1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Synthetic sections represent chunks of linker-created data. If you 10 // need to create a chunk of data that to be included in some section 11 // in the result, you probably want to create that as a synthetic section. 12 // 13 // Synthetic sections are designed as input sections as opposed to 14 // output sections because we want to allow them to be manipulated 15 // using linker scripts just like other input sections from regular 16 // files. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H 21 #define LLD_ELF_SYNTHETIC_SECTIONS_H 22 23 #include "DWARF.h" 24 #include "EhFrame.h" 25 #include "InputSection.h" 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/MapVector.h" 28 #include "llvm/MC/StringTableBuilder.h" 29 #include "llvm/Support/Endian.h" 30 #include <functional> 31 32 namespace lld { 33 namespace elf { 34 class Defined; 35 struct PhdrEntry; 36 class SymbolTableBaseSection; 37 38 class SyntheticSection : public InputSection { 39 public: 40 SyntheticSection(uint64_t flags, uint32_t type, uint32_t alignment, 41 StringRef name) 42 : InputSection(nullptr, flags, type, alignment, {}, name, 43 InputSectionBase::Synthetic) {} 44 45 virtual ~SyntheticSection() = default; 46 virtual void writeTo(uint8_t *buf) = 0; 47 virtual size_t getSize() const = 0; 48 virtual void finalizeContents() {} 49 // If the section has the SHF_ALLOC flag and the size may be changed if 50 // thunks are added, update the section size. 51 virtual bool updateAllocSize() { return false; } 52 virtual bool isNeeded() const { return true; } 53 54 static bool classof(const SectionBase *d) { 55 return d->kind() == InputSectionBase::Synthetic; 56 } 57 }; 58 59 struct CieRecord { 60 EhSectionPiece *cie = nullptr; 61 SmallVector<EhSectionPiece *, 0> fdes; 62 }; 63 64 // Section for .eh_frame. 65 class EhFrameSection final : public SyntheticSection { 66 public: 67 EhFrameSection(); 68 void writeTo(uint8_t *buf) override; 69 void finalizeContents() override; 70 bool isNeeded() const override { return !sections.empty(); } 71 size_t getSize() const override { return size; } 72 73 static bool classof(const SectionBase *d) { 74 return SyntheticSection::classof(d) && d->name == ".eh_frame"; 75 } 76 77 void addSection(EhInputSection *sec); 78 79 SmallVector<EhInputSection *, 0> sections; 80 size_t numFdes = 0; 81 82 struct FdeData { 83 uint32_t pcRel; 84 uint32_t fdeVARel; 85 }; 86 87 SmallVector<FdeData, 0> getFdeData() const; 88 ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; } 89 template <class ELFT> 90 void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn); 91 92 private: 93 // This is used only when parsing EhInputSection. We keep it here to avoid 94 // allocating one for each EhInputSection. 95 llvm::DenseMap<size_t, CieRecord *> offsetToCie; 96 97 uint64_t size = 0; 98 99 template <class ELFT, class RelTy> 100 void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels); 101 template <class ELFT> void addSectionAux(EhInputSection *s); 102 template <class ELFT, class RelTy> 103 void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels, 104 llvm::DenseSet<size_t> &ciesWithLSDA, 105 llvm::function_ref<void(InputSection &)> fn); 106 107 template <class ELFT, class RelTy> 108 CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels); 109 110 template <class ELFT, class RelTy> 111 Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels); 112 113 uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const; 114 115 SmallVector<CieRecord *, 0> cieRecords; 116 117 // CIE records are uniquified by their contents and personality functions. 118 llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap; 119 }; 120 121 class GotSection : public SyntheticSection { 122 public: 123 GotSection(); 124 size_t getSize() const override { return size; } 125 void finalizeContents() override; 126 bool isNeeded() const override; 127 void writeTo(uint8_t *buf) override; 128 129 void addEntry(Symbol &sym); 130 bool addTlsDescEntry(Symbol &sym); 131 bool addDynTlsEntry(Symbol &sym); 132 bool addTlsIndex(); 133 uint32_t getTlsDescOffset(const Symbol &sym) const; 134 uint64_t getTlsDescAddr(const Symbol &sym) const; 135 uint64_t getGlobalDynAddr(const Symbol &b) const; 136 uint64_t getGlobalDynOffset(const Symbol &b) const; 137 138 uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; } 139 uint32_t getTlsIndexOff() const { return tlsIndexOff; } 140 141 // Flag to force GOT to be in output if we have relocations 142 // that relies on its address. 143 bool hasGotOffRel = false; 144 145 protected: 146 size_t numEntries = 0; 147 uint32_t tlsIndexOff = -1; 148 uint64_t size = 0; 149 }; 150 151 // .note.GNU-stack section. 152 class GnuStackSection : public SyntheticSection { 153 public: 154 GnuStackSection() 155 : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {} 156 void writeTo(uint8_t *buf) override {} 157 size_t getSize() const override { return 0; } 158 }; 159 160 class GnuPropertySection : public SyntheticSection { 161 public: 162 GnuPropertySection(); 163 void writeTo(uint8_t *buf) override; 164 size_t getSize() const override; 165 }; 166 167 // .note.gnu.build-id section. 168 class BuildIdSection : public SyntheticSection { 169 // First 16 bytes are a header. 170 static const unsigned headerSize = 16; 171 172 public: 173 const size_t hashSize; 174 BuildIdSection(); 175 void writeTo(uint8_t *buf) override; 176 size_t getSize() const override { return headerSize + hashSize; } 177 void writeBuildId(llvm::ArrayRef<uint8_t> buf); 178 179 private: 180 uint8_t *hashBuf; 181 }; 182 183 // BssSection is used to reserve space for copy relocations and common symbols. 184 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON", 185 // that are used for writable symbols, read-only symbols and common symbols, 186 // respectively. 187 class BssSection final : public SyntheticSection { 188 public: 189 BssSection(StringRef name, uint64_t size, uint32_t alignment); 190 void writeTo(uint8_t *) override { 191 llvm_unreachable("unexpected writeTo() call for SHT_NOBITS section"); 192 } 193 bool isNeeded() const override { return size != 0; } 194 size_t getSize() const override { return size; } 195 196 static bool classof(const SectionBase *s) { return s->bss; } 197 uint64_t size; 198 }; 199 200 class MipsGotSection final : public SyntheticSection { 201 public: 202 MipsGotSection(); 203 void writeTo(uint8_t *buf) override; 204 size_t getSize() const override { return size; } 205 bool updateAllocSize() override; 206 void finalizeContents() override; 207 bool isNeeded() const override; 208 209 // Join separate GOTs built for each input file to generate 210 // primary and optional multiple secondary GOTs. 211 void build(); 212 213 void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr); 214 void addDynTlsEntry(InputFile &file, Symbol &sym); 215 void addTlsIndex(InputFile &file); 216 217 uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s, 218 int64_t addend) const; 219 uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s, 220 int64_t addend) const; 221 uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const; 222 uint64_t getTlsIndexOffset(const InputFile *f) const; 223 224 // Returns the symbol which corresponds to the first entry of the global part 225 // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic 226 // table properties. 227 // Returns nullptr if the global part is empty. 228 const Symbol *getFirstGlobalEntry() const; 229 230 // Returns the number of entries in the local part of GOT including 231 // the number of reserved entries. 232 unsigned getLocalEntriesNum() const; 233 234 // Return _gp value for primary GOT (nullptr) or particular input file. 235 uint64_t getGp(const InputFile *f = nullptr) const; 236 237 private: 238 // MIPS GOT consists of three parts: local, global and tls. Each part 239 // contains different types of entries. Here is a layout of GOT: 240 // - Header entries | 241 // - Page entries | Local part 242 // - Local entries (16-bit access) | 243 // - Local entries (32-bit access) | 244 // - Normal global entries || Global part 245 // - Reloc-only global entries || 246 // - TLS entries ||| TLS part 247 // 248 // Header: 249 // Two entries hold predefined value 0x0 and 0x80000000. 250 // Page entries: 251 // These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16 252 // relocation against local symbols. They are initialized by higher 16-bit 253 // of the corresponding symbol's value. So each 64kb of address space 254 // requires a single GOT entry. 255 // Local entries (16-bit access): 256 // These entries created by GOT relocations against global non-preemptible 257 // symbols so dynamic linker is not necessary to resolve the symbol's 258 // values. "16-bit access" means that corresponding relocations address 259 // GOT using 16-bit index. Each unique Symbol-Addend pair has its own 260 // GOT entry. 261 // Local entries (32-bit access): 262 // These entries are the same as above but created by relocations which 263 // address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc). 264 // Normal global entries: 265 // These entries created by GOT relocations against preemptible global 266 // symbols. They need to be initialized by dynamic linker and they ordered 267 // exactly as the corresponding entries in the dynamic symbols table. 268 // Reloc-only global entries: 269 // These entries created for symbols that are referenced by dynamic 270 // relocations R_MIPS_REL32. These entries are not accessed with gp-relative 271 // addressing, but MIPS ABI requires that these entries be present in GOT. 272 // TLS entries: 273 // Entries created by TLS relocations. 274 // 275 // If the sum of local, global and tls entries is less than 64K only single 276 // got is enough. Otherwise, multi-got is created. Series of primary and 277 // multiple secondary GOTs have the following layout: 278 // - Primary GOT 279 // Header 280 // Local entries 281 // Global entries 282 // Relocation only entries 283 // TLS entries 284 // 285 // - Secondary GOT 286 // Local entries 287 // Global entries 288 // TLS entries 289 // ... 290 // 291 // All GOT entries required by relocations from a single input file entirely 292 // belong to either primary or one of secondary GOTs. To reference GOT entries 293 // each GOT has its own _gp value points to the "middle" of the GOT. 294 // In the code this value loaded to the register which is used for GOT access. 295 // 296 // MIPS 32 function's prologue: 297 // lui v0,0x0 298 // 0: R_MIPS_HI16 _gp_disp 299 // addiu v0,v0,0 300 // 4: R_MIPS_LO16 _gp_disp 301 // 302 // MIPS 64: 303 // lui at,0x0 304 // 14: R_MIPS_GPREL16 main 305 // 306 // Dynamic linker does not know anything about secondary GOTs and cannot 307 // use a regular MIPS mechanism for GOT entries initialization. So we have 308 // to use an approach accepted by other architectures and create dynamic 309 // relocations R_MIPS_REL32 to initialize global entries (and local in case 310 // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker 311 // requires GOT entries and correspondingly ordered dynamic symbol table 312 // entries to deal with dynamic relocations. To handle this problem 313 // relocation-only section in the primary GOT contains entries for all 314 // symbols referenced in global parts of secondary GOTs. Although the sum 315 // of local and normal global entries of the primary got should be less 316 // than 64K, the size of the primary got (including relocation-only entries 317 // can be greater than 64K, because parts of the primary got that overflow 318 // the 64K limit are used only by the dynamic linker at dynamic link-time 319 // and not by 16-bit gp-relative addressing at run-time. 320 // 321 // For complete multi-GOT description see the following link 322 // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT 323 324 // Number of "Header" entries. 325 static const unsigned headerEntriesNum = 2; 326 327 uint64_t size = 0; 328 329 // Symbol and addend. 330 using GotEntry = std::pair<Symbol *, int64_t>; 331 332 struct FileGot { 333 InputFile *file = nullptr; 334 size_t startIndex = 0; 335 336 struct PageBlock { 337 size_t firstIndex; 338 size_t count; 339 PageBlock() : firstIndex(0), count(0) {} 340 }; 341 342 // Map output sections referenced by MIPS GOT relocations 343 // to the description (index/count) "page" entries allocated 344 // for this section. 345 llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap; 346 // Maps from Symbol+Addend pair or just Symbol to the GOT entry index. 347 llvm::MapVector<GotEntry, size_t> local16; 348 llvm::MapVector<GotEntry, size_t> local32; 349 llvm::MapVector<Symbol *, size_t> global; 350 llvm::MapVector<Symbol *, size_t> relocs; 351 llvm::MapVector<Symbol *, size_t> tls; 352 // Set of symbols referenced by dynamic TLS relocations. 353 llvm::MapVector<Symbol *, size_t> dynTlsSymbols; 354 355 // Total number of all entries. 356 size_t getEntriesNum() const; 357 // Number of "page" entries. 358 size_t getPageEntriesNum() const; 359 // Number of entries require 16-bit index to access. 360 size_t getIndexedEntriesNum() const; 361 }; 362 363 // Container of GOT created for each input file. 364 // After building a final series of GOTs this container 365 // holds primary and secondary GOT's. 366 std::vector<FileGot> gots; 367 368 // Return (and create if necessary) `FileGot`. 369 FileGot &getGot(InputFile &f); 370 371 // Try to merge two GOTs. In case of success the `Dst` contains 372 // result of merging and the function returns true. In case of 373 // overflow the `Dst` is unchanged and the function returns false. 374 bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary); 375 }; 376 377 class GotPltSection final : public SyntheticSection { 378 public: 379 GotPltSection(); 380 void addEntry(Symbol &sym); 381 size_t getSize() const override; 382 void writeTo(uint8_t *buf) override; 383 bool isNeeded() const override; 384 385 // Flag to force GotPlt to be in output if we have relocations 386 // that relies on its address. 387 bool hasGotPltOffRel = false; 388 389 private: 390 SmallVector<const Symbol *, 0> entries; 391 }; 392 393 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc 394 // Symbols that will be relocated by Target->IRelativeRel. 395 // On most Targets the IgotPltSection will immediately follow the GotPltSection 396 // on ARM the IgotPltSection will immediately follow the GotSection. 397 class IgotPltSection final : public SyntheticSection { 398 public: 399 IgotPltSection(); 400 void addEntry(Symbol &sym); 401 size_t getSize() const override; 402 void writeTo(uint8_t *buf) override; 403 bool isNeeded() const override { return !entries.empty(); } 404 405 private: 406 SmallVector<const Symbol *, 0> entries; 407 }; 408 409 class StringTableSection final : public SyntheticSection { 410 public: 411 StringTableSection(StringRef name, bool dynamic); 412 unsigned addString(StringRef s, bool hashIt = true); 413 void writeTo(uint8_t *buf) override; 414 size_t getSize() const override { return size; } 415 bool isDynamic() const { return dynamic; } 416 417 private: 418 const bool dynamic; 419 420 uint64_t size = 0; 421 422 llvm::DenseMap<llvm::CachedHashStringRef, unsigned> stringMap; 423 SmallVector<StringRef, 0> strings; 424 }; 425 426 class DynamicReloc { 427 public: 428 enum Kind { 429 /// The resulting dynamic relocation does not reference a symbol (#sym must 430 /// be nullptr) and uses #addend as the result of computeAddend(). 431 AddendOnly, 432 /// The resulting dynamic relocation will not reference a symbol: #sym is 433 /// only used to compute the addend with InputSection::getRelocTargetVA(). 434 /// Useful for various relative and TLS relocations (e.g. R_X86_64_TPOFF64). 435 AddendOnlyWithTargetVA, 436 /// The resulting dynamic relocation references symbol #sym from the dynamic 437 /// symbol table and uses #addend as the value of computeAddend(). 438 AgainstSymbol, 439 /// The resulting dynamic relocation references symbol #sym from the dynamic 440 /// symbol table and uses InputSection::getRelocTargetVA() + #addend for the 441 /// final addend. It can be used for relocations that write the symbol VA as 442 // the addend (e.g. R_MIPS_TLS_TPREL64) but still reference the symbol. 443 AgainstSymbolWithTargetVA, 444 /// This is used by the MIPS multi-GOT implementation. It relocates 445 /// addresses of 64kb pages that lie inside the output section. 446 MipsMultiGotPage, 447 }; 448 /// This constructor records a relocation against a symbol. 449 DynamicReloc(RelType type, const InputSectionBase *inputSec, 450 uint64_t offsetInSec, Kind kind, Symbol &sym, int64_t addend, 451 RelExpr expr) 452 : sym(&sym), inputSec(inputSec), offsetInSec(offsetInSec), type(type), 453 addend(addend), kind(kind), expr(expr) {} 454 /// This constructor records a relative relocation with no symbol. 455 DynamicReloc(RelType type, const InputSectionBase *inputSec, 456 uint64_t offsetInSec, int64_t addend = 0) 457 : sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec), type(type), 458 addend(addend), kind(AddendOnly), expr(R_ADDEND) {} 459 /// This constructor records dynamic relocation settings used by the MIPS 460 /// multi-GOT implementation. 461 DynamicReloc(RelType type, const InputSectionBase *inputSec, 462 uint64_t offsetInSec, const OutputSection *outputSec, 463 int64_t addend) 464 : sym(nullptr), outputSec(outputSec), inputSec(inputSec), 465 offsetInSec(offsetInSec), type(type), addend(addend), 466 kind(MipsMultiGotPage), expr(R_ADDEND) {} 467 468 uint64_t getOffset() const; 469 uint32_t getSymIndex(SymbolTableBaseSection *symTab) const; 470 bool needsDynSymIndex() const { 471 return kind == AgainstSymbol || kind == AgainstSymbolWithTargetVA; 472 } 473 474 /// Computes the addend of the dynamic relocation. Note that this is not the 475 /// same as the #addend member variable as it may also include the symbol 476 /// address/the address of the corresponding GOT entry/etc. 477 int64_t computeAddend() const; 478 479 void computeRaw(SymbolTableBaseSection *symtab); 480 481 Symbol *sym; 482 const OutputSection *outputSec = nullptr; 483 const InputSectionBase *inputSec; 484 uint64_t offsetInSec; 485 uint64_t r_offset; 486 RelType type; 487 uint32_t r_sym; 488 // Initially input addend, then the output addend after 489 // RelocationSection<ELFT>::writeTo. 490 int64_t addend; 491 492 private: 493 Kind kind; 494 // The kind of expression used to calculate the added (required e.g. for 495 // relative GOT relocations). 496 RelExpr expr; 497 }; 498 499 template <class ELFT> class DynamicSection final : public SyntheticSection { 500 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 501 502 public: 503 DynamicSection(); 504 void finalizeContents() override; 505 void writeTo(uint8_t *buf) override; 506 size_t getSize() const override { return size; } 507 508 private: 509 std::vector<std::pair<int32_t, uint64_t>> computeContents(); 510 uint64_t size = 0; 511 }; 512 513 class RelocationBaseSection : public SyntheticSection { 514 public: 515 RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag, 516 int32_t sizeDynamicTag, bool combreloc); 517 /// Add a dynamic relocation without writing an addend to the output section. 518 /// This overload can be used if the addends are written directly instead of 519 /// using relocations on the input section (e.g. MipsGotSection::writeTo()). 520 void addReloc(const DynamicReloc &reloc) { relocs.push_back(reloc); } 521 /// Add a dynamic relocation against \p sym with an optional addend. 522 void addSymbolReloc(RelType dynType, InputSectionBase &isec, 523 uint64_t offsetInSec, Symbol &sym, int64_t addend = 0, 524 llvm::Optional<RelType> addendRelType = llvm::None); 525 /// Add a relative dynamic relocation that uses the target address of \p sym 526 /// (i.e. InputSection::getRelocTargetVA()) + \p addend as the addend. 527 void addRelativeReloc(RelType dynType, InputSectionBase &isec, 528 uint64_t offsetInSec, Symbol &sym, int64_t addend, 529 RelType addendRelType, RelExpr expr); 530 /// Add a dynamic relocation using the target address of \p sym as the addend 531 /// if \p sym is non-preemptible. Otherwise add a relocation against \p sym. 532 void addAddendOnlyRelocIfNonPreemptible(RelType dynType, 533 InputSectionBase &isec, 534 uint64_t offsetInSec, Symbol &sym, 535 RelType addendRelType); 536 void addReloc(DynamicReloc::Kind kind, RelType dynType, 537 InputSectionBase &inputSec, uint64_t offsetInSec, Symbol &sym, 538 int64_t addend, RelExpr expr, RelType addendRelType); 539 bool isNeeded() const override { return !relocs.empty(); } 540 size_t getSize() const override { return relocs.size() * this->entsize; } 541 size_t getRelativeRelocCount() const { return numRelativeRelocs; } 542 void partitionRels(); 543 void finalizeContents() override; 544 static bool classof(const SectionBase *d) { 545 return SyntheticSection::classof(d) && 546 (d->type == llvm::ELF::SHT_RELA || d->type == llvm::ELF::SHT_REL || 547 d->type == llvm::ELF::SHT_RELR); 548 } 549 int32_t dynamicTag, sizeDynamicTag; 550 SmallVector<DynamicReloc, 0> relocs; 551 552 protected: 553 void computeRels(); 554 size_t numRelativeRelocs = 0; // used by -z combreloc 555 bool combreloc; 556 }; 557 558 template <class ELFT> 559 class RelocationSection final : public RelocationBaseSection { 560 using Elf_Rel = typename ELFT::Rel; 561 using Elf_Rela = typename ELFT::Rela; 562 563 public: 564 RelocationSection(StringRef name, bool combreloc); 565 void writeTo(uint8_t *buf) override; 566 }; 567 568 template <class ELFT> 569 class AndroidPackedRelocationSection final : public RelocationBaseSection { 570 using Elf_Rel = typename ELFT::Rel; 571 using Elf_Rela = typename ELFT::Rela; 572 573 public: 574 AndroidPackedRelocationSection(StringRef name); 575 576 bool updateAllocSize() override; 577 size_t getSize() const override { return relocData.size(); } 578 void writeTo(uint8_t *buf) override { 579 memcpy(buf, relocData.data(), relocData.size()); 580 } 581 582 private: 583 SmallVector<char, 0> relocData; 584 }; 585 586 struct RelativeReloc { 587 uint64_t getOffset() const { return inputSec->getVA(offsetInSec); } 588 589 const InputSectionBase *inputSec; 590 uint64_t offsetInSec; 591 }; 592 593 class RelrBaseSection : public SyntheticSection { 594 public: 595 RelrBaseSection(); 596 bool isNeeded() const override { return !relocs.empty(); } 597 SmallVector<RelativeReloc, 0> relocs; 598 }; 599 600 // RelrSection is used to encode offsets for relative relocations. 601 // Proposal for adding SHT_RELR sections to generic-abi is here: 602 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 603 // For more details, see the comment in RelrSection::updateAllocSize(). 604 template <class ELFT> class RelrSection final : public RelrBaseSection { 605 using Elf_Relr = typename ELFT::Relr; 606 607 public: 608 RelrSection(); 609 610 bool updateAllocSize() override; 611 size_t getSize() const override { return relrRelocs.size() * this->entsize; } 612 void writeTo(uint8_t *buf) override { 613 memcpy(buf, relrRelocs.data(), getSize()); 614 } 615 616 private: 617 SmallVector<Elf_Relr, 0> relrRelocs; 618 }; 619 620 struct SymbolTableEntry { 621 Symbol *sym; 622 size_t strTabOffset; 623 }; 624 625 class SymbolTableBaseSection : public SyntheticSection { 626 public: 627 SymbolTableBaseSection(StringTableSection &strTabSec); 628 void finalizeContents() override; 629 size_t getSize() const override { return getNumSymbols() * entsize; } 630 void addSymbol(Symbol *sym); 631 unsigned getNumSymbols() const { return symbols.size() + 1; } 632 size_t getSymbolIndex(Symbol *sym); 633 ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; } 634 635 protected: 636 void sortSymTabSymbols(); 637 638 // A vector of symbols and their string table offsets. 639 SmallVector<SymbolTableEntry, 0> symbols; 640 641 StringTableSection &strTabSec; 642 643 llvm::once_flag onceFlag; 644 llvm::DenseMap<Symbol *, size_t> symbolIndexMap; 645 llvm::DenseMap<OutputSection *, size_t> sectionIndexMap; 646 }; 647 648 template <class ELFT> 649 class SymbolTableSection final : public SymbolTableBaseSection { 650 using Elf_Sym = typename ELFT::Sym; 651 652 public: 653 SymbolTableSection(StringTableSection &strTabSec); 654 void writeTo(uint8_t *buf) override; 655 }; 656 657 class SymtabShndxSection final : public SyntheticSection { 658 public: 659 SymtabShndxSection(); 660 661 void writeTo(uint8_t *buf) override; 662 size_t getSize() const override; 663 bool isNeeded() const override; 664 void finalizeContents() override; 665 }; 666 667 // Outputs GNU Hash section. For detailed explanation see: 668 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections 669 class GnuHashTableSection final : public SyntheticSection { 670 public: 671 GnuHashTableSection(); 672 void finalizeContents() override; 673 void writeTo(uint8_t *buf) override; 674 size_t getSize() const override { return size; } 675 676 // Adds symbols to the hash table. 677 // Sorts the input to satisfy GNU hash section requirements. 678 void addSymbols(llvm::SmallVectorImpl<SymbolTableEntry> &symbols); 679 680 private: 681 // See the comment in writeBloomFilter. 682 enum { Shift2 = 26 }; 683 684 struct Entry { 685 Symbol *sym; 686 size_t strTabOffset; 687 uint32_t hash; 688 uint32_t bucketIdx; 689 }; 690 691 SmallVector<Entry, 0> symbols; 692 size_t maskWords; 693 size_t nBuckets = 0; 694 size_t size = 0; 695 }; 696 697 class HashTableSection final : public SyntheticSection { 698 public: 699 HashTableSection(); 700 void finalizeContents() override; 701 void writeTo(uint8_t *buf) override; 702 size_t getSize() const override { return size; } 703 704 private: 705 size_t size = 0; 706 }; 707 708 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT 709 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily 710 // at runtime. 711 // 712 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction 713 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a 714 // lazy symbol resolver. 715 // 716 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs. 717 // A call instruction jumps to a .plt.sec entry, which will then jump to the 718 // target (BIND_NOW) or a .plt entry. 719 class PltSection : public SyntheticSection { 720 public: 721 PltSection(); 722 void writeTo(uint8_t *buf) override; 723 size_t getSize() const override; 724 bool isNeeded() const override; 725 void addSymbols(); 726 void addEntry(Symbol &sym); 727 size_t getNumEntries() const { return entries.size(); } 728 729 size_t headerSize; 730 731 SmallVector<const Symbol *, 0> entries; 732 }; 733 734 // Used for non-preemptible ifuncs. It does not have a header. Each entry is 735 // associated with an IRELATIVE relocation, which will be resolved eagerly at 736 // runtime. PltSection can only contain entries associated with JUMP_SLOT 737 // relocations, so IPLT entries are in a separate section. 738 class IpltSection final : public SyntheticSection { 739 SmallVector<const Symbol *, 0> entries; 740 741 public: 742 IpltSection(); 743 void writeTo(uint8_t *buf) override; 744 size_t getSize() const override; 745 bool isNeeded() const override { return !entries.empty(); } 746 void addSymbols(); 747 void addEntry(Symbol &sym); 748 }; 749 750 class PPC32GlinkSection : public PltSection { 751 public: 752 PPC32GlinkSection(); 753 void writeTo(uint8_t *buf) override; 754 size_t getSize() const override; 755 756 SmallVector<const Symbol *, 0> canonical_plts; 757 static constexpr size_t footerSize = 64; 758 }; 759 760 // This is x86-only. 761 class IBTPltSection : public SyntheticSection { 762 public: 763 IBTPltSection(); 764 void writeTo(uint8_t *Buf) override; 765 size_t getSize() const override; 766 }; 767 768 class GdbIndexSection final : public SyntheticSection { 769 public: 770 struct AddressEntry { 771 InputSection *section; 772 uint64_t lowAddress; 773 uint64_t highAddress; 774 uint32_t cuIndex; 775 }; 776 777 struct CuEntry { 778 uint64_t cuOffset; 779 uint64_t cuLength; 780 }; 781 782 struct NameAttrEntry { 783 llvm::CachedHashStringRef name; 784 uint32_t cuIndexAndAttrs; 785 }; 786 787 struct GdbChunk { 788 InputSection *sec; 789 SmallVector<AddressEntry, 0> addressAreas; 790 SmallVector<CuEntry, 0> compilationUnits; 791 }; 792 793 struct GdbSymbol { 794 llvm::CachedHashStringRef name; 795 SmallVector<uint32_t, 0> cuVector; 796 uint32_t nameOff; 797 uint32_t cuVectorOff; 798 }; 799 800 GdbIndexSection(); 801 template <typename ELFT> static GdbIndexSection *create(); 802 void writeTo(uint8_t *buf) override; 803 size_t getSize() const override { return size; } 804 bool isNeeded() const override; 805 806 private: 807 struct GdbIndexHeader { 808 llvm::support::ulittle32_t version; 809 llvm::support::ulittle32_t cuListOff; 810 llvm::support::ulittle32_t cuTypesOff; 811 llvm::support::ulittle32_t addressAreaOff; 812 llvm::support::ulittle32_t symtabOff; 813 llvm::support::ulittle32_t constantPoolOff; 814 }; 815 816 void initOutputSize(); 817 size_t computeSymtabSize() const; 818 819 // Each chunk contains information gathered from debug sections of a 820 // single object file. 821 SmallVector<GdbChunk, 0> chunks; 822 823 // A symbol table for this .gdb_index section. 824 SmallVector<GdbSymbol, 0> symbols; 825 826 size_t size; 827 }; 828 829 // --eh-frame-hdr option tells linker to construct a header for all the 830 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr 831 // and also to a PT_GNU_EH_FRAME segment. 832 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by 833 // calling dl_iterate_phdr. 834 // This section contains a lookup table for quick binary search of FDEs. 835 // Detailed info about internals can be found in Ian Lance Taylor's blog: 836 // http://www.airs.com/blog/archives/460 (".eh_frame") 837 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr") 838 class EhFrameHeader final : public SyntheticSection { 839 public: 840 EhFrameHeader(); 841 void write(); 842 void writeTo(uint8_t *buf) override; 843 size_t getSize() const override; 844 bool isNeeded() const override; 845 }; 846 847 // For more information about .gnu.version and .gnu.version_r see: 848 // https://www.akkadia.org/drepper/symbol-versioning 849 850 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall 851 // contain symbol version definitions. The number of entries in this section 852 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section. 853 // The section shall contain an array of Elf_Verdef structures, optionally 854 // followed by an array of Elf_Verdaux structures. 855 class VersionDefinitionSection final : public SyntheticSection { 856 public: 857 VersionDefinitionSection(); 858 void finalizeContents() override; 859 size_t getSize() const override; 860 void writeTo(uint8_t *buf) override; 861 862 private: 863 enum { EntrySize = 28 }; 864 void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff); 865 StringRef getFileDefName(); 866 867 unsigned fileDefNameOff; 868 SmallVector<unsigned, 0> verDefNameOffs; 869 }; 870 871 // The .gnu.version section specifies the required version of each symbol in the 872 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol 873 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version 874 // identifier defined in the either .gnu.version_r or .gnu.version_d section. 875 // The values 0 and 1 are reserved. All other values are used for versions in 876 // the own object or in any of the dependencies. 877 class VersionTableSection final : public SyntheticSection { 878 public: 879 VersionTableSection(); 880 void finalizeContents() override; 881 size_t getSize() const override; 882 void writeTo(uint8_t *buf) override; 883 bool isNeeded() const override; 884 }; 885 886 // The .gnu.version_r section defines the version identifiers used by 887 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each 888 // Elf_Verneed specifies the version requirements for a single DSO, and contains 889 // a reference to a linked list of Elf_Vernaux data structures which define the 890 // mapping from version identifiers to version names. 891 template <class ELFT> 892 class VersionNeedSection final : public SyntheticSection { 893 using Elf_Verneed = typename ELFT::Verneed; 894 using Elf_Vernaux = typename ELFT::Vernaux; 895 896 struct Vernaux { 897 uint64_t hash; 898 uint32_t verneedIndex; 899 uint64_t nameStrTab; 900 }; 901 902 struct Verneed { 903 uint64_t nameStrTab; 904 std::vector<Vernaux> vernauxs; 905 }; 906 907 SmallVector<Verneed, 0> verneeds; 908 909 public: 910 VersionNeedSection(); 911 void finalizeContents() override; 912 void writeTo(uint8_t *buf) override; 913 size_t getSize() const override; 914 bool isNeeded() const override; 915 }; 916 917 // MergeSyntheticSection is a class that allows us to put mergeable sections 918 // with different attributes in a single output sections. To do that 919 // we put them into MergeSyntheticSection synthetic input sections which are 920 // attached to regular output sections. 921 class MergeSyntheticSection : public SyntheticSection { 922 public: 923 void addSection(MergeInputSection *ms); 924 SmallVector<MergeInputSection *, 0> sections; 925 926 protected: 927 MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags, 928 uint32_t alignment) 929 : SyntheticSection(flags, type, alignment, name) {} 930 }; 931 932 class MergeTailSection final : public MergeSyntheticSection { 933 public: 934 MergeTailSection(StringRef name, uint32_t type, uint64_t flags, 935 uint32_t alignment); 936 937 size_t getSize() const override; 938 void writeTo(uint8_t *buf) override; 939 void finalizeContents() override; 940 941 private: 942 llvm::StringTableBuilder builder; 943 }; 944 945 class MergeNoTailSection final : public MergeSyntheticSection { 946 public: 947 MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags, 948 uint32_t alignment) 949 : MergeSyntheticSection(name, type, flags, alignment) {} 950 951 size_t getSize() const override { return size; } 952 void writeTo(uint8_t *buf) override; 953 void finalizeContents() override; 954 955 private: 956 // We use the most significant bits of a hash as a shard ID. 957 // The reason why we don't want to use the least significant bits is 958 // because DenseMap also uses lower bits to determine a bucket ID. 959 // If we use lower bits, it significantly increases the probability of 960 // hash collisons. 961 size_t getShardId(uint32_t hash) { 962 assert((hash >> 31) == 0); 963 return hash >> (31 - llvm::countTrailingZeros(numShards)); 964 } 965 966 // Section size 967 size_t size; 968 969 // String table contents 970 constexpr static size_t numShards = 32; 971 SmallVector<llvm::StringTableBuilder, 0> shards; 972 size_t shardOffsets[numShards]; 973 }; 974 975 // .MIPS.abiflags section. 976 template <class ELFT> 977 class MipsAbiFlagsSection final : public SyntheticSection { 978 using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>; 979 980 public: 981 static std::unique_ptr<MipsAbiFlagsSection> create(); 982 983 MipsAbiFlagsSection(Elf_Mips_ABIFlags flags); 984 size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); } 985 void writeTo(uint8_t *buf) override; 986 987 private: 988 Elf_Mips_ABIFlags flags; 989 }; 990 991 // .MIPS.options section. 992 template <class ELFT> class MipsOptionsSection final : public SyntheticSection { 993 using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>; 994 using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>; 995 996 public: 997 static std::unique_ptr<MipsOptionsSection<ELFT>> create(); 998 999 MipsOptionsSection(Elf_Mips_RegInfo reginfo); 1000 void writeTo(uint8_t *buf) override; 1001 1002 size_t getSize() const override { 1003 return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 1004 } 1005 1006 private: 1007 Elf_Mips_RegInfo reginfo; 1008 }; 1009 1010 // MIPS .reginfo section. 1011 template <class ELFT> class MipsReginfoSection final : public SyntheticSection { 1012 using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>; 1013 1014 public: 1015 static std::unique_ptr<MipsReginfoSection> create(); 1016 1017 MipsReginfoSection(Elf_Mips_RegInfo reginfo); 1018 size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); } 1019 void writeTo(uint8_t *buf) override; 1020 1021 private: 1022 Elf_Mips_RegInfo reginfo; 1023 }; 1024 1025 // This is a MIPS specific section to hold a space within the data segment 1026 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. 1027 // See "Dynamic section" in Chapter 5 in the following document: 1028 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1029 class MipsRldMapSection : public SyntheticSection { 1030 public: 1031 MipsRldMapSection(); 1032 size_t getSize() const override { return config->wordsize; } 1033 void writeTo(uint8_t *buf) override {} 1034 }; 1035 1036 // Representation of the combined .ARM.Exidx input sections. We process these 1037 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries 1038 // and add terminating sentinel entries. 1039 // 1040 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form 1041 // a table that the unwinder can derive (Addresses are encoded as offsets from 1042 // table): 1043 // | Address of function | Unwind instructions for function | 1044 // where the unwind instructions are either a small number of unwind or the 1045 // special EXIDX_CANTUNWIND entry representing no unwinding information. 1046 // When an exception is thrown from an address A, the unwinder searches the 1047 // table for the closest table entry with Address of function <= A. This means 1048 // that for two consecutive table entries: 1049 // | A1 | U1 | 1050 // | A2 | U2 | 1051 // The range of addresses described by U1 is [A1, A2) 1052 // 1053 // There are two cases where we need a linker generated table entry to fixup 1054 // the address ranges in the table 1055 // Case 1: 1056 // - A sentinel entry added with an address higher than all 1057 // executable sections. This was needed to work around libunwind bug pr31091. 1058 // - After address assignment we need to find the highest addressed executable 1059 // section and use the limit of that section so that the unwinder never 1060 // matches it. 1061 // Case 2: 1062 // - InputSections without a .ARM.exidx section (usually from Assembly) 1063 // need a table entry so that they terminate the range of the previously 1064 // function. This is pr40277. 1065 // 1066 // Instead of storing pointers to the .ARM.exidx InputSections from 1067 // InputObjects, we store pointers to the executable sections that need 1068 // .ARM.exidx sections. We can then use the dependentSections of these to 1069 // either find the .ARM.exidx section or know that we need to generate one. 1070 class ARMExidxSyntheticSection : public SyntheticSection { 1071 public: 1072 ARMExidxSyntheticSection(); 1073 1074 // Add an input section to the ARMExidxSyntheticSection. Returns whether the 1075 // section needs to be removed from the main input section list. 1076 bool addSection(InputSection *isec); 1077 1078 size_t getSize() const override { return size; } 1079 void writeTo(uint8_t *buf) override; 1080 bool isNeeded() const override; 1081 // Sort and remove duplicate entries. 1082 void finalizeContents() override; 1083 InputSection *getLinkOrderDep() const; 1084 1085 static bool classof(const SectionBase *d); 1086 1087 // Links to the ARMExidxSections so we can transfer the relocations once the 1088 // layout is known. 1089 SmallVector<InputSection *, 0> exidxSections; 1090 1091 private: 1092 size_t size = 0; 1093 1094 // Instead of storing pointers to the .ARM.exidx InputSections from 1095 // InputObjects, we store pointers to the executable sections that need 1096 // .ARM.exidx sections. We can then use the dependentSections of these to 1097 // either find the .ARM.exidx section or know that we need to generate one. 1098 SmallVector<InputSection *, 0> executableSections; 1099 1100 // The executable InputSection with the highest address to use for the 1101 // sentinel. We store separately from ExecutableSections as merging of 1102 // duplicate entries may mean this InputSection is removed from 1103 // ExecutableSections. 1104 InputSection *sentinel = nullptr; 1105 }; 1106 1107 // A container for one or more linker generated thunks. Instances of these 1108 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks. 1109 class ThunkSection : public SyntheticSection { 1110 public: 1111 // ThunkSection in OS, with desired outSecOff of Off 1112 ThunkSection(OutputSection *os, uint64_t off); 1113 1114 // Add a newly created Thunk to this container: 1115 // Thunk is given offset from start of this InputSection 1116 // Thunk defines a symbol in this InputSection that can be used as target 1117 // of a relocation 1118 void addThunk(Thunk *t); 1119 size_t getSize() const override; 1120 void writeTo(uint8_t *buf) override; 1121 InputSection *getTargetInputSection() const; 1122 bool assignOffsets(); 1123 1124 // When true, round up reported size of section to 4 KiB. See comment 1125 // in addThunkSection() for more details. 1126 bool roundUpSizeForErrata = false; 1127 1128 private: 1129 SmallVector<Thunk *, 0> thunks; 1130 size_t size = 0; 1131 }; 1132 1133 // Used to compute outSecOff of .got2 in each object file. This is needed to 1134 // synthesize PLT entries for PPC32 Secure PLT ABI. 1135 class PPC32Got2Section final : public SyntheticSection { 1136 public: 1137 PPC32Got2Section(); 1138 size_t getSize() const override { return 0; } 1139 bool isNeeded() const override; 1140 void finalizeContents() override; 1141 void writeTo(uint8_t *buf) override {} 1142 }; 1143 1144 // This section is used to store the addresses of functions that are called 1145 // in range-extending thunks on PowerPC64. When producing position dependent 1146 // code the addresses are link-time constants and the table is written out to 1147 // the binary. When producing position-dependent code the table is allocated and 1148 // filled in by the dynamic linker. 1149 class PPC64LongBranchTargetSection final : public SyntheticSection { 1150 public: 1151 PPC64LongBranchTargetSection(); 1152 uint64_t getEntryVA(const Symbol *sym, int64_t addend); 1153 llvm::Optional<uint32_t> addEntry(const Symbol *sym, int64_t addend); 1154 size_t getSize() const override; 1155 void writeTo(uint8_t *buf) override; 1156 bool isNeeded() const override; 1157 void finalizeContents() override { finalized = true; } 1158 1159 private: 1160 SmallVector<std::pair<const Symbol *, int64_t>, 0> entries; 1161 llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index; 1162 bool finalized = false; 1163 }; 1164 1165 template <typename ELFT> 1166 class PartitionElfHeaderSection : public SyntheticSection { 1167 public: 1168 PartitionElfHeaderSection(); 1169 size_t getSize() const override; 1170 void writeTo(uint8_t *buf) override; 1171 }; 1172 1173 template <typename ELFT> 1174 class PartitionProgramHeadersSection : public SyntheticSection { 1175 public: 1176 PartitionProgramHeadersSection(); 1177 size_t getSize() const override; 1178 void writeTo(uint8_t *buf) override; 1179 }; 1180 1181 class PartitionIndexSection : public SyntheticSection { 1182 public: 1183 PartitionIndexSection(); 1184 size_t getSize() const override; 1185 void finalizeContents() override; 1186 void writeTo(uint8_t *buf) override; 1187 }; 1188 1189 InputSection *createInterpSection(); 1190 MergeInputSection *createCommentSection(); 1191 template <class ELFT> void splitSections(); 1192 1193 template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part); 1194 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part); 1195 1196 Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 1197 uint64_t size, InputSectionBase §ion); 1198 1199 void addVerneed(Symbol *ss); 1200 1201 // Linker generated per-partition sections. 1202 struct Partition { 1203 StringRef name; 1204 uint64_t nameStrTab; 1205 1206 std::unique_ptr<SyntheticSection> elfHeader; 1207 std::unique_ptr<SyntheticSection> programHeaders; 1208 SmallVector<PhdrEntry *, 0> phdrs; 1209 1210 std::unique_ptr<ARMExidxSyntheticSection> armExidx; 1211 std::unique_ptr<BuildIdSection> buildId; 1212 std::unique_ptr<SyntheticSection> dynamic; 1213 std::unique_ptr<StringTableSection> dynStrTab; 1214 std::unique_ptr<SymbolTableBaseSection> dynSymTab; 1215 std::unique_ptr<EhFrameHeader> ehFrameHdr; 1216 std::unique_ptr<EhFrameSection> ehFrame; 1217 std::unique_ptr<GnuHashTableSection> gnuHashTab; 1218 std::unique_ptr<HashTableSection> hashTab; 1219 std::unique_ptr<RelocationBaseSection> relaDyn; 1220 std::unique_ptr<RelrBaseSection> relrDyn; 1221 std::unique_ptr<VersionDefinitionSection> verDef; 1222 std::unique_ptr<SyntheticSection> verNeed; 1223 std::unique_ptr<VersionTableSection> verSym; 1224 1225 unsigned getNumber() const { return this - &partitions[0] + 1; } 1226 }; 1227 1228 extern Partition *mainPart; 1229 1230 inline Partition &SectionBase::getPartition() const { 1231 assert(isLive()); 1232 return partitions[partition - 1]; 1233 } 1234 1235 // Linker generated sections which can be used as inputs and are not specific to 1236 // a partition. 1237 struct InStruct { 1238 std::unique_ptr<InputSection> attributes; 1239 std::unique_ptr<BssSection> bss; 1240 std::unique_ptr<BssSection> bssRelRo; 1241 std::unique_ptr<GotSection> got; 1242 std::unique_ptr<GotPltSection> gotPlt; 1243 std::unique_ptr<IgotPltSection> igotPlt; 1244 std::unique_ptr<PPC64LongBranchTargetSection> ppc64LongBranchTarget; 1245 std::unique_ptr<SyntheticSection> mipsAbiFlags; 1246 std::unique_ptr<MipsGotSection> mipsGot; 1247 std::unique_ptr<SyntheticSection> mipsOptions; 1248 std::unique_ptr<SyntheticSection> mipsReginfo; 1249 std::unique_ptr<MipsRldMapSection> mipsRldMap; 1250 std::unique_ptr<SyntheticSection> partEnd; 1251 std::unique_ptr<SyntheticSection> partIndex; 1252 std::unique_ptr<PltSection> plt; 1253 std::unique_ptr<IpltSection> iplt; 1254 std::unique_ptr<PPC32Got2Section> ppc32Got2; 1255 std::unique_ptr<IBTPltSection> ibtPlt; 1256 std::unique_ptr<RelocationBaseSection> relaPlt; 1257 std::unique_ptr<RelocationBaseSection> relaIplt; 1258 std::unique_ptr<StringTableSection> shStrTab; 1259 std::unique_ptr<StringTableSection> strTab; 1260 std::unique_ptr<SymbolTableBaseSection> symTab; 1261 std::unique_ptr<SymtabShndxSection> symTabShndx; 1262 1263 void reset(); 1264 }; 1265 1266 extern InStruct in; 1267 1268 } // namespace elf 1269 } // namespace lld 1270 1271 #endif 1272