xref: /freebsd/contrib/llvm-project/lld/ELF/SyntheticSections.h (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Synthetic sections represent chunks of linker-created data. If you
10 // need to create a chunk of data that to be included in some section
11 // in the result, you probably want to create that as a synthetic section.
12 //
13 // Synthetic sections are designed as input sections as opposed to
14 // output sections because we want to allow them to be manipulated
15 // using linker scripts just like other input sections from regular
16 // files.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
21 #define LLD_ELF_SYNTHETIC_SECTIONS_H
22 
23 #include "DWARF.h"
24 #include "EhFrame.h"
25 #include "InputSection.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/MC/StringTableBuilder.h"
28 #include "llvm/Support/Endian.h"
29 #include <functional>
30 
31 namespace lld {
32 namespace elf {
33 class Defined;
34 struct PhdrEntry;
35 class SymbolTableBaseSection;
36 class VersionNeedBaseSection;
37 
38 class SyntheticSection : public InputSection {
39 public:
40   SyntheticSection(uint64_t flags, uint32_t type, uint32_t alignment,
41                    StringRef name)
42       : InputSection(nullptr, flags, type, alignment, {}, name,
43                      InputSectionBase::Synthetic) {
44     markLive();
45   }
46 
47   virtual ~SyntheticSection() = default;
48   virtual void writeTo(uint8_t *buf) = 0;
49   virtual size_t getSize() const = 0;
50   virtual void finalizeContents() {}
51   // If the section has the SHF_ALLOC flag and the size may be changed if
52   // thunks are added, update the section size.
53   virtual bool updateAllocSize() { return false; }
54   virtual bool isNeeded() const { return true; }
55 
56   static bool classof(const SectionBase *d) {
57     return d->kind() == InputSectionBase::Synthetic;
58   }
59 };
60 
61 struct CieRecord {
62   EhSectionPiece *cie = nullptr;
63   std::vector<EhSectionPiece *> fdes;
64 };
65 
66 // Section for .eh_frame.
67 class EhFrameSection final : public SyntheticSection {
68 public:
69   EhFrameSection();
70   void writeTo(uint8_t *buf) override;
71   void finalizeContents() override;
72   bool isNeeded() const override { return !sections.empty(); }
73   size_t getSize() const override { return size; }
74 
75   static bool classof(const SectionBase *d) {
76     return SyntheticSection::classof(d) && d->name == ".eh_frame";
77   }
78 
79   void addSection(EhInputSection *sec);
80 
81   std::vector<EhInputSection *> sections;
82   size_t numFdes = 0;
83 
84   struct FdeData {
85     uint32_t pcRel;
86     uint32_t fdeVARel;
87   };
88 
89   std::vector<FdeData> getFdeData() const;
90   ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
91 
92 private:
93   // This is used only when parsing EhInputSection. We keep it here to avoid
94   // allocating one for each EhInputSection.
95   llvm::DenseMap<size_t, CieRecord *> offsetToCie;
96 
97   uint64_t size = 0;
98 
99   template <class ELFT, class RelTy>
100   void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
101   template <class ELFT>
102   void addSectionAux(EhInputSection *s);
103 
104   template <class ELFT, class RelTy>
105   CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);
106 
107   template <class ELFT, class RelTy>
108   bool isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);
109 
110   uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;
111 
112   std::vector<CieRecord *> cieRecords;
113 
114   // CIE records are uniquified by their contents and personality functions.
115   llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
116 };
117 
118 class GotSection : public SyntheticSection {
119 public:
120   GotSection();
121   size_t getSize() const override { return size; }
122   void finalizeContents() override;
123   bool isNeeded() const override;
124   void writeTo(uint8_t *buf) override;
125 
126   void addEntry(Symbol &sym);
127   bool addDynTlsEntry(Symbol &sym);
128   bool addTlsIndex();
129   uint64_t getGlobalDynAddr(const Symbol &b) const;
130   uint64_t getGlobalDynOffset(const Symbol &b) const;
131 
132   uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
133   uint32_t getTlsIndexOff() const { return tlsIndexOff; }
134 
135   // Flag to force GOT to be in output if we have relocations
136   // that relies on its address.
137   bool hasGotOffRel = false;
138 
139 protected:
140   size_t numEntries = 0;
141   uint32_t tlsIndexOff = -1;
142   uint64_t size = 0;
143 };
144 
145 // .note.GNU-stack section.
146 class GnuStackSection : public SyntheticSection {
147 public:
148   GnuStackSection()
149       : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {}
150   void writeTo(uint8_t *buf) override {}
151   size_t getSize() const override { return 0; }
152 };
153 
154 class GnuPropertySection : public SyntheticSection {
155 public:
156   GnuPropertySection();
157   void writeTo(uint8_t *buf) override;
158   size_t getSize() const override;
159 };
160 
161 // .note.gnu.build-id section.
162 class BuildIdSection : public SyntheticSection {
163   // First 16 bytes are a header.
164   static const unsigned headerSize = 16;
165 
166 public:
167   const size_t hashSize;
168   BuildIdSection();
169   void writeTo(uint8_t *buf) override;
170   size_t getSize() const override { return headerSize + hashSize; }
171   void writeBuildId(llvm::ArrayRef<uint8_t> buf);
172 
173 private:
174   uint8_t *hashBuf;
175 };
176 
177 // BssSection is used to reserve space for copy relocations and common symbols.
178 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
179 // that are used for writable symbols, read-only symbols and common symbols,
180 // respectively.
181 class BssSection final : public SyntheticSection {
182 public:
183   BssSection(StringRef name, uint64_t size, uint32_t alignment);
184   void writeTo(uint8_t *) override {
185     llvm_unreachable("unexpected writeTo() call for SHT_NOBITS section");
186   }
187   bool isNeeded() const override { return size != 0; }
188   size_t getSize() const override { return size; }
189 
190   static bool classof(const SectionBase *s) { return s->bss; }
191   uint64_t size;
192 };
193 
194 class MipsGotSection final : public SyntheticSection {
195 public:
196   MipsGotSection();
197   void writeTo(uint8_t *buf) override;
198   size_t getSize() const override { return size; }
199   bool updateAllocSize() override;
200   void finalizeContents() override;
201   bool isNeeded() const override;
202 
203   // Join separate GOTs built for each input file to generate
204   // primary and optional multiple secondary GOTs.
205   void build();
206 
207   void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
208   void addDynTlsEntry(InputFile &file, Symbol &sym);
209   void addTlsIndex(InputFile &file);
210 
211   uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
212                               int64_t addend) const;
213   uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
214                              int64_t addend) const;
215   uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
216   uint64_t getTlsIndexOffset(const InputFile *f) const;
217 
218   // Returns the symbol which corresponds to the first entry of the global part
219   // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
220   // table properties.
221   // Returns nullptr if the global part is empty.
222   const Symbol *getFirstGlobalEntry() const;
223 
224   // Returns the number of entries in the local part of GOT including
225   // the number of reserved entries.
226   unsigned getLocalEntriesNum() const;
227 
228   // Return _gp value for primary GOT (nullptr) or particular input file.
229   uint64_t getGp(const InputFile *f = nullptr) const;
230 
231 private:
232   // MIPS GOT consists of three parts: local, global and tls. Each part
233   // contains different types of entries. Here is a layout of GOT:
234   // - Header entries                |
235   // - Page entries                  |   Local part
236   // - Local entries (16-bit access) |
237   // - Local entries (32-bit access) |
238   // - Normal global entries         ||  Global part
239   // - Reloc-only global entries     ||
240   // - TLS entries                   ||| TLS part
241   //
242   // Header:
243   //   Two entries hold predefined value 0x0 and 0x80000000.
244   // Page entries:
245   //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
246   //   relocation against local symbols. They are initialized by higher 16-bit
247   //   of the corresponding symbol's value. So each 64kb of address space
248   //   requires a single GOT entry.
249   // Local entries (16-bit access):
250   //   These entries created by GOT relocations against global non-preemptible
251   //   symbols so dynamic linker is not necessary to resolve the symbol's
252   //   values. "16-bit access" means that corresponding relocations address
253   //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
254   //   GOT entry.
255   // Local entries (32-bit access):
256   //   These entries are the same as above but created by relocations which
257   //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
258   // Normal global entries:
259   //   These entries created by GOT relocations against preemptible global
260   //   symbols. They need to be initialized by dynamic linker and they ordered
261   //   exactly as the corresponding entries in the dynamic symbols table.
262   // Reloc-only global entries:
263   //   These entries created for symbols that are referenced by dynamic
264   //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
265   //   addressing, but MIPS ABI requires that these entries be present in GOT.
266   // TLS entries:
267   //   Entries created by TLS relocations.
268   //
269   // If the sum of local, global and tls entries is less than 64K only single
270   // got is enough. Otherwise, multi-got is created. Series of primary and
271   // multiple secondary GOTs have the following layout:
272   // - Primary GOT
273   //     Header
274   //     Local entries
275   //     Global entries
276   //     Relocation only entries
277   //     TLS entries
278   //
279   // - Secondary GOT
280   //     Local entries
281   //     Global entries
282   //     TLS entries
283   // ...
284   //
285   // All GOT entries required by relocations from a single input file entirely
286   // belong to either primary or one of secondary GOTs. To reference GOT entries
287   // each GOT has its own _gp value points to the "middle" of the GOT.
288   // In the code this value loaded to the register which is used for GOT access.
289   //
290   // MIPS 32 function's prologue:
291   //   lui     v0,0x0
292   //   0: R_MIPS_HI16  _gp_disp
293   //   addiu   v0,v0,0
294   //   4: R_MIPS_LO16  _gp_disp
295   //
296   // MIPS 64:
297   //   lui     at,0x0
298   //   14: R_MIPS_GPREL16  main
299   //
300   // Dynamic linker does not know anything about secondary GOTs and cannot
301   // use a regular MIPS mechanism for GOT entries initialization. So we have
302   // to use an approach accepted by other architectures and create dynamic
303   // relocations R_MIPS_REL32 to initialize global entries (and local in case
304   // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
305   // requires GOT entries and correspondingly ordered dynamic symbol table
306   // entries to deal with dynamic relocations. To handle this problem
307   // relocation-only section in the primary GOT contains entries for all
308   // symbols referenced in global parts of secondary GOTs. Although the sum
309   // of local and normal global entries of the primary got should be less
310   // than 64K, the size of the primary got (including relocation-only entries
311   // can be greater than 64K, because parts of the primary got that overflow
312   // the 64K limit are used only by the dynamic linker at dynamic link-time
313   // and not by 16-bit gp-relative addressing at run-time.
314   //
315   // For complete multi-GOT description see the following link
316   // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT
317 
318   // Number of "Header" entries.
319   static const unsigned headerEntriesNum = 2;
320 
321   uint64_t size = 0;
322 
323   // Symbol and addend.
324   using GotEntry = std::pair<Symbol *, int64_t>;
325 
326   struct FileGot {
327     InputFile *file = nullptr;
328     size_t startIndex = 0;
329 
330     struct PageBlock {
331       size_t firstIndex;
332       size_t count;
333       PageBlock() : firstIndex(0), count(0) {}
334     };
335 
336     // Map output sections referenced by MIPS GOT relocations
337     // to the description (index/count) "page" entries allocated
338     // for this section.
339     llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
340     // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
341     llvm::MapVector<GotEntry, size_t> local16;
342     llvm::MapVector<GotEntry, size_t> local32;
343     llvm::MapVector<Symbol *, size_t> global;
344     llvm::MapVector<Symbol *, size_t> relocs;
345     llvm::MapVector<Symbol *, size_t> tls;
346     // Set of symbols referenced by dynamic TLS relocations.
347     llvm::MapVector<Symbol *, size_t> dynTlsSymbols;
348 
349     // Total number of all entries.
350     size_t getEntriesNum() const;
351     // Number of "page" entries.
352     size_t getPageEntriesNum() const;
353     // Number of entries require 16-bit index to access.
354     size_t getIndexedEntriesNum() const;
355   };
356 
357   // Container of GOT created for each input file.
358   // After building a final series of GOTs this container
359   // holds primary and secondary GOT's.
360   std::vector<FileGot> gots;
361 
362   // Return (and create if necessary) `FileGot`.
363   FileGot &getGot(InputFile &f);
364 
365   // Try to merge two GOTs. In case of success the `Dst` contains
366   // result of merging and the function returns true. In case of
367   // ovwerflow the `Dst` is unchanged and the function returns false.
368   bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
369 };
370 
371 class GotPltSection final : public SyntheticSection {
372 public:
373   GotPltSection();
374   void addEntry(Symbol &sym);
375   size_t getSize() const override;
376   void writeTo(uint8_t *buf) override;
377   bool isNeeded() const override;
378 
379   // Flag to force GotPlt to be in output if we have relocations
380   // that relies on its address.
381   bool hasGotPltOffRel = false;
382 
383 private:
384   std::vector<const Symbol *> entries;
385 };
386 
387 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
388 // Symbols that will be relocated by Target->IRelativeRel.
389 // On most Targets the IgotPltSection will immediately follow the GotPltSection
390 // on ARM the IgotPltSection will immediately follow the GotSection.
391 class IgotPltSection final : public SyntheticSection {
392 public:
393   IgotPltSection();
394   void addEntry(Symbol &sym);
395   size_t getSize() const override;
396   void writeTo(uint8_t *buf) override;
397   bool isNeeded() const override { return !entries.empty(); }
398 
399 private:
400   std::vector<const Symbol *> entries;
401 };
402 
403 class StringTableSection final : public SyntheticSection {
404 public:
405   StringTableSection(StringRef name, bool dynamic);
406   unsigned addString(StringRef s, bool hashIt = true);
407   void writeTo(uint8_t *buf) override;
408   size_t getSize() const override { return size; }
409   bool isDynamic() const { return dynamic; }
410 
411 private:
412   const bool dynamic;
413 
414   uint64_t size = 0;
415 
416   llvm::DenseMap<StringRef, unsigned> stringMap;
417   std::vector<StringRef> strings;
418 };
419 
420 class DynamicReloc {
421 public:
422   DynamicReloc(RelType type, const InputSectionBase *inputSec,
423                uint64_t offsetInSec, bool useSymVA, Symbol *sym, int64_t addend)
424       : type(type), sym(sym), inputSec(inputSec), offsetInSec(offsetInSec),
425         useSymVA(useSymVA), addend(addend), outputSec(nullptr) {}
426   // This constructor records dynamic relocation settings used by MIPS
427   // multi-GOT implementation. It's to relocate addresses of 64kb pages
428   // lie inside the output section.
429   DynamicReloc(RelType type, const InputSectionBase *inputSec,
430                uint64_t offsetInSec, const OutputSection *outputSec,
431                int64_t addend)
432       : type(type), sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec),
433         useSymVA(false), addend(addend), outputSec(outputSec) {}
434 
435   uint64_t getOffset() const;
436   uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;
437 
438   // Computes the addend of the dynamic relocation. Note that this is not the
439   // same as the addend member variable as it also includes the symbol address
440   // if useSymVA is true.
441   int64_t computeAddend() const;
442 
443   RelType type;
444 
445   Symbol *sym;
446   const InputSectionBase *inputSec = nullptr;
447   uint64_t offsetInSec;
448   // If this member is true, the dynamic relocation will not be against the
449   // symbol but will instead be a relative relocation that simply adds the
450   // load address. This means we need to write the symbol virtual address
451   // plus the original addend as the final relocation addend.
452   bool useSymVA;
453   int64_t addend;
454   const OutputSection *outputSec;
455 };
456 
457 template <class ELFT> class DynamicSection final : public SyntheticSection {
458   using Elf_Dyn = typename ELFT::Dyn;
459   using Elf_Rel = typename ELFT::Rel;
460   using Elf_Rela = typename ELFT::Rela;
461   using Elf_Relr = typename ELFT::Relr;
462   using Elf_Shdr = typename ELFT::Shdr;
463   using Elf_Sym = typename ELFT::Sym;
464 
465   // finalizeContents() fills this vector with the section contents.
466   std::vector<std::pair<int32_t, std::function<uint64_t()>>> entries;
467 
468 public:
469   DynamicSection();
470   void finalizeContents() override;
471   void writeTo(uint8_t *buf) override;
472   size_t getSize() const override { return size; }
473 
474 private:
475   void add(int32_t tag, std::function<uint64_t()> fn);
476   void addInt(int32_t tag, uint64_t val);
477   void addInSec(int32_t tag, InputSection *sec);
478   void addInSecRelative(int32_t tag, InputSection *sec);
479   void addOutSec(int32_t tag, OutputSection *sec);
480   void addSize(int32_t tag, OutputSection *sec);
481   void addSym(int32_t tag, Symbol *sym);
482 
483   uint64_t size = 0;
484 };
485 
486 class RelocationBaseSection : public SyntheticSection {
487 public:
488   RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag,
489                         int32_t sizeDynamicTag);
490   void addReloc(RelType dynType, InputSectionBase *isec, uint64_t offsetInSec,
491                 Symbol *sym);
492   // Add a dynamic relocation that might need an addend. This takes care of
493   // writing the addend to the output section if needed.
494   void addReloc(RelType dynType, InputSectionBase *inputSec,
495                 uint64_t offsetInSec, Symbol *sym, int64_t addend, RelExpr expr,
496                 RelType type);
497   void addReloc(const DynamicReloc &reloc);
498   bool isNeeded() const override { return !relocs.empty(); }
499   size_t getSize() const override { return relocs.size() * this->entsize; }
500   size_t getRelativeRelocCount() const { return numRelativeRelocs; }
501   void finalizeContents() override;
502   int32_t dynamicTag, sizeDynamicTag;
503   std::vector<DynamicReloc> relocs;
504 
505 protected:
506   size_t numRelativeRelocs = 0;
507 };
508 
509 template <class ELFT>
510 class RelocationSection final : public RelocationBaseSection {
511   using Elf_Rel = typename ELFT::Rel;
512   using Elf_Rela = typename ELFT::Rela;
513 
514 public:
515   RelocationSection(StringRef name, bool sort);
516   void writeTo(uint8_t *buf) override;
517 
518 private:
519   bool sort;
520 };
521 
522 template <class ELFT>
523 class AndroidPackedRelocationSection final : public RelocationBaseSection {
524   using Elf_Rel = typename ELFT::Rel;
525   using Elf_Rela = typename ELFT::Rela;
526 
527 public:
528   AndroidPackedRelocationSection(StringRef name);
529 
530   bool updateAllocSize() override;
531   size_t getSize() const override { return relocData.size(); }
532   void writeTo(uint8_t *buf) override {
533     memcpy(buf, relocData.data(), relocData.size());
534   }
535 
536 private:
537   SmallVector<char, 0> relocData;
538 };
539 
540 struct RelativeReloc {
541   uint64_t getOffset() const { return inputSec->getVA(offsetInSec); }
542 
543   const InputSectionBase *inputSec;
544   uint64_t offsetInSec;
545 };
546 
547 class RelrBaseSection : public SyntheticSection {
548 public:
549   RelrBaseSection();
550   bool isNeeded() const override { return !relocs.empty(); }
551   std::vector<RelativeReloc> relocs;
552 };
553 
554 // RelrSection is used to encode offsets for relative relocations.
555 // Proposal for adding SHT_RELR sections to generic-abi is here:
556 //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
557 // For more details, see the comment in RelrSection::updateAllocSize().
558 template <class ELFT> class RelrSection final : public RelrBaseSection {
559   using Elf_Relr = typename ELFT::Relr;
560 
561 public:
562   RelrSection();
563 
564   bool updateAllocSize() override;
565   size_t getSize() const override { return relrRelocs.size() * this->entsize; }
566   void writeTo(uint8_t *buf) override {
567     memcpy(buf, relrRelocs.data(), getSize());
568   }
569 
570 private:
571   std::vector<Elf_Relr> relrRelocs;
572 };
573 
574 struct SymbolTableEntry {
575   Symbol *sym;
576   size_t strTabOffset;
577 };
578 
579 class SymbolTableBaseSection : public SyntheticSection {
580 public:
581   SymbolTableBaseSection(StringTableSection &strTabSec);
582   void finalizeContents() override;
583   size_t getSize() const override { return getNumSymbols() * entsize; }
584   void addSymbol(Symbol *sym);
585   unsigned getNumSymbols() const { return symbols.size() + 1; }
586   size_t getSymbolIndex(Symbol *sym);
587   ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }
588 
589 protected:
590   void sortSymTabSymbols();
591 
592   // A vector of symbols and their string table offsets.
593   std::vector<SymbolTableEntry> symbols;
594 
595   StringTableSection &strTabSec;
596 
597   llvm::once_flag onceFlag;
598   llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
599   llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
600 };
601 
602 template <class ELFT>
603 class SymbolTableSection final : public SymbolTableBaseSection {
604   using Elf_Sym = typename ELFT::Sym;
605 
606 public:
607   SymbolTableSection(StringTableSection &strTabSec);
608   void writeTo(uint8_t *buf) override;
609 };
610 
611 class SymtabShndxSection final : public SyntheticSection {
612 public:
613   SymtabShndxSection();
614 
615   void writeTo(uint8_t *buf) override;
616   size_t getSize() const override;
617   bool isNeeded() const override;
618   void finalizeContents() override;
619 };
620 
621 // Outputs GNU Hash section. For detailed explanation see:
622 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
623 class GnuHashTableSection final : public SyntheticSection {
624 public:
625   GnuHashTableSection();
626   void finalizeContents() override;
627   void writeTo(uint8_t *buf) override;
628   size_t getSize() const override { return size; }
629 
630   // Adds symbols to the hash table.
631   // Sorts the input to satisfy GNU hash section requirements.
632   void addSymbols(std::vector<SymbolTableEntry> &symbols);
633 
634 private:
635   // See the comment in writeBloomFilter.
636   enum { Shift2 = 26 };
637 
638   void writeBloomFilter(uint8_t *buf);
639   void writeHashTable(uint8_t *buf);
640 
641   struct Entry {
642     Symbol *sym;
643     size_t strTabOffset;
644     uint32_t hash;
645     uint32_t bucketIdx;
646   };
647 
648   std::vector<Entry> symbols;
649   size_t maskWords;
650   size_t nBuckets = 0;
651   size_t size = 0;
652 };
653 
654 class HashTableSection final : public SyntheticSection {
655 public:
656   HashTableSection();
657   void finalizeContents() override;
658   void writeTo(uint8_t *buf) override;
659   size_t getSize() const override { return size; }
660 
661 private:
662   size_t size = 0;
663 };
664 
665 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
666 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
667 // at runtime.
668 //
669 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction
670 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
671 // lazy symbol resolver.
672 //
673 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
674 // A call instruction jumps to a .plt.sec entry, which will then jump to the
675 // target (BIND_NOW) or a .plt entry.
676 class PltSection : public SyntheticSection {
677 public:
678   PltSection();
679   void writeTo(uint8_t *buf) override;
680   size_t getSize() const override;
681   bool isNeeded() const override;
682   void addSymbols();
683   void addEntry(Symbol &sym);
684   size_t getNumEntries() const { return entries.size(); }
685 
686   size_t headerSize;
687 
688   std::vector<const Symbol *> entries;
689 };
690 
691 // Used for non-preemptible ifuncs. It does not have a header. Each entry is
692 // associated with an IRELATIVE relocation, which will be resolved eagerly at
693 // runtime. PltSection can only contain entries associated with JUMP_SLOT
694 // relocations, so IPLT entries are in a separate section.
695 class IpltSection final : public SyntheticSection {
696   std::vector<const Symbol *> entries;
697 
698 public:
699   IpltSection();
700   void writeTo(uint8_t *buf) override;
701   size_t getSize() const override;
702   bool isNeeded() const override { return !entries.empty(); }
703   void addSymbols();
704   void addEntry(Symbol &sym);
705 };
706 
707 class PPC32GlinkSection : public PltSection {
708 public:
709   PPC32GlinkSection();
710   void writeTo(uint8_t *buf) override;
711   size_t getSize() const override;
712 
713   std::vector<const Symbol *> canonical_plts;
714   static constexpr size_t footerSize = 64;
715 };
716 
717 // This is x86-only.
718 class IBTPltSection : public SyntheticSection {
719 public:
720   IBTPltSection();
721   void writeTo(uint8_t *Buf) override;
722   size_t getSize() const override;
723 };
724 
725 class GdbIndexSection final : public SyntheticSection {
726 public:
727   struct AddressEntry {
728     InputSection *section;
729     uint64_t lowAddress;
730     uint64_t highAddress;
731     uint32_t cuIndex;
732   };
733 
734   struct CuEntry {
735     uint64_t cuOffset;
736     uint64_t cuLength;
737   };
738 
739   struct NameAttrEntry {
740     llvm::CachedHashStringRef name;
741     uint32_t cuIndexAndAttrs;
742   };
743 
744   struct GdbChunk {
745     InputSection *sec;
746     std::vector<AddressEntry> addressAreas;
747     std::vector<CuEntry> compilationUnits;
748   };
749 
750   struct GdbSymbol {
751     llvm::CachedHashStringRef name;
752     std::vector<uint32_t> cuVector;
753     uint32_t nameOff;
754     uint32_t cuVectorOff;
755   };
756 
757   GdbIndexSection();
758   template <typename ELFT> static GdbIndexSection *create();
759   void writeTo(uint8_t *buf) override;
760   size_t getSize() const override { return size; }
761   bool isNeeded() const override;
762 
763 private:
764   struct GdbIndexHeader {
765     llvm::support::ulittle32_t version;
766     llvm::support::ulittle32_t cuListOff;
767     llvm::support::ulittle32_t cuTypesOff;
768     llvm::support::ulittle32_t addressAreaOff;
769     llvm::support::ulittle32_t symtabOff;
770     llvm::support::ulittle32_t constantPoolOff;
771   };
772 
773   void initOutputSize();
774   size_t computeSymtabSize() const;
775 
776   // Each chunk contains information gathered from debug sections of a
777   // single object file.
778   std::vector<GdbChunk> chunks;
779 
780   // A symbol table for this .gdb_index section.
781   std::vector<GdbSymbol> symbols;
782 
783   size_t size;
784 };
785 
786 // --eh-frame-hdr option tells linker to construct a header for all the
787 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr
788 // and also to a PT_GNU_EH_FRAME segment.
789 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
790 // calling dl_iterate_phdr.
791 // This section contains a lookup table for quick binary search of FDEs.
792 // Detailed info about internals can be found in Ian Lance Taylor's blog:
793 // http://www.airs.com/blog/archives/460 (".eh_frame")
794 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
795 class EhFrameHeader final : public SyntheticSection {
796 public:
797   EhFrameHeader();
798   void write();
799   void writeTo(uint8_t *buf) override;
800   size_t getSize() const override;
801   bool isNeeded() const override;
802 };
803 
804 // For more information about .gnu.version and .gnu.version_r see:
805 // https://www.akkadia.org/drepper/symbol-versioning
806 
807 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
808 // contain symbol version definitions. The number of entries in this section
809 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
810 // The section shall contain an array of Elf_Verdef structures, optionally
811 // followed by an array of Elf_Verdaux structures.
812 class VersionDefinitionSection final : public SyntheticSection {
813 public:
814   VersionDefinitionSection();
815   void finalizeContents() override;
816   size_t getSize() const override;
817   void writeTo(uint8_t *buf) override;
818 
819 private:
820   enum { EntrySize = 28 };
821   void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
822   StringRef getFileDefName();
823 
824   unsigned fileDefNameOff;
825   std::vector<unsigned> verDefNameOffs;
826 };
827 
828 // The .gnu.version section specifies the required version of each symbol in the
829 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
830 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version
831 // identifier defined in the either .gnu.version_r or .gnu.version_d section.
832 // The values 0 and 1 are reserved. All other values are used for versions in
833 // the own object or in any of the dependencies.
834 class VersionTableSection final : public SyntheticSection {
835 public:
836   VersionTableSection();
837   void finalizeContents() override;
838   size_t getSize() const override;
839   void writeTo(uint8_t *buf) override;
840   bool isNeeded() const override;
841 };
842 
843 // The .gnu.version_r section defines the version identifiers used by
844 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
845 // Elf_Verneed specifies the version requirements for a single DSO, and contains
846 // a reference to a linked list of Elf_Vernaux data structures which define the
847 // mapping from version identifiers to version names.
848 template <class ELFT>
849 class VersionNeedSection final : public SyntheticSection {
850   using Elf_Verneed = typename ELFT::Verneed;
851   using Elf_Vernaux = typename ELFT::Vernaux;
852 
853   struct Vernaux {
854     uint64_t hash;
855     uint32_t verneedIndex;
856     uint64_t nameStrTab;
857   };
858 
859   struct Verneed {
860     uint64_t nameStrTab;
861     std::vector<Vernaux> vernauxs;
862   };
863 
864   std::vector<Verneed> verneeds;
865 
866 public:
867   VersionNeedSection();
868   void finalizeContents() override;
869   void writeTo(uint8_t *buf) override;
870   size_t getSize() const override;
871   bool isNeeded() const override;
872 };
873 
874 // MergeSyntheticSection is a class that allows us to put mergeable sections
875 // with different attributes in a single output sections. To do that
876 // we put them into MergeSyntheticSection synthetic input sections which are
877 // attached to regular output sections.
878 class MergeSyntheticSection : public SyntheticSection {
879 public:
880   void addSection(MergeInputSection *ms);
881   std::vector<MergeInputSection *> sections;
882 
883 protected:
884   MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags,
885                         uint32_t alignment)
886       : SyntheticSection(flags, type, alignment, name) {}
887 };
888 
889 class MergeTailSection final : public MergeSyntheticSection {
890 public:
891   MergeTailSection(StringRef name, uint32_t type, uint64_t flags,
892                    uint32_t alignment);
893 
894   size_t getSize() const override;
895   void writeTo(uint8_t *buf) override;
896   void finalizeContents() override;
897 
898 private:
899   llvm::StringTableBuilder builder;
900 };
901 
902 class MergeNoTailSection final : public MergeSyntheticSection {
903 public:
904   MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags,
905                      uint32_t alignment)
906       : MergeSyntheticSection(name, type, flags, alignment) {}
907 
908   size_t getSize() const override { return size; }
909   void writeTo(uint8_t *buf) override;
910   void finalizeContents() override;
911 
912 private:
913   // We use the most significant bits of a hash as a shard ID.
914   // The reason why we don't want to use the least significant bits is
915   // because DenseMap also uses lower bits to determine a bucket ID.
916   // If we use lower bits, it significantly increases the probability of
917   // hash collisons.
918   size_t getShardId(uint32_t hash) {
919     assert((hash >> 31) == 0);
920     return hash >> (31 - llvm::countTrailingZeros(numShards));
921   }
922 
923   // Section size
924   size_t size;
925 
926   // String table contents
927   constexpr static size_t numShards = 32;
928   std::vector<llvm::StringTableBuilder> shards;
929   size_t shardOffsets[numShards];
930 };
931 
932 // .MIPS.abiflags section.
933 template <class ELFT>
934 class MipsAbiFlagsSection final : public SyntheticSection {
935   using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;
936 
937 public:
938   static MipsAbiFlagsSection *create();
939 
940   MipsAbiFlagsSection(Elf_Mips_ABIFlags flags);
941   size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
942   void writeTo(uint8_t *buf) override;
943 
944 private:
945   Elf_Mips_ABIFlags flags;
946 };
947 
948 // .MIPS.options section.
949 template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
950   using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
951   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
952 
953 public:
954   static MipsOptionsSection *create();
955 
956   MipsOptionsSection(Elf_Mips_RegInfo reginfo);
957   void writeTo(uint8_t *buf) override;
958 
959   size_t getSize() const override {
960     return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
961   }
962 
963 private:
964   Elf_Mips_RegInfo reginfo;
965 };
966 
967 // MIPS .reginfo section.
968 template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
969   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
970 
971 public:
972   static MipsReginfoSection *create();
973 
974   MipsReginfoSection(Elf_Mips_RegInfo reginfo);
975   size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
976   void writeTo(uint8_t *buf) override;
977 
978 private:
979   Elf_Mips_RegInfo reginfo;
980 };
981 
982 // This is a MIPS specific section to hold a space within the data segment
983 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
984 // See "Dynamic section" in Chapter 5 in the following document:
985 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
986 class MipsRldMapSection : public SyntheticSection {
987 public:
988   MipsRldMapSection();
989   size_t getSize() const override { return config->wordsize; }
990   void writeTo(uint8_t *buf) override {}
991 };
992 
993 // Representation of the combined .ARM.Exidx input sections. We process these
994 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries
995 // and add terminating sentinel entries.
996 //
997 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
998 // a table that the unwinder can derive (Addresses are encoded as offsets from
999 // table):
1000 // | Address of function | Unwind instructions for function |
1001 // where the unwind instructions are either a small number of unwind or the
1002 // special EXIDX_CANTUNWIND entry representing no unwinding information.
1003 // When an exception is thrown from an address A, the unwinder searches the
1004 // table for the closest table entry with Address of function <= A. This means
1005 // that for two consecutive table entries:
1006 // | A1 | U1 |
1007 // | A2 | U2 |
1008 // The range of addresses described by U1 is [A1, A2)
1009 //
1010 // There are two cases where we need a linker generated table entry to fixup
1011 // the address ranges in the table
1012 // Case 1:
1013 // - A sentinel entry added with an address higher than all
1014 // executable sections. This was needed to work around libunwind bug pr31091.
1015 // - After address assignment we need to find the highest addressed executable
1016 // section and use the limit of that section so that the unwinder never
1017 // matches it.
1018 // Case 2:
1019 // - InputSections without a .ARM.exidx section (usually from Assembly)
1020 // need a table entry so that they terminate the range of the previously
1021 // function. This is pr40277.
1022 //
1023 // Instead of storing pointers to the .ARM.exidx InputSections from
1024 // InputObjects, we store pointers to the executable sections that need
1025 // .ARM.exidx sections. We can then use the dependentSections of these to
1026 // either find the .ARM.exidx section or know that we need to generate one.
1027 class ARMExidxSyntheticSection : public SyntheticSection {
1028 public:
1029   ARMExidxSyntheticSection();
1030 
1031   // Add an input section to the ARMExidxSyntheticSection. Returns whether the
1032   // section needs to be removed from the main input section list.
1033   bool addSection(InputSection *isec);
1034 
1035   size_t getSize() const override { return size; }
1036   void writeTo(uint8_t *buf) override;
1037   bool isNeeded() const override;
1038   // Sort and remove duplicate entries.
1039   void finalizeContents() override;
1040   InputSection *getLinkOrderDep() const;
1041 
1042   static bool classof(const SectionBase *d);
1043 
1044   // Links to the ARMExidxSections so we can transfer the relocations once the
1045   // layout is known.
1046   std::vector<InputSection *> exidxSections;
1047 
1048 private:
1049   size_t size;
1050 
1051   // Instead of storing pointers to the .ARM.exidx InputSections from
1052   // InputObjects, we store pointers to the executable sections that need
1053   // .ARM.exidx sections. We can then use the dependentSections of these to
1054   // either find the .ARM.exidx section or know that we need to generate one.
1055   std::vector<InputSection *> executableSections;
1056 
1057   // The executable InputSection with the highest address to use for the
1058   // sentinel. We store separately from ExecutableSections as merging of
1059   // duplicate entries may mean this InputSection is removed from
1060   // ExecutableSections.
1061   InputSection *sentinel = nullptr;
1062 };
1063 
1064 // A container for one or more linker generated thunks. Instances of these
1065 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
1066 class ThunkSection : public SyntheticSection {
1067 public:
1068   // ThunkSection in OS, with desired outSecOff of Off
1069   ThunkSection(OutputSection *os, uint64_t off);
1070 
1071   // Add a newly created Thunk to this container:
1072   // Thunk is given offset from start of this InputSection
1073   // Thunk defines a symbol in this InputSection that can be used as target
1074   // of a relocation
1075   void addThunk(Thunk *t);
1076   size_t getSize() const override;
1077   void writeTo(uint8_t *buf) override;
1078   InputSection *getTargetInputSection() const;
1079   bool assignOffsets();
1080 
1081   // When true, round up reported size of section to 4 KiB. See comment
1082   // in addThunkSection() for more details.
1083   bool roundUpSizeForErrata = false;
1084 
1085 private:
1086   std::vector<Thunk *> thunks;
1087   size_t size = 0;
1088 };
1089 
1090 // Used to compute outSecOff of .got2 in each object file. This is needed to
1091 // synthesize PLT entries for PPC32 Secure PLT ABI.
1092 class PPC32Got2Section final : public SyntheticSection {
1093 public:
1094   PPC32Got2Section();
1095   size_t getSize() const override { return 0; }
1096   bool isNeeded() const override;
1097   void finalizeContents() override;
1098   void writeTo(uint8_t *buf) override {}
1099 };
1100 
1101 // This section is used to store the addresses of functions that are called
1102 // in range-extending thunks on PowerPC64. When producing position dependent
1103 // code the addresses are link-time constants and the table is written out to
1104 // the binary. When producing position-dependent code the table is allocated and
1105 // filled in by the dynamic linker.
1106 class PPC64LongBranchTargetSection final : public SyntheticSection {
1107 public:
1108   PPC64LongBranchTargetSection();
1109   uint64_t getEntryVA(const Symbol *sym, int64_t addend);
1110   llvm::Optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
1111   size_t getSize() const override;
1112   void writeTo(uint8_t *buf) override;
1113   bool isNeeded() const override;
1114   void finalizeContents() override { finalized = true; }
1115 
1116 private:
1117   std::vector<std::pair<const Symbol *, int64_t>> entries;
1118   llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
1119   bool finalized = false;
1120 };
1121 
1122 template <typename ELFT>
1123 class PartitionElfHeaderSection : public SyntheticSection {
1124 public:
1125   PartitionElfHeaderSection();
1126   size_t getSize() const override;
1127   void writeTo(uint8_t *buf) override;
1128 };
1129 
1130 template <typename ELFT>
1131 class PartitionProgramHeadersSection : public SyntheticSection {
1132 public:
1133   PartitionProgramHeadersSection();
1134   size_t getSize() const override;
1135   void writeTo(uint8_t *buf) override;
1136 };
1137 
1138 class PartitionIndexSection : public SyntheticSection {
1139 public:
1140   PartitionIndexSection();
1141   size_t getSize() const override;
1142   void finalizeContents() override;
1143   void writeTo(uint8_t *buf) override;
1144 };
1145 
1146 InputSection *createInterpSection();
1147 MergeInputSection *createCommentSection();
1148 MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type,
1149                                             uint64_t flags, uint32_t alignment);
1150 template <class ELFT> void splitSections();
1151 
1152 template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part);
1153 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);
1154 
1155 Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
1156                            uint64_t size, InputSectionBase &section);
1157 
1158 void addVerneed(Symbol *ss);
1159 
1160 // Linker generated per-partition sections.
1161 struct Partition {
1162   StringRef name;
1163   uint64_t nameStrTab;
1164 
1165   SyntheticSection *elfHeader;
1166   SyntheticSection *programHeaders;
1167   std::vector<PhdrEntry *> phdrs;
1168 
1169   ARMExidxSyntheticSection *armExidx;
1170   BuildIdSection *buildId;
1171   SyntheticSection *dynamic;
1172   StringTableSection *dynStrTab;
1173   SymbolTableBaseSection *dynSymTab;
1174   EhFrameHeader *ehFrameHdr;
1175   EhFrameSection *ehFrame;
1176   GnuHashTableSection *gnuHashTab;
1177   HashTableSection *hashTab;
1178   RelocationBaseSection *relaDyn;
1179   RelrBaseSection *relrDyn;
1180   VersionDefinitionSection *verDef;
1181   SyntheticSection *verNeed;
1182   VersionTableSection *verSym;
1183 
1184   unsigned getNumber() const { return this - &partitions[0] + 1; }
1185 };
1186 
1187 extern Partition *mainPart;
1188 
1189 inline Partition &SectionBase::getPartition() const {
1190   assert(isLive());
1191   return partitions[partition - 1];
1192 }
1193 
1194 // Linker generated sections which can be used as inputs and are not specific to
1195 // a partition.
1196 struct InStruct {
1197   InputSection *armAttributes;
1198   BssSection *bss;
1199   BssSection *bssRelRo;
1200   GotSection *got;
1201   GotPltSection *gotPlt;
1202   IgotPltSection *igotPlt;
1203   PPC64LongBranchTargetSection *ppc64LongBranchTarget;
1204   MipsGotSection *mipsGot;
1205   MipsRldMapSection *mipsRldMap;
1206   SyntheticSection *partEnd;
1207   SyntheticSection *partIndex;
1208   PltSection *plt;
1209   IpltSection *iplt;
1210   PPC32Got2Section *ppc32Got2;
1211   IBTPltSection *ibtPlt;
1212   RelocationBaseSection *relaPlt;
1213   RelocationBaseSection *relaIplt;
1214   StringTableSection *shStrTab;
1215   StringTableSection *strTab;
1216   SymbolTableBaseSection *symTab;
1217   SymtabShndxSection *symTabShndx;
1218 };
1219 
1220 extern InStruct in;
1221 
1222 } // namespace elf
1223 } // namespace lld
1224 
1225 #endif
1226