759 for (ELFFileBase *file : ctx.objectFiles) { 760 DenseMap<SectionBase *, size_t> sectionIndexMap; 761 for (Symbol *b : file->getLocalSymbols()) { 762 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 763 auto *dr = dyn_cast<Defined>(b); 764 if (!dr) 765 continue; 766 767 if (dr->section && !dr->section->isLive()) 768 demoteDefined(*dr, sectionIndexMap); 769 else if (in.symTab && includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 770 in.symTab->addSymbol(b); 771 } 772 } 773 } 774 775 // Create a section symbol for each output section so that we can represent 776 // relocations that point to the section. If we know that no relocation is 777 // referring to a section (that happens if the section is a synthetic one), we 778 // don't create a section symbol for that section. 779 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 780 for (SectionCommand *cmd : script->sectionCommands) { 781 auto *osd = dyn_cast<OutputDesc>(cmd); 782 if (!osd) 783 continue; 784 OutputSection &osec = osd->osec; 785 InputSectionBase *isec = nullptr; 786 // Iterate over all input sections and add a STT_SECTION symbol if any input 787 // section may be a relocation target. 788 for (SectionCommand *cmd : osec.commands) { 789 auto *isd = dyn_cast<InputSectionDescription>(cmd); 790 if (!isd) 791 continue; 792 for (InputSectionBase *s : isd->sections) { 793 // Relocations are not using REL[A] section symbols. 794 if (s->type == SHT_REL || s->type == SHT_RELA) 795 continue; 796 797 // Unlike other synthetic sections, mergeable output sections contain 798 // data copied from input sections, and there may be a relocation 799 // pointing to its contents if -r or --emit-reloc is given. 800 if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE)) 801 continue; 802 803 isec = s; 804 break; 805 } 806 } 807 if (!isec) 808 continue; 809 810 // Set the symbol to be relative to the output section so that its st_value 811 // equals the output section address. Note, there may be a gap between the 812 // start of the output section and isec. 813 in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, 814 STT_SECTION, 815 /*value=*/0, /*size=*/0, &osec)); 816 } 817 } 818 819 // Today's loaders have a feature to make segments read-only after 820 // processing dynamic relocations to enhance security. PT_GNU_RELRO 821 // is defined for that. 822 // 823 // This function returns true if a section needs to be put into a 824 // PT_GNU_RELRO segment. 825 static bool isRelroSection(const OutputSection *sec) { 826 if (!config->zRelro) 827 return false; 828 if (sec->relro) 829 return true; 830 831 uint64_t flags = sec->flags; 832 833 // Non-allocatable or non-writable sections don't need RELRO because 834 // they are not writable or not even mapped to memory in the first place. 835 // RELRO is for sections that are essentially read-only but need to 836 // be writable only at process startup to allow dynamic linker to 837 // apply relocations. 838 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 839 return false; 840 841 // Once initialized, TLS data segments are used as data templates 842 // for a thread-local storage. For each new thread, runtime 843 // allocates memory for a TLS and copy templates there. No thread 844 // are supposed to use templates directly. Thus, it can be in RELRO. 845 if (flags & SHF_TLS) 846 return true; 847 848 // .init_array, .preinit_array and .fini_array contain pointers to 849 // functions that are executed on process startup or exit. These 850 // pointers are set by the static linker, and they are not expected 851 // to change at runtime. But if you are an attacker, you could do 852 // interesting things by manipulating pointers in .fini_array, for 853 // example. So they are put into RELRO. 854 uint32_t type = sec->type; 855 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 856 type == SHT_PREINIT_ARRAY) 857 return true; 858 859 // .got contains pointers to external symbols. They are resolved by 860 // the dynamic linker when a module is loaded into memory, and after 861 // that they are not expected to change. So, it can be in RELRO. 862 if (in.got && sec == in.got->getParent()) 863 return true; 864 865 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 866 // through r2 register, which is reserved for that purpose. Since r2 is used 867 // for accessing .got as well, .got and .toc need to be close enough in the 868 // virtual address space. Usually, .toc comes just after .got. Since we place 869 // .got into RELRO, .toc needs to be placed into RELRO too. 870 if (sec->name.equals(".toc")) 871 return true; 872 873 // .got.plt contains pointers to external function symbols. They are 874 // by default resolved lazily, so we usually cannot put it into RELRO. 875 // However, if "-z now" is given, the lazy symbol resolution is 876 // disabled, which enables us to put it into RELRO. 877 if (sec == in.gotPlt->getParent()) 878 return config->zNow; 879 880 if (in.relroPadding && sec == in.relroPadding->getParent()) 881 return true; 882 883 // .dynamic section contains data for the dynamic linker, and 884 // there's no need to write to it at runtime, so it's better to put 885 // it into RELRO. 886 if (sec->name == ".dynamic") 887 return true; 888 889 // Sections with some special names are put into RELRO. This is a 890 // bit unfortunate because section names shouldn't be significant in 891 // ELF in spirit. But in reality many linker features depend on 892 // magic section names. 893 StringRef s = sec->name; 894 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 895 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 896 s == ".fini_array" || s == ".init_array" || 897 s == ".openbsd.randomdata" || s == ".preinit_array"; 898 } 899 900 // We compute a rank for each section. The rank indicates where the 901 // section should be placed in the file. Instead of using simple 902 // numbers (0,1,2...), we use a series of flags. One for each decision 903 // point when placing the section. 904 // Using flags has two key properties: 905 // * It is easy to check if a give branch was taken. 906 // * It is easy two see how similar two ranks are (see getRankProximity). 907 enum RankFlags { 908 RF_NOT_ADDR_SET = 1 << 27, 909 RF_NOT_ALLOC = 1 << 26, 910 RF_PARTITION = 1 << 18, // Partition number (8 bits) 911 RF_NOT_SPECIAL = 1 << 17, 912 RF_WRITE = 1 << 16, 913 RF_EXEC_WRITE = 1 << 15, 914 RF_EXEC = 1 << 14, 915 RF_RODATA = 1 << 13, 916 RF_LARGE = 1 << 12, 917 RF_NOT_RELRO = 1 << 9, 918 RF_NOT_TLS = 1 << 8, 919 RF_BSS = 1 << 7, 920 }; 921 922 static unsigned getSectionRank(OutputSection &osec) { 923 unsigned rank = osec.partition * RF_PARTITION; 924 925 // We want to put section specified by -T option first, so we 926 // can start assigning VA starting from them later. 927 if (config->sectionStartMap.count(osec.name)) 928 return rank; 929 rank |= RF_NOT_ADDR_SET; 930 931 // Allocatable sections go first to reduce the total PT_LOAD size and 932 // so debug info doesn't change addresses in actual code. 933 if (!(osec.flags & SHF_ALLOC)) 934 return rank | RF_NOT_ALLOC; 935 936 if (osec.type == SHT_LLVM_PART_EHDR) 937 return rank; 938 if (osec.type == SHT_LLVM_PART_PHDR) 939 return rank | 1; 940 941 // Put .interp first because some loaders want to see that section 942 // on the first page of the executable file when loaded into memory. 943 if (osec.name == ".interp") 944 return rank | 2; 945 946 // Put .note sections at the beginning so that they are likely to be included 947 // in a truncate core file. In particular, .note.gnu.build-id, if available, 948 // can identify the object file. 949 if (osec.type == SHT_NOTE) 950 return rank | 3; 951 952 rank |= RF_NOT_SPECIAL; 953 954 // Sort sections based on their access permission in the following 955 // order: R, RX, RXW, RW(RELRO), RW(non-RELRO). 956 // 957 // Read-only sections come first such that they go in the PT_LOAD covering the 958 // program headers at the start of the file. 959 // 960 // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro 961 // .bss.rel.ro) | .data .bss), where | marks where page alignment happens. 962 // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro 963 // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment 964 // places. 965 bool isExec = osec.flags & SHF_EXECINSTR; 966 bool isWrite = osec.flags & SHF_WRITE; 967 968 if (!isWrite && !isExec) { 969 // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to 970 // alleviate relocation overflow pressure. Large special sections such as 971 // .dynstr and .dynsym can be away from .text. 972 if (osec.type == SHT_PROGBITS) 973 rank |= RF_RODATA; 974 // Among PROGBITS sections, place .lrodata further from .text. 975 if (!(osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64)) 976 rank |= RF_LARGE; 977 } else if (isExec) { 978 rank |= isWrite ? RF_EXEC_WRITE : RF_EXEC; 979 } else { 980 rank |= RF_WRITE; 981 // The TLS initialization block needs to be a single contiguous block. Place 982 // TLS sections directly before the other RELRO sections. 983 if (!(osec.flags & SHF_TLS)) 984 rank |= RF_NOT_TLS; 985 if (isRelroSection(&osec)) 986 osec.relro = true; 987 else 988 rank |= RF_NOT_RELRO; 989 // Place .ldata and .lbss after .bss. Making .bss closer to .text alleviates 990 // relocation overflow pressure. 991 if (osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64) 992 rank |= RF_LARGE; 993 } 994 995 // Within TLS sections, or within other RelRo sections, or within non-RelRo 996 // sections, place non-NOBITS sections first. 997 if (osec.type == SHT_NOBITS) 998 rank |= RF_BSS; 999 1000 // Some architectures have additional ordering restrictions for sections 1001 // within the same PT_LOAD. 1002 if (config->emachine == EM_PPC64) { 1003 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1004 // that we would like to make sure appear is a specific order to maximize 1005 // their coverage by a single signed 16-bit offset from the TOC base 1006 // pointer. 1007 StringRef name = osec.name; 1008 if (name == ".got") 1009 rank |= 1; 1010 else if (name == ".toc") 1011 rank |= 2; 1012 } 1013 1014 if (config->emachine == EM_MIPS) { 1015 if (osec.name != ".got") 1016 rank |= 1; 1017 // All sections with SHF_MIPS_GPREL flag should be grouped together 1018 // because data in these sections is addressable with a gp relative address. 1019 if (osec.flags & SHF_MIPS_GPREL) 1020 rank |= 2; 1021 } 1022 1023 if (config->emachine == EM_RISCV) { 1024 // .sdata and .sbss are placed closer to make GP relaxation more profitable 1025 // and match GNU ld. 1026 StringRef name = osec.name; 1027 if (name == ".sdata" || (osec.type == SHT_NOBITS && name != ".sbss")) 1028 rank |= 1; 1029 } 1030 1031 return rank; 1032 } 1033 1034 static bool compareSections(const SectionCommand *aCmd, 1035 const SectionCommand *bCmd) { 1036 const OutputSection *a = &cast<OutputDesc>(aCmd)->osec; 1037 const OutputSection *b = &cast<OutputDesc>(bCmd)->osec; 1038 1039 if (a->sortRank != b->sortRank) 1040 return a->sortRank < b->sortRank; 1041 1042 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1043 return config->sectionStartMap.lookup(a->name) < 1044 config->sectionStartMap.lookup(b->name); 1045 return false; 1046 } 1047 1048 void PhdrEntry::add(OutputSection *sec) { 1049 lastSec = sec; 1050 if (!firstSec) 1051 firstSec = sec; 1052 p_align = std::max(p_align, sec->addralign); 1053 if (p_type == PT_LOAD) 1054 sec->ptLoad = this; 1055 } 1056 1057 // The beginning and the ending of .rel[a].plt section are marked 1058 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1059 // executable. The runtime needs these symbols in order to resolve 1060 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1061 // need these symbols, since IRELATIVE relocs are resolved through GOT 1062 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1063 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1064 if (config->isPic) 1065 return; 1066 1067 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1068 // because .rela.plt might be empty and thus removed from output. 1069 // We'll override Out::elfHeader with In.relaIplt later when we are 1070 // sure that .rela.plt exists in output. 1071 ElfSym::relaIpltStart = addOptionalRegular( 1072 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1073 Out::elfHeader, 0, STV_HIDDEN); 1074 1075 ElfSym::relaIpltEnd = addOptionalRegular( 1076 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1077 Out::elfHeader, 0, STV_HIDDEN); 1078 } 1079 1080 // This function generates assignments for predefined symbols (e.g. _end or 1081 // _etext) and inserts them into the commands sequence to be processed at the 1082 // appropriate time. This ensures that the value is going to be correct by the 1083 // time any references to these symbols are processed and is equivalent to 1084 // defining these symbols explicitly in the linker script. 1085 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1086 if (ElfSym::globalOffsetTable) { 1087 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1088 // to the start of the .got or .got.plt section. 1089 InputSection *sec = in.gotPlt.get(); 1090 if (!target->gotBaseSymInGotPlt) 1091 sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get()) 1092 : cast<InputSection>(in.got.get()); 1093 ElfSym::globalOffsetTable->section = sec; 1094 } 1095 1096 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1097 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1098 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1099 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1100 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1101 } 1102 1103 PhdrEntry *last = nullptr; 1104 PhdrEntry *lastRO = nullptr; 1105 1106 for (Partition &part : partitions) { 1107 for (PhdrEntry *p : part.phdrs) { 1108 if (p->p_type != PT_LOAD) 1109 continue; 1110 last = p; 1111 if (!(p->p_flags & PF_W)) 1112 lastRO = p; 1113 } 1114 } 1115 1116 if (lastRO) { 1117 // _etext is the first location after the last read-only loadable segment. 1118 if (ElfSym::etext1) 1119 ElfSym::etext1->section = lastRO->lastSec; 1120 if (ElfSym::etext2) 1121 ElfSym::etext2->section = lastRO->lastSec; 1122 } 1123 1124 if (last) { 1125 // _edata points to the end of the last mapped initialized section. 1126 OutputSection *edata = nullptr; 1127 for (OutputSection *os : outputSections) { 1128 if (os->type != SHT_NOBITS) 1129 edata = os; 1130 if (os == last->lastSec) 1131 break; 1132 } 1133 1134 if (ElfSym::edata1) 1135 ElfSym::edata1->section = edata; 1136 if (ElfSym::edata2) 1137 ElfSym::edata2->section = edata; 1138 1139 // _end is the first location after the uninitialized data region. 1140 if (ElfSym::end1) 1141 ElfSym::end1->section = last->lastSec; 1142 if (ElfSym::end2) 1143 ElfSym::end2->section = last->lastSec; 1144 } 1145 1146 if (ElfSym::bss) { 1147 // On RISC-V, set __bss_start to the start of .sbss if present. 1148 OutputSection *sbss = 1149 config->emachine == EM_RISCV ? findSection(".sbss") : nullptr; 1150 ElfSym::bss->section = sbss ? sbss : findSection(".bss"); 1151 } 1152 1153 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1154 // be equal to the _gp symbol's value. 1155 if (ElfSym::mipsGp) { 1156 // Find GP-relative section with the lowest address 1157 // and use this address to calculate default _gp value. 1158 for (OutputSection *os : outputSections) { 1159 if (os->flags & SHF_MIPS_GPREL) { 1160 ElfSym::mipsGp->section = os; 1161 ElfSym::mipsGp->value = 0x7ff0; 1162 break; 1163 } 1164 } 1165 } 1166 } 1167 1168 // We want to find how similar two ranks are. 1169 // The more branches in getSectionRank that match, the more similar they are. 1170 // Since each branch corresponds to a bit flag, we can just use 1171 // countLeadingZeros. 1172 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1173 auto *osd = dyn_cast<OutputDesc>(b); 1174 return (osd && osd->osec.hasInputSections) 1175 ? llvm::countl_zero(a->sortRank ^ osd->osec.sortRank) 1176 : -1; 1177 } 1178 1179 // When placing orphan sections, we want to place them after symbol assignments 1180 // so that an orphan after 1181 // begin_foo = .; 1182 // foo : { *(foo) } 1183 // end_foo = .; 1184 // doesn't break the intended meaning of the begin/end symbols. 1185 // We don't want to go over sections since findOrphanPos is the 1186 // one in charge of deciding the order of the sections. 1187 // We don't want to go over changes to '.', since doing so in 1188 // rx_sec : { *(rx_sec) } 1189 // . = ALIGN(0x1000); 1190 // /* The RW PT_LOAD starts here*/ 1191 // rw_sec : { *(rw_sec) } 1192 // would mean that the RW PT_LOAD would become unaligned. 1193 static bool shouldSkip(SectionCommand *cmd) { 1194 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1195 return assign->name != "."; 1196 return false; 1197 } 1198 1199 // We want to place orphan sections so that they share as much 1200 // characteristics with their neighbors as possible. For example, if 1201 // both are rw, or both are tls. 1202 static SmallVectorImpl<SectionCommand *>::iterator 1203 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1204 SmallVectorImpl<SectionCommand *>::iterator e) { 1205 OutputSection *sec = &cast<OutputDesc>(*e)->osec; 1206 1207 // As a special case, place .relro_padding before the SymbolAssignment using 1208 // DATA_SEGMENT_RELRO_END, if present. 1209 if (in.relroPadding && sec == in.relroPadding->getParent()) { 1210 auto i = std::find_if(b, e, [=](SectionCommand *a) { 1211 if (auto *assign = dyn_cast<SymbolAssignment>(a)) 1212 return assign->dataSegmentRelroEnd; 1213 return false; 1214 }); 1215 if (i != e) 1216 return i; 1217 } 1218 1219 // Find the first element that has as close a rank as possible. 1220 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1221 return getRankProximity(sec, a) < getRankProximity(sec, b); 1222 }); 1223 if (i == e) 1224 return e; 1225 if (!isa<OutputDesc>(*i)) 1226 return e; 1227 auto foundSec = &cast<OutputDesc>(*i)->osec; 1228 1229 // Consider all existing sections with the same proximity. 1230 int proximity = getRankProximity(sec, *i); 1231 unsigned sortRank = sec->sortRank; 1232 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1233 // Prevent the orphan section to be placed before the found section. If 1234 // custom program headers are defined, that helps to avoid adding it to a 1235 // previous segment and changing flags of that segment, for example, making 1236 // a read-only segment writable. If memory regions are defined, an orphan 1237 // section should continue the same region as the found section to better 1238 // resemble the behavior of GNU ld. 1239 sortRank = std::max(sortRank, foundSec->sortRank); 1240 for (; i != e; ++i) { 1241 auto *curSecDesc = dyn_cast<OutputDesc>(*i); 1242 if (!curSecDesc || !curSecDesc->osec.hasInputSections) 1243 continue; 1244 if (getRankProximity(sec, curSecDesc) != proximity || 1245 sortRank < curSecDesc->osec.sortRank) 1246 break; 1247 } 1248 1249 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1250 auto *osd = dyn_cast<OutputDesc>(cmd); 1251 return osd && osd->osec.hasInputSections; 1252 }; 1253 auto j = 1254 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1255 isOutputSecWithInputSections); 1256 i = j.base(); 1257 1258 // As a special case, if the orphan section is the last section, put 1259 // it at the very end, past any other commands. 1260 // This matches bfd's behavior and is convenient when the linker script fully 1261 // specifies the start of the file, but doesn't care about the end (the non 1262 // alloc sections for example). 1263 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1264 if (nextSec == e) 1265 return e; 1266 1267 while (i != e && shouldSkip(*i)) 1268 ++i; 1269 return i; 1270 } 1271 1272 // Adds random priorities to sections not already in the map. 1273 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1274 if (config->shuffleSections.empty()) 1275 return; 1276 1277 SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections; 1278 matched.reserve(sections.size()); 1279 for (const auto &patAndSeed : config->shuffleSections) { 1280 matched.clear(); 1281 for (InputSectionBase *sec : sections) 1282 if (patAndSeed.first.match(sec->name)) 1283 matched.push_back(sec); 1284 const uint32_t seed = patAndSeed.second; 1285 if (seed == UINT32_MAX) { 1286 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1287 // section order is stable even if the number of sections changes. This is 1288 // useful to catch issues like static initialization order fiasco 1289 // reliably. 1290 std::reverse(matched.begin(), matched.end()); 1291 } else { 1292 std::mt19937 g(seed ? seed : std::random_device()()); 1293 llvm::shuffle(matched.begin(), matched.end(), g); 1294 } 1295 size_t i = 0; 1296 for (InputSectionBase *&sec : sections) 1297 if (patAndSeed.first.match(sec->name)) 1298 sec = matched[i++]; 1299 } 1300 1301 // Existing priorities are < 0, so use priorities >= 0 for the missing 1302 // sections. 1303 int prio = 0; 1304 for (InputSectionBase *sec : sections) { 1305 if (order.try_emplace(sec, prio).second) 1306 ++prio; 1307 } 1308 } 1309 1310 // Builds section order for handling --symbol-ordering-file. 1311 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1312 DenseMap<const InputSectionBase *, int> sectionOrder; 1313 // Use the rarely used option --call-graph-ordering-file to sort sections. 1314 if (!config->callGraphProfile.empty()) 1315 return computeCallGraphProfileOrder(); 1316 1317 if (config->symbolOrderingFile.empty()) 1318 return sectionOrder; 1319 1320 struct SymbolOrderEntry { 1321 int priority; 1322 bool present; 1323 }; 1324 1325 // Build a map from symbols to their priorities. Symbols that didn't 1326 // appear in the symbol ordering file have the lowest priority 0. 1327 // All explicitly mentioned symbols have negative (higher) priorities. 1328 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1329 int priority = -config->symbolOrderingFile.size(); 1330 for (StringRef s : config->symbolOrderingFile) 1331 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1332 1333 // Build a map from sections to their priorities. 1334 auto addSym = [&](Symbol &sym) { 1335 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1336 if (it == symbolOrder.end()) 1337 return; 1338 SymbolOrderEntry &ent = it->second; 1339 ent.present = true; 1340 1341 maybeWarnUnorderableSymbol(&sym); 1342 1343 if (auto *d = dyn_cast<Defined>(&sym)) { 1344 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1345 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1346 priority = std::min(priority, ent.priority); 1347 } 1348 } 1349 }; 1350 1351 // We want both global and local symbols. We get the global ones from the 1352 // symbol table and iterate the object files for the local ones. 1353 for (Symbol *sym : symtab.getSymbols()) 1354 addSym(*sym); 1355 1356 for (ELFFileBase *file : ctx.objectFiles) 1357 for (Symbol *sym : file->getLocalSymbols()) 1358 addSym(*sym); 1359 1360 if (config->warnSymbolOrdering) 1361 for (auto orderEntry : symbolOrder) 1362 if (!orderEntry.second.present) 1363 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1364 1365 return sectionOrder; 1366 } 1367 1368 // Sorts the sections in ISD according to the provided section order. 1369 static void 1370 sortISDBySectionOrder(InputSectionDescription *isd, 1371 const DenseMap<const InputSectionBase *, int> &order, 1372 bool executableOutputSection) { 1373 SmallVector<InputSection *, 0> unorderedSections; 1374 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1375 uint64_t unorderedSize = 0; 1376 uint64_t totalSize = 0; 1377 1378 for (InputSection *isec : isd->sections) { 1379 if (executableOutputSection) 1380 totalSize += isec->getSize(); 1381 auto i = order.find(isec); 1382 if (i == order.end()) { 1383 unorderedSections.push_back(isec); 1384 unorderedSize += isec->getSize(); 1385 continue; 1386 } 1387 orderedSections.push_back({isec, i->second}); 1388 } 1389 llvm::sort(orderedSections, llvm::less_second()); 1390 1391 // Find an insertion point for the ordered section list in the unordered 1392 // section list. On targets with limited-range branches, this is the mid-point 1393 // of the unordered section list. This decreases the likelihood that a range 1394 // extension thunk will be needed to enter or exit the ordered region. If the 1395 // ordered section list is a list of hot functions, we can generally expect 1396 // the ordered functions to be called more often than the unordered functions, 1397 // making it more likely that any particular call will be within range, and 1398 // therefore reducing the number of thunks required. 1399 // 1400 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1401 // If the layout is: 1402 // 1403 // 8MB hot 1404 // 32MB cold 1405 // 1406 // only the first 8-16MB of the cold code (depending on which hot function it 1407 // is actually calling) can call the hot code without a range extension thunk. 1408 // However, if we use this layout: 1409 // 1410 // 16MB cold 1411 // 8MB hot 1412 // 16MB cold 1413 // 1414 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1415 // of the second block of cold code can call the hot code without a thunk. So 1416 // we effectively double the amount of code that could potentially call into 1417 // the hot code without a thunk. 1418 // 1419 // The above is not necessary if total size of input sections in this "isd" 1420 // is small. Note that we assume all input sections are executable if the 1421 // output section is executable (which is not always true but supposed to 1422 // cover most cases). 1423 size_t insPt = 0; 1424 if (executableOutputSection && !orderedSections.empty() && 1425 target->getThunkSectionSpacing() && 1426 totalSize >= target->getThunkSectionSpacing()) { 1427 uint64_t unorderedPos = 0; 1428 for (; insPt != unorderedSections.size(); ++insPt) { 1429 unorderedPos += unorderedSections[insPt]->getSize(); 1430 if (unorderedPos > unorderedSize / 2) 1431 break; 1432 } 1433 } 1434 1435 isd->sections.clear(); 1436 for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt)) 1437 isd->sections.push_back(isec); 1438 for (std::pair<InputSection *, int> p : orderedSections) 1439 isd->sections.push_back(p.first); 1440 for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt)) 1441 isd->sections.push_back(isec); 1442 } 1443 1444 static void sortSection(OutputSection &osec, 1445 const DenseMap<const InputSectionBase *, int> &order) { 1446 StringRef name = osec.name; 1447 1448 // Never sort these. 1449 if (name == ".init" || name == ".fini") 1450 return; 1451 1452 // IRelative relocations that usually live in the .rel[a].dyn section should 1453 // be processed last by the dynamic loader. To achieve that we add synthetic 1454 // sections in the required order from the beginning so that the in.relaIplt 1455 // section is placed last in an output section. Here we just do not apply 1456 // sorting for an output section which holds the in.relaIplt section. 1457 if (in.relaIplt->getParent() == &osec) 1458 return; 1459 1460 // Sort input sections by priority using the list provided by 1461 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1462 // digit radix sort. The sections may be sorted stably again by a more 1463 // significant key. 1464 if (!order.empty()) 1465 for (SectionCommand *b : osec.commands) 1466 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1467 sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR); 1468 1469 if (script->hasSectionsCommand) 1470 return; 1471 1472 if (name == ".init_array" || name == ".fini_array") { 1473 osec.sortInitFini(); 1474 } else if (name == ".ctors" || name == ".dtors") { 1475 osec.sortCtorsDtors(); 1476 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1477 // .toc is allocated just after .got and is accessed using GOT-relative 1478 // relocations. Object files compiled with small code model have an 1479 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1480 // To reduce the risk of relocation overflow, .toc contents are sorted so 1481 // that sections having smaller relocation offsets are at beginning of .toc 1482 assert(osec.commands.size() == 1); 1483 auto *isd = cast<InputSectionDescription>(osec.commands[0]); 1484 llvm::stable_sort(isd->sections, 1485 [](const InputSection *a, const InputSection *b) -> bool { 1486 return a->file->ppc64SmallCodeModelTocRelocs && 1487 !b->file->ppc64SmallCodeModelTocRelocs; 1488 }); 1489 } 1490 } 1491 1492 // If no layout was provided by linker script, we want to apply default 1493 // sorting for special input sections. This also handles --symbol-ordering-file. 1494 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1495 // Build the order once since it is expensive. 1496 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1497 maybeShuffle(order); 1498 for (SectionCommand *cmd : script->sectionCommands) 1499 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1500 sortSection(osd->osec, order); 1501 } 1502 1503 template <class ELFT> void Writer<ELFT>::sortSections() { 1504 llvm::TimeTraceScope timeScope("Sort sections"); 1505 1506 // Don't sort if using -r. It is not necessary and we want to preserve the 1507 // relative order for SHF_LINK_ORDER sections. 1508 if (config->relocatable) { 1509 script->adjustOutputSections(); 1510 return; 1511 } 1512 1513 sortInputSections(); 1514 1515 for (SectionCommand *cmd : script->sectionCommands) 1516 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1517 osd->osec.sortRank = getSectionRank(osd->osec); 1518 if (!script->hasSectionsCommand) { 1519 // We know that all the OutputSections are contiguous in this case. 1520 auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); }; 1521 std::stable_sort( 1522 llvm::find_if(script->sectionCommands, isSection), 1523 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1524 compareSections); 1525 } 1526 1527 // Process INSERT commands and update output section attributes. From this 1528 // point onwards the order of script->sectionCommands is fixed. 1529 script->processInsertCommands(); 1530 script->adjustOutputSections(); 1531 1532 if (script->hasSectionsCommand) 1533 sortOrphanSections(); 1534 1535 script->adjustSectionsAfterSorting(); 1536 } 1537 1538 template <class ELFT> void Writer<ELFT>::sortOrphanSections() { 1539 // Orphan sections are sections present in the input files which are 1540 // not explicitly placed into the output file by the linker script. 1541 // 1542 // The sections in the linker script are already in the correct 1543 // order. We have to figuere out where to insert the orphan 1544 // sections. 1545 // 1546 // The order of the sections in the script is arbitrary and may not agree with 1547 // compareSections. This means that we cannot easily define a strict weak 1548 // ordering. To see why, consider a comparison of a section in the script and 1549 // one not in the script. We have a two simple options: 1550 // * Make them equivalent (a is not less than b, and b is not less than a). 1551 // The problem is then that equivalence has to be transitive and we can 1552 // have sections a, b and c with only b in a script and a less than c 1553 // which breaks this property. 1554 // * Use compareSectionsNonScript. Given that the script order doesn't have 1555 // to match, we can end up with sections a, b, c, d where b and c are in the 1556 // script and c is compareSectionsNonScript less than b. In which case d 1557 // can be equivalent to c, a to b and d < a. As a concrete example: 1558 // .a (rx) # not in script 1559 // .b (rx) # in script 1560 // .c (ro) # in script 1561 // .d (ro) # not in script 1562 // 1563 // The way we define an order then is: 1564 // * Sort only the orphan sections. They are in the end right now. 1565 // * Move each orphan section to its preferred position. We try 1566 // to put each section in the last position where it can share 1567 // a PT_LOAD. 1568 // 1569 // There is some ambiguity as to where exactly a new entry should be 1570 // inserted, because Commands contains not only output section 1571 // commands but also other types of commands such as symbol assignment 1572 // expressions. There's no correct answer here due to the lack of the 1573 // formal specification of the linker script. We use heuristics to 1574 // determine whether a new output command should be added before or 1575 // after another commands. For the details, look at shouldSkip 1576 // function. 1577 1578 auto i = script->sectionCommands.begin(); 1579 auto e = script->sectionCommands.end(); 1580 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1581 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1582 return osd->osec.sectionIndex == UINT32_MAX; 1583 return false; 1584 }); 1585 1586 // Sort the orphan sections. 1587 std::stable_sort(nonScriptI, e, compareSections); 1588 1589 // As a horrible special case, skip the first . assignment if it is before any 1590 // section. We do this because it is common to set a load address by starting 1591 // the script with ". = 0xabcd" and the expectation is that every section is 1592 // after that. 1593 auto firstSectionOrDotAssignment = 1594 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1595 if (firstSectionOrDotAssignment != e && 1596 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1597 ++firstSectionOrDotAssignment; 1598 i = firstSectionOrDotAssignment; 1599 1600 while (nonScriptI != e) { 1601 auto pos = findOrphanPos(i, nonScriptI); 1602 OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec; 1603 1604 // As an optimization, find all sections with the same sort rank 1605 // and insert them with one rotate. 1606 unsigned rank = orphan->sortRank; 1607 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1608 return cast<OutputDesc>(cmd)->osec.sortRank != rank; 1609 }); 1610 std::rotate(pos, nonScriptI, end); 1611 nonScriptI = end; 1612 } 1613 } 1614 1615 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1616 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1617 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1618 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1619 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1620 if (!la || !lb) 1621 return la && !lb; 1622 OutputSection *aOut = la->getParent(); 1623 OutputSection *bOut = lb->getParent(); 1624 1625 if (aOut != bOut) 1626 return aOut->addr < bOut->addr; 1627 return la->outSecOff < lb->outSecOff; 1628 } 1629 1630 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1631 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1632 for (OutputSection *sec : outputSections) { 1633 if (!(sec->flags & SHF_LINK_ORDER)) 1634 continue; 1635 1636 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1637 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1638 if (!config->relocatable && config->emachine == EM_ARM && 1639 sec->type == SHT_ARM_EXIDX) 1640 continue; 1641 1642 // Link order may be distributed across several InputSectionDescriptions. 1643 // Sorting is performed separately. 1644 SmallVector<InputSection **, 0> scriptSections; 1645 SmallVector<InputSection *, 0> sections; 1646 for (SectionCommand *cmd : sec->commands) { 1647 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1648 if (!isd) 1649 continue; 1650 bool hasLinkOrder = false; 1651 scriptSections.clear(); 1652 sections.clear(); 1653 for (InputSection *&isec : isd->sections) { 1654 if (isec->flags & SHF_LINK_ORDER) { 1655 InputSection *link = isec->getLinkOrderDep(); 1656 if (link && !link->getParent()) 1657 error(toString(isec) + ": sh_link points to discarded section " + 1658 toString(link)); 1659 hasLinkOrder = true; 1660 } 1661 scriptSections.push_back(&isec); 1662 sections.push_back(isec); 1663 } 1664 if (hasLinkOrder && errorCount() == 0) { 1665 llvm::stable_sort(sections, compareByFilePosition); 1666 for (int i = 0, n = sections.size(); i != n; ++i) 1667 *scriptSections[i] = sections[i]; 1668 } 1669 } 1670 } 1671 } 1672 1673 static void finalizeSynthetic(SyntheticSection *sec) { 1674 if (sec && sec->isNeeded() && sec->getParent()) { 1675 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1676 sec->finalizeContents(); 1677 } 1678 } 1679 1680 // We need to generate and finalize the content that depends on the address of 1681 // InputSections. As the generation of the content may also alter InputSection 1682 // addresses we must converge to a fixed point. We do that here. See the comment 1683 // in Writer<ELFT>::finalizeSections(). 1684 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1685 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1686 ThunkCreator tc; 1687 AArch64Err843419Patcher a64p; 1688 ARMErr657417Patcher a32p; 1689 script->assignAddresses(); 1690 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1691 // do require the relative addresses of OutputSections because linker scripts 1692 // can assign Virtual Addresses to OutputSections that are not monotonically 1693 // increasing. 1694 for (Partition &part : partitions) 1695 finalizeSynthetic(part.armExidx.get()); 1696 resolveShfLinkOrder(); 1697 1698 // Converts call x@GDPLT to call __tls_get_addr 1699 if (config->emachine == EM_HEXAGON) 1700 hexagonTLSSymbolUpdate(outputSections); 1701 1702 uint32_t pass = 0, assignPasses = 0; 1703 for (;;) { 1704 bool changed = target->needsThunks ? tc.createThunks(pass, outputSections) 1705 : target->relaxOnce(pass); 1706 ++pass; 1707 1708 // With Thunk Size much smaller than branch range we expect to 1709 // converge quickly; if we get to 30 something has gone wrong. 1710 if (changed && pass >= 30) { 1711 error(target->needsThunks ? "thunk creation not converged" 1712 : "relaxation not converged"); 1713 break; 1714 } 1715 1716 if (config->fixCortexA53Errata843419) { 1717 if (changed) 1718 script->assignAddresses(); 1719 changed |= a64p.createFixes(); 1720 } 1721 if (config->fixCortexA8) { 1722 if (changed) 1723 script->assignAddresses(); 1724 changed |= a32p.createFixes(); 1725 } 1726 1727 finalizeSynthetic(in.got.get()); 1728 if (in.mipsGot) 1729 in.mipsGot->updateAllocSize(); 1730 1731 for (Partition &part : partitions) { 1732 changed |= part.relaDyn->updateAllocSize(); 1733 if (part.relrDyn) 1734 changed |= part.relrDyn->updateAllocSize(); 1735 if (part.memtagGlobalDescriptors) 1736 changed |= part.memtagGlobalDescriptors->updateAllocSize(); 1737 } 1738 1739 const Defined *changedSym = script->assignAddresses(); 1740 if (!changed) { 1741 // Some symbols may be dependent on section addresses. When we break the 1742 // loop, the symbol values are finalized because a previous 1743 // assignAddresses() finalized section addresses. 1744 if (!changedSym) 1745 break; 1746 if (++assignPasses == 5) { 1747 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1748 " does not converge"); 1749 break; 1750 } 1751 } 1752 } 1753 if (!config->relocatable && config->emachine == EM_RISCV) 1754 riscvFinalizeRelax(pass); 1755 1756 if (config->relocatable) 1757 for (OutputSection *sec : outputSections) 1758 sec->addr = 0; 1759 1760 // If addrExpr is set, the address may not be a multiple of the alignment. 1761 // Warn because this is error-prone. 1762 for (SectionCommand *cmd : script->sectionCommands) 1763 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1764 OutputSection *osec = &osd->osec; 1765 if (osec->addr % osec->addralign != 0) 1766 warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " + 1767 osec->name + " is not a multiple of alignment (" + 1768 Twine(osec->addralign) + ")"); 1769 } 1770 } 1771 1772 // If Input Sections have been shrunk (basic block sections) then 1773 // update symbol values and sizes associated with these sections. With basic 1774 // block sections, input sections can shrink when the jump instructions at 1775 // the end of the section are relaxed. 1776 static void fixSymbolsAfterShrinking() { 1777 for (InputFile *File : ctx.objectFiles) { 1778 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1779 auto *def = dyn_cast<Defined>(Sym); 1780 if (!def) 1781 return; 1782 1783 const SectionBase *sec = def->section; 1784 if (!sec) 1785 return; 1786 1787 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1788 if (!inputSec || !inputSec->bytesDropped) 1789 return; 1790 1791 const size_t OldSize = inputSec->content().size(); 1792 const size_t NewSize = OldSize - inputSec->bytesDropped; 1793 1794 if (def->value > NewSize && def->value <= OldSize) { 1795 LLVM_DEBUG(llvm::dbgs() 1796 << "Moving symbol " << Sym->getName() << " from " 1797 << def->value << " to " 1798 << def->value - inputSec->bytesDropped << " bytes\n"); 1799 def->value -= inputSec->bytesDropped; 1800 return; 1801 } 1802 1803 if (def->value + def->size > NewSize && def->value <= OldSize && 1804 def->value + def->size <= OldSize) { 1805 LLVM_DEBUG(llvm::dbgs() 1806 << "Shrinking symbol " << Sym->getName() << " from " 1807 << def->size << " to " << def->size - inputSec->bytesDropped 1808 << " bytes\n"); 1809 def->size -= inputSec->bytesDropped; 1810 } 1811 }); 1812 } 1813 } 1814 1815 // If basic block sections exist, there are opportunities to delete fall thru 1816 // jumps and shrink jump instructions after basic block reordering. This 1817 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1818 // option is used. 1819 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1820 assert(config->optimizeBBJumps); 1821 SmallVector<InputSection *, 0> storage; 1822 1823 script->assignAddresses(); 1824 // For every output section that has executable input sections, this 1825 // does the following: 1826 // 1. Deletes all direct jump instructions in input sections that 1827 // jump to the following section as it is not required. 1828 // 2. If there are two consecutive jump instructions, it checks 1829 // if they can be flipped and one can be deleted. 1830 for (OutputSection *osec : outputSections) { 1831 if (!(osec->flags & SHF_EXECINSTR)) 1832 continue; 1833 ArrayRef<InputSection *> sections = getInputSections(*osec, storage); 1834 size_t numDeleted = 0; 1835 // Delete all fall through jump instructions. Also, check if two 1836 // consecutive jump instructions can be flipped so that a fall 1837 // through jmp instruction can be deleted. 1838 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1839 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1840 InputSection &sec = *sections[i]; 1841 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1842 } 1843 if (numDeleted > 0) { 1844 script->assignAddresses(); 1845 LLVM_DEBUG(llvm::dbgs() 1846 << "Removing " << numDeleted << " fall through jumps\n"); 1847 } 1848 } 1849 1850 fixSymbolsAfterShrinking(); 1851 1852 for (OutputSection *osec : outputSections) 1853 for (InputSection *is : getInputSections(*osec, storage)) 1854 is->trim(); 1855 } 1856 1857 // In order to allow users to manipulate linker-synthesized sections, 1858 // we had to add synthetic sections to the input section list early, 1859 // even before we make decisions whether they are needed. This allows 1860 // users to write scripts like this: ".mygot : { .got }". 1861 // 1862 // Doing it has an unintended side effects. If it turns out that we 1863 // don't need a .got (for example) at all because there's no 1864 // relocation that needs a .got, we don't want to emit .got. 1865 // 1866 // To deal with the above problem, this function is called after 1867 // scanRelocations is called to remove synthetic sections that turn 1868 // out to be empty. 1869 static void removeUnusedSyntheticSections() { 1870 // All input synthetic sections that can be empty are placed after 1871 // all regular ones. Reverse iterate to find the first synthetic section 1872 // after a non-synthetic one which will be our starting point. 1873 auto start = 1874 llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) { 1875 return !isa<SyntheticSection>(s); 1876 }).base(); 1877 1878 // Remove unused synthetic sections from ctx.inputSections; 1879 DenseSet<InputSectionBase *> unused; 1880 auto end = 1881 std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) { 1882 auto *sec = cast<SyntheticSection>(s); 1883 if (sec->getParent() && sec->isNeeded()) 1884 return false; 1885 unused.insert(sec); 1886 return true; 1887 }); 1888 ctx.inputSections.erase(end, ctx.inputSections.end()); 1889 1890 // Remove unused synthetic sections from the corresponding input section 1891 // description and orphanSections. 1892 for (auto *sec : unused) 1893 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1894 for (SectionCommand *cmd : osec->commands) 1895 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1896 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1897 return unused.count(isec); 1898 }); 1899 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1900 return unused.count(sec); 1901 }); 1902 } 1903 1904 // Create output section objects and add them to OutputSections. 1905 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1906 if (!config->relocatable) { 1907 Out::preinitArray = findSection(".preinit_array"); 1908 Out::initArray = findSection(".init_array"); 1909 Out::finiArray = findSection(".fini_array"); 1910 1911 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1912 // symbols for sections, so that the runtime can get the start and end 1913 // addresses of each section by section name. Add such symbols. 1914 addStartEndSymbols(); 1915 for (SectionCommand *cmd : script->sectionCommands) 1916 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1917 addStartStopSymbols(osd->osec); 1918 1919 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1920 // It should be okay as no one seems to care about the type. 1921 // Even the author of gold doesn't remember why gold behaves that way. 1922 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1923 if (mainPart->dynamic->parent) { 1924 Symbol *s = symtab.addSymbol(Defined{ 1925 /*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1926 /*value=*/0, /*size=*/0, mainPart->dynamic.get()}); 1927 s->isUsedInRegularObj = true; 1928 } 1929 1930 // Define __rel[a]_iplt_{start,end} symbols if needed. 1931 addRelIpltSymbols(); 1932 1933 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1934 // should only be defined in an executable. If .sdata does not exist, its 1935 // value/section does not matter but it has to be relative, so set its 1936 // st_shndx arbitrarily to 1 (Out::elfHeader). 1937 if (config->emachine == EM_RISCV) { 1938 ElfSym::riscvGlobalPointer = nullptr; 1939 if (!config->shared) { 1940 OutputSection *sec = findSection(".sdata"); 1941 addOptionalRegular( 1942 "__global_pointer$", sec ? sec : Out::elfHeader, 0x800, STV_DEFAULT); 1943 // Set riscvGlobalPointer to be used by the optional global pointer 1944 // relaxation. 1945 if (config->relaxGP) { 1946 Symbol *s = symtab.find("__global_pointer$"); 1947 if (s && s->isDefined()) 1948 ElfSym::riscvGlobalPointer = cast<Defined>(s); 1949 } 1950 } 1951 } 1952 1953 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1954 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1955 // way that: 1956 // 1957 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1958 // computes 0. 1959 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address 1960 // in the TLS block). 1961 // 1962 // 2) is special cased in @tpoff computation. To satisfy 1), we define it 1963 // as an absolute symbol of zero. This is different from GNU linkers which 1964 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1965 Symbol *s = symtab.find("_TLS_MODULE_BASE_"); 1966 if (s && s->isUndefined()) { 1967 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, 1968 STV_HIDDEN, STT_TLS, /*value=*/0, 0, 1969 /*section=*/nullptr}); 1970 ElfSym::tlsModuleBase = cast<Defined>(s); 1971 } 1972 } 1973 1974 // This responsible for splitting up .eh_frame section into 1975 // pieces. The relocation scan uses those pieces, so this has to be 1976 // earlier. 1977 { 1978 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1979 for (Partition &part : partitions) 1980 finalizeSynthetic(part.ehFrame.get()); 1981 } 1982 } 1983 1984 demoteSymbolsAndComputeIsPreemptible(); 1985 1986 if (config->copyRelocs && config->discard != DiscardPolicy::None) 1987 markUsedLocalSymbols<ELFT>(); 1988 demoteAndCopyLocalSymbols(); 1989 1990 if (config->copyRelocs) 1991 addSectionSymbols(); 1992 1993 // Change values of linker-script-defined symbols from placeholders (assigned 1994 // by declareSymbols) to actual definitions. 1995 script->processSymbolAssignments(); 1996 1997 if (!config->relocatable) { 1998 llvm::TimeTraceScope timeScope("Scan relocations"); 1999 // Scan relocations. This must be done after every symbol is declared so 2000 // that we can correctly decide if a dynamic relocation is needed. This is 2001 // called after processSymbolAssignments() because it needs to know whether 2002 // a linker-script-defined symbol is absolute. 2003 ppc64noTocRelax.clear(); 2004 scanRelocations<ELFT>(); 2005 reportUndefinedSymbols(); 2006 postScanRelocations(); 2007 2008 if (in.plt && in.plt->isNeeded()) 2009 in.plt->addSymbols(); 2010 if (in.iplt && in.iplt->isNeeded()) 2011 in.iplt->addSymbols(); 2012 2013 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 2014 auto diagnose = 2015 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 2016 ? errorOrWarn 2017 : warn; 2018 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 2019 // entries are seen. These cases would otherwise lead to runtime errors 2020 // reported by the dynamic linker. 2021 // 2022 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker 2023 // to catch more cases. That is too much for us. Our approach resembles 2024 // the one used in ld.gold, achieves a good balance to be useful but not 2025 // too smart. 2026 for (SharedFile *file : ctx.sharedFiles) { 2027 bool allNeededIsKnown = 2028 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2029 return symtab.soNames.count(CachedHashStringRef(needed)); 2030 }); 2031 if (!allNeededIsKnown) 2032 continue; 2033 for (Symbol *sym : file->requiredSymbols) { 2034 if (sym->isUndefined() && !sym->isWeak()) { 2035 diagnose("undefined reference due to --no-allow-shlib-undefined: " + 2036 toString(*sym) + "\n>>> referenced by " + toString(file)); 2037 } else if (sym->isDefined() && sym->computeBinding() == STB_LOCAL) { 2038 diagnose("non-exported symbol '" + toString(*sym) + "' in '" + 2039 toString(sym->file) + "' is referenced by DSO '" + 2040 toString(file) + "'"); 2041 } 2042 } 2043 } 2044 } 2045 } 2046 2047 { 2048 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2049 // Now that we have defined all possible global symbols including linker- 2050 // synthesized ones. Visit all symbols to give the finishing touches. 2051 for (Symbol *sym : symtab.getSymbols()) { 2052 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 2053 continue; 2054 if (!config->relocatable) 2055 sym->binding = sym->computeBinding(); 2056 if (in.symTab) 2057 in.symTab->addSymbol(sym); 2058 2059 if (sym->includeInDynsym()) { 2060 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2061 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2062 if (file->isNeeded && !sym->isUndefined()) 2063 addVerneed(sym); 2064 } 2065 } 2066 2067 // We also need to scan the dynamic relocation tables of the other 2068 // partitions and add any referenced symbols to the partition's dynsym. 2069 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2070 DenseSet<Symbol *> syms; 2071 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2072 syms.insert(e.sym); 2073 for (DynamicReloc &reloc : part.relaDyn->relocs) 2074 if (reloc.sym && reloc.needsDynSymIndex() && 2075 syms.insert(reloc.sym).second) 2076 part.dynSymTab->addSymbol(reloc.sym); 2077 } 2078 } 2079 2080 if (in.mipsGot) 2081 in.mipsGot->build(); 2082 2083 removeUnusedSyntheticSections(); 2084 script->diagnoseOrphanHandling(); 2085 script->diagnoseMissingSGSectionAddress(); 2086 2087 sortSections(); 2088 2089 // Create a list of OutputSections, assign sectionIndex, and populate 2090 // in.shStrTab. 2091 for (SectionCommand *cmd : script->sectionCommands) 2092 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 2093 OutputSection *osec = &osd->osec; 2094 outputSections.push_back(osec); 2095 osec->sectionIndex = outputSections.size(); 2096 osec->shName = in.shStrTab->addString(osec->name); 2097 } 2098 2099 // Prefer command line supplied address over other constraints. 2100 for (OutputSection *sec : outputSections) { 2101 auto i = config->sectionStartMap.find(sec->name); 2102 if (i != config->sectionStartMap.end()) 2103 sec->addrExpr = [=] { return i->second; }; 2104 } 2105 2106 // With the outputSections available check for GDPLT relocations 2107 // and add __tls_get_addr symbol if needed. 2108 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2109 Symbol *sym = symtab.addSymbol(Undefined{ 2110 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2111 sym->isPreemptible = true; 2112 partitions[0].dynSymTab->addSymbol(sym); 2113 } 2114 2115 // This is a bit of a hack. A value of 0 means undef, so we set it 2116 // to 1 to make __ehdr_start defined. The section number is not 2117 // particularly relevant. 2118 Out::elfHeader->sectionIndex = 1; 2119 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2120 2121 // Binary and relocatable output does not have PHDRS. 2122 // The headers have to be created before finalize as that can influence the 2123 // image base and the dynamic section on mips includes the image base. 2124 if (!config->relocatable && !config->oFormatBinary) { 2125 for (Partition &part : partitions) { 2126 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2127 : createPhdrs(part); 2128 if (config->emachine == EM_ARM) { 2129 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2130 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2131 } 2132 if (config->emachine == EM_MIPS) { 2133 // Add separate segments for MIPS-specific sections. 2134 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2135 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2136 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2137 } 2138 if (config->emachine == EM_RISCV) 2139 addPhdrForSection(part, SHT_RISCV_ATTRIBUTES, PT_RISCV_ATTRIBUTES, 2140 PF_R); 2141 } 2142 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2143 2144 // Find the TLS segment. This happens before the section layout loop so that 2145 // Android relocation packing can look up TLS symbol addresses. We only need 2146 // to care about the main partition here because all TLS symbols were moved 2147 // to the main partition (see MarkLive.cpp). 2148 for (PhdrEntry *p : mainPart->phdrs) 2149 if (p->p_type == PT_TLS) 2150 Out::tlsPhdr = p; 2151 } 2152 2153 // Some symbols are defined in term of program headers. Now that we 2154 // have the headers, we can find out which sections they point to. 2155 setReservedSymbolSections(); 2156 2157 { 2158 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2159 2160 finalizeSynthetic(in.bss.get()); 2161 finalizeSynthetic(in.bssRelRo.get()); 2162 finalizeSynthetic(in.symTabShndx.get()); 2163 finalizeSynthetic(in.shStrTab.get()); 2164 finalizeSynthetic(in.strTab.get()); 2165 finalizeSynthetic(in.got.get()); 2166 finalizeSynthetic(in.mipsGot.get()); 2167 finalizeSynthetic(in.igotPlt.get()); 2168 finalizeSynthetic(in.gotPlt.get()); 2169 finalizeSynthetic(in.relaIplt.get()); 2170 finalizeSynthetic(in.relaPlt.get()); 2171 finalizeSynthetic(in.plt.get()); 2172 finalizeSynthetic(in.iplt.get()); 2173 finalizeSynthetic(in.ppc32Got2.get()); 2174 finalizeSynthetic(in.partIndex.get()); 2175 2176 // Dynamic section must be the last one in this list and dynamic 2177 // symbol table section (dynSymTab) must be the first one. 2178 for (Partition &part : partitions) { 2179 if (part.relaDyn) { 2180 part.relaDyn->mergeRels(); 2181 // Compute DT_RELACOUNT to be used by part.dynamic. 2182 part.relaDyn->partitionRels(); 2183 finalizeSynthetic(part.relaDyn.get()); 2184 } 2185 if (part.relrDyn) { 2186 part.relrDyn->mergeRels(); 2187 finalizeSynthetic(part.relrDyn.get()); 2188 } 2189 2190 finalizeSynthetic(part.dynSymTab.get()); 2191 finalizeSynthetic(part.gnuHashTab.get()); 2192 finalizeSynthetic(part.hashTab.get()); 2193 finalizeSynthetic(part.verDef.get()); 2194 finalizeSynthetic(part.ehFrameHdr.get()); 2195 finalizeSynthetic(part.verSym.get()); 2196 finalizeSynthetic(part.verNeed.get()); 2197 finalizeSynthetic(part.dynamic.get()); 2198 } 2199 } 2200 2201 if (!script->hasSectionsCommand && !config->relocatable) 2202 fixSectionAlignments(); 2203 2204 // This is used to: 2205 // 1) Create "thunks": 2206 // Jump instructions in many ISAs have small displacements, and therefore 2207 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2208 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2209 // responsibility to create and insert small pieces of code between 2210 // sections to extend the ranges if jump targets are out of range. Such 2211 // code pieces are called "thunks". 2212 // 2213 // We add thunks at this stage. We couldn't do this before this point 2214 // because this is the earliest point where we know sizes of sections and 2215 // their layouts (that are needed to determine if jump targets are in 2216 // range). 2217 // 2218 // 2) Update the sections. We need to generate content that depends on the 2219 // address of InputSections. For example, MIPS GOT section content or 2220 // android packed relocations sections content. 2221 // 2222 // 3) Assign the final values for the linker script symbols. Linker scripts 2223 // sometimes using forward symbol declarations. We want to set the correct 2224 // values. They also might change after adding the thunks. 2225 finalizeAddressDependentContent(); 2226 2227 // All information needed for OutputSection part of Map file is available. 2228 if (errorCount()) 2229 return; 2230 2231 { 2232 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2233 // finalizeAddressDependentContent may have added local symbols to the 2234 // static symbol table. 2235 finalizeSynthetic(in.symTab.get()); 2236 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2237 finalizeSynthetic(in.armCmseSGSection.get()); 2238 } 2239 2240 // Relaxation to delete inter-basic block jumps created by basic block 2241 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2242 // can relax jump instructions based on symbol offset. 2243 if (config->optimizeBBJumps) 2244 optimizeBasicBlockJumps(); 2245 2246 // Fill other section headers. The dynamic table is finalized 2247 // at the end because some tags like RELSZ depend on result 2248 // of finalizing other sections. 2249 for (OutputSection *sec : outputSections) 2250 sec->finalize(); 2251 2252 script->checkFinalScriptConditions(); 2253 2254 if (config->emachine == EM_ARM && !config->isLE && config->armBe8) { 2255 addArmInputSectionMappingSymbols(); 2256 sortArmMappingSymbols(); 2257 } 2258 } 2259 2260 // Ensure data sections are not mixed with executable sections when 2261 // --execute-only is used. --execute-only make pages executable but not 2262 // readable. 2263 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2264 if (!config->executeOnly) 2265 return; 2266 2267 SmallVector<InputSection *, 0> storage; 2268 for (OutputSection *osec : outputSections) 2269 if (osec->flags & SHF_EXECINSTR) 2270 for (InputSection *isec : getInputSections(*osec, storage)) 2271 if (!(isec->flags & SHF_EXECINSTR)) 2272 error("cannot place " + toString(isec) + " into " + 2273 toString(osec->name) + 2274 ": --execute-only does not support intermingling data and code"); 2275 } 2276 2277 // The linker is expected to define SECNAME_start and SECNAME_end 2278 // symbols for a few sections. This function defines them. 2279 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2280 // If a section does not exist, there's ambiguity as to how we 2281 // define _start and _end symbols for an init/fini section. Since 2282 // the loader assume that the symbols are always defined, we need to 2283 // always define them. But what value? The loader iterates over all 2284 // pointers between _start and _end to run global ctors/dtors, so if 2285 // the section is empty, their symbol values don't actually matter 2286 // as long as _start and _end point to the same location. 2287 // 2288 // That said, we don't want to set the symbols to 0 (which is 2289 // probably the simplest value) because that could cause some 2290 // program to fail to link due to relocation overflow, if their 2291 // program text is above 2 GiB. We use the address of the .text 2292 // section instead to prevent that failure. 2293 // 2294 // In rare situations, the .text section may not exist. If that's the 2295 // case, use the image base address as a last resort. 2296 OutputSection *Default = findSection(".text"); 2297 if (!Default) 2298 Default = Out::elfHeader; 2299 2300 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2301 if (os && !script->isDiscarded(os)) { 2302 addOptionalRegular(start, os, 0); 2303 addOptionalRegular(end, os, -1); 2304 } else { 2305 addOptionalRegular(start, Default, 0); 2306 addOptionalRegular(end, Default, 0); 2307 } 2308 }; 2309 2310 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2311 define("__init_array_start", "__init_array_end", Out::initArray); 2312 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2313 2314 if (OutputSection *sec = findSection(".ARM.exidx")) 2315 define("__exidx_start", "__exidx_end", sec); 2316 } 2317 2318 // If a section name is valid as a C identifier (which is rare because of 2319 // the leading '.'), linkers are expected to define __start_<secname> and 2320 // __stop_<secname> symbols. They are at beginning and end of the section, 2321 // respectively. This is not requested by the ELF standard, but GNU ld and 2322 // gold provide the feature, and used by many programs. 2323 template <class ELFT> 2324 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) { 2325 StringRef s = osec.name; 2326 if (!isValidCIdentifier(s)) 2327 return; 2328 addOptionalRegular(saver().save("__start_" + s), &osec, 0, 2329 config->zStartStopVisibility); 2330 addOptionalRegular(saver().save("__stop_" + s), &osec, -1, 2331 config->zStartStopVisibility); 2332 } 2333 2334 static bool needsPtLoad(OutputSection *sec) { 2335 if (!(sec->flags & SHF_ALLOC)) 2336 return false; 2337 2338 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2339 // responsible for allocating space for them, not the PT_LOAD that 2340 // contains the TLS initialization image. 2341 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2342 return false; 2343 return true; 2344 } 2345 2346 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2347 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2348 // RW. This means that there is no alignment in the RO to RX transition and we 2349 // cannot create a PT_LOAD there. 2350 static uint64_t computeFlags(uint64_t flags) { 2351 if (config->omagic) 2352 return PF_R | PF_W | PF_X; 2353 if (config->executeOnly && (flags & PF_X)) 2354 return flags & ~PF_R; 2355 if (config->singleRoRx && !(flags & PF_W)) 2356 return flags | PF_X; 2357 return flags; 2358 } 2359 2360 // Decide which program headers to create and which sections to include in each 2361 // one. 2362 template <class ELFT> 2363 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2364 SmallVector<PhdrEntry *, 0> ret; 2365 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2366 ret.push_back(make<PhdrEntry>(type, flags)); 2367 return ret.back(); 2368 }; 2369 2370 unsigned partNo = part.getNumber(); 2371 bool isMain = partNo == 1; 2372 2373 // Add the first PT_LOAD segment for regular output sections. 2374 uint64_t flags = computeFlags(PF_R); 2375 PhdrEntry *load = nullptr; 2376 2377 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2378 // PT_LOAD. 2379 if (!config->nmagic && !config->omagic) { 2380 // The first phdr entry is PT_PHDR which describes the program header 2381 // itself. 2382 if (isMain) 2383 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2384 else 2385 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2386 2387 // PT_INTERP must be the second entry if exists. 2388 if (OutputSection *cmd = findSection(".interp", partNo)) 2389 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2390 2391 // Add the headers. We will remove them if they don't fit. 2392 // In the other partitions the headers are ordinary sections, so they don't 2393 // need to be added here. 2394 if (isMain) { 2395 load = addHdr(PT_LOAD, flags); 2396 load->add(Out::elfHeader); 2397 load->add(Out::programHeaders); 2398 } 2399 } 2400 2401 // PT_GNU_RELRO includes all sections that should be marked as 2402 // read-only by dynamic linker after processing relocations. 2403 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2404 // an error message if more than one PT_GNU_RELRO PHDR is required. 2405 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2406 bool inRelroPhdr = false; 2407 OutputSection *relroEnd = nullptr; 2408 for (OutputSection *sec : outputSections) { 2409 if (sec->partition != partNo || !needsPtLoad(sec)) 2410 continue; 2411 if (isRelroSection(sec)) { 2412 inRelroPhdr = true; 2413 if (!relroEnd) 2414 relRo->add(sec); 2415 else 2416 error("section: " + sec->name + " is not contiguous with other relro" + 2417 " sections"); 2418 } else if (inRelroPhdr) { 2419 inRelroPhdr = false; 2420 relroEnd = sec; 2421 } 2422 } 2423 relRo->p_align = 1; 2424 2425 for (OutputSection *sec : outputSections) { 2426 if (!needsPtLoad(sec)) 2427 continue; 2428 2429 // Normally, sections in partitions other than the current partition are 2430 // ignored. But partition number 255 is a special case: it contains the 2431 // partition end marker (.part.end). It needs to be added to the main 2432 // partition so that a segment is created for it in the main partition, 2433 // which will cause the dynamic loader to reserve space for the other 2434 // partitions. 2435 if (sec->partition != partNo) { 2436 if (isMain && sec->partition == 255) 2437 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2438 continue; 2439 } 2440 2441 // Segments are contiguous memory regions that has the same attributes 2442 // (e.g. executable or writable). There is one phdr for each segment. 2443 // Therefore, we need to create a new phdr when the next section has 2444 // different flags or is loaded at a discontiguous address or memory region 2445 // using AT or AT> linker script command, respectively. 2446 // 2447 // As an exception, we don't create a separate load segment for the ELF 2448 // headers, even if the first "real" output has an AT or AT> attribute. 2449 // 2450 // In addition, NOBITS sections should only be placed at the end of a LOAD 2451 // segment (since it's represented as p_filesz < p_memsz). If we have a 2452 // not-NOBITS section after a NOBITS, we create a new LOAD for the latter 2453 // even if flags match, so as not to require actually writing the 2454 // supposed-to-be-NOBITS section to the output file. (However, we cannot do 2455 // so when hasSectionsCommand, since we cannot introduce the extra alignment 2456 // needed to create a new LOAD) 2457 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2458 bool sameLMARegion = 2459 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2460 if (!(load && newFlags == flags && sec != relroEnd && 2461 sec->memRegion == load->firstSec->memRegion && 2462 (sameLMARegion || load->lastSec == Out::programHeaders) && 2463 (script->hasSectionsCommand || sec->type == SHT_NOBITS || 2464 load->lastSec->type != SHT_NOBITS))) { 2465 load = addHdr(PT_LOAD, newFlags); 2466 flags = newFlags; 2467 } 2468 2469 load->add(sec); 2470 } 2471 2472 // Add a TLS segment if any. 2473 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2474 for (OutputSection *sec : outputSections) 2475 if (sec->partition == partNo && sec->flags & SHF_TLS) 2476 tlsHdr->add(sec); 2477 if (tlsHdr->firstSec) 2478 ret.push_back(tlsHdr); 2479 2480 // Add an entry for .dynamic. 2481 if (OutputSection *sec = part.dynamic->getParent()) 2482 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2483 2484 if (relRo->firstSec) 2485 ret.push_back(relRo); 2486 2487 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2488 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2489 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2490 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2491 ->add(part.ehFrameHdr->getParent()); 2492 2493 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2494 // the dynamic linker fill the segment with random data. 2495 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2496 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2497 2498 if (config->zGnustack != GnuStackKind::None) { 2499 // PT_GNU_STACK is a special section to tell the loader to make the 2500 // pages for the stack non-executable. If you really want an executable 2501 // stack, you can pass -z execstack, but that's not recommended for 2502 // security reasons. 2503 unsigned perm = PF_R | PF_W; 2504 if (config->zGnustack == GnuStackKind::Exec) 2505 perm |= PF_X; 2506 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2507 } 2508 2509 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2510 // is expected to perform W^X violations, such as calling mprotect(2) or 2511 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2512 // OpenBSD. 2513 if (config->zWxneeded) 2514 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2515 2516 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2517 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2518 2519 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2520 // same alignment. 2521 PhdrEntry *note = nullptr; 2522 for (OutputSection *sec : outputSections) { 2523 if (sec->partition != partNo) 2524 continue; 2525 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2526 if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign) 2527 note = addHdr(PT_NOTE, PF_R); 2528 note->add(sec); 2529 } else { 2530 note = nullptr; 2531 } 2532 } 2533 return ret; 2534 } 2535 2536 template <class ELFT> 2537 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2538 unsigned pType, unsigned pFlags) { 2539 unsigned partNo = part.getNumber(); 2540 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2541 return cmd->partition == partNo && cmd->type == shType; 2542 }); 2543 if (i == outputSections.end()) 2544 return; 2545 2546 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2547 entry->add(*i); 2548 part.phdrs.push_back(entry); 2549 } 2550 2551 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2552 // This is achieved by assigning an alignment expression to addrExpr of each 2553 // such section. 2554 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2555 const PhdrEntry *prev; 2556 auto pageAlign = [&](const PhdrEntry *p) { 2557 OutputSection *cmd = p->firstSec; 2558 if (!cmd) 2559 return; 2560 cmd->alignExpr = [align = cmd->addralign]() { return align; }; 2561 if (!cmd->addrExpr) { 2562 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2563 // padding in the file contents. 2564 // 2565 // When -z separate-code is used we must not have any overlap in pages 2566 // between an executable segment and a non-executable segment. We align to 2567 // the next maximum page size boundary on transitions between executable 2568 // and non-executable segments. 2569 // 2570 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2571 // sections will be extracted to a separate file. Align to the next 2572 // maximum page size boundary so that we can find the ELF header at the 2573 // start. We cannot benefit from overlapping p_offset ranges with the 2574 // previous segment anyway. 2575 if (config->zSeparate == SeparateSegmentKind::Loadable || 2576 (config->zSeparate == SeparateSegmentKind::Code && prev && 2577 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2578 cmd->type == SHT_LLVM_PART_EHDR) 2579 cmd->addrExpr = [] { 2580 return alignToPowerOf2(script->getDot(), config->maxPageSize); 2581 }; 2582 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2583 // it must be the RW. Align to p_align(PT_TLS) to make sure 2584 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2585 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2586 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2587 // be congruent to 0 modulo p_align(PT_TLS). 2588 // 2589 // Technically this is not required, but as of 2019, some dynamic loaders 2590 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2591 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2592 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2593 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2594 // blocks correctly. We need to keep the workaround for a while. 2595 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2596 cmd->addrExpr = [] { 2597 return alignToPowerOf2(script->getDot(), config->maxPageSize) + 2598 alignToPowerOf2(script->getDot() % config->maxPageSize, 2599 Out::tlsPhdr->p_align); 2600 }; 2601 else 2602 cmd->addrExpr = [] { 2603 return alignToPowerOf2(script->getDot(), config->maxPageSize) + 2604 script->getDot() % config->maxPageSize; 2605 }; 2606 } 2607 }; 2608 2609 for (Partition &part : partitions) { 2610 prev = nullptr; 2611 for (const PhdrEntry *p : part.phdrs) 2612 if (p->p_type == PT_LOAD && p->firstSec) { 2613 pageAlign(p); 2614 prev = p; 2615 } 2616 } 2617 } 2618 2619 // Compute an in-file position for a given section. The file offset must be the 2620 // same with its virtual address modulo the page size, so that the loader can 2621 // load executables without any address adjustment. 2622 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2623 // The first section in a PT_LOAD has to have congruent offset and address 2624 // modulo the maximum page size. 2625 if (os->ptLoad && os->ptLoad->firstSec == os) 2626 return alignTo(off, os->ptLoad->p_align, os->addr); 2627 2628 // File offsets are not significant for .bss sections other than the first one 2629 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2630 // increasing rather than setting to zero. 2631 if (os->type == SHT_NOBITS && 2632 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2633 return off; 2634 2635 // If the section is not in a PT_LOAD, we just have to align it. 2636 if (!os->ptLoad) 2637 return alignToPowerOf2(off, os->addralign); 2638 2639 // If two sections share the same PT_LOAD the file offset is calculated 2640 // using this formula: Off2 = Off1 + (VA2 - VA1). 2641 OutputSection *first = os->ptLoad->firstSec; 2642 return first->offset + os->addr - first->addr; 2643 } 2644 2645 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2646 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2647 auto needsOffset = [](OutputSection &sec) { 2648 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2649 }; 2650 uint64_t minAddr = UINT64_MAX; 2651 for (OutputSection *sec : outputSections) 2652 if (needsOffset(*sec)) { 2653 sec->offset = sec->getLMA(); 2654 minAddr = std::min(minAddr, sec->offset); 2655 } 2656 2657 // Sections are laid out at LMA minus minAddr. 2658 fileSize = 0; 2659 for (OutputSection *sec : outputSections) 2660 if (needsOffset(*sec)) { 2661 sec->offset -= minAddr; 2662 fileSize = std::max(fileSize, sec->offset + sec->size); 2663 } 2664 } 2665 2666 static std::string rangeToString(uint64_t addr, uint64_t len) { 2667 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2668 } 2669 2670 // Assign file offsets to output sections. 2671 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2672 Out::programHeaders->offset = Out::elfHeader->size; 2673 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2674 2675 PhdrEntry *lastRX = nullptr; 2676 for (Partition &part : partitions) 2677 for (PhdrEntry *p : part.phdrs) 2678 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2679 lastRX = p; 2680 2681 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2682 // will not occupy file offsets contained by a PT_LOAD. 2683 for (OutputSection *sec : outputSections) { 2684 if (!(sec->flags & SHF_ALLOC)) 2685 continue; 2686 off = computeFileOffset(sec, off); 2687 sec->offset = off; 2688 if (sec->type != SHT_NOBITS) 2689 off += sec->size; 2690 2691 // If this is a last section of the last executable segment and that 2692 // segment is the last loadable segment, align the offset of the 2693 // following section to avoid loading non-segments parts of the file. 2694 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2695 lastRX->lastSec == sec) 2696 off = alignToPowerOf2(off, config->maxPageSize); 2697 } 2698 for (OutputSection *osec : outputSections) 2699 if (!(osec->flags & SHF_ALLOC)) { 2700 osec->offset = alignToPowerOf2(off, osec->addralign); 2701 off = osec->offset + osec->size; 2702 } 2703 2704 sectionHeaderOff = alignToPowerOf2(off, config->wordsize); 2705 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2706 2707 // Our logic assumes that sections have rising VA within the same segment. 2708 // With use of linker scripts it is possible to violate this rule and get file 2709 // offset overlaps or overflows. That should never happen with a valid script 2710 // which does not move the location counter backwards and usually scripts do 2711 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2712 // kernel, which control segment distribution explicitly and move the counter 2713 // backwards, so we have to allow doing that to support linking them. We 2714 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2715 // we want to prevent file size overflows because it would crash the linker. 2716 for (OutputSection *sec : outputSections) { 2717 if (sec->type == SHT_NOBITS) 2718 continue; 2719 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2720 error("unable to place section " + sec->name + " at file offset " + 2721 rangeToString(sec->offset, sec->size) + 2722 "; check your linker script for overflows"); 2723 } 2724 } 2725 2726 // Finalize the program headers. We call this function after we assign 2727 // file offsets and VAs to all sections. 2728 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2729 for (PhdrEntry *p : part.phdrs) { 2730 OutputSection *first = p->firstSec; 2731 OutputSection *last = p->lastSec; 2732 2733 // .ARM.exidx sections may not be within a single .ARM.exidx 2734 // output section. We always want to describe just the 2735 // SyntheticSection. 2736 if (part.armExidx && p->p_type == PT_ARM_EXIDX) { 2737 p->p_filesz = part.armExidx->getSize(); 2738 p->p_memsz = part.armExidx->getSize(); 2739 p->p_offset = first->offset + part.armExidx->outSecOff; 2740 p->p_vaddr = first->addr + part.armExidx->outSecOff; 2741 p->p_align = part.armExidx->addralign; 2742 if (part.elfHeader) 2743 p->p_offset -= part.elfHeader->getParent()->offset; 2744 2745 if (!p->hasLMA) 2746 p->p_paddr = first->getLMA() + part.armExidx->outSecOff; 2747 return; 2748 } 2749 2750 if (first) { 2751 p->p_filesz = last->offset - first->offset; 2752 if (last->type != SHT_NOBITS) 2753 p->p_filesz += last->size; 2754 2755 p->p_memsz = last->addr + last->size - first->addr; 2756 p->p_offset = first->offset; 2757 p->p_vaddr = first->addr; 2758 2759 // File offsets in partitions other than the main partition are relative 2760 // to the offset of the ELF headers. Perform that adjustment now. 2761 if (part.elfHeader) 2762 p->p_offset -= part.elfHeader->getParent()->offset; 2763 2764 if (!p->hasLMA) 2765 p->p_paddr = first->getLMA(); 2766 } 2767 } 2768 } 2769 2770 // A helper struct for checkSectionOverlap. 2771 namespace { 2772 struct SectionOffset { 2773 OutputSection *sec; 2774 uint64_t offset; 2775 }; 2776 } // namespace 2777 2778 // Check whether sections overlap for a specific address range (file offsets, 2779 // load and virtual addresses). 2780 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2781 bool isVirtualAddr) { 2782 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2783 return a.offset < b.offset; 2784 }); 2785 2786 // Finding overlap is easy given a vector is sorted by start position. 2787 // If an element starts before the end of the previous element, they overlap. 2788 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2789 SectionOffset a = sections[i - 1]; 2790 SectionOffset b = sections[i]; 2791 if (b.offset >= a.offset + a.sec->size) 2792 continue; 2793 2794 // If both sections are in OVERLAY we allow the overlapping of virtual 2795 // addresses, because it is what OVERLAY was designed for. 2796 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2797 continue; 2798 2799 errorOrWarn("section " + a.sec->name + " " + name + 2800 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2801 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2802 b.sec->name + " range is " + 2803 rangeToString(b.offset, b.sec->size)); 2804 } 2805 } 2806 2807 // Check for overlapping sections and address overflows. 2808 // 2809 // In this function we check that none of the output sections have overlapping 2810 // file offsets. For SHF_ALLOC sections we also check that the load address 2811 // ranges and the virtual address ranges don't overlap 2812 template <class ELFT> void Writer<ELFT>::checkSections() { 2813 // First, check that section's VAs fit in available address space for target. 2814 for (OutputSection *os : outputSections) 2815 if ((os->addr + os->size < os->addr) || 2816 (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1)) 2817 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2818 " of size 0x" + utohexstr(os->size) + 2819 " exceeds available address space"); 2820 2821 // Check for overlapping file offsets. In this case we need to skip any 2822 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2823 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2824 // binary is specified only add SHF_ALLOC sections are added to the output 2825 // file so we skip any non-allocated sections in that case. 2826 std::vector<SectionOffset> fileOffs; 2827 for (OutputSection *sec : outputSections) 2828 if (sec->size > 0 && sec->type != SHT_NOBITS && 2829 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2830 fileOffs.push_back({sec, sec->offset}); 2831 checkOverlap("file", fileOffs, false); 2832 2833 // When linking with -r there is no need to check for overlapping virtual/load 2834 // addresses since those addresses will only be assigned when the final 2835 // executable/shared object is created. 2836 if (config->relocatable) 2837 return; 2838 2839 // Checking for overlapping virtual and load addresses only needs to take 2840 // into account SHF_ALLOC sections since others will not be loaded. 2841 // Furthermore, we also need to skip SHF_TLS sections since these will be 2842 // mapped to other addresses at runtime and can therefore have overlapping 2843 // ranges in the file. 2844 std::vector<SectionOffset> vmas; 2845 for (OutputSection *sec : outputSections) 2846 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2847 vmas.push_back({sec, sec->addr}); 2848 checkOverlap("virtual address", vmas, true); 2849 2850 // Finally, check that the load addresses don't overlap. This will usually be 2851 // the same as the virtual addresses but can be different when using a linker 2852 // script with AT(). 2853 std::vector<SectionOffset> lmas; 2854 for (OutputSection *sec : outputSections) 2855 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2856 lmas.push_back({sec, sec->getLMA()}); 2857 checkOverlap("load address", lmas, false); 2858 } 2859 2860 // The entry point address is chosen in the following ways. 2861 // 2862 // 1. the '-e' entry command-line option; 2863 // 2. the ENTRY(symbol) command in a linker control script; 2864 // 3. the value of the symbol _start, if present; 2865 // 4. the number represented by the entry symbol, if it is a number; 2866 // 5. the address 0. 2867 static uint64_t getEntryAddr() { 2868 // Case 1, 2 or 3 2869 if (Symbol *b = symtab.find(config->entry)) 2870 return b->getVA(); 2871 2872 // Case 4 2873 uint64_t addr; 2874 if (to_integer(config->entry, addr)) 2875 return addr; 2876 2877 // Case 5 2878 if (config->warnMissingEntry) 2879 warn("cannot find entry symbol " + config->entry + 2880 "; not setting start address"); 2881 return 0; 2882 } 2883 2884 static uint16_t getELFType() { 2885 if (config->isPic) 2886 return ET_DYN; 2887 if (config->relocatable) 2888 return ET_REL; 2889 return ET_EXEC; 2890 } 2891 2892 template <class ELFT> void Writer<ELFT>::writeHeader() { 2893 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2894 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2895 2896 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2897 eHdr->e_type = getELFType(); 2898 eHdr->e_entry = getEntryAddr(); 2899 eHdr->e_shoff = sectionHeaderOff; 2900 2901 // Write the section header table. 2902 // 2903 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2904 // and e_shstrndx fields. When the value of one of these fields exceeds 2905 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2906 // use fields in the section header at index 0 to store 2907 // the value. The sentinel values and fields are: 2908 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2909 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2910 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2911 size_t num = outputSections.size() + 1; 2912 if (num >= SHN_LORESERVE) 2913 sHdrs->sh_size = num; 2914 else 2915 eHdr->e_shnum = num; 2916 2917 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2918 if (strTabIndex >= SHN_LORESERVE) { 2919 sHdrs->sh_link = strTabIndex; 2920 eHdr->e_shstrndx = SHN_XINDEX; 2921 } else { 2922 eHdr->e_shstrndx = strTabIndex; 2923 } 2924 2925 for (OutputSection *sec : outputSections) 2926 sec->writeHeaderTo<ELFT>(++sHdrs); 2927 } 2928 2929 // Open a result file. 2930 template <class ELFT> void Writer<ELFT>::openFile() { 2931 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2932 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2933 std::string msg; 2934 raw_string_ostream s(msg); 2935 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2936 << "section sizes:\n"; 2937 for (OutputSection *os : outputSections) 2938 s << os->name << ' ' << os->size << "\n"; 2939 error(s.str()); 2940 return; 2941 } 2942 2943 unlinkAsync(config->outputFile); 2944 unsigned flags = 0; 2945 if (!config->relocatable) 2946 flags |= FileOutputBuffer::F_executable; 2947 if (!config->mmapOutputFile) 2948 flags |= FileOutputBuffer::F_no_mmap; 2949 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2950 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2951 2952 if (!bufferOrErr) { 2953 error("failed to open " + config->outputFile + ": " + 2954 llvm::toString(bufferOrErr.takeError())); 2955 return; 2956 } 2957 buffer = std::move(*bufferOrErr); 2958 Out::bufferStart = buffer->getBufferStart(); 2959 } 2960 2961 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2962 parallel::TaskGroup tg; 2963 for (OutputSection *sec : outputSections) 2964 if (sec->flags & SHF_ALLOC) 2965 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); 2966 } 2967 2968 static void fillTrap(uint8_t *i, uint8_t *end) { 2969 for (; i + 4 <= end; i += 4) 2970 memcpy(i, &target->trapInstr, 4); 2971 } 2972 2973 // Fill the last page of executable segments with trap instructions 2974 // instead of leaving them as zero. Even though it is not required by any 2975 // standard, it is in general a good thing to do for security reasons. 2976 // 2977 // We'll leave other pages in segments as-is because the rest will be 2978 // overwritten by output sections. 2979 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2980 for (Partition &part : partitions) { 2981 // Fill the last page. 2982 for (PhdrEntry *p : part.phdrs) 2983 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2984 fillTrap(Out::bufferStart + 2985 alignDown(p->firstSec->offset + p->p_filesz, 4), 2986 Out::bufferStart + 2987 alignToPowerOf2(p->firstSec->offset + p->p_filesz, 2988 config->maxPageSize)); 2989 2990 // Round up the file size of the last segment to the page boundary iff it is 2991 // an executable segment to ensure that other tools don't accidentally 2992 // trim the instruction padding (e.g. when stripping the file). 2993 PhdrEntry *last = nullptr; 2994 for (PhdrEntry *p : part.phdrs) 2995 if (p->p_type == PT_LOAD) 2996 last = p; 2997 2998 if (last && (last->p_flags & PF_X)) 2999 last->p_memsz = last->p_filesz = 3000 alignToPowerOf2(last->p_filesz, config->maxPageSize); 3001 } 3002 } 3003 3004 // Write section contents to a mmap'ed file. 3005 template <class ELFT> void Writer<ELFT>::writeSections() { 3006 llvm::TimeTraceScope timeScope("Write sections"); 3007 3008 { 3009 // In -r or --emit-relocs mode, write the relocation sections first as in 3010 // ELf_Rel targets we might find out that we need to modify the relocated 3011 // section while doing it. 3012 parallel::TaskGroup tg; 3013 for (OutputSection *sec : outputSections) 3014 if (sec->type == SHT_REL || sec->type == SHT_RELA) 3015 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); 3016 } 3017 { 3018 parallel::TaskGroup tg; 3019 for (OutputSection *sec : outputSections) 3020 if (sec->type != SHT_REL && sec->type != SHT_RELA) 3021 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); 3022 } 3023 3024 // Finally, check that all dynamic relocation addends were written correctly. 3025 if (config->checkDynamicRelocs && config->writeAddends) { 3026 for (OutputSection *sec : outputSections) 3027 if (sec->type == SHT_REL || sec->type == SHT_RELA) 3028 sec->checkDynRelAddends(Out::bufferStart); 3029 } 3030 } 3031 3032 // Computes a hash value of Data using a given hash function. 3033 // In order to utilize multiple cores, we first split data into 1MB 3034 // chunks, compute a hash for each chunk, and then compute a hash value 3035 // of the hash values. 3036 static void 3037 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 3038 llvm::ArrayRef<uint8_t> data, 3039 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 3040 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 3041 const size_t hashesSize = chunks.size() * hashBuf.size(); 3042 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 3043 3044 // Compute hash values. 3045 parallelFor(0, chunks.size(), [&](size_t i) { 3046 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 3047 }); 3048 3049 // Write to the final output buffer. 3050 hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize)); 3051 } 3052 3053 template <class ELFT> void Writer<ELFT>::writeBuildId() { 3054 if (!mainPart->buildId || !mainPart->buildId->getParent()) 3055 return; 3056 3057 if (config->buildId == BuildIdKind::Hexstring) { 3058 for (Partition &part : partitions) 3059 part.buildId->writeBuildId(config->buildIdVector); 3060 return; 3061 } 3062 3063 // Compute a hash of all sections of the output file. 3064 size_t hashSize = mainPart->buildId->hashSize; 3065 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 3066 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 3067 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 3068 3069 // Fedora introduced build ID as "approximation of true uniqueness across all 3070 // binaries that might be used by overlapping sets of people". It does not 3071 // need some security goals that some hash algorithms strive to provide, e.g. 3072 // (second-)preimage and collision resistance. In practice people use 'md5' 3073 // and 'sha1' just for different lengths. Implement them with the more 3074 // efficient BLAKE3. 3075 switch (config->buildId) { 3076 case BuildIdKind::Fast: 3077 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3078 write64le(dest, xxh3_64bits(arr)); 3079 }); 3080 break; 3081 case BuildIdKind::Md5: 3082 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3083 memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize); 3084 }); 3085 break; 3086 case BuildIdKind::Sha1: 3087 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3088 memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize); 3089 }); 3090 break; 3091 case BuildIdKind::Uuid: 3092 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 3093 error("entropy source failure: " + ec.message()); 3094 break; 3095 default: 3096 llvm_unreachable("unknown BuildIdKind"); 3097 } 3098 for (Partition &part : partitions) 3099 part.buildId->writeBuildId(output); 3100 } 3101 3102 template void elf::createSyntheticSections<ELF32LE>(); 3103 template void elf::createSyntheticSections<ELF32BE>(); 3104 template void elf::createSyntheticSections<ELF64LE>(); 3105 template void elf::createSyntheticSections<ELF64BE>(); 3106 3107 template void elf::writeResult<ELF32LE>(); 3108 template void elf::writeResult<ELF32BE>(); 3109 template void elf::writeResult<ELF64LE>(); 3110 template void elf::writeResult<ELF64BE>(); 3111