xref: /freebsd/contrib/llvm-project/lld/ELF/SyntheticSections.h (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Synthetic sections represent chunks of linker-created data. If you
10 // need to create a chunk of data that to be included in some section
11 // in the result, you probably want to create that as a synthetic section.
12 //
13 // Synthetic sections are designed as input sections as opposed to
14 // output sections because we want to allow them to be manipulated
15 // using linker scripts just like other input sections from regular
16 // files.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
21 #define LLD_ELF_SYNTHETIC_SECTIONS_H
22 
23 #include "DWARF.h"
24 #include "EhFrame.h"
25 #include "InputSection.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/MapVector.h"
28 #include "llvm/MC/StringTableBuilder.h"
29 #include "llvm/Support/Endian.h"
30 #include <functional>
31 
32 namespace lld {
33 namespace elf {
34 class Defined;
35 struct PhdrEntry;
36 class SymbolTableBaseSection;
37 
38 class SyntheticSection : public InputSection {
39 public:
40   SyntheticSection(uint64_t flags, uint32_t type, uint32_t alignment,
41                    StringRef name)
42       : InputSection(nullptr, flags, type, alignment, {}, name,
43                      InputSectionBase::Synthetic) {}
44 
45   virtual ~SyntheticSection() = default;
46   virtual void writeTo(uint8_t *buf) = 0;
47   virtual size_t getSize() const = 0;
48   virtual void finalizeContents() {}
49   // If the section has the SHF_ALLOC flag and the size may be changed if
50   // thunks are added, update the section size.
51   virtual bool updateAllocSize() { return false; }
52   virtual bool isNeeded() const { return true; }
53 
54   static bool classof(const SectionBase *d) {
55     return d->kind() == InputSectionBase::Synthetic;
56   }
57 };
58 
59 struct CieRecord {
60   EhSectionPiece *cie = nullptr;
61   SmallVector<EhSectionPiece *, 0> fdes;
62 };
63 
64 // Section for .eh_frame.
65 class EhFrameSection final : public SyntheticSection {
66 public:
67   EhFrameSection();
68   void writeTo(uint8_t *buf) override;
69   void finalizeContents() override;
70   bool isNeeded() const override { return !sections.empty(); }
71   size_t getSize() const override { return size; }
72 
73   static bool classof(const SectionBase *d) {
74     return SyntheticSection::classof(d) && d->name == ".eh_frame";
75   }
76 
77   void addSection(EhInputSection *sec);
78 
79   SmallVector<EhInputSection *, 0> sections;
80   size_t numFdes = 0;
81 
82   struct FdeData {
83     uint32_t pcRel;
84     uint32_t fdeVARel;
85   };
86 
87   SmallVector<FdeData, 0> getFdeData() const;
88   ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
89   template <class ELFT>
90   void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn);
91 
92 private:
93   // This is used only when parsing EhInputSection. We keep it here to avoid
94   // allocating one for each EhInputSection.
95   llvm::DenseMap<size_t, CieRecord *> offsetToCie;
96 
97   uint64_t size = 0;
98 
99   template <class ELFT, class RelTy>
100   void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
101   template <class ELFT> void addSectionAux(EhInputSection *s);
102   template <class ELFT, class RelTy>
103   void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels,
104                              llvm::DenseSet<size_t> &ciesWithLSDA,
105                              llvm::function_ref<void(InputSection &)> fn);
106 
107   template <class ELFT, class RelTy>
108   CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);
109 
110   template <class ELFT, class RelTy>
111   Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);
112 
113   uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;
114 
115   SmallVector<CieRecord *, 0> cieRecords;
116 
117   // CIE records are uniquified by their contents and personality functions.
118   llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
119 };
120 
121 class GotSection : public SyntheticSection {
122 public:
123   GotSection();
124   size_t getSize() const override { return size; }
125   void finalizeContents() override;
126   bool isNeeded() const override;
127   void writeTo(uint8_t *buf) override;
128 
129   void addEntry(Symbol &sym);
130   bool addTlsDescEntry(Symbol &sym);
131   bool addDynTlsEntry(Symbol &sym);
132   bool addTlsIndex();
133   uint32_t getTlsDescOffset(const Symbol &sym) const;
134   uint64_t getTlsDescAddr(const Symbol &sym) const;
135   uint64_t getGlobalDynAddr(const Symbol &b) const;
136   uint64_t getGlobalDynOffset(const Symbol &b) const;
137 
138   uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
139   uint32_t getTlsIndexOff() const { return tlsIndexOff; }
140 
141   // Flag to force GOT to be in output if we have relocations
142   // that relies on its address.
143   bool hasGotOffRel = false;
144 
145 protected:
146   size_t numEntries = 0;
147   uint32_t tlsIndexOff = -1;
148   uint64_t size = 0;
149 };
150 
151 // .note.GNU-stack section.
152 class GnuStackSection : public SyntheticSection {
153 public:
154   GnuStackSection()
155       : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {}
156   void writeTo(uint8_t *buf) override {}
157   size_t getSize() const override { return 0; }
158 };
159 
160 class GnuPropertySection : public SyntheticSection {
161 public:
162   GnuPropertySection();
163   void writeTo(uint8_t *buf) override;
164   size_t getSize() const override;
165 };
166 
167 // .note.gnu.build-id section.
168 class BuildIdSection : public SyntheticSection {
169   // First 16 bytes are a header.
170   static const unsigned headerSize = 16;
171 
172 public:
173   const size_t hashSize;
174   BuildIdSection();
175   void writeTo(uint8_t *buf) override;
176   size_t getSize() const override { return headerSize + hashSize; }
177   void writeBuildId(llvm::ArrayRef<uint8_t> buf);
178 
179 private:
180   uint8_t *hashBuf;
181 };
182 
183 // BssSection is used to reserve space for copy relocations and common symbols.
184 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
185 // that are used for writable symbols, read-only symbols and common symbols,
186 // respectively.
187 class BssSection final : public SyntheticSection {
188 public:
189   BssSection(StringRef name, uint64_t size, uint32_t alignment);
190   void writeTo(uint8_t *) override {}
191   bool isNeeded() const override { return size != 0; }
192   size_t getSize() const override { return size; }
193 
194   static bool classof(const SectionBase *s) { return s->bss; }
195   uint64_t size;
196 };
197 
198 class MipsGotSection final : public SyntheticSection {
199 public:
200   MipsGotSection();
201   void writeTo(uint8_t *buf) override;
202   size_t getSize() const override { return size; }
203   bool updateAllocSize() override;
204   void finalizeContents() override;
205   bool isNeeded() const override;
206 
207   // Join separate GOTs built for each input file to generate
208   // primary and optional multiple secondary GOTs.
209   void build();
210 
211   void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
212   void addDynTlsEntry(InputFile &file, Symbol &sym);
213   void addTlsIndex(InputFile &file);
214 
215   uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
216                               int64_t addend) const;
217   uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
218                              int64_t addend) const;
219   uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
220   uint64_t getTlsIndexOffset(const InputFile *f) const;
221 
222   // Returns the symbol which corresponds to the first entry of the global part
223   // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
224   // table properties.
225   // Returns nullptr if the global part is empty.
226   const Symbol *getFirstGlobalEntry() const;
227 
228   // Returns the number of entries in the local part of GOT including
229   // the number of reserved entries.
230   unsigned getLocalEntriesNum() const;
231 
232   // Return _gp value for primary GOT (nullptr) or particular input file.
233   uint64_t getGp(const InputFile *f = nullptr) const;
234 
235 private:
236   // MIPS GOT consists of three parts: local, global and tls. Each part
237   // contains different types of entries. Here is a layout of GOT:
238   // - Header entries                |
239   // - Page entries                  |   Local part
240   // - Local entries (16-bit access) |
241   // - Local entries (32-bit access) |
242   // - Normal global entries         ||  Global part
243   // - Reloc-only global entries     ||
244   // - TLS entries                   ||| TLS part
245   //
246   // Header:
247   //   Two entries hold predefined value 0x0 and 0x80000000.
248   // Page entries:
249   //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
250   //   relocation against local symbols. They are initialized by higher 16-bit
251   //   of the corresponding symbol's value. So each 64kb of address space
252   //   requires a single GOT entry.
253   // Local entries (16-bit access):
254   //   These entries created by GOT relocations against global non-preemptible
255   //   symbols so dynamic linker is not necessary to resolve the symbol's
256   //   values. "16-bit access" means that corresponding relocations address
257   //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
258   //   GOT entry.
259   // Local entries (32-bit access):
260   //   These entries are the same as above but created by relocations which
261   //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
262   // Normal global entries:
263   //   These entries created by GOT relocations against preemptible global
264   //   symbols. They need to be initialized by dynamic linker and they ordered
265   //   exactly as the corresponding entries in the dynamic symbols table.
266   // Reloc-only global entries:
267   //   These entries created for symbols that are referenced by dynamic
268   //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
269   //   addressing, but MIPS ABI requires that these entries be present in GOT.
270   // TLS entries:
271   //   Entries created by TLS relocations.
272   //
273   // If the sum of local, global and tls entries is less than 64K only single
274   // got is enough. Otherwise, multi-got is created. Series of primary and
275   // multiple secondary GOTs have the following layout:
276   // - Primary GOT
277   //     Header
278   //     Local entries
279   //     Global entries
280   //     Relocation only entries
281   //     TLS entries
282   //
283   // - Secondary GOT
284   //     Local entries
285   //     Global entries
286   //     TLS entries
287   // ...
288   //
289   // All GOT entries required by relocations from a single input file entirely
290   // belong to either primary or one of secondary GOTs. To reference GOT entries
291   // each GOT has its own _gp value points to the "middle" of the GOT.
292   // In the code this value loaded to the register which is used for GOT access.
293   //
294   // MIPS 32 function's prologue:
295   //   lui     v0,0x0
296   //   0: R_MIPS_HI16  _gp_disp
297   //   addiu   v0,v0,0
298   //   4: R_MIPS_LO16  _gp_disp
299   //
300   // MIPS 64:
301   //   lui     at,0x0
302   //   14: R_MIPS_GPREL16  main
303   //
304   // Dynamic linker does not know anything about secondary GOTs and cannot
305   // use a regular MIPS mechanism for GOT entries initialization. So we have
306   // to use an approach accepted by other architectures and create dynamic
307   // relocations R_MIPS_REL32 to initialize global entries (and local in case
308   // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
309   // requires GOT entries and correspondingly ordered dynamic symbol table
310   // entries to deal with dynamic relocations. To handle this problem
311   // relocation-only section in the primary GOT contains entries for all
312   // symbols referenced in global parts of secondary GOTs. Although the sum
313   // of local and normal global entries of the primary got should be less
314   // than 64K, the size of the primary got (including relocation-only entries
315   // can be greater than 64K, because parts of the primary got that overflow
316   // the 64K limit are used only by the dynamic linker at dynamic link-time
317   // and not by 16-bit gp-relative addressing at run-time.
318   //
319   // For complete multi-GOT description see the following link
320   // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT
321 
322   // Number of "Header" entries.
323   static const unsigned headerEntriesNum = 2;
324 
325   uint64_t size = 0;
326 
327   // Symbol and addend.
328   using GotEntry = std::pair<Symbol *, int64_t>;
329 
330   struct FileGot {
331     InputFile *file = nullptr;
332     size_t startIndex = 0;
333 
334     struct PageBlock {
335       size_t firstIndex;
336       size_t count;
337       PageBlock() : firstIndex(0), count(0) {}
338     };
339 
340     // Map output sections referenced by MIPS GOT relocations
341     // to the description (index/count) "page" entries allocated
342     // for this section.
343     llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
344     // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
345     llvm::MapVector<GotEntry, size_t> local16;
346     llvm::MapVector<GotEntry, size_t> local32;
347     llvm::MapVector<Symbol *, size_t> global;
348     llvm::MapVector<Symbol *, size_t> relocs;
349     llvm::MapVector<Symbol *, size_t> tls;
350     // Set of symbols referenced by dynamic TLS relocations.
351     llvm::MapVector<Symbol *, size_t> dynTlsSymbols;
352 
353     // Total number of all entries.
354     size_t getEntriesNum() const;
355     // Number of "page" entries.
356     size_t getPageEntriesNum() const;
357     // Number of entries require 16-bit index to access.
358     size_t getIndexedEntriesNum() const;
359   };
360 
361   // Container of GOT created for each input file.
362   // After building a final series of GOTs this container
363   // holds primary and secondary GOT's.
364   std::vector<FileGot> gots;
365 
366   // Return (and create if necessary) `FileGot`.
367   FileGot &getGot(InputFile &f);
368 
369   // Try to merge two GOTs. In case of success the `Dst` contains
370   // result of merging and the function returns true. In case of
371   // overflow the `Dst` is unchanged and the function returns false.
372   bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
373 };
374 
375 class GotPltSection final : public SyntheticSection {
376 public:
377   GotPltSection();
378   void addEntry(Symbol &sym);
379   size_t getSize() const override;
380   void writeTo(uint8_t *buf) override;
381   bool isNeeded() const override;
382 
383   // Flag to force GotPlt to be in output if we have relocations
384   // that relies on its address.
385   bool hasGotPltOffRel = false;
386 
387 private:
388   SmallVector<const Symbol *, 0> entries;
389 };
390 
391 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
392 // Symbols that will be relocated by Target->IRelativeRel.
393 // On most Targets the IgotPltSection will immediately follow the GotPltSection
394 // on ARM the IgotPltSection will immediately follow the GotSection.
395 class IgotPltSection final : public SyntheticSection {
396 public:
397   IgotPltSection();
398   void addEntry(Symbol &sym);
399   size_t getSize() const override;
400   void writeTo(uint8_t *buf) override;
401   bool isNeeded() const override { return !entries.empty(); }
402 
403 private:
404   SmallVector<const Symbol *, 0> entries;
405 };
406 
407 class StringTableSection final : public SyntheticSection {
408 public:
409   StringTableSection(StringRef name, bool dynamic);
410   unsigned addString(StringRef s, bool hashIt = true);
411   void writeTo(uint8_t *buf) override;
412   size_t getSize() const override { return size; }
413   bool isDynamic() const { return dynamic; }
414 
415 private:
416   const bool dynamic;
417 
418   uint64_t size = 0;
419 
420   llvm::DenseMap<llvm::CachedHashStringRef, unsigned> stringMap;
421   SmallVector<StringRef, 0> strings;
422 };
423 
424 class DynamicReloc {
425 public:
426   enum Kind {
427     /// The resulting dynamic relocation does not reference a symbol (#sym must
428     /// be nullptr) and uses #addend as the result of computeAddend().
429     AddendOnly,
430     /// The resulting dynamic relocation will not reference a symbol: #sym is
431     /// only used to compute the addend with InputSection::getRelocTargetVA().
432     /// Useful for various relative and TLS relocations (e.g. R_X86_64_TPOFF64).
433     AddendOnlyWithTargetVA,
434     /// The resulting dynamic relocation references symbol #sym from the dynamic
435     /// symbol table and uses #addend as the value of computeAddend().
436     AgainstSymbol,
437     /// The resulting dynamic relocation references symbol #sym from the dynamic
438     /// symbol table and uses InputSection::getRelocTargetVA() + #addend for the
439     /// final addend. It can be used for relocations that write the symbol VA as
440     // the addend (e.g. R_MIPS_TLS_TPREL64) but still reference the symbol.
441     AgainstSymbolWithTargetVA,
442     /// This is used by the MIPS multi-GOT implementation. It relocates
443     /// addresses of 64kb pages that lie inside the output section.
444     MipsMultiGotPage,
445   };
446   /// This constructor records a relocation against a symbol.
447   DynamicReloc(RelType type, const InputSectionBase *inputSec,
448                uint64_t offsetInSec, Kind kind, Symbol &sym, int64_t addend,
449                RelExpr expr)
450       : sym(&sym), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
451         addend(addend), kind(kind), expr(expr) {}
452   /// This constructor records a relative relocation with no symbol.
453   DynamicReloc(RelType type, const InputSectionBase *inputSec,
454                uint64_t offsetInSec, int64_t addend = 0)
455       : sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
456         addend(addend), kind(AddendOnly), expr(R_ADDEND) {}
457   /// This constructor records dynamic relocation settings used by the MIPS
458   /// multi-GOT implementation.
459   DynamicReloc(RelType type, const InputSectionBase *inputSec,
460                uint64_t offsetInSec, const OutputSection *outputSec,
461                int64_t addend)
462       : sym(nullptr), outputSec(outputSec), inputSec(inputSec),
463         offsetInSec(offsetInSec), type(type), addend(addend),
464         kind(MipsMultiGotPage), expr(R_ADDEND) {}
465 
466   uint64_t getOffset() const;
467   uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;
468   bool needsDynSymIndex() const {
469     return kind == AgainstSymbol || kind == AgainstSymbolWithTargetVA;
470   }
471 
472   /// Computes the addend of the dynamic relocation. Note that this is not the
473   /// same as the #addend member variable as it may also include the symbol
474   /// address/the address of the corresponding GOT entry/etc.
475   int64_t computeAddend() const;
476 
477   void computeRaw(SymbolTableBaseSection *symtab);
478 
479   Symbol *sym;
480   const OutputSection *outputSec = nullptr;
481   const InputSectionBase *inputSec;
482   uint64_t offsetInSec;
483   uint64_t r_offset;
484   RelType type;
485   uint32_t r_sym;
486   // Initially input addend, then the output addend after
487   // RelocationSection<ELFT>::writeTo.
488   int64_t addend;
489 
490 private:
491   Kind kind;
492   // The kind of expression used to calculate the added (required e.g. for
493   // relative GOT relocations).
494   RelExpr expr;
495 };
496 
497 template <class ELFT> class DynamicSection final : public SyntheticSection {
498   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
499 
500 public:
501   DynamicSection();
502   void finalizeContents() override;
503   void writeTo(uint8_t *buf) override;
504   size_t getSize() const override { return size; }
505 
506 private:
507   std::vector<std::pair<int32_t, uint64_t>> computeContents();
508   uint64_t size = 0;
509 };
510 
511 class RelocationBaseSection : public SyntheticSection {
512 public:
513   RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag,
514                         int32_t sizeDynamicTag, bool combreloc);
515   /// Add a dynamic relocation without writing an addend to the output section.
516   /// This overload can be used if the addends are written directly instead of
517   /// using relocations on the input section (e.g. MipsGotSection::writeTo()).
518   void addReloc(const DynamicReloc &reloc) { relocs.push_back(reloc); }
519   /// Add a dynamic relocation against \p sym with an optional addend.
520   void addSymbolReloc(RelType dynType, InputSectionBase &isec,
521                       uint64_t offsetInSec, Symbol &sym, int64_t addend = 0,
522                       llvm::Optional<RelType> addendRelType = llvm::None);
523   /// Add a relative dynamic relocation that uses the target address of \p sym
524   /// (i.e. InputSection::getRelocTargetVA()) + \p addend as the addend.
525   void addRelativeReloc(RelType dynType, InputSectionBase &isec,
526                         uint64_t offsetInSec, Symbol &sym, int64_t addend,
527                         RelType addendRelType, RelExpr expr);
528   /// Add a dynamic relocation using the target address of \p sym as the addend
529   /// if \p sym is non-preemptible. Otherwise add a relocation against \p sym.
530   void addAddendOnlyRelocIfNonPreemptible(RelType dynType,
531                                           InputSectionBase &isec,
532                                           uint64_t offsetInSec, Symbol &sym,
533                                           RelType addendRelType);
534   void addReloc(DynamicReloc::Kind kind, RelType dynType,
535                 InputSectionBase &inputSec, uint64_t offsetInSec, Symbol &sym,
536                 int64_t addend, RelExpr expr, RelType addendRelType);
537   bool isNeeded() const override { return !relocs.empty(); }
538   size_t getSize() const override { return relocs.size() * this->entsize; }
539   size_t getRelativeRelocCount() const { return numRelativeRelocs; }
540   void partitionRels();
541   void finalizeContents() override;
542   static bool classof(const SectionBase *d) {
543     return SyntheticSection::classof(d) &&
544            (d->type == llvm::ELF::SHT_RELA || d->type == llvm::ELF::SHT_REL ||
545             d->type == llvm::ELF::SHT_RELR);
546   }
547   int32_t dynamicTag, sizeDynamicTag;
548   SmallVector<DynamicReloc, 0> relocs;
549 
550 protected:
551   void computeRels();
552   size_t numRelativeRelocs = 0; // used by -z combreloc
553   bool combreloc;
554 };
555 
556 template <class ELFT>
557 class RelocationSection final : public RelocationBaseSection {
558   using Elf_Rel = typename ELFT::Rel;
559   using Elf_Rela = typename ELFT::Rela;
560 
561 public:
562   RelocationSection(StringRef name, bool combreloc);
563   void writeTo(uint8_t *buf) override;
564 };
565 
566 template <class ELFT>
567 class AndroidPackedRelocationSection final : public RelocationBaseSection {
568   using Elf_Rel = typename ELFT::Rel;
569   using Elf_Rela = typename ELFT::Rela;
570 
571 public:
572   AndroidPackedRelocationSection(StringRef name);
573 
574   bool updateAllocSize() override;
575   size_t getSize() const override { return relocData.size(); }
576   void writeTo(uint8_t *buf) override {
577     memcpy(buf, relocData.data(), relocData.size());
578   }
579 
580 private:
581   SmallVector<char, 0> relocData;
582 };
583 
584 struct RelativeReloc {
585   uint64_t getOffset() const { return inputSec->getVA(offsetInSec); }
586 
587   const InputSectionBase *inputSec;
588   uint64_t offsetInSec;
589 };
590 
591 class RelrBaseSection : public SyntheticSection {
592 public:
593   RelrBaseSection();
594   bool isNeeded() const override { return !relocs.empty(); }
595   SmallVector<RelativeReloc, 0> relocs;
596 };
597 
598 // RelrSection is used to encode offsets for relative relocations.
599 // Proposal for adding SHT_RELR sections to generic-abi is here:
600 //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
601 // For more details, see the comment in RelrSection::updateAllocSize().
602 template <class ELFT> class RelrSection final : public RelrBaseSection {
603   using Elf_Relr = typename ELFT::Relr;
604 
605 public:
606   RelrSection();
607 
608   bool updateAllocSize() override;
609   size_t getSize() const override { return relrRelocs.size() * this->entsize; }
610   void writeTo(uint8_t *buf) override {
611     memcpy(buf, relrRelocs.data(), getSize());
612   }
613 
614 private:
615   SmallVector<Elf_Relr, 0> relrRelocs;
616 };
617 
618 struct SymbolTableEntry {
619   Symbol *sym;
620   size_t strTabOffset;
621 };
622 
623 class SymbolTableBaseSection : public SyntheticSection {
624 public:
625   SymbolTableBaseSection(StringTableSection &strTabSec);
626   void finalizeContents() override;
627   size_t getSize() const override { return getNumSymbols() * entsize; }
628   void addSymbol(Symbol *sym);
629   unsigned getNumSymbols() const { return symbols.size() + 1; }
630   size_t getSymbolIndex(Symbol *sym);
631   ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }
632 
633 protected:
634   void sortSymTabSymbols();
635 
636   // A vector of symbols and their string table offsets.
637   SmallVector<SymbolTableEntry, 0> symbols;
638 
639   StringTableSection &strTabSec;
640 
641   llvm::once_flag onceFlag;
642   llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
643   llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
644 };
645 
646 template <class ELFT>
647 class SymbolTableSection final : public SymbolTableBaseSection {
648   using Elf_Sym = typename ELFT::Sym;
649 
650 public:
651   SymbolTableSection(StringTableSection &strTabSec);
652   void writeTo(uint8_t *buf) override;
653 };
654 
655 class SymtabShndxSection final : public SyntheticSection {
656 public:
657   SymtabShndxSection();
658 
659   void writeTo(uint8_t *buf) override;
660   size_t getSize() const override;
661   bool isNeeded() const override;
662   void finalizeContents() override;
663 };
664 
665 // Outputs GNU Hash section. For detailed explanation see:
666 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
667 class GnuHashTableSection final : public SyntheticSection {
668 public:
669   GnuHashTableSection();
670   void finalizeContents() override;
671   void writeTo(uint8_t *buf) override;
672   size_t getSize() const override { return size; }
673 
674   // Adds symbols to the hash table.
675   // Sorts the input to satisfy GNU hash section requirements.
676   void addSymbols(llvm::SmallVectorImpl<SymbolTableEntry> &symbols);
677 
678 private:
679   // See the comment in writeBloomFilter.
680   enum { Shift2 = 26 };
681 
682   struct Entry {
683     Symbol *sym;
684     size_t strTabOffset;
685     uint32_t hash;
686     uint32_t bucketIdx;
687   };
688 
689   SmallVector<Entry, 0> symbols;
690   size_t maskWords;
691   size_t nBuckets = 0;
692   size_t size = 0;
693 };
694 
695 class HashTableSection final : public SyntheticSection {
696 public:
697   HashTableSection();
698   void finalizeContents() override;
699   void writeTo(uint8_t *buf) override;
700   size_t getSize() const override { return size; }
701 
702 private:
703   size_t size = 0;
704 };
705 
706 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
707 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
708 // at runtime.
709 //
710 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction
711 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
712 // lazy symbol resolver.
713 //
714 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
715 // A call instruction jumps to a .plt.sec entry, which will then jump to the
716 // target (BIND_NOW) or a .plt entry.
717 class PltSection : public SyntheticSection {
718 public:
719   PltSection();
720   void writeTo(uint8_t *buf) override;
721   size_t getSize() const override;
722   bool isNeeded() const override;
723   void addSymbols();
724   void addEntry(Symbol &sym);
725   size_t getNumEntries() const { return entries.size(); }
726 
727   size_t headerSize;
728 
729   SmallVector<const Symbol *, 0> entries;
730 };
731 
732 // Used for non-preemptible ifuncs. It does not have a header. Each entry is
733 // associated with an IRELATIVE relocation, which will be resolved eagerly at
734 // runtime. PltSection can only contain entries associated with JUMP_SLOT
735 // relocations, so IPLT entries are in a separate section.
736 class IpltSection final : public SyntheticSection {
737   SmallVector<const Symbol *, 0> entries;
738 
739 public:
740   IpltSection();
741   void writeTo(uint8_t *buf) override;
742   size_t getSize() const override;
743   bool isNeeded() const override { return !entries.empty(); }
744   void addSymbols();
745   void addEntry(Symbol &sym);
746 };
747 
748 class PPC32GlinkSection : public PltSection {
749 public:
750   PPC32GlinkSection();
751   void writeTo(uint8_t *buf) override;
752   size_t getSize() const override;
753 
754   SmallVector<const Symbol *, 0> canonical_plts;
755   static constexpr size_t footerSize = 64;
756 };
757 
758 // This is x86-only.
759 class IBTPltSection : public SyntheticSection {
760 public:
761   IBTPltSection();
762   void writeTo(uint8_t *Buf) override;
763   bool isNeeded() const override;
764   size_t getSize() const override;
765 };
766 
767 class GdbIndexSection final : public SyntheticSection {
768 public:
769   struct AddressEntry {
770     InputSection *section;
771     uint64_t lowAddress;
772     uint64_t highAddress;
773     uint32_t cuIndex;
774   };
775 
776   struct CuEntry {
777     uint64_t cuOffset;
778     uint64_t cuLength;
779   };
780 
781   struct NameAttrEntry {
782     llvm::CachedHashStringRef name;
783     uint32_t cuIndexAndAttrs;
784   };
785 
786   struct GdbChunk {
787     InputSection *sec;
788     SmallVector<AddressEntry, 0> addressAreas;
789     SmallVector<CuEntry, 0> compilationUnits;
790   };
791 
792   struct GdbSymbol {
793     llvm::CachedHashStringRef name;
794     SmallVector<uint32_t, 0> cuVector;
795     uint32_t nameOff;
796     uint32_t cuVectorOff;
797   };
798 
799   GdbIndexSection();
800   template <typename ELFT> static GdbIndexSection *create();
801   void writeTo(uint8_t *buf) override;
802   size_t getSize() const override { return size; }
803   bool isNeeded() const override;
804 
805 private:
806   struct GdbIndexHeader {
807     llvm::support::ulittle32_t version;
808     llvm::support::ulittle32_t cuListOff;
809     llvm::support::ulittle32_t cuTypesOff;
810     llvm::support::ulittle32_t addressAreaOff;
811     llvm::support::ulittle32_t symtabOff;
812     llvm::support::ulittle32_t constantPoolOff;
813   };
814 
815   void initOutputSize();
816   size_t computeSymtabSize() const;
817 
818   // Each chunk contains information gathered from debug sections of a
819   // single object file.
820   SmallVector<GdbChunk, 0> chunks;
821 
822   // A symbol table for this .gdb_index section.
823   SmallVector<GdbSymbol, 0> symbols;
824 
825   size_t size;
826 };
827 
828 // --eh-frame-hdr option tells linker to construct a header for all the
829 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr
830 // and also to a PT_GNU_EH_FRAME segment.
831 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
832 // calling dl_iterate_phdr.
833 // This section contains a lookup table for quick binary search of FDEs.
834 // Detailed info about internals can be found in Ian Lance Taylor's blog:
835 // http://www.airs.com/blog/archives/460 (".eh_frame")
836 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
837 class EhFrameHeader final : public SyntheticSection {
838 public:
839   EhFrameHeader();
840   void write();
841   void writeTo(uint8_t *buf) override;
842   size_t getSize() const override;
843   bool isNeeded() const override;
844 };
845 
846 // For more information about .gnu.version and .gnu.version_r see:
847 // https://www.akkadia.org/drepper/symbol-versioning
848 
849 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
850 // contain symbol version definitions. The number of entries in this section
851 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
852 // The section shall contain an array of Elf_Verdef structures, optionally
853 // followed by an array of Elf_Verdaux structures.
854 class VersionDefinitionSection final : public SyntheticSection {
855 public:
856   VersionDefinitionSection();
857   void finalizeContents() override;
858   size_t getSize() const override;
859   void writeTo(uint8_t *buf) override;
860 
861 private:
862   enum { EntrySize = 28 };
863   void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
864   StringRef getFileDefName();
865 
866   unsigned fileDefNameOff;
867   SmallVector<unsigned, 0> verDefNameOffs;
868 };
869 
870 // The .gnu.version section specifies the required version of each symbol in the
871 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
872 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version
873 // identifier defined in the either .gnu.version_r or .gnu.version_d section.
874 // The values 0 and 1 are reserved. All other values are used for versions in
875 // the own object or in any of the dependencies.
876 class VersionTableSection final : public SyntheticSection {
877 public:
878   VersionTableSection();
879   void finalizeContents() override;
880   size_t getSize() const override;
881   void writeTo(uint8_t *buf) override;
882   bool isNeeded() const override;
883 };
884 
885 // The .gnu.version_r section defines the version identifiers used by
886 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
887 // Elf_Verneed specifies the version requirements for a single DSO, and contains
888 // a reference to a linked list of Elf_Vernaux data structures which define the
889 // mapping from version identifiers to version names.
890 template <class ELFT>
891 class VersionNeedSection final : public SyntheticSection {
892   using Elf_Verneed = typename ELFT::Verneed;
893   using Elf_Vernaux = typename ELFT::Vernaux;
894 
895   struct Vernaux {
896     uint64_t hash;
897     uint32_t verneedIndex;
898     uint64_t nameStrTab;
899   };
900 
901   struct Verneed {
902     uint64_t nameStrTab;
903     std::vector<Vernaux> vernauxs;
904   };
905 
906   SmallVector<Verneed, 0> verneeds;
907 
908 public:
909   VersionNeedSection();
910   void finalizeContents() override;
911   void writeTo(uint8_t *buf) override;
912   size_t getSize() const override;
913   bool isNeeded() const override;
914 };
915 
916 // MergeSyntheticSection is a class that allows us to put mergeable sections
917 // with different attributes in a single output sections. To do that
918 // we put them into MergeSyntheticSection synthetic input sections which are
919 // attached to regular output sections.
920 class MergeSyntheticSection : public SyntheticSection {
921 public:
922   void addSection(MergeInputSection *ms);
923   SmallVector<MergeInputSection *, 0> sections;
924 
925 protected:
926   MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags,
927                         uint32_t alignment)
928       : SyntheticSection(flags, type, alignment, name) {}
929 };
930 
931 class MergeTailSection final : public MergeSyntheticSection {
932 public:
933   MergeTailSection(StringRef name, uint32_t type, uint64_t flags,
934                    uint32_t alignment);
935 
936   size_t getSize() const override;
937   void writeTo(uint8_t *buf) override;
938   void finalizeContents() override;
939 
940 private:
941   llvm::StringTableBuilder builder;
942 };
943 
944 class MergeNoTailSection final : public MergeSyntheticSection {
945 public:
946   MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags,
947                      uint32_t alignment)
948       : MergeSyntheticSection(name, type, flags, alignment) {}
949 
950   size_t getSize() const override { return size; }
951   void writeTo(uint8_t *buf) override;
952   void finalizeContents() override;
953 
954 private:
955   // We use the most significant bits of a hash as a shard ID.
956   // The reason why we don't want to use the least significant bits is
957   // because DenseMap also uses lower bits to determine a bucket ID.
958   // If we use lower bits, it significantly increases the probability of
959   // hash collisons.
960   size_t getShardId(uint32_t hash) {
961     assert((hash >> 31) == 0);
962     return hash >> (31 - llvm::countTrailingZeros(numShards));
963   }
964 
965   // Section size
966   size_t size;
967 
968   // String table contents
969   constexpr static size_t numShards = 32;
970   SmallVector<llvm::StringTableBuilder, 0> shards;
971   size_t shardOffsets[numShards];
972 };
973 
974 // .MIPS.abiflags section.
975 template <class ELFT>
976 class MipsAbiFlagsSection final : public SyntheticSection {
977   using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;
978 
979 public:
980   static std::unique_ptr<MipsAbiFlagsSection> create();
981 
982   MipsAbiFlagsSection(Elf_Mips_ABIFlags flags);
983   size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
984   void writeTo(uint8_t *buf) override;
985 
986 private:
987   Elf_Mips_ABIFlags flags;
988 };
989 
990 // .MIPS.options section.
991 template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
992   using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
993   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
994 
995 public:
996   static std::unique_ptr<MipsOptionsSection<ELFT>> create();
997 
998   MipsOptionsSection(Elf_Mips_RegInfo reginfo);
999   void writeTo(uint8_t *buf) override;
1000 
1001   size_t getSize() const override {
1002     return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
1003   }
1004 
1005 private:
1006   Elf_Mips_RegInfo reginfo;
1007 };
1008 
1009 // MIPS .reginfo section.
1010 template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
1011   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1012 
1013 public:
1014   static std::unique_ptr<MipsReginfoSection> create();
1015 
1016   MipsReginfoSection(Elf_Mips_RegInfo reginfo);
1017   size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
1018   void writeTo(uint8_t *buf) override;
1019 
1020 private:
1021   Elf_Mips_RegInfo reginfo;
1022 };
1023 
1024 // This is a MIPS specific section to hold a space within the data segment
1025 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
1026 // See "Dynamic section" in Chapter 5 in the following document:
1027 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1028 class MipsRldMapSection : public SyntheticSection {
1029 public:
1030   MipsRldMapSection();
1031   size_t getSize() const override { return config->wordsize; }
1032   void writeTo(uint8_t *buf) override {}
1033 };
1034 
1035 // Representation of the combined .ARM.Exidx input sections. We process these
1036 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries
1037 // and add terminating sentinel entries.
1038 //
1039 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
1040 // a table that the unwinder can derive (Addresses are encoded as offsets from
1041 // table):
1042 // | Address of function | Unwind instructions for function |
1043 // where the unwind instructions are either a small number of unwind or the
1044 // special EXIDX_CANTUNWIND entry representing no unwinding information.
1045 // When an exception is thrown from an address A, the unwinder searches the
1046 // table for the closest table entry with Address of function <= A. This means
1047 // that for two consecutive table entries:
1048 // | A1 | U1 |
1049 // | A2 | U2 |
1050 // The range of addresses described by U1 is [A1, A2)
1051 //
1052 // There are two cases where we need a linker generated table entry to fixup
1053 // the address ranges in the table
1054 // Case 1:
1055 // - A sentinel entry added with an address higher than all
1056 // executable sections. This was needed to work around libunwind bug pr31091.
1057 // - After address assignment we need to find the highest addressed executable
1058 // section and use the limit of that section so that the unwinder never
1059 // matches it.
1060 // Case 2:
1061 // - InputSections without a .ARM.exidx section (usually from Assembly)
1062 // need a table entry so that they terminate the range of the previously
1063 // function. This is pr40277.
1064 //
1065 // Instead of storing pointers to the .ARM.exidx InputSections from
1066 // InputObjects, we store pointers to the executable sections that need
1067 // .ARM.exidx sections. We can then use the dependentSections of these to
1068 // either find the .ARM.exidx section or know that we need to generate one.
1069 class ARMExidxSyntheticSection : public SyntheticSection {
1070 public:
1071   ARMExidxSyntheticSection();
1072 
1073   // Add an input section to the ARMExidxSyntheticSection. Returns whether the
1074   // section needs to be removed from the main input section list.
1075   bool addSection(InputSection *isec);
1076 
1077   size_t getSize() const override { return size; }
1078   void writeTo(uint8_t *buf) override;
1079   bool isNeeded() const override;
1080   // Sort and remove duplicate entries.
1081   void finalizeContents() override;
1082   InputSection *getLinkOrderDep() const;
1083 
1084   static bool classof(const SectionBase *d);
1085 
1086   // Links to the ARMExidxSections so we can transfer the relocations once the
1087   // layout is known.
1088   SmallVector<InputSection *, 0> exidxSections;
1089 
1090 private:
1091   size_t size = 0;
1092 
1093   // Instead of storing pointers to the .ARM.exidx InputSections from
1094   // InputObjects, we store pointers to the executable sections that need
1095   // .ARM.exidx sections. We can then use the dependentSections of these to
1096   // either find the .ARM.exidx section or know that we need to generate one.
1097   SmallVector<InputSection *, 0> executableSections;
1098 
1099   // The executable InputSection with the highest address to use for the
1100   // sentinel. We store separately from ExecutableSections as merging of
1101   // duplicate entries may mean this InputSection is removed from
1102   // ExecutableSections.
1103   InputSection *sentinel = nullptr;
1104 };
1105 
1106 // A container for one or more linker generated thunks. Instances of these
1107 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
1108 class ThunkSection : public SyntheticSection {
1109 public:
1110   // ThunkSection in OS, with desired outSecOff of Off
1111   ThunkSection(OutputSection *os, uint64_t off);
1112 
1113   // Add a newly created Thunk to this container:
1114   // Thunk is given offset from start of this InputSection
1115   // Thunk defines a symbol in this InputSection that can be used as target
1116   // of a relocation
1117   void addThunk(Thunk *t);
1118   size_t getSize() const override;
1119   void writeTo(uint8_t *buf) override;
1120   InputSection *getTargetInputSection() const;
1121   bool assignOffsets();
1122 
1123   // When true, round up reported size of section to 4 KiB. See comment
1124   // in addThunkSection() for more details.
1125   bool roundUpSizeForErrata = false;
1126 
1127 private:
1128   SmallVector<Thunk *, 0> thunks;
1129   size_t size = 0;
1130 };
1131 
1132 // Used to compute outSecOff of .got2 in each object file. This is needed to
1133 // synthesize PLT entries for PPC32 Secure PLT ABI.
1134 class PPC32Got2Section final : public SyntheticSection {
1135 public:
1136   PPC32Got2Section();
1137   size_t getSize() const override { return 0; }
1138   bool isNeeded() const override;
1139   void finalizeContents() override;
1140   void writeTo(uint8_t *buf) override {}
1141 };
1142 
1143 // This section is used to store the addresses of functions that are called
1144 // in range-extending thunks on PowerPC64. When producing position dependent
1145 // code the addresses are link-time constants and the table is written out to
1146 // the binary. When producing position-dependent code the table is allocated and
1147 // filled in by the dynamic linker.
1148 class PPC64LongBranchTargetSection final : public SyntheticSection {
1149 public:
1150   PPC64LongBranchTargetSection();
1151   uint64_t getEntryVA(const Symbol *sym, int64_t addend);
1152   llvm::Optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
1153   size_t getSize() const override;
1154   void writeTo(uint8_t *buf) override;
1155   bool isNeeded() const override;
1156   void finalizeContents() override { finalized = true; }
1157 
1158 private:
1159   SmallVector<std::pair<const Symbol *, int64_t>, 0> entries;
1160   llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
1161   bool finalized = false;
1162 };
1163 
1164 template <typename ELFT>
1165 class PartitionElfHeaderSection : public SyntheticSection {
1166 public:
1167   PartitionElfHeaderSection();
1168   size_t getSize() const override;
1169   void writeTo(uint8_t *buf) override;
1170 };
1171 
1172 template <typename ELFT>
1173 class PartitionProgramHeadersSection : public SyntheticSection {
1174 public:
1175   PartitionProgramHeadersSection();
1176   size_t getSize() const override;
1177   void writeTo(uint8_t *buf) override;
1178 };
1179 
1180 class PartitionIndexSection : public SyntheticSection {
1181 public:
1182   PartitionIndexSection();
1183   size_t getSize() const override;
1184   void finalizeContents() override;
1185   void writeTo(uint8_t *buf) override;
1186 };
1187 
1188 InputSection *createInterpSection();
1189 MergeInputSection *createCommentSection();
1190 template <class ELFT> void splitSections();
1191 
1192 template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part);
1193 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);
1194 
1195 Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
1196                            uint64_t size, InputSectionBase &section);
1197 
1198 void addVerneed(Symbol *ss);
1199 
1200 // Linker generated per-partition sections.
1201 struct Partition {
1202   StringRef name;
1203   uint64_t nameStrTab;
1204 
1205   std::unique_ptr<SyntheticSection> elfHeader;
1206   std::unique_ptr<SyntheticSection> programHeaders;
1207   SmallVector<PhdrEntry *, 0> phdrs;
1208 
1209   std::unique_ptr<ARMExidxSyntheticSection> armExidx;
1210   std::unique_ptr<BuildIdSection> buildId;
1211   std::unique_ptr<SyntheticSection> dynamic;
1212   std::unique_ptr<StringTableSection> dynStrTab;
1213   std::unique_ptr<SymbolTableBaseSection> dynSymTab;
1214   std::unique_ptr<EhFrameHeader> ehFrameHdr;
1215   std::unique_ptr<EhFrameSection> ehFrame;
1216   std::unique_ptr<GnuHashTableSection> gnuHashTab;
1217   std::unique_ptr<HashTableSection> hashTab;
1218   std::unique_ptr<RelocationBaseSection> relaDyn;
1219   std::unique_ptr<RelrBaseSection> relrDyn;
1220   std::unique_ptr<VersionDefinitionSection> verDef;
1221   std::unique_ptr<SyntheticSection> verNeed;
1222   std::unique_ptr<VersionTableSection> verSym;
1223 
1224   unsigned getNumber() const { return this - &partitions[0] + 1; }
1225 };
1226 
1227 extern Partition *mainPart;
1228 
1229 inline Partition &SectionBase::getPartition() const {
1230   assert(isLive());
1231   return partitions[partition - 1];
1232 }
1233 
1234 // Linker generated sections which can be used as inputs and are not specific to
1235 // a partition.
1236 struct InStruct {
1237   std::unique_ptr<InputSection> attributes;
1238   std::unique_ptr<BssSection> bss;
1239   std::unique_ptr<BssSection> bssRelRo;
1240   std::unique_ptr<GotSection> got;
1241   std::unique_ptr<GotPltSection> gotPlt;
1242   std::unique_ptr<IgotPltSection> igotPlt;
1243   std::unique_ptr<PPC64LongBranchTargetSection> ppc64LongBranchTarget;
1244   std::unique_ptr<SyntheticSection> mipsAbiFlags;
1245   std::unique_ptr<MipsGotSection> mipsGot;
1246   std::unique_ptr<SyntheticSection> mipsOptions;
1247   std::unique_ptr<SyntheticSection> mipsReginfo;
1248   std::unique_ptr<MipsRldMapSection> mipsRldMap;
1249   std::unique_ptr<SyntheticSection> partEnd;
1250   std::unique_ptr<SyntheticSection> partIndex;
1251   std::unique_ptr<PltSection> plt;
1252   std::unique_ptr<IpltSection> iplt;
1253   std::unique_ptr<PPC32Got2Section> ppc32Got2;
1254   std::unique_ptr<IBTPltSection> ibtPlt;
1255   std::unique_ptr<RelocationBaseSection> relaPlt;
1256   std::unique_ptr<RelocationBaseSection> relaIplt;
1257   std::unique_ptr<StringTableSection> shStrTab;
1258   std::unique_ptr<StringTableSection> strTab;
1259   std::unique_ptr<SymbolTableBaseSection> symTab;
1260   std::unique_ptr<SymtabShndxSection> symTabShndx;
1261 
1262   void reset();
1263 };
1264 
1265 extern InStruct in;
1266 
1267 } // namespace elf
1268 } // namespace lld
1269 
1270 #endif
1271