xref: /freebsd/contrib/llvm-project/lld/ELF/SyntheticSections.h (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Synthetic sections represent chunks of linker-created data. If you
10 // need to create a chunk of data that to be included in some section
11 // in the result, you probably want to create that as a synthetic section.
12 //
13 // Synthetic sections are designed as input sections as opposed to
14 // output sections because we want to allow them to be manipulated
15 // using linker scripts just like other input sections from regular
16 // files.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
21 #define LLD_ELF_SYNTHETIC_SECTIONS_H
22 
23 #include "Config.h"
24 #include "DWARF.h"
25 #include "InputSection.h"
26 #include "Symbols.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/FoldingSet.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/STLFunctionalExtras.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
33 #include "llvm/MC/StringTableBuilder.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Endian.h"
37 #include "llvm/Support/Parallel.h"
38 #include "llvm/Support/Threading.h"
39 
40 namespace lld::elf {
41 class Defined;
42 struct PhdrEntry;
43 class SymbolTableBaseSection;
44 
45 struct CieRecord {
46   EhSectionPiece *cie = nullptr;
47   SmallVector<EhSectionPiece *, 0> fdes;
48 };
49 
50 // Section for .eh_frame.
51 class EhFrameSection final : public SyntheticSection {
52 public:
53   EhFrameSection();
54   void writeTo(uint8_t *buf) override;
55   void finalizeContents() override;
56   bool isNeeded() const override { return !sections.empty(); }
57   size_t getSize() const override { return size; }
58 
59   static bool classof(const SectionBase *d) {
60     return SyntheticSection::classof(d) && d->name == ".eh_frame";
61   }
62 
63   SmallVector<EhInputSection *, 0> sections;
64   size_t numFdes = 0;
65 
66   struct FdeData {
67     uint32_t pcRel;
68     uint32_t fdeVARel;
69   };
70 
71   SmallVector<FdeData, 0> getFdeData() const;
72   ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
73   template <class ELFT>
74   void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn);
75 
76 private:
77   // This is used only when parsing EhInputSection. We keep it here to avoid
78   // allocating one for each EhInputSection.
79   llvm::DenseMap<size_t, CieRecord *> offsetToCie;
80 
81   uint64_t size = 0;
82 
83   template <class ELFT, class RelTy>
84   void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
85   template <class ELFT> void addSectionAux(EhInputSection *s);
86   template <class ELFT, class RelTy>
87   void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels,
88                              llvm::DenseSet<size_t> &ciesWithLSDA,
89                              llvm::function_ref<void(InputSection &)> fn);
90 
91   template <class ELFT, class RelTy>
92   CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);
93 
94   template <class ELFT, class RelTy>
95   Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);
96 
97   uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;
98 
99   SmallVector<CieRecord *, 0> cieRecords;
100 
101   // CIE records are uniquified by their contents and personality functions.
102   llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
103 };
104 
105 class GotSection final : public SyntheticSection {
106 public:
107   GotSection();
108   size_t getSize() const override { return size; }
109   void finalizeContents() override;
110   bool isNeeded() const override;
111   void writeTo(uint8_t *buf) override;
112 
113   void addConstant(const Relocation &r);
114   void addEntry(const Symbol &sym);
115   bool addTlsDescEntry(const Symbol &sym);
116   bool addDynTlsEntry(const Symbol &sym);
117   bool addTlsIndex();
118   uint32_t getTlsDescOffset(const Symbol &sym) const;
119   uint64_t getTlsDescAddr(const Symbol &sym) const;
120   uint64_t getGlobalDynAddr(const Symbol &b) const;
121   uint64_t getGlobalDynOffset(const Symbol &b) const;
122 
123   uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
124   uint32_t getTlsIndexOff() const { return tlsIndexOff; }
125 
126   // Flag to force GOT to be in output if we have relocations
127   // that relies on its address.
128   std::atomic<bool> hasGotOffRel = false;
129 
130 protected:
131   size_t numEntries = 0;
132   uint32_t tlsIndexOff = -1;
133   uint64_t size = 0;
134 };
135 
136 // .note.GNU-stack section.
137 class GnuStackSection : public SyntheticSection {
138 public:
139   GnuStackSection()
140       : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {}
141   void writeTo(uint8_t *buf) override {}
142   size_t getSize() const override { return 0; }
143 };
144 
145 class GnuPropertySection final : public SyntheticSection {
146 public:
147   GnuPropertySection();
148   void writeTo(uint8_t *buf) override;
149   size_t getSize() const override;
150 };
151 
152 // .note.gnu.build-id section.
153 class BuildIdSection : public SyntheticSection {
154   // First 16 bytes are a header.
155   static const unsigned headerSize = 16;
156 
157 public:
158   const size_t hashSize;
159   BuildIdSection();
160   void writeTo(uint8_t *buf) override;
161   size_t getSize() const override { return headerSize + hashSize; }
162   void writeBuildId(llvm::ArrayRef<uint8_t> buf);
163 
164 private:
165   uint8_t *hashBuf;
166 };
167 
168 // BssSection is used to reserve space for copy relocations and common symbols.
169 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
170 // that are used for writable symbols, read-only symbols and common symbols,
171 // respectively.
172 class BssSection final : public SyntheticSection {
173 public:
174   BssSection(StringRef name, uint64_t size, uint32_t addralign);
175   void writeTo(uint8_t *) override {}
176   bool isNeeded() const override { return size != 0; }
177   size_t getSize() const override { return size; }
178 
179   static bool classof(const SectionBase *s) { return s->bss; }
180   uint64_t size;
181 };
182 
183 class MipsGotSection final : public SyntheticSection {
184 public:
185   MipsGotSection();
186   void writeTo(uint8_t *buf) override;
187   size_t getSize() const override { return size; }
188   bool updateAllocSize() override;
189   void finalizeContents() override;
190   bool isNeeded() const override;
191 
192   // Join separate GOTs built for each input file to generate
193   // primary and optional multiple secondary GOTs.
194   void build();
195 
196   void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
197   void addDynTlsEntry(InputFile &file, Symbol &sym);
198   void addTlsIndex(InputFile &file);
199 
200   uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
201                               int64_t addend) const;
202   uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
203                              int64_t addend) const;
204   uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
205   uint64_t getTlsIndexOffset(const InputFile *f) const;
206 
207   // Returns the symbol which corresponds to the first entry of the global part
208   // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
209   // table properties.
210   // Returns nullptr if the global part is empty.
211   const Symbol *getFirstGlobalEntry() const;
212 
213   // Returns the number of entries in the local part of GOT including
214   // the number of reserved entries.
215   unsigned getLocalEntriesNum() const;
216 
217   // Return _gp value for primary GOT (nullptr) or particular input file.
218   uint64_t getGp(const InputFile *f = nullptr) const;
219 
220 private:
221   // MIPS GOT consists of three parts: local, global and tls. Each part
222   // contains different types of entries. Here is a layout of GOT:
223   // - Header entries                |
224   // - Page entries                  |   Local part
225   // - Local entries (16-bit access) |
226   // - Local entries (32-bit access) |
227   // - Normal global entries         ||  Global part
228   // - Reloc-only global entries     ||
229   // - TLS entries                   ||| TLS part
230   //
231   // Header:
232   //   Two entries hold predefined value 0x0 and 0x80000000.
233   // Page entries:
234   //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
235   //   relocation against local symbols. They are initialized by higher 16-bit
236   //   of the corresponding symbol's value. So each 64kb of address space
237   //   requires a single GOT entry.
238   // Local entries (16-bit access):
239   //   These entries created by GOT relocations against global non-preemptible
240   //   symbols so dynamic linker is not necessary to resolve the symbol's
241   //   values. "16-bit access" means that corresponding relocations address
242   //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
243   //   GOT entry.
244   // Local entries (32-bit access):
245   //   These entries are the same as above but created by relocations which
246   //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
247   // Normal global entries:
248   //   These entries created by GOT relocations against preemptible global
249   //   symbols. They need to be initialized by dynamic linker and they ordered
250   //   exactly as the corresponding entries in the dynamic symbols table.
251   // Reloc-only global entries:
252   //   These entries created for symbols that are referenced by dynamic
253   //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
254   //   addressing, but MIPS ABI requires that these entries be present in GOT.
255   // TLS entries:
256   //   Entries created by TLS relocations.
257   //
258   // If the sum of local, global and tls entries is less than 64K only single
259   // got is enough. Otherwise, multi-got is created. Series of primary and
260   // multiple secondary GOTs have the following layout:
261   // - Primary GOT
262   //     Header
263   //     Local entries
264   //     Global entries
265   //     Relocation only entries
266   //     TLS entries
267   //
268   // - Secondary GOT
269   //     Local entries
270   //     Global entries
271   //     TLS entries
272   // ...
273   //
274   // All GOT entries required by relocations from a single input file entirely
275   // belong to either primary or one of secondary GOTs. To reference GOT entries
276   // each GOT has its own _gp value points to the "middle" of the GOT.
277   // In the code this value loaded to the register which is used for GOT access.
278   //
279   // MIPS 32 function's prologue:
280   //   lui     v0,0x0
281   //   0: R_MIPS_HI16  _gp_disp
282   //   addiu   v0,v0,0
283   //   4: R_MIPS_LO16  _gp_disp
284   //
285   // MIPS 64:
286   //   lui     at,0x0
287   //   14: R_MIPS_GPREL16  main
288   //
289   // Dynamic linker does not know anything about secondary GOTs and cannot
290   // use a regular MIPS mechanism for GOT entries initialization. So we have
291   // to use an approach accepted by other architectures and create dynamic
292   // relocations R_MIPS_REL32 to initialize global entries (and local in case
293   // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
294   // requires GOT entries and correspondingly ordered dynamic symbol table
295   // entries to deal with dynamic relocations. To handle this problem
296   // relocation-only section in the primary GOT contains entries for all
297   // symbols referenced in global parts of secondary GOTs. Although the sum
298   // of local and normal global entries of the primary got should be less
299   // than 64K, the size of the primary got (including relocation-only entries
300   // can be greater than 64K, because parts of the primary got that overflow
301   // the 64K limit are used only by the dynamic linker at dynamic link-time
302   // and not by 16-bit gp-relative addressing at run-time.
303   //
304   // For complete multi-GOT description see the following link
305   // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT
306 
307   // Number of "Header" entries.
308   static const unsigned headerEntriesNum = 2;
309 
310   uint64_t size = 0;
311 
312   // Symbol and addend.
313   using GotEntry = std::pair<Symbol *, int64_t>;
314 
315   struct FileGot {
316     InputFile *file = nullptr;
317     size_t startIndex = 0;
318 
319     struct PageBlock {
320       size_t firstIndex;
321       size_t count;
322       PageBlock() : firstIndex(0), count(0) {}
323     };
324 
325     // Map output sections referenced by MIPS GOT relocations
326     // to the description (index/count) "page" entries allocated
327     // for this section.
328     llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
329     // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
330     llvm::MapVector<GotEntry, size_t> local16;
331     llvm::MapVector<GotEntry, size_t> local32;
332     llvm::MapVector<Symbol *, size_t> global;
333     llvm::MapVector<Symbol *, size_t> relocs;
334     llvm::MapVector<Symbol *, size_t> tls;
335     // Set of symbols referenced by dynamic TLS relocations.
336     llvm::MapVector<Symbol *, size_t> dynTlsSymbols;
337 
338     // Total number of all entries.
339     size_t getEntriesNum() const;
340     // Number of "page" entries.
341     size_t getPageEntriesNum() const;
342     // Number of entries require 16-bit index to access.
343     size_t getIndexedEntriesNum() const;
344   };
345 
346   // Container of GOT created for each input file.
347   // After building a final series of GOTs this container
348   // holds primary and secondary GOT's.
349   std::vector<FileGot> gots;
350 
351   // Return (and create if necessary) `FileGot`.
352   FileGot &getGot(InputFile &f);
353 
354   // Try to merge two GOTs. In case of success the `Dst` contains
355   // result of merging and the function returns true. In case of
356   // overflow the `Dst` is unchanged and the function returns false.
357   bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
358 };
359 
360 class GotPltSection final : public SyntheticSection {
361 public:
362   GotPltSection();
363   void addEntry(Symbol &sym);
364   size_t getSize() const override;
365   void writeTo(uint8_t *buf) override;
366   bool isNeeded() const override;
367 
368   // Flag to force GotPlt to be in output if we have relocations
369   // that relies on its address.
370   std::atomic<bool> hasGotPltOffRel = false;
371 
372 private:
373   SmallVector<const Symbol *, 0> entries;
374 };
375 
376 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
377 // Symbols that will be relocated by Target->IRelativeRel.
378 // On most Targets the IgotPltSection will immediately follow the GotPltSection
379 // on ARM the IgotPltSection will immediately follow the GotSection.
380 class IgotPltSection final : public SyntheticSection {
381 public:
382   IgotPltSection();
383   void addEntry(Symbol &sym);
384   size_t getSize() const override;
385   void writeTo(uint8_t *buf) override;
386   bool isNeeded() const override { return !entries.empty(); }
387 
388 private:
389   SmallVector<const Symbol *, 0> entries;
390 };
391 
392 class StringTableSection final : public SyntheticSection {
393 public:
394   StringTableSection(StringRef name, bool dynamic);
395   unsigned addString(StringRef s, bool hashIt = true);
396   void writeTo(uint8_t *buf) override;
397   size_t getSize() const override { return size; }
398   bool isDynamic() const { return dynamic; }
399 
400 private:
401   const bool dynamic;
402 
403   uint64_t size = 0;
404 
405   llvm::DenseMap<llvm::CachedHashStringRef, unsigned> stringMap;
406   SmallVector<StringRef, 0> strings;
407 };
408 
409 class DynamicReloc {
410 public:
411   enum Kind {
412     /// The resulting dynamic relocation does not reference a symbol (#sym must
413     /// be nullptr) and uses #addend as the result of computeAddend().
414     AddendOnly,
415     /// The resulting dynamic relocation will not reference a symbol: #sym is
416     /// only used to compute the addend with InputSection::getRelocTargetVA().
417     /// Useful for various relative and TLS relocations (e.g. R_X86_64_TPOFF64).
418     AddendOnlyWithTargetVA,
419     /// The resulting dynamic relocation references symbol #sym from the dynamic
420     /// symbol table and uses #addend as the value of computeAddend().
421     AgainstSymbol,
422     /// The resulting dynamic relocation references symbol #sym from the dynamic
423     /// symbol table and uses InputSection::getRelocTargetVA() + #addend for the
424     /// final addend. It can be used for relocations that write the symbol VA as
425     // the addend (e.g. R_MIPS_TLS_TPREL64) but still reference the symbol.
426     AgainstSymbolWithTargetVA,
427     /// This is used by the MIPS multi-GOT implementation. It relocates
428     /// addresses of 64kb pages that lie inside the output section.
429     MipsMultiGotPage,
430   };
431   /// This constructor records a relocation against a symbol.
432   DynamicReloc(RelType type, const InputSectionBase *inputSec,
433                uint64_t offsetInSec, Kind kind, Symbol &sym, int64_t addend,
434                RelExpr expr)
435       : sym(&sym), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
436         addend(addend), kind(kind), expr(expr) {}
437   /// This constructor records a relative relocation with no symbol.
438   DynamicReloc(RelType type, const InputSectionBase *inputSec,
439                uint64_t offsetInSec, int64_t addend = 0)
440       : sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
441         addend(addend), kind(AddendOnly), expr(R_ADDEND) {}
442   /// This constructor records dynamic relocation settings used by the MIPS
443   /// multi-GOT implementation.
444   DynamicReloc(RelType type, const InputSectionBase *inputSec,
445                uint64_t offsetInSec, const OutputSection *outputSec,
446                int64_t addend)
447       : sym(nullptr), outputSec(outputSec), inputSec(inputSec),
448         offsetInSec(offsetInSec), type(type), addend(addend),
449         kind(MipsMultiGotPage), expr(R_ADDEND) {}
450 
451   uint64_t getOffset() const;
452   uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;
453   bool needsDynSymIndex() const {
454     return kind == AgainstSymbol || kind == AgainstSymbolWithTargetVA;
455   }
456 
457   /// Computes the addend of the dynamic relocation. Note that this is not the
458   /// same as the #addend member variable as it may also include the symbol
459   /// address/the address of the corresponding GOT entry/etc.
460   int64_t computeAddend() const;
461 
462   void computeRaw(SymbolTableBaseSection *symtab);
463 
464   Symbol *sym;
465   const OutputSection *outputSec = nullptr;
466   const InputSectionBase *inputSec;
467   uint64_t offsetInSec;
468   uint64_t r_offset;
469   RelType type;
470   uint32_t r_sym;
471   // Initially input addend, then the output addend after
472   // RelocationSection<ELFT>::writeTo.
473   int64_t addend;
474 
475 private:
476   Kind kind;
477   // The kind of expression used to calculate the added (required e.g. for
478   // relative GOT relocations).
479   RelExpr expr;
480 };
481 
482 template <class ELFT> class DynamicSection final : public SyntheticSection {
483   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
484 
485 public:
486   DynamicSection();
487   void finalizeContents() override;
488   void writeTo(uint8_t *buf) override;
489   size_t getSize() const override { return size; }
490 
491 private:
492   std::vector<std::pair<int32_t, uint64_t>> computeContents();
493   uint64_t size = 0;
494 };
495 
496 class RelocationBaseSection : public SyntheticSection {
497 public:
498   RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag,
499                         int32_t sizeDynamicTag, bool combreloc,
500                         unsigned concurrency);
501   /// Add a dynamic relocation without writing an addend to the output section.
502   /// This overload can be used if the addends are written directly instead of
503   /// using relocations on the input section (e.g. MipsGotSection::writeTo()).
504   template <bool shard = false> void addReloc(const DynamicReloc &reloc) {
505     relocs.push_back(reloc);
506   }
507   /// Add a dynamic relocation against \p sym with an optional addend.
508   void addSymbolReloc(RelType dynType, InputSectionBase &isec,
509                       uint64_t offsetInSec, Symbol &sym, int64_t addend = 0,
510                       std::optional<RelType> addendRelType = {});
511   /// Add a relative dynamic relocation that uses the target address of \p sym
512   /// (i.e. InputSection::getRelocTargetVA()) + \p addend as the addend.
513   /// This function should only be called for non-preemptible symbols or
514   /// RelExpr values that refer to an address inside the output file (e.g. the
515   /// address of the GOT entry for a potentially preemptible symbol).
516   template <bool shard = false>
517   void addRelativeReloc(RelType dynType, InputSectionBase &isec,
518                         uint64_t offsetInSec, Symbol &sym, int64_t addend,
519                         RelType addendRelType, RelExpr expr) {
520     assert(expr != R_ADDEND && "expected non-addend relocation expression");
521     addReloc<shard>(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec,
522                     offsetInSec, sym, addend, expr, addendRelType);
523   }
524   /// Add a dynamic relocation using the target address of \p sym as the addend
525   /// if \p sym is non-preemptible. Otherwise add a relocation against \p sym.
526   void addAddendOnlyRelocIfNonPreemptible(RelType dynType, GotSection &sec,
527                                           uint64_t offsetInSec, Symbol &sym,
528                                           RelType addendRelType);
529   template <bool shard = false>
530   void addReloc(DynamicReloc::Kind kind, RelType dynType, InputSectionBase &sec,
531                 uint64_t offsetInSec, Symbol &sym, int64_t addend, RelExpr expr,
532                 RelType addendRelType) {
533     // Write the addends to the relocated address if required. We skip
534     // it if the written value would be zero.
535     if (config->writeAddends && (expr != R_ADDEND || addend != 0))
536       sec.addReloc({expr, addendRelType, offsetInSec, addend, &sym});
537     addReloc<shard>({dynType, &sec, offsetInSec, kind, sym, addend, expr});
538   }
539   bool isNeeded() const override {
540     return !relocs.empty() ||
541            llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); });
542   }
543   size_t getSize() const override { return relocs.size() * this->entsize; }
544   size_t getRelativeRelocCount() const { return numRelativeRelocs; }
545   void mergeRels();
546   void partitionRels();
547   void finalizeContents() override;
548   static bool classof(const SectionBase *d) {
549     return SyntheticSection::classof(d) &&
550            (d->type == llvm::ELF::SHT_RELA || d->type == llvm::ELF::SHT_REL ||
551             d->type == llvm::ELF::SHT_RELR ||
552             (d->type == llvm::ELF::SHT_AARCH64_AUTH_RELR &&
553              config->emachine == llvm::ELF::EM_AARCH64));
554   }
555   int32_t dynamicTag, sizeDynamicTag;
556   SmallVector<DynamicReloc, 0> relocs;
557 
558 protected:
559   void computeRels();
560   // Used when parallel relocation scanning adds relocations. The elements
561   // will be moved into relocs by mergeRel().
562   SmallVector<SmallVector<DynamicReloc, 0>, 0> relocsVec;
563   size_t numRelativeRelocs = 0; // used by -z combreloc
564   bool combreloc;
565 };
566 
567 template <>
568 inline void RelocationBaseSection::addReloc<true>(const DynamicReloc &reloc) {
569   relocsVec[llvm::parallel::getThreadIndex()].push_back(reloc);
570 }
571 
572 template <class ELFT>
573 class RelocationSection final : public RelocationBaseSection {
574   using Elf_Rel = typename ELFT::Rel;
575   using Elf_Rela = typename ELFT::Rela;
576 
577 public:
578   RelocationSection(StringRef name, bool combreloc, unsigned concurrency);
579   void writeTo(uint8_t *buf) override;
580 };
581 
582 template <class ELFT>
583 class AndroidPackedRelocationSection final : public RelocationBaseSection {
584   using Elf_Rel = typename ELFT::Rel;
585   using Elf_Rela = typename ELFT::Rela;
586 
587 public:
588   AndroidPackedRelocationSection(StringRef name, unsigned concurrency);
589 
590   bool updateAllocSize() override;
591   size_t getSize() const override { return relocData.size(); }
592   void writeTo(uint8_t *buf) override {
593     memcpy(buf, relocData.data(), relocData.size());
594   }
595 
596 private:
597   SmallVector<char, 0> relocData;
598 };
599 
600 struct RelativeReloc {
601   uint64_t getOffset() const {
602     return inputSec->getVA(inputSec->relocs()[relocIdx].offset);
603   }
604 
605   const InputSectionBase *inputSec;
606   size_t relocIdx;
607 };
608 
609 class RelrBaseSection : public SyntheticSection {
610 public:
611   RelrBaseSection(unsigned concurrency, bool isAArch64Auth = false);
612   void mergeRels();
613   bool isNeeded() const override {
614     return !relocs.empty() ||
615            llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); });
616   }
617   SmallVector<RelativeReloc, 0> relocs;
618   SmallVector<SmallVector<RelativeReloc, 0>, 0> relocsVec;
619 };
620 
621 // RelrSection is used to encode offsets for relative relocations.
622 // Proposal for adding SHT_RELR sections to generic-abi is here:
623 //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
624 // For more details, see the comment in RelrSection::updateAllocSize().
625 template <class ELFT> class RelrSection final : public RelrBaseSection {
626   using Elf_Relr = typename ELFT::Relr;
627 
628 public:
629   RelrSection(unsigned concurrency, bool isAArch64Auth = false);
630 
631   bool updateAllocSize() override;
632   size_t getSize() const override { return relrRelocs.size() * this->entsize; }
633   void writeTo(uint8_t *buf) override {
634     memcpy(buf, relrRelocs.data(), getSize());
635   }
636 
637 private:
638   SmallVector<Elf_Relr, 0> relrRelocs;
639 };
640 
641 struct SymbolTableEntry {
642   Symbol *sym;
643   size_t strTabOffset;
644 };
645 
646 class SymbolTableBaseSection : public SyntheticSection {
647 public:
648   SymbolTableBaseSection(StringTableSection &strTabSec);
649   void finalizeContents() override;
650   size_t getSize() const override { return getNumSymbols() * entsize; }
651   void addSymbol(Symbol *sym);
652   unsigned getNumSymbols() const { return symbols.size() + 1; }
653   size_t getSymbolIndex(const Symbol &sym);
654   ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }
655 
656 protected:
657   void sortSymTabSymbols();
658 
659   // A vector of symbols and their string table offsets.
660   SmallVector<SymbolTableEntry, 0> symbols;
661 
662   StringTableSection &strTabSec;
663 
664   llvm::once_flag onceFlag;
665   llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
666   llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
667 };
668 
669 template <class ELFT>
670 class SymbolTableSection final : public SymbolTableBaseSection {
671   using Elf_Sym = typename ELFT::Sym;
672 
673 public:
674   SymbolTableSection(StringTableSection &strTabSec);
675   void writeTo(uint8_t *buf) override;
676 };
677 
678 class SymtabShndxSection final : public SyntheticSection {
679 public:
680   SymtabShndxSection();
681 
682   void writeTo(uint8_t *buf) override;
683   size_t getSize() const override;
684   bool isNeeded() const override;
685   void finalizeContents() override;
686 };
687 
688 // Outputs GNU Hash section. For detailed explanation see:
689 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
690 class GnuHashTableSection final : public SyntheticSection {
691 public:
692   GnuHashTableSection();
693   void finalizeContents() override;
694   void writeTo(uint8_t *buf) override;
695   size_t getSize() const override { return size; }
696 
697   // Adds symbols to the hash table.
698   // Sorts the input to satisfy GNU hash section requirements.
699   void addSymbols(llvm::SmallVectorImpl<SymbolTableEntry> &symbols);
700 
701 private:
702   // See the comment in writeBloomFilter.
703   enum { Shift2 = 26 };
704 
705   struct Entry {
706     Symbol *sym;
707     size_t strTabOffset;
708     uint32_t hash;
709     uint32_t bucketIdx;
710   };
711 
712   SmallVector<Entry, 0> symbols;
713   size_t maskWords;
714   size_t nBuckets = 0;
715   size_t size = 0;
716 };
717 
718 class HashTableSection final : public SyntheticSection {
719 public:
720   HashTableSection();
721   void finalizeContents() override;
722   void writeTo(uint8_t *buf) override;
723   size_t getSize() const override { return size; }
724 
725 private:
726   size_t size = 0;
727 };
728 
729 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
730 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
731 // at runtime.
732 //
733 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction
734 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
735 // lazy symbol resolver.
736 //
737 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
738 // A call instruction jumps to a .plt.sec entry, which will then jump to the
739 // target (BIND_NOW) or a .plt entry.
740 class PltSection : public SyntheticSection {
741 public:
742   PltSection();
743   void writeTo(uint8_t *buf) override;
744   size_t getSize() const override;
745   bool isNeeded() const override;
746   void addSymbols();
747   void addEntry(Symbol &sym);
748   size_t getNumEntries() const { return entries.size(); }
749 
750   size_t headerSize;
751 
752   SmallVector<const Symbol *, 0> entries;
753 };
754 
755 // Used for non-preemptible ifuncs. It does not have a header. Each entry is
756 // associated with an IRELATIVE relocation, which will be resolved eagerly at
757 // runtime. PltSection can only contain entries associated with JUMP_SLOT
758 // relocations, so IPLT entries are in a separate section.
759 class IpltSection final : public SyntheticSection {
760   SmallVector<const Symbol *, 0> entries;
761 
762 public:
763   IpltSection();
764   void writeTo(uint8_t *buf) override;
765   size_t getSize() const override;
766   bool isNeeded() const override { return !entries.empty(); }
767   void addSymbols();
768   void addEntry(Symbol &sym);
769 };
770 
771 class PPC32GlinkSection : public PltSection {
772 public:
773   PPC32GlinkSection();
774   void writeTo(uint8_t *buf) override;
775   size_t getSize() const override;
776 
777   SmallVector<const Symbol *, 0> canonical_plts;
778   static constexpr size_t footerSize = 64;
779 };
780 
781 // This is x86-only.
782 class IBTPltSection : public SyntheticSection {
783 public:
784   IBTPltSection();
785   void writeTo(uint8_t *Buf) override;
786   bool isNeeded() const override;
787   size_t getSize() const override;
788 };
789 
790 // Used to align the end of the PT_GNU_RELRO segment and the associated PT_LOAD
791 // segment to a common-page-size boundary. This padding section ensures that all
792 // pages in the PT_LOAD segment is covered by at least one section.
793 class RelroPaddingSection final : public SyntheticSection {
794 public:
795   RelroPaddingSection();
796   size_t getSize() const override { return 0; }
797   void writeTo(uint8_t *buf) override {}
798 };
799 
800 // Used by the merged DWARF32 .debug_names (a per-module index). If we
801 // move to DWARF64, most of this data will need to be re-sized.
802 class DebugNamesBaseSection : public SyntheticSection {
803 public:
804   struct Abbrev : llvm::FoldingSetNode {
805     uint32_t code;
806     uint32_t tag;
807     SmallVector<llvm::DWARFDebugNames::AttributeEncoding, 2> attributes;
808 
809     void Profile(llvm::FoldingSetNodeID &id) const;
810   };
811 
812   struct AttrValue {
813     uint32_t attrValue;
814     uint8_t attrSize;
815   };
816 
817   struct IndexEntry {
818     uint32_t abbrevCode;
819     uint32_t poolOffset;
820     union {
821       uint64_t parentOffset = 0;
822       IndexEntry *parentEntry;
823     };
824     SmallVector<AttrValue, 3> attrValues;
825   };
826 
827   struct NameEntry {
828     const char *name;
829     uint32_t hashValue;
830     uint32_t stringOffset;
831     uint32_t entryOffset;
832     // Used to relocate `stringOffset` in the merged section.
833     uint32_t chunkIdx;
834     SmallVector<IndexEntry *, 0> indexEntries;
835 
836     llvm::iterator_range<
837         llvm::pointee_iterator<typename SmallVector<IndexEntry *, 0>::iterator>>
838     entries() {
839       return llvm::make_pointee_range(indexEntries);
840     }
841   };
842 
843   // The contents of one input .debug_names section. An InputChunk
844   // typically contains one NameData, but might contain more, especially
845   // in LTO builds.
846   struct NameData {
847     llvm::DWARFDebugNames::Header hdr;
848     llvm::DenseMap<uint32_t, uint32_t> abbrevCodeMap;
849     SmallVector<NameEntry, 0> nameEntries;
850   };
851 
852   // InputChunk and OutputChunk hold per-file contributions to the merged index.
853   // InputChunk instances will be discarded after `init` completes.
854   struct InputChunk {
855     uint32_t baseCuIdx;
856     LLDDWARFSection section;
857     SmallVector<NameData, 0> nameData;
858     std::optional<llvm::DWARFDebugNames> llvmDebugNames;
859   };
860 
861   struct OutputChunk {
862     // Pointer to the .debug_info section that contains compile units, used to
863     // compute the relocated CU offsets.
864     InputSection *infoSec;
865     // This initially holds section offsets. After relocation, the section
866     // offsets are changed to CU offsets relative the the output section.
867     SmallVector<uint32_t, 0> compUnits;
868   };
869 
870   DebugNamesBaseSection();
871   size_t getSize() const override { return size; }
872   bool isNeeded() const override { return numChunks > 0; }
873 
874 protected:
875   void init(llvm::function_ref<void(InputFile *, InputChunk &, OutputChunk &)>);
876   static void
877   parseDebugNames(InputChunk &inputChunk, OutputChunk &chunk,
878                   llvm::DWARFDataExtractor &namesExtractor,
879                   llvm::DataExtractor &strExtractor,
880                   llvm::function_ref<SmallVector<uint32_t, 0>(
881                       uint32_t numCUs, const llvm::DWARFDebugNames::Header &hdr,
882                       const llvm::DWARFDebugNames::DWARFDebugNamesOffsets &)>
883                       readOffsets);
884   void computeHdrAndAbbrevTable(MutableArrayRef<InputChunk> inputChunks);
885   std::pair<uint32_t, uint32_t>
886   computeEntryPool(MutableArrayRef<InputChunk> inputChunks);
887 
888   // Input .debug_names sections for relocating string offsets in the name table
889   // in `finalizeContents`.
890   SmallVector<InputSection *, 0> inputSections;
891 
892   llvm::DWARFDebugNames::Header hdr;
893   size_t numChunks;
894   std::unique_ptr<OutputChunk[]> chunks;
895   llvm::SpecificBumpPtrAllocator<Abbrev> abbrevAlloc;
896   SmallVector<Abbrev *, 0> abbrevTable;
897   SmallVector<char, 0> abbrevTableBuf;
898 
899   ArrayRef<OutputChunk> getChunks() const {
900     return ArrayRef(chunks.get(), numChunks);
901   }
902 
903   // Sharded name entries that will be used to compute bucket_count and the
904   // count name table.
905   static constexpr size_t numShards = 32;
906   SmallVector<NameEntry, 0> nameVecs[numShards];
907 };
908 
909 // Complement DebugNamesBaseSection for ELFT-aware code: reading offsets,
910 // relocating string offsets, and writeTo.
911 template <class ELFT>
912 class DebugNamesSection final : public DebugNamesBaseSection {
913 public:
914   DebugNamesSection();
915   void finalizeContents() override;
916   void writeTo(uint8_t *buf) override;
917 
918   template <class RelTy>
919   void getNameRelocs(const InputFile &file,
920                      llvm::DenseMap<uint32_t, uint32_t> &relocs,
921                      Relocs<RelTy> rels);
922 
923 private:
924   static void readOffsets(InputChunk &inputChunk, OutputChunk &chunk,
925                           llvm::DWARFDataExtractor &namesExtractor,
926                           llvm::DataExtractor &strExtractor);
927 };
928 
929 class GdbIndexSection final : public SyntheticSection {
930 public:
931   struct AddressEntry {
932     InputSection *section;
933     uint64_t lowAddress;
934     uint64_t highAddress;
935     uint32_t cuIndex;
936   };
937 
938   struct CuEntry {
939     uint64_t cuOffset;
940     uint64_t cuLength;
941   };
942 
943   struct NameAttrEntry {
944     llvm::CachedHashStringRef name;
945     uint32_t cuIndexAndAttrs;
946   };
947 
948   struct GdbChunk {
949     InputSection *sec;
950     SmallVector<AddressEntry, 0> addressAreas;
951     SmallVector<CuEntry, 0> compilationUnits;
952   };
953 
954   struct GdbSymbol {
955     llvm::CachedHashStringRef name;
956     SmallVector<uint32_t, 0> cuVector;
957     uint32_t nameOff;
958     uint32_t cuVectorOff;
959   };
960 
961   GdbIndexSection();
962   template <typename ELFT> static std::unique_ptr<GdbIndexSection> create();
963   void writeTo(uint8_t *buf) override;
964   size_t getSize() const override { return size; }
965   bool isNeeded() const override;
966 
967 private:
968   struct GdbIndexHeader {
969     llvm::support::ulittle32_t version;
970     llvm::support::ulittle32_t cuListOff;
971     llvm::support::ulittle32_t cuTypesOff;
972     llvm::support::ulittle32_t addressAreaOff;
973     llvm::support::ulittle32_t symtabOff;
974     llvm::support::ulittle32_t constantPoolOff;
975   };
976 
977   size_t computeSymtabSize() const;
978 
979   // Each chunk contains information gathered from debug sections of a
980   // single object file.
981   SmallVector<GdbChunk, 0> chunks;
982 
983   // A symbol table for this .gdb_index section.
984   SmallVector<GdbSymbol, 0> symbols;
985 
986   size_t size;
987 };
988 
989 // --eh-frame-hdr option tells linker to construct a header for all the
990 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr
991 // and also to a PT_GNU_EH_FRAME segment.
992 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
993 // calling dl_iterate_phdr.
994 // This section contains a lookup table for quick binary search of FDEs.
995 // Detailed info about internals can be found in Ian Lance Taylor's blog:
996 // http://www.airs.com/blog/archives/460 (".eh_frame")
997 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
998 class EhFrameHeader final : public SyntheticSection {
999 public:
1000   EhFrameHeader();
1001   void write();
1002   void writeTo(uint8_t *buf) override;
1003   size_t getSize() const override;
1004   bool isNeeded() const override;
1005 };
1006 
1007 // For more information about .gnu.version and .gnu.version_r see:
1008 // https://www.akkadia.org/drepper/symbol-versioning
1009 
1010 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
1011 // contain symbol version definitions. The number of entries in this section
1012 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
1013 // The section shall contain an array of Elf_Verdef structures, optionally
1014 // followed by an array of Elf_Verdaux structures.
1015 class VersionDefinitionSection final : public SyntheticSection {
1016 public:
1017   VersionDefinitionSection();
1018   void finalizeContents() override;
1019   size_t getSize() const override;
1020   void writeTo(uint8_t *buf) override;
1021 
1022 private:
1023   enum { EntrySize = 28 };
1024   void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
1025   StringRef getFileDefName();
1026 
1027   unsigned fileDefNameOff;
1028   SmallVector<unsigned, 0> verDefNameOffs;
1029 };
1030 
1031 // The .gnu.version section specifies the required version of each symbol in the
1032 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
1033 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version
1034 // identifier defined in the either .gnu.version_r or .gnu.version_d section.
1035 // The values 0 and 1 are reserved. All other values are used for versions in
1036 // the own object or in any of the dependencies.
1037 class VersionTableSection final : public SyntheticSection {
1038 public:
1039   VersionTableSection();
1040   void finalizeContents() override;
1041   size_t getSize() const override;
1042   void writeTo(uint8_t *buf) override;
1043   bool isNeeded() const override;
1044 };
1045 
1046 // The .gnu.version_r section defines the version identifiers used by
1047 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
1048 // Elf_Verneed specifies the version requirements for a single DSO, and contains
1049 // a reference to a linked list of Elf_Vernaux data structures which define the
1050 // mapping from version identifiers to version names.
1051 template <class ELFT>
1052 class VersionNeedSection final : public SyntheticSection {
1053   using Elf_Verneed = typename ELFT::Verneed;
1054   using Elf_Vernaux = typename ELFT::Vernaux;
1055 
1056   struct Vernaux {
1057     uint64_t hash;
1058     uint32_t verneedIndex;
1059     uint64_t nameStrTab;
1060   };
1061 
1062   struct Verneed {
1063     uint64_t nameStrTab;
1064     std::vector<Vernaux> vernauxs;
1065   };
1066 
1067   SmallVector<Verneed, 0> verneeds;
1068 
1069 public:
1070   VersionNeedSection();
1071   void finalizeContents() override;
1072   void writeTo(uint8_t *buf) override;
1073   size_t getSize() const override;
1074   bool isNeeded() const override;
1075 };
1076 
1077 // MergeSyntheticSection is a class that allows us to put mergeable sections
1078 // with different attributes in a single output sections. To do that
1079 // we put them into MergeSyntheticSection synthetic input sections which are
1080 // attached to regular output sections.
1081 class MergeSyntheticSection : public SyntheticSection {
1082 public:
1083   void addSection(MergeInputSection *ms);
1084   SmallVector<MergeInputSection *, 0> sections;
1085 
1086 protected:
1087   MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags,
1088                         uint32_t addralign)
1089       : SyntheticSection(flags, type, addralign, name) {}
1090 };
1091 
1092 class MergeTailSection final : public MergeSyntheticSection {
1093 public:
1094   MergeTailSection(StringRef name, uint32_t type, uint64_t flags,
1095                    uint32_t addralign);
1096 
1097   size_t getSize() const override;
1098   void writeTo(uint8_t *buf) override;
1099   void finalizeContents() override;
1100 
1101 private:
1102   llvm::StringTableBuilder builder;
1103 };
1104 
1105 class MergeNoTailSection final : public MergeSyntheticSection {
1106 public:
1107   MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags,
1108                      uint32_t addralign)
1109       : MergeSyntheticSection(name, type, flags, addralign) {}
1110 
1111   size_t getSize() const override { return size; }
1112   void writeTo(uint8_t *buf) override;
1113   void finalizeContents() override;
1114 
1115 private:
1116   // We use the most significant bits of a hash as a shard ID.
1117   // The reason why we don't want to use the least significant bits is
1118   // because DenseMap also uses lower bits to determine a bucket ID.
1119   // If we use lower bits, it significantly increases the probability of
1120   // hash collisions.
1121   size_t getShardId(uint32_t hash) {
1122     assert((hash >> 31) == 0);
1123     return hash >> (31 - llvm::countr_zero(numShards));
1124   }
1125 
1126   // Section size
1127   size_t size;
1128 
1129   // String table contents
1130   constexpr static size_t numShards = 32;
1131   SmallVector<llvm::StringTableBuilder, 0> shards;
1132   size_t shardOffsets[numShards];
1133 };
1134 
1135 // .MIPS.abiflags section.
1136 template <class ELFT>
1137 class MipsAbiFlagsSection final : public SyntheticSection {
1138   using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;
1139 
1140 public:
1141   static std::unique_ptr<MipsAbiFlagsSection> create();
1142 
1143   MipsAbiFlagsSection(Elf_Mips_ABIFlags flags);
1144   size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
1145   void writeTo(uint8_t *buf) override;
1146 
1147 private:
1148   Elf_Mips_ABIFlags flags;
1149 };
1150 
1151 // .MIPS.options section.
1152 template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
1153   using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
1154   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1155 
1156 public:
1157   static std::unique_ptr<MipsOptionsSection<ELFT>> create();
1158 
1159   MipsOptionsSection(Elf_Mips_RegInfo reginfo);
1160   void writeTo(uint8_t *buf) override;
1161 
1162   size_t getSize() const override {
1163     return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
1164   }
1165 
1166 private:
1167   Elf_Mips_RegInfo reginfo;
1168 };
1169 
1170 // MIPS .reginfo section.
1171 template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
1172   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1173 
1174 public:
1175   static std::unique_ptr<MipsReginfoSection> create();
1176 
1177   MipsReginfoSection(Elf_Mips_RegInfo reginfo);
1178   size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
1179   void writeTo(uint8_t *buf) override;
1180 
1181 private:
1182   Elf_Mips_RegInfo reginfo;
1183 };
1184 
1185 // This is a MIPS specific section to hold a space within the data segment
1186 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
1187 // See "Dynamic section" in Chapter 5 in the following document:
1188 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1189 class MipsRldMapSection final : public SyntheticSection {
1190 public:
1191   MipsRldMapSection();
1192   size_t getSize() const override { return config->wordsize; }
1193   void writeTo(uint8_t *buf) override {}
1194 };
1195 
1196 // Representation of the combined .ARM.Exidx input sections. We process these
1197 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries
1198 // and add terminating sentinel entries.
1199 //
1200 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
1201 // a table that the unwinder can derive (Addresses are encoded as offsets from
1202 // table):
1203 // | Address of function | Unwind instructions for function |
1204 // where the unwind instructions are either a small number of unwind or the
1205 // special EXIDX_CANTUNWIND entry representing no unwinding information.
1206 // When an exception is thrown from an address A, the unwinder searches the
1207 // table for the closest table entry with Address of function <= A. This means
1208 // that for two consecutive table entries:
1209 // | A1 | U1 |
1210 // | A2 | U2 |
1211 // The range of addresses described by U1 is [A1, A2)
1212 //
1213 // There are two cases where we need a linker generated table entry to fixup
1214 // the address ranges in the table
1215 // Case 1:
1216 // - A sentinel entry added with an address higher than all
1217 // executable sections. This was needed to work around libunwind bug pr31091.
1218 // - After address assignment we need to find the highest addressed executable
1219 // section and use the limit of that section so that the unwinder never
1220 // matches it.
1221 // Case 2:
1222 // - InputSections without a .ARM.exidx section (usually from Assembly)
1223 // need a table entry so that they terminate the range of the previously
1224 // function. This is pr40277.
1225 //
1226 // Instead of storing pointers to the .ARM.exidx InputSections from
1227 // InputObjects, we store pointers to the executable sections that need
1228 // .ARM.exidx sections. We can then use the dependentSections of these to
1229 // either find the .ARM.exidx section or know that we need to generate one.
1230 class ARMExidxSyntheticSection : public SyntheticSection {
1231 public:
1232   ARMExidxSyntheticSection();
1233 
1234   // Add an input section to the ARMExidxSyntheticSection. Returns whether the
1235   // section needs to be removed from the main input section list.
1236   bool addSection(InputSection *isec);
1237 
1238   size_t getSize() const override { return size; }
1239   void writeTo(uint8_t *buf) override;
1240   bool isNeeded() const override;
1241   // Sort and remove duplicate entries.
1242   void finalizeContents() override;
1243   InputSection *getLinkOrderDep() const;
1244 
1245   static bool classof(const SectionBase *sec) {
1246     return sec->kind() == InputSectionBase::Synthetic &&
1247            sec->type == llvm::ELF::SHT_ARM_EXIDX;
1248   }
1249 
1250   // Links to the ARMExidxSections so we can transfer the relocations once the
1251   // layout is known.
1252   SmallVector<InputSection *, 0> exidxSections;
1253 
1254 private:
1255   size_t size = 0;
1256 
1257   // Instead of storing pointers to the .ARM.exidx InputSections from
1258   // InputObjects, we store pointers to the executable sections that need
1259   // .ARM.exidx sections. We can then use the dependentSections of these to
1260   // either find the .ARM.exidx section or know that we need to generate one.
1261   SmallVector<InputSection *, 0> executableSections;
1262 
1263   // Value of executableSecitons before finalizeContents(), so that it can be
1264   // run repeateadly during fixed point iteration.
1265   SmallVector<InputSection *, 0> originalExecutableSections;
1266 
1267   // The executable InputSection with the highest address to use for the
1268   // sentinel. We store separately from ExecutableSections as merging of
1269   // duplicate entries may mean this InputSection is removed from
1270   // ExecutableSections.
1271   InputSection *sentinel = nullptr;
1272 };
1273 
1274 // A container for one or more linker generated thunks. Instances of these
1275 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
1276 class ThunkSection final : public SyntheticSection {
1277 public:
1278   // ThunkSection in OS, with desired outSecOff of Off
1279   ThunkSection(OutputSection *os, uint64_t off);
1280 
1281   // Add a newly created Thunk to this container:
1282   // Thunk is given offset from start of this InputSection
1283   // Thunk defines a symbol in this InputSection that can be used as target
1284   // of a relocation
1285   void addThunk(Thunk *t);
1286   size_t getSize() const override;
1287   void writeTo(uint8_t *buf) override;
1288   InputSection *getTargetInputSection() const;
1289   bool assignOffsets();
1290 
1291   // When true, round up reported size of section to 4 KiB. See comment
1292   // in addThunkSection() for more details.
1293   bool roundUpSizeForErrata = false;
1294 
1295 private:
1296   SmallVector<Thunk *, 0> thunks;
1297   size_t size = 0;
1298 };
1299 
1300 // Cortex-M Security Extensions. Prefix for functions that should be exported
1301 // for the non-secure world.
1302 const char ACLESESYM_PREFIX[] = "__acle_se_";
1303 const int ACLESESYM_SIZE = 8;
1304 
1305 class ArmCmseSGVeneer;
1306 
1307 class ArmCmseSGSection final : public SyntheticSection {
1308 public:
1309   ArmCmseSGSection();
1310   bool isNeeded() const override { return !entries.empty(); }
1311   size_t getSize() const override;
1312   void writeTo(uint8_t *buf) override;
1313   void addSGVeneer(Symbol *sym, Symbol *ext_sym);
1314   void addMappingSymbol();
1315   void finalizeContents() override;
1316   void exportEntries(SymbolTableBaseSection *symTab);
1317   uint64_t impLibMaxAddr = 0;
1318 
1319 private:
1320   SmallVector<std::pair<Symbol *, Symbol *>, 0> entries;
1321   SmallVector<ArmCmseSGVeneer *, 0> sgVeneers;
1322   uint64_t newEntries = 0;
1323 };
1324 
1325 // Used to compute outSecOff of .got2 in each object file. This is needed to
1326 // synthesize PLT entries for PPC32 Secure PLT ABI.
1327 class PPC32Got2Section final : public SyntheticSection {
1328 public:
1329   PPC32Got2Section();
1330   size_t getSize() const override { return 0; }
1331   bool isNeeded() const override;
1332   void finalizeContents() override;
1333   void writeTo(uint8_t *buf) override {}
1334 };
1335 
1336 // This section is used to store the addresses of functions that are called
1337 // in range-extending thunks on PowerPC64. When producing position dependent
1338 // code the addresses are link-time constants and the table is written out to
1339 // the binary. When producing position-dependent code the table is allocated and
1340 // filled in by the dynamic linker.
1341 class PPC64LongBranchTargetSection final : public SyntheticSection {
1342 public:
1343   PPC64LongBranchTargetSection();
1344   uint64_t getEntryVA(const Symbol *sym, int64_t addend);
1345   std::optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
1346   size_t getSize() const override;
1347   void writeTo(uint8_t *buf) override;
1348   bool isNeeded() const override;
1349   void finalizeContents() override { finalized = true; }
1350 
1351 private:
1352   SmallVector<std::pair<const Symbol *, int64_t>, 0> entries;
1353   llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
1354   bool finalized = false;
1355 };
1356 
1357 template <typename ELFT>
1358 class PartitionElfHeaderSection final : public SyntheticSection {
1359 public:
1360   PartitionElfHeaderSection();
1361   size_t getSize() const override;
1362   void writeTo(uint8_t *buf) override;
1363 };
1364 
1365 template <typename ELFT>
1366 class PartitionProgramHeadersSection final : public SyntheticSection {
1367 public:
1368   PartitionProgramHeadersSection();
1369   size_t getSize() const override;
1370   void writeTo(uint8_t *buf) override;
1371 };
1372 
1373 class PartitionIndexSection final : public SyntheticSection {
1374 public:
1375   PartitionIndexSection();
1376   size_t getSize() const override;
1377   void finalizeContents() override;
1378   void writeTo(uint8_t *buf) override;
1379 };
1380 
1381 // See the following link for the Android-specific loader code that operates on
1382 // this section:
1383 // https://cs.android.com/android/platform/superproject/+/master:bionic/libc/bionic/libc_init_static.cpp;drc=9425b16978f9c5aa8f2c50c873db470819480d1d;l=192
1384 class MemtagAndroidNote final : public SyntheticSection {
1385 public:
1386   MemtagAndroidNote()
1387       : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
1388                          /*alignment=*/4, ".note.android.memtag") {}
1389   void writeTo(uint8_t *buf) override;
1390   size_t getSize() const override;
1391 };
1392 
1393 class PackageMetadataNote final : public SyntheticSection {
1394 public:
1395   PackageMetadataNote()
1396       : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
1397                          /*alignment=*/4, ".note.package") {}
1398   void writeTo(uint8_t *buf) override;
1399   size_t getSize() const override;
1400 };
1401 
1402 class MemtagGlobalDescriptors final : public SyntheticSection {
1403 public:
1404   MemtagGlobalDescriptors()
1405       : SyntheticSection(llvm::ELF::SHF_ALLOC,
1406                          llvm::ELF::SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC,
1407                          /*alignment=*/4, ".memtag.globals.dynamic") {}
1408   void writeTo(uint8_t *buf) override;
1409   // The size of the section is non-computable until all addresses are
1410   // synthetized, because the section's contents contain a sorted
1411   // varint-compressed list of pointers to global variables. We only know the
1412   // final size after `finalizeAddressDependentContent()`.
1413   size_t getSize() const override;
1414   bool updateAllocSize() override;
1415 
1416   void addSymbol(const Symbol &sym) {
1417     symbols.push_back(&sym);
1418   }
1419 
1420   bool isNeeded() const override {
1421     return !symbols.empty();
1422   }
1423 
1424 private:
1425   SmallVector<const Symbol *, 0> symbols;
1426 };
1427 
1428 template <class ELFT> void createSyntheticSections();
1429 InputSection *createInterpSection();
1430 MergeInputSection *createCommentSection();
1431 template <class ELFT> void splitSections();
1432 void combineEhSections();
1433 
1434 bool hasMemtag();
1435 bool canHaveMemtagGlobals();
1436 
1437 template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part);
1438 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);
1439 
1440 Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
1441                            uint64_t size, InputSectionBase &section);
1442 
1443 void addVerneed(Symbol *ss);
1444 
1445 // Linker generated per-partition sections.
1446 struct Partition {
1447   StringRef name;
1448   uint64_t nameStrTab;
1449 
1450   std::unique_ptr<SyntheticSection> elfHeader;
1451   std::unique_ptr<SyntheticSection> programHeaders;
1452   SmallVector<PhdrEntry *, 0> phdrs;
1453 
1454   std::unique_ptr<ARMExidxSyntheticSection> armExidx;
1455   std::unique_ptr<BuildIdSection> buildId;
1456   std::unique_ptr<SyntheticSection> dynamic;
1457   std::unique_ptr<StringTableSection> dynStrTab;
1458   std::unique_ptr<SymbolTableBaseSection> dynSymTab;
1459   std::unique_ptr<EhFrameHeader> ehFrameHdr;
1460   std::unique_ptr<EhFrameSection> ehFrame;
1461   std::unique_ptr<GnuHashTableSection> gnuHashTab;
1462   std::unique_ptr<HashTableSection> hashTab;
1463   std::unique_ptr<MemtagAndroidNote> memtagAndroidNote;
1464   std::unique_ptr<MemtagGlobalDescriptors> memtagGlobalDescriptors;
1465   std::unique_ptr<PackageMetadataNote> packageMetadataNote;
1466   std::unique_ptr<RelocationBaseSection> relaDyn;
1467   std::unique_ptr<RelrBaseSection> relrDyn;
1468   std::unique_ptr<RelrBaseSection> relrAuthDyn;
1469   std::unique_ptr<VersionDefinitionSection> verDef;
1470   std::unique_ptr<SyntheticSection> verNeed;
1471   std::unique_ptr<VersionTableSection> verSym;
1472 
1473   unsigned getNumber() const { return this - &partitions[0] + 1; }
1474 };
1475 
1476 LLVM_LIBRARY_VISIBILITY extern Partition *mainPart;
1477 
1478 inline Partition &SectionBase::getPartition() const {
1479   assert(isLive());
1480   return partitions[partition - 1];
1481 }
1482 
1483 // Linker generated sections which can be used as inputs and are not specific to
1484 // a partition.
1485 struct InStruct {
1486   std::unique_ptr<InputSection> attributes;
1487   std::unique_ptr<SyntheticSection> riscvAttributes;
1488   std::unique_ptr<BssSection> bss;
1489   std::unique_ptr<BssSection> bssRelRo;
1490   std::unique_ptr<GotSection> got;
1491   std::unique_ptr<GotPltSection> gotPlt;
1492   std::unique_ptr<IgotPltSection> igotPlt;
1493   std::unique_ptr<RelroPaddingSection> relroPadding;
1494   std::unique_ptr<SyntheticSection> armCmseSGSection;
1495   std::unique_ptr<PPC64LongBranchTargetSection> ppc64LongBranchTarget;
1496   std::unique_ptr<SyntheticSection> mipsAbiFlags;
1497   std::unique_ptr<MipsGotSection> mipsGot;
1498   std::unique_ptr<SyntheticSection> mipsOptions;
1499   std::unique_ptr<SyntheticSection> mipsReginfo;
1500   std::unique_ptr<MipsRldMapSection> mipsRldMap;
1501   std::unique_ptr<SyntheticSection> partEnd;
1502   std::unique_ptr<SyntheticSection> partIndex;
1503   std::unique_ptr<PltSection> plt;
1504   std::unique_ptr<IpltSection> iplt;
1505   std::unique_ptr<PPC32Got2Section> ppc32Got2;
1506   std::unique_ptr<IBTPltSection> ibtPlt;
1507   std::unique_ptr<RelocationBaseSection> relaPlt;
1508   // Non-SHF_ALLOC sections
1509   std::unique_ptr<SyntheticSection> debugNames;
1510   std::unique_ptr<GdbIndexSection> gdbIndex;
1511   std::unique_ptr<StringTableSection> shStrTab;
1512   std::unique_ptr<StringTableSection> strTab;
1513   std::unique_ptr<SymbolTableBaseSection> symTab;
1514   std::unique_ptr<SymtabShndxSection> symTabShndx;
1515 
1516   void reset();
1517 };
1518 
1519 LLVM_LIBRARY_VISIBILITY extern InStruct in;
1520 
1521 } // namespace lld::elf
1522 
1523 #endif
1524