xref: /freebsd/contrib/llvm-project/lld/ELF/Target.h (revision 3d265fce43746c293ae826e9603adbfe09f93cf6)
1 //===- Target.h -------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_ELF_TARGET_H
10 #define LLD_ELF_TARGET_H
11 
12 #include "InputSection.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/Object/ELF.h"
15 #include "llvm/Support/MathExtras.h"
16 #include <array>
17 
18 namespace lld {
19 std::string toString(elf::RelType type);
20 
21 namespace elf {
22 class Defined;
23 class InputFile;
24 class Symbol;
25 
26 class TargetInfo {
27 public:
28   virtual uint32_t calcEFlags() const { return 0; }
29   virtual RelExpr getRelExpr(RelType type, const Symbol &s,
30                              const uint8_t *loc) const = 0;
31   virtual RelType getDynRel(RelType type) const { return 0; }
32   virtual void writeGotPltHeader(uint8_t *buf) const {}
33   virtual void writeGotHeader(uint8_t *buf) const {}
34   virtual void writeGotPlt(uint8_t *buf, const Symbol &s) const {};
35   virtual void writeIgotPlt(uint8_t *buf, const Symbol &s) const {}
36   virtual int64_t getImplicitAddend(const uint8_t *buf, RelType type) const;
37   virtual int getTlsGdRelaxSkip(RelType type) const { return 1; }
38 
39   // If lazy binding is supported, the first entry of the PLT has code
40   // to call the dynamic linker to resolve PLT entries the first time
41   // they are called. This function writes that code.
42   virtual void writePltHeader(uint8_t *buf) const {}
43 
44   virtual void writePlt(uint8_t *buf, const Symbol &sym,
45                         uint64_t pltEntryAddr) const {}
46   virtual void writeIplt(uint8_t *buf, const Symbol &sym,
47                          uint64_t pltEntryAddr) const {
48     // All but PPC32 and PPC64 use the same format for .plt and .iplt entries.
49     writePlt(buf, sym, pltEntryAddr);
50   }
51   virtual void writeIBTPlt(uint8_t *buf, size_t numEntries) const {}
52   virtual void addPltHeaderSymbols(InputSection &isec) const {}
53   virtual void addPltSymbols(InputSection &isec, uint64_t off) const {}
54 
55   // Returns true if a relocation only uses the low bits of a value such that
56   // all those bits are in the same page. For example, if the relocation
57   // only uses the low 12 bits in a system with 4k pages. If this is true, the
58   // bits will always have the same value at runtime and we don't have to emit
59   // a dynamic relocation.
60   virtual bool usesOnlyLowPageBits(RelType type) const;
61 
62   // Decide whether a Thunk is needed for the relocation from File
63   // targeting S.
64   virtual bool needsThunk(RelExpr expr, RelType relocType,
65                           const InputFile *file, uint64_t branchAddr,
66                           const Symbol &s, int64_t a) const;
67 
68   // On systems with range extensions we place collections of Thunks at
69   // regular spacings that enable the majority of branches reach the Thunks.
70   // a value of 0 means range extension thunks are not supported.
71   virtual uint32_t getThunkSectionSpacing() const { return 0; }
72 
73   // The function with a prologue starting at Loc was compiled with
74   // -fsplit-stack and it calls a function compiled without. Adjust the prologue
75   // to do the right thing. See https://gcc.gnu.org/wiki/SplitStacks.
76   // The symbols st_other flags are needed on PowerPC64 for determining the
77   // offset to the split-stack prologue.
78   virtual bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
79                                                 uint8_t stOther) const;
80 
81   // Return true if we can reach dst from src with RelType type.
82   virtual bool inBranchRange(RelType type, uint64_t src,
83                              uint64_t dst) const;
84 
85   virtual void relocate(uint8_t *loc, const Relocation &rel,
86                         uint64_t val) const = 0;
87   void relocateNoSym(uint8_t *loc, RelType type, uint64_t val) const {
88     relocate(loc, Relocation{R_NONE, type, 0, 0, nullptr}, val);
89   }
90 
91   virtual void applyJumpInstrMod(uint8_t *loc, JumpModType type,
92                                  JumpModType val) const {}
93 
94   virtual ~TargetInfo();
95 
96   // This deletes a jump insn at the end of the section if it is a fall thru to
97   // the next section.  Further, if there is a conditional jump and a direct
98   // jump consecutively, it tries to flip the conditional jump to convert the
99   // direct jump into a fall thru and delete it.  Returns true if a jump
100   // instruction can be deleted.
101   virtual bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
102                                      InputSection *nextIS) const {
103     return false;
104   }
105 
106   unsigned defaultCommonPageSize = 4096;
107   unsigned defaultMaxPageSize = 4096;
108 
109   uint64_t getImageBase() const;
110 
111   // True if _GLOBAL_OFFSET_TABLE_ is relative to .got.plt, false if .got.
112   bool gotBaseSymInGotPlt = true;
113 
114   RelType copyRel;
115   RelType gotRel;
116   RelType noneRel;
117   RelType pltRel;
118   RelType relativeRel;
119   RelType iRelativeRel;
120   RelType symbolicRel;
121   RelType tlsDescRel;
122   RelType tlsGotRel;
123   RelType tlsModuleIndexRel;
124   RelType tlsOffsetRel;
125   unsigned pltEntrySize;
126   unsigned pltHeaderSize;
127   unsigned ipltEntrySize;
128 
129   // At least on x86_64 positions 1 and 2 are used by the first plt entry
130   // to support lazy loading.
131   unsigned gotPltHeaderEntriesNum = 3;
132 
133   // On PPC ELF V2 abi, the first entry in the .got is the .TOC.
134   unsigned gotHeaderEntriesNum = 0;
135 
136   bool needsThunks = false;
137 
138   // A 4-byte field corresponding to one or more trap instructions, used to pad
139   // executable OutputSections.
140   std::array<uint8_t, 4> trapInstr;
141 
142   // Stores the NOP instructions of different sizes for the target and is used
143   // to pad sections that are relaxed.
144   llvm::Optional<std::vector<std::vector<uint8_t>>> nopInstrs;
145 
146   // If a target needs to rewrite calls to __morestack to instead call
147   // __morestack_non_split when a split-stack enabled caller calls a
148   // non-split-stack callee this will return true. Otherwise returns false.
149   bool needsMoreStackNonSplit = true;
150 
151   virtual RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
152                                   RelExpr expr) const;
153   virtual void relaxGot(uint8_t *loc, const Relocation &rel,
154                         uint64_t val) const;
155   virtual void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
156                               uint64_t val) const;
157   virtual void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
158                               uint64_t val) const;
159   virtual void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
160                               uint64_t val) const;
161   virtual void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
162                               uint64_t val) const;
163 
164 protected:
165   // On FreeBSD x86_64 the first page cannot be mmaped.
166   // On Linux this is controlled by vm.mmap_min_addr. At least on some x86_64
167   // installs this is set to 65536, so the first 15 pages cannot be used.
168   // Given that, the smallest value that can be used in here is 0x10000.
169   uint64_t defaultImageBase = 0x10000;
170 };
171 
172 TargetInfo *getAArch64TargetInfo();
173 TargetInfo *getAMDGPUTargetInfo();
174 TargetInfo *getARMTargetInfo();
175 TargetInfo *getAVRTargetInfo();
176 TargetInfo *getHexagonTargetInfo();
177 TargetInfo *getMSP430TargetInfo();
178 TargetInfo *getPPC64TargetInfo();
179 TargetInfo *getPPCTargetInfo();
180 TargetInfo *getRISCVTargetInfo();
181 TargetInfo *getSPARCV9TargetInfo();
182 TargetInfo *getX86TargetInfo();
183 TargetInfo *getX86_64TargetInfo();
184 template <class ELFT> TargetInfo *getMipsTargetInfo();
185 
186 struct ErrorPlace {
187   InputSectionBase *isec;
188   std::string loc;
189 };
190 
191 // Returns input section and corresponding source string for the given location.
192 ErrorPlace getErrorPlace(const uint8_t *loc);
193 
194 static inline std::string getErrorLocation(const uint8_t *loc) {
195   return getErrorPlace(loc).loc;
196 }
197 
198 void writePPC32GlinkSection(uint8_t *buf, size_t numEntries);
199 
200 bool tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc);
201 unsigned getPPCDFormOp(unsigned secondaryOp);
202 
203 // In the PowerPC64 Elf V2 abi a function can have 2 entry points.  The first
204 // is a global entry point (GEP) which typically is used to initialize the TOC
205 // pointer in general purpose register 2.  The second is a local entry
206 // point (LEP) which bypasses the TOC pointer initialization code. The
207 // offset between GEP and LEP is encoded in a function's st_other flags.
208 // This function will return the offset (in bytes) from the global entry-point
209 // to the local entry-point.
210 unsigned getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther);
211 
212 // Returns true if a relocation is a small code model relocation that accesses
213 // the .toc section.
214 bool isPPC64SmallCodeModelTocReloc(RelType type);
215 
216 void addPPC64SaveRestore();
217 uint64_t getPPC64TocBase();
218 uint64_t getAArch64Page(uint64_t expr);
219 
220 extern const TargetInfo *target;
221 TargetInfo *getTarget();
222 
223 template <class ELFT> bool isMipsPIC(const Defined *sym);
224 
225 void reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
226                       int64_t min, uint64_t max);
227 
228 // Make sure that V can be represented as an N bit signed integer.
229 inline void checkInt(uint8_t *loc, int64_t v, int n, const Relocation &rel) {
230   if (v != llvm::SignExtend64(v, n))
231     reportRangeError(loc, rel, Twine(v), llvm::minIntN(n), llvm::maxIntN(n));
232 }
233 
234 // Make sure that V can be represented as an N bit unsigned integer.
235 inline void checkUInt(uint8_t *loc, uint64_t v, int n, const Relocation &rel) {
236   if ((v >> n) != 0)
237     reportRangeError(loc, rel, Twine(v), 0, llvm::maxUIntN(n));
238 }
239 
240 // Make sure that V can be represented as an N bit signed or unsigned integer.
241 inline void checkIntUInt(uint8_t *loc, uint64_t v, int n,
242                          const Relocation &rel) {
243   // For the error message we should cast V to a signed integer so that error
244   // messages show a small negative value rather than an extremely large one
245   if (v != (uint64_t)llvm::SignExtend64(v, n) && (v >> n) != 0)
246     reportRangeError(loc, rel, Twine((int64_t)v), llvm::minIntN(n),
247                      llvm::maxUIntN(n));
248 }
249 
250 inline void checkAlignment(uint8_t *loc, uint64_t v, int n,
251                            const Relocation &rel) {
252   if ((v & (n - 1)) != 0)
253     error(getErrorLocation(loc) + "improper alignment for relocation " +
254           lld::toString(rel.type) + ": 0x" + llvm::utohexstr(v) +
255           " is not aligned to " + Twine(n) + " bytes");
256 }
257 
258 // Endianness-aware read/write.
259 inline uint16_t read16(const void *p) {
260   return llvm::support::endian::read16(p, config->endianness);
261 }
262 
263 inline uint32_t read32(const void *p) {
264   return llvm::support::endian::read32(p, config->endianness);
265 }
266 
267 inline uint64_t read64(const void *p) {
268   return llvm::support::endian::read64(p, config->endianness);
269 }
270 
271 inline void write16(void *p, uint16_t v) {
272   llvm::support::endian::write16(p, v, config->endianness);
273 }
274 
275 inline void write32(void *p, uint32_t v) {
276   llvm::support::endian::write32(p, v, config->endianness);
277 }
278 
279 inline void write64(void *p, uint64_t v) {
280   llvm::support::endian::write64(p, v, config->endianness);
281 }
282 } // namespace elf
283 } // namespace lld
284 
285 #endif
286