1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "DWARF.h" 19 #include "EhFrame.h" 20 #include "InputFiles.h" 21 #include "LinkerScript.h" 22 #include "OutputSections.h" 23 #include "SymbolTable.h" 24 #include "Symbols.h" 25 #include "Target.h" 26 #include "Thunks.h" 27 #include "Writer.h" 28 #include "lld/Common/CommonLinkerContext.h" 29 #include "lld/Common/DWARF.h" 30 #include "lld/Common/Strings.h" 31 #include "lld/Common/Version.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/ADT/SetOperations.h" 34 #include "llvm/ADT/StringExtras.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 38 #include "llvm/Support/Endian.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Parallel.h" 41 #include "llvm/Support/TimeProfiler.h" 42 #include <cstdlib> 43 44 using namespace llvm; 45 using namespace llvm::dwarf; 46 using namespace llvm::ELF; 47 using namespace llvm::object; 48 using namespace llvm::support; 49 using namespace lld; 50 using namespace lld::elf; 51 52 using llvm::support::endian::read32le; 53 using llvm::support::endian::write32le; 54 using llvm::support::endian::write64le; 55 56 constexpr size_t MergeNoTailSection::numShards; 57 58 static uint64_t readUint(uint8_t *buf) { 59 return config->is64 ? read64(buf) : read32(buf); 60 } 61 62 static void writeUint(uint8_t *buf, uint64_t val) { 63 if (config->is64) 64 write64(buf, val); 65 else 66 write32(buf, val); 67 } 68 69 // Returns an LLD version string. 70 static ArrayRef<uint8_t> getVersion() { 71 // Check LLD_VERSION first for ease of testing. 72 // You can get consistent output by using the environment variable. 73 // This is only for testing. 74 StringRef s = getenv("LLD_VERSION"); 75 if (s.empty()) 76 s = saver().save(Twine("Linker: ") + getLLDVersion()); 77 78 // +1 to include the terminating '\0'. 79 return {(const uint8_t *)s.data(), s.size() + 1}; 80 } 81 82 // Creates a .comment section containing LLD version info. 83 // With this feature, you can identify LLD-generated binaries easily 84 // by "readelf --string-dump .comment <file>". 85 // The returned object is a mergeable string section. 86 MergeInputSection *elf::createCommentSection() { 87 auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 88 getVersion(), ".comment"); 89 sec->splitIntoPieces(); 90 return sec; 91 } 92 93 // .MIPS.abiflags section. 94 template <class ELFT> 95 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 96 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 97 flags(flags) { 98 this->entsize = sizeof(Elf_Mips_ABIFlags); 99 } 100 101 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 102 memcpy(buf, &flags, sizeof(flags)); 103 } 104 105 template <class ELFT> 106 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() { 107 Elf_Mips_ABIFlags flags = {}; 108 bool create = false; 109 110 for (InputSectionBase *sec : inputSections) { 111 if (sec->type != SHT_MIPS_ABIFLAGS) 112 continue; 113 sec->markDead(); 114 create = true; 115 116 std::string filename = toString(sec->file); 117 const size_t size = sec->rawData.size(); 118 // Older version of BFD (such as the default FreeBSD linker) concatenate 119 // .MIPS.abiflags instead of merging. To allow for this case (or potential 120 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 121 if (size < sizeof(Elf_Mips_ABIFlags)) { 122 error(filename + ": invalid size of .MIPS.abiflags section: got " + 123 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 124 return nullptr; 125 } 126 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->rawData.data()); 127 if (s->version != 0) { 128 error(filename + ": unexpected .MIPS.abiflags version " + 129 Twine(s->version)); 130 return nullptr; 131 } 132 133 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 134 // select the highest number of ISA/Rev/Ext. 135 flags.isa_level = std::max(flags.isa_level, s->isa_level); 136 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 137 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 138 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 139 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 140 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 141 flags.ases |= s->ases; 142 flags.flags1 |= s->flags1; 143 flags.flags2 |= s->flags2; 144 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 145 }; 146 147 if (create) 148 return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags); 149 return nullptr; 150 } 151 152 // .MIPS.options section. 153 template <class ELFT> 154 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 155 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 156 reginfo(reginfo) { 157 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 158 } 159 160 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 161 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 162 options->kind = ODK_REGINFO; 163 options->size = getSize(); 164 165 if (!config->relocatable) 166 reginfo.ri_gp_value = in.mipsGot->getGp(); 167 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 168 } 169 170 template <class ELFT> 171 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() { 172 // N64 ABI only. 173 if (!ELFT::Is64Bits) 174 return nullptr; 175 176 SmallVector<InputSectionBase *, 0> sections; 177 for (InputSectionBase *sec : inputSections) 178 if (sec->type == SHT_MIPS_OPTIONS) 179 sections.push_back(sec); 180 181 if (sections.empty()) 182 return nullptr; 183 184 Elf_Mips_RegInfo reginfo = {}; 185 for (InputSectionBase *sec : sections) { 186 sec->markDead(); 187 188 std::string filename = toString(sec->file); 189 ArrayRef<uint8_t> d = sec->rawData; 190 191 while (!d.empty()) { 192 if (d.size() < sizeof(Elf_Mips_Options)) { 193 error(filename + ": invalid size of .MIPS.options section"); 194 break; 195 } 196 197 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 198 if (opt->kind == ODK_REGINFO) { 199 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 200 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 201 break; 202 } 203 204 if (!opt->size) 205 fatal(filename + ": zero option descriptor size"); 206 d = d.slice(opt->size); 207 } 208 }; 209 210 return std::make_unique<MipsOptionsSection<ELFT>>(reginfo); 211 } 212 213 // MIPS .reginfo section. 214 template <class ELFT> 215 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 216 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 217 reginfo(reginfo) { 218 this->entsize = sizeof(Elf_Mips_RegInfo); 219 } 220 221 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 222 if (!config->relocatable) 223 reginfo.ri_gp_value = in.mipsGot->getGp(); 224 memcpy(buf, ®info, sizeof(reginfo)); 225 } 226 227 template <class ELFT> 228 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() { 229 // Section should be alive for O32 and N32 ABIs only. 230 if (ELFT::Is64Bits) 231 return nullptr; 232 233 SmallVector<InputSectionBase *, 0> sections; 234 for (InputSectionBase *sec : inputSections) 235 if (sec->type == SHT_MIPS_REGINFO) 236 sections.push_back(sec); 237 238 if (sections.empty()) 239 return nullptr; 240 241 Elf_Mips_RegInfo reginfo = {}; 242 for (InputSectionBase *sec : sections) { 243 sec->markDead(); 244 245 if (sec->rawData.size() != sizeof(Elf_Mips_RegInfo)) { 246 error(toString(sec->file) + ": invalid size of .reginfo section"); 247 return nullptr; 248 } 249 250 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->rawData.data()); 251 reginfo.ri_gprmask |= r->ri_gprmask; 252 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 253 }; 254 255 return std::make_unique<MipsReginfoSection<ELFT>>(reginfo); 256 } 257 258 InputSection *elf::createInterpSection() { 259 // StringSaver guarantees that the returned string ends with '\0'. 260 StringRef s = saver().save(config->dynamicLinker); 261 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 262 263 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 264 ".interp"); 265 } 266 267 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 268 uint64_t size, InputSectionBase §ion) { 269 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type, 270 value, size, §ion); 271 if (in.symTab) 272 in.symTab->addSymbol(s); 273 return s; 274 } 275 276 static size_t getHashSize() { 277 switch (config->buildId) { 278 case BuildIdKind::Fast: 279 return 8; 280 case BuildIdKind::Md5: 281 case BuildIdKind::Uuid: 282 return 16; 283 case BuildIdKind::Sha1: 284 return 20; 285 case BuildIdKind::Hexstring: 286 return config->buildIdVector.size(); 287 default: 288 llvm_unreachable("unknown BuildIdKind"); 289 } 290 } 291 292 // This class represents a linker-synthesized .note.gnu.property section. 293 // 294 // In x86 and AArch64, object files may contain feature flags indicating the 295 // features that they have used. The flags are stored in a .note.gnu.property 296 // section. 297 // 298 // lld reads the sections from input files and merges them by computing AND of 299 // the flags. The result is written as a new .note.gnu.property section. 300 // 301 // If the flag is zero (which indicates that the intersection of the feature 302 // sets is empty, or some input files didn't have .note.gnu.property sections), 303 // we don't create this section. 304 GnuPropertySection::GnuPropertySection() 305 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 306 config->wordsize, ".note.gnu.property") {} 307 308 void GnuPropertySection::writeTo(uint8_t *buf) { 309 uint32_t featureAndType = config->emachine == EM_AARCH64 310 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 311 : GNU_PROPERTY_X86_FEATURE_1_AND; 312 313 write32(buf, 4); // Name size 314 write32(buf + 4, config->is64 ? 16 : 12); // Content size 315 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 316 memcpy(buf + 12, "GNU", 4); // Name string 317 write32(buf + 16, featureAndType); // Feature type 318 write32(buf + 20, 4); // Feature size 319 write32(buf + 24, config->andFeatures); // Feature flags 320 if (config->is64) 321 write32(buf + 28, 0); // Padding 322 } 323 324 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 325 326 BuildIdSection::BuildIdSection() 327 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 328 hashSize(getHashSize()) {} 329 330 void BuildIdSection::writeTo(uint8_t *buf) { 331 write32(buf, 4); // Name size 332 write32(buf + 4, hashSize); // Content size 333 write32(buf + 8, NT_GNU_BUILD_ID); // Type 334 memcpy(buf + 12, "GNU", 4); // Name string 335 hashBuf = buf + 16; 336 } 337 338 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 339 assert(buf.size() == hashSize); 340 memcpy(hashBuf, buf.data(), hashSize); 341 } 342 343 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 344 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 345 this->bss = true; 346 this->size = size; 347 } 348 349 EhFrameSection::EhFrameSection() 350 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 351 352 // Search for an existing CIE record or create a new one. 353 // CIE records from input object files are uniquified by their contents 354 // and where their relocations point to. 355 template <class ELFT, class RelTy> 356 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 357 Symbol *personality = nullptr; 358 unsigned firstRelI = cie.firstRelocation; 359 if (firstRelI != (unsigned)-1) 360 personality = 361 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 362 363 // Search for an existing CIE by CIE contents/relocation target pair. 364 CieRecord *&rec = cieMap[{cie.data(), personality}]; 365 366 // If not found, create a new one. 367 if (!rec) { 368 rec = make<CieRecord>(); 369 rec->cie = &cie; 370 cieRecords.push_back(rec); 371 } 372 return rec; 373 } 374 375 // There is one FDE per function. Returns a non-null pointer to the function 376 // symbol if the given FDE points to a live function. 377 template <class ELFT, class RelTy> 378 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 379 auto *sec = cast<EhInputSection>(fde.sec); 380 unsigned firstRelI = fde.firstRelocation; 381 382 // An FDE should point to some function because FDEs are to describe 383 // functions. That's however not always the case due to an issue of 384 // ld.gold with -r. ld.gold may discard only functions and leave their 385 // corresponding FDEs, which results in creating bad .eh_frame sections. 386 // To deal with that, we ignore such FDEs. 387 if (firstRelI == (unsigned)-1) 388 return nullptr; 389 390 const RelTy &rel = rels[firstRelI]; 391 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 392 393 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 394 // another partition, are dead. 395 if (auto *d = dyn_cast<Defined>(&b)) 396 if (!d->folded && d->section && d->section->partition == partition) 397 return d; 398 return nullptr; 399 } 400 401 // .eh_frame is a sequence of CIE or FDE records. In general, there 402 // is one CIE record per input object file which is followed by 403 // a list of FDEs. This function searches an existing CIE or create a new 404 // one and associates FDEs to the CIE. 405 template <class ELFT, class RelTy> 406 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 407 offsetToCie.clear(); 408 for (EhSectionPiece &piece : sec->pieces) { 409 // The empty record is the end marker. 410 if (piece.size == 4) 411 return; 412 413 size_t offset = piece.inputOff; 414 const uint32_t id = 415 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 416 if (id == 0) { 417 offsetToCie[offset] = addCie<ELFT>(piece, rels); 418 continue; 419 } 420 421 uint32_t cieOffset = offset + 4 - id; 422 CieRecord *rec = offsetToCie[cieOffset]; 423 if (!rec) 424 fatal(toString(sec) + ": invalid CIE reference"); 425 426 if (!isFdeLive<ELFT>(piece, rels)) 427 continue; 428 rec->fdes.push_back(&piece); 429 numFdes++; 430 } 431 } 432 433 template <class ELFT> 434 void EhFrameSection::addSectionAux(EhInputSection *sec) { 435 if (!sec->isLive()) 436 return; 437 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 438 if (rels.areRelocsRel()) 439 addRecords<ELFT>(sec, rels.rels); 440 else 441 addRecords<ELFT>(sec, rels.relas); 442 } 443 444 void EhFrameSection::addSection(EhInputSection *sec) { 445 sec->parent = this; 446 447 alignment = std::max(alignment, sec->alignment); 448 sections.push_back(sec); 449 450 for (auto *ds : sec->dependentSections) 451 dependentSections.push_back(ds); 452 } 453 454 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 455 // EhFrameSection::addRecords(). 456 template <class ELFT, class RelTy> 457 void EhFrameSection::iterateFDEWithLSDAAux( 458 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 459 llvm::function_ref<void(InputSection &)> fn) { 460 for (EhSectionPiece &piece : sec.pieces) { 461 // Skip ZERO terminator. 462 if (piece.size == 4) 463 continue; 464 465 size_t offset = piece.inputOff; 466 uint32_t id = 467 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 468 if (id == 0) { 469 if (hasLSDA(piece)) 470 ciesWithLSDA.insert(offset); 471 continue; 472 } 473 uint32_t cieOffset = offset + 4 - id; 474 if (ciesWithLSDA.count(cieOffset) == 0) 475 continue; 476 477 // The CIE has a LSDA argument. Call fn with d's section. 478 if (Defined *d = isFdeLive<ELFT>(piece, rels)) 479 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 480 fn(*s); 481 } 482 } 483 484 template <class ELFT> 485 void EhFrameSection::iterateFDEWithLSDA( 486 llvm::function_ref<void(InputSection &)> fn) { 487 DenseSet<size_t> ciesWithLSDA; 488 for (EhInputSection *sec : sections) { 489 ciesWithLSDA.clear(); 490 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 491 if (rels.areRelocsRel()) 492 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); 493 else 494 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); 495 } 496 } 497 498 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 499 memcpy(buf, d.data(), d.size()); 500 501 size_t aligned = alignToPowerOf2(d.size(), config->wordsize); 502 assert(std::all_of(buf + d.size(), buf + aligned, 503 [](uint8_t c) { return c == 0; })); 504 505 // Fix the size field. -4 since size does not include the size field itself. 506 write32(buf, aligned - 4); 507 } 508 509 void EhFrameSection::finalizeContents() { 510 assert(!this->size); // Not finalized. 511 512 switch (config->ekind) { 513 case ELFNoneKind: 514 llvm_unreachable("invalid ekind"); 515 case ELF32LEKind: 516 for (EhInputSection *sec : sections) 517 addSectionAux<ELF32LE>(sec); 518 break; 519 case ELF32BEKind: 520 for (EhInputSection *sec : sections) 521 addSectionAux<ELF32BE>(sec); 522 break; 523 case ELF64LEKind: 524 for (EhInputSection *sec : sections) 525 addSectionAux<ELF64LE>(sec); 526 break; 527 case ELF64BEKind: 528 for (EhInputSection *sec : sections) 529 addSectionAux<ELF64BE>(sec); 530 break; 531 } 532 533 size_t off = 0; 534 for (CieRecord *rec : cieRecords) { 535 rec->cie->outputOff = off; 536 off += alignToPowerOf2(rec->cie->size, config->wordsize); 537 538 for (EhSectionPiece *fde : rec->fdes) { 539 fde->outputOff = off; 540 off += alignToPowerOf2(fde->size, config->wordsize); 541 } 542 } 543 544 // The LSB standard does not allow a .eh_frame section with zero 545 // Call Frame Information records. glibc unwind-dw2-fde.c 546 // classify_object_over_fdes expects there is a CIE record length 0 as a 547 // terminator. Thus we add one unconditionally. 548 off += 4; 549 550 this->size = off; 551 } 552 553 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 554 // to get an FDE from an address to which FDE is applied. This function 555 // returns a list of such pairs. 556 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { 557 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 558 SmallVector<FdeData, 0> ret; 559 560 uint64_t va = getPartition().ehFrameHdr->getVA(); 561 for (CieRecord *rec : cieRecords) { 562 uint8_t enc = getFdeEncoding(rec->cie); 563 for (EhSectionPiece *fde : rec->fdes) { 564 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 565 uint64_t fdeVA = getParent()->addr + fde->outputOff; 566 if (!isInt<32>(pc - va)) 567 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 568 Twine::utohexstr(pc - va)); 569 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 570 } 571 } 572 573 // Sort the FDE list by their PC and uniqueify. Usually there is only 574 // one FDE for a PC (i.e. function), but if ICF merges two functions 575 // into one, there can be more than one FDEs pointing to the address. 576 auto less = [](const FdeData &a, const FdeData &b) { 577 return a.pcRel < b.pcRel; 578 }; 579 llvm::stable_sort(ret, less); 580 auto eq = [](const FdeData &a, const FdeData &b) { 581 return a.pcRel == b.pcRel; 582 }; 583 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 584 585 return ret; 586 } 587 588 static uint64_t readFdeAddr(uint8_t *buf, int size) { 589 switch (size) { 590 case DW_EH_PE_udata2: 591 return read16(buf); 592 case DW_EH_PE_sdata2: 593 return (int16_t)read16(buf); 594 case DW_EH_PE_udata4: 595 return read32(buf); 596 case DW_EH_PE_sdata4: 597 return (int32_t)read32(buf); 598 case DW_EH_PE_udata8: 599 case DW_EH_PE_sdata8: 600 return read64(buf); 601 case DW_EH_PE_absptr: 602 return readUint(buf); 603 } 604 fatal("unknown FDE size encoding"); 605 } 606 607 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 608 // We need it to create .eh_frame_hdr section. 609 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 610 uint8_t enc) const { 611 // The starting address to which this FDE applies is 612 // stored at FDE + 8 byte. 613 size_t off = fdeOff + 8; 614 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 615 if ((enc & 0x70) == DW_EH_PE_absptr) 616 return addr; 617 if ((enc & 0x70) == DW_EH_PE_pcrel) 618 return addr + getParent()->addr + off; 619 fatal("unknown FDE size relative encoding"); 620 } 621 622 void EhFrameSection::writeTo(uint8_t *buf) { 623 // Write CIE and FDE records. 624 for (CieRecord *rec : cieRecords) { 625 size_t cieOffset = rec->cie->outputOff; 626 writeCieFde(buf + cieOffset, rec->cie->data()); 627 628 for (EhSectionPiece *fde : rec->fdes) { 629 size_t off = fde->outputOff; 630 writeCieFde(buf + off, fde->data()); 631 632 // FDE's second word should have the offset to an associated CIE. 633 // Write it. 634 write32(buf + off + 4, off + 4 - cieOffset); 635 } 636 } 637 638 // Apply relocations. .eh_frame section contents are not contiguous 639 // in the output buffer, but relocateAlloc() still works because 640 // getOffset() takes care of discontiguous section pieces. 641 for (EhInputSection *s : sections) 642 s->relocateAlloc(buf, nullptr); 643 644 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 645 getPartition().ehFrameHdr->write(); 646 } 647 648 GotSection::GotSection() 649 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 650 target->gotEntrySize, ".got") { 651 numEntries = target->gotHeaderEntriesNum; 652 } 653 654 void GotSection::addEntry(Symbol &sym) { 655 assert(sym.auxIdx == symAux.size() - 1); 656 symAux.back().gotIdx = numEntries++; 657 } 658 659 bool GotSection::addTlsDescEntry(Symbol &sym) { 660 assert(sym.auxIdx == symAux.size() - 1); 661 symAux.back().tlsDescIdx = numEntries; 662 numEntries += 2; 663 return true; 664 } 665 666 bool GotSection::addDynTlsEntry(Symbol &sym) { 667 assert(sym.auxIdx == symAux.size() - 1); 668 symAux.back().tlsGdIdx = numEntries; 669 // Global Dynamic TLS entries take two GOT slots. 670 numEntries += 2; 671 return true; 672 } 673 674 // Reserves TLS entries for a TLS module ID and a TLS block offset. 675 // In total it takes two GOT slots. 676 bool GotSection::addTlsIndex() { 677 if (tlsIndexOff != uint32_t(-1)) 678 return false; 679 tlsIndexOff = numEntries * config->wordsize; 680 numEntries += 2; 681 return true; 682 } 683 684 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { 685 return sym.getTlsDescIdx() * config->wordsize; 686 } 687 688 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { 689 return getVA() + getTlsDescOffset(sym); 690 } 691 692 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 693 return this->getVA() + b.getTlsGdIdx() * config->wordsize; 694 } 695 696 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 697 return b.getTlsGdIdx() * config->wordsize; 698 } 699 700 void GotSection::finalizeContents() { 701 if (config->emachine == EM_PPC64 && 702 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable) 703 size = 0; 704 else 705 size = numEntries * config->wordsize; 706 } 707 708 bool GotSection::isNeeded() const { 709 // Needed if the GOT symbol is used or the number of entries is more than just 710 // the header. A GOT with just the header may not be needed. 711 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum; 712 } 713 714 void GotSection::writeTo(uint8_t *buf) { 715 // On PPC64 .got may be needed but empty. Skip the write. 716 if (size == 0) 717 return; 718 target->writeGotHeader(buf); 719 relocateAlloc(buf, buf + size); 720 } 721 722 static uint64_t getMipsPageAddr(uint64_t addr) { 723 return (addr + 0x8000) & ~0xffff; 724 } 725 726 static uint64_t getMipsPageCount(uint64_t size) { 727 return (size + 0xfffe) / 0xffff + 1; 728 } 729 730 MipsGotSection::MipsGotSection() 731 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 732 ".got") {} 733 734 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 735 RelExpr expr) { 736 FileGot &g = getGot(file); 737 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 738 if (const OutputSection *os = sym.getOutputSection()) 739 g.pagesMap.insert({os, {}}); 740 else 741 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 742 } else if (sym.isTls()) 743 g.tls.insert({&sym, 0}); 744 else if (sym.isPreemptible && expr == R_ABS) 745 g.relocs.insert({&sym, 0}); 746 else if (sym.isPreemptible) 747 g.global.insert({&sym, 0}); 748 else if (expr == R_MIPS_GOT_OFF32) 749 g.local32.insert({{&sym, addend}, 0}); 750 else 751 g.local16.insert({{&sym, addend}, 0}); 752 } 753 754 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 755 getGot(file).dynTlsSymbols.insert({&sym, 0}); 756 } 757 758 void MipsGotSection::addTlsIndex(InputFile &file) { 759 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 760 } 761 762 size_t MipsGotSection::FileGot::getEntriesNum() const { 763 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 764 tls.size() + dynTlsSymbols.size() * 2; 765 } 766 767 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 768 size_t num = 0; 769 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 770 num += p.second.count; 771 return num; 772 } 773 774 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 775 size_t count = getPageEntriesNum() + local16.size() + global.size(); 776 // If there are relocation-only entries in the GOT, TLS entries 777 // are allocated after them. TLS entries should be addressable 778 // by 16-bit index so count both reloc-only and TLS entries. 779 if (!tls.empty() || !dynTlsSymbols.empty()) 780 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 781 return count; 782 } 783 784 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 785 if (f.mipsGotIndex == uint32_t(-1)) { 786 gots.emplace_back(); 787 gots.back().file = &f; 788 f.mipsGotIndex = gots.size() - 1; 789 } 790 return gots[f.mipsGotIndex]; 791 } 792 793 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 794 const Symbol &sym, 795 int64_t addend) const { 796 const FileGot &g = gots[f->mipsGotIndex]; 797 uint64_t index = 0; 798 if (const OutputSection *outSec = sym.getOutputSection()) { 799 uint64_t secAddr = getMipsPageAddr(outSec->addr); 800 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 801 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 802 } else { 803 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 804 } 805 return index * config->wordsize; 806 } 807 808 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 809 int64_t addend) const { 810 const FileGot &g = gots[f->mipsGotIndex]; 811 Symbol *sym = const_cast<Symbol *>(&s); 812 if (sym->isTls()) 813 return g.tls.lookup(sym) * config->wordsize; 814 if (sym->isPreemptible) 815 return g.global.lookup(sym) * config->wordsize; 816 return g.local16.lookup({sym, addend}) * config->wordsize; 817 } 818 819 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 820 const FileGot &g = gots[f->mipsGotIndex]; 821 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 822 } 823 824 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 825 const Symbol &s) const { 826 const FileGot &g = gots[f->mipsGotIndex]; 827 Symbol *sym = const_cast<Symbol *>(&s); 828 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 829 } 830 831 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 832 if (gots.empty()) 833 return nullptr; 834 const FileGot &primGot = gots.front(); 835 if (!primGot.global.empty()) 836 return primGot.global.front().first; 837 if (!primGot.relocs.empty()) 838 return primGot.relocs.front().first; 839 return nullptr; 840 } 841 842 unsigned MipsGotSection::getLocalEntriesNum() const { 843 if (gots.empty()) 844 return headerEntriesNum; 845 return headerEntriesNum + gots.front().getPageEntriesNum() + 846 gots.front().local16.size(); 847 } 848 849 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 850 FileGot tmp = dst; 851 set_union(tmp.pagesMap, src.pagesMap); 852 set_union(tmp.local16, src.local16); 853 set_union(tmp.global, src.global); 854 set_union(tmp.relocs, src.relocs); 855 set_union(tmp.tls, src.tls); 856 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 857 858 size_t count = isPrimary ? headerEntriesNum : 0; 859 count += tmp.getIndexedEntriesNum(); 860 861 if (count * config->wordsize > config->mipsGotSize) 862 return false; 863 864 std::swap(tmp, dst); 865 return true; 866 } 867 868 void MipsGotSection::finalizeContents() { updateAllocSize(); } 869 870 bool MipsGotSection::updateAllocSize() { 871 size = headerEntriesNum * config->wordsize; 872 for (const FileGot &g : gots) 873 size += g.getEntriesNum() * config->wordsize; 874 return false; 875 } 876 877 void MipsGotSection::build() { 878 if (gots.empty()) 879 return; 880 881 std::vector<FileGot> mergedGots(1); 882 883 // For each GOT move non-preemptible symbols from the `Global` 884 // to `Local16` list. Preemptible symbol might become non-preemptible 885 // one if, for example, it gets a related copy relocation. 886 for (FileGot &got : gots) { 887 for (auto &p: got.global) 888 if (!p.first->isPreemptible) 889 got.local16.insert({{p.first, 0}, 0}); 890 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 891 return !p.first->isPreemptible; 892 }); 893 } 894 895 // For each GOT remove "reloc-only" entry if there is "global" 896 // entry for the same symbol. And add local entries which indexed 897 // using 32-bit value at the end of 16-bit entries. 898 for (FileGot &got : gots) { 899 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 900 return got.global.count(p.first); 901 }); 902 set_union(got.local16, got.local32); 903 got.local32.clear(); 904 } 905 906 // Evaluate number of "reloc-only" entries in the resulting GOT. 907 // To do that put all unique "reloc-only" and "global" entries 908 // from all GOTs to the future primary GOT. 909 FileGot *primGot = &mergedGots.front(); 910 for (FileGot &got : gots) { 911 set_union(primGot->relocs, got.global); 912 set_union(primGot->relocs, got.relocs); 913 got.relocs.clear(); 914 } 915 916 // Evaluate number of "page" entries in each GOT. 917 for (FileGot &got : gots) { 918 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 919 got.pagesMap) { 920 const OutputSection *os = p.first; 921 uint64_t secSize = 0; 922 for (SectionCommand *cmd : os->commands) { 923 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 924 for (InputSection *isec : isd->sections) { 925 uint64_t off = alignToPowerOf2(secSize, isec->alignment); 926 secSize = off + isec->getSize(); 927 } 928 } 929 p.second.count = getMipsPageCount(secSize); 930 } 931 } 932 933 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 934 // maximum GOT size. At first, try to fill the primary GOT because 935 // the primary GOT can be accessed in the most effective way. If it 936 // is not possible, try to fill the last GOT in the list, and finally 937 // create a new GOT if both attempts failed. 938 for (FileGot &srcGot : gots) { 939 InputFile *file = srcGot.file; 940 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 941 file->mipsGotIndex = 0; 942 } else { 943 // If this is the first time we failed to merge with the primary GOT, 944 // MergedGots.back() will also be the primary GOT. We must make sure not 945 // to try to merge again with isPrimary=false, as otherwise, if the 946 // inputs are just right, we could allow the primary GOT to become 1 or 2 947 // words bigger due to ignoring the header size. 948 if (mergedGots.size() == 1 || 949 !tryMergeGots(mergedGots.back(), srcGot, false)) { 950 mergedGots.emplace_back(); 951 std::swap(mergedGots.back(), srcGot); 952 } 953 file->mipsGotIndex = mergedGots.size() - 1; 954 } 955 } 956 std::swap(gots, mergedGots); 957 958 // Reduce number of "reloc-only" entries in the primary GOT 959 // by subtracting "global" entries in the primary GOT. 960 primGot = &gots.front(); 961 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 962 return primGot->global.count(p.first); 963 }); 964 965 // Calculate indexes for each GOT entry. 966 size_t index = headerEntriesNum; 967 for (FileGot &got : gots) { 968 got.startIndex = &got == primGot ? 0 : index; 969 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 970 got.pagesMap) { 971 // For each output section referenced by GOT page relocations calculate 972 // and save into pagesMap an upper bound of MIPS GOT entries required 973 // to store page addresses of local symbols. We assume the worst case - 974 // each 64kb page of the output section has at least one GOT relocation 975 // against it. And take in account the case when the section intersects 976 // page boundaries. 977 p.second.firstIndex = index; 978 index += p.second.count; 979 } 980 for (auto &p: got.local16) 981 p.second = index++; 982 for (auto &p: got.global) 983 p.second = index++; 984 for (auto &p: got.relocs) 985 p.second = index++; 986 for (auto &p: got.tls) 987 p.second = index++; 988 for (auto &p: got.dynTlsSymbols) { 989 p.second = index; 990 index += 2; 991 } 992 } 993 994 // Update SymbolAux::gotIdx field to use this 995 // value later in the `sortMipsSymbols` function. 996 for (auto &p : primGot->global) { 997 if (p.first->auxIdx == uint32_t(-1)) 998 p.first->allocateAux(); 999 symAux.back().gotIdx = p.second; 1000 } 1001 for (auto &p : primGot->relocs) { 1002 if (p.first->auxIdx == uint32_t(-1)) 1003 p.first->allocateAux(); 1004 symAux.back().gotIdx = p.second; 1005 } 1006 1007 // Create dynamic relocations. 1008 for (FileGot &got : gots) { 1009 // Create dynamic relocations for TLS entries. 1010 for (std::pair<Symbol *, size_t> &p : got.tls) { 1011 Symbol *s = p.first; 1012 uint64_t offset = p.second * config->wordsize; 1013 // When building a shared library we still need a dynamic relocation 1014 // for the TP-relative offset as we don't know how much other data will 1015 // be allocated before us in the static TLS block. 1016 if (s->isPreemptible || config->shared) 1017 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset, 1018 DynamicReloc::AgainstSymbolWithTargetVA, 1019 *s, 0, R_ABS}); 1020 } 1021 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 1022 Symbol *s = p.first; 1023 uint64_t offset = p.second * config->wordsize; 1024 if (s == nullptr) { 1025 if (!config->shared) 1026 continue; 1027 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset}); 1028 } else { 1029 // When building a shared library we still need a dynamic relocation 1030 // for the module index. Therefore only checking for 1031 // S->isPreemptible is not sufficient (this happens e.g. for 1032 // thread-locals that have been marked as local through a linker script) 1033 if (!s->isPreemptible && !config->shared) 1034 continue; 1035 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this, 1036 offset, *s); 1037 // However, we can skip writing the TLS offset reloc for non-preemptible 1038 // symbols since it is known even in shared libraries 1039 if (!s->isPreemptible) 1040 continue; 1041 offset += config->wordsize; 1042 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset, 1043 *s); 1044 } 1045 } 1046 1047 // Do not create dynamic relocations for non-TLS 1048 // entries in the primary GOT. 1049 if (&got == primGot) 1050 continue; 1051 1052 // Dynamic relocations for "global" entries. 1053 for (const std::pair<Symbol *, size_t> &p : got.global) { 1054 uint64_t offset = p.second * config->wordsize; 1055 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset, 1056 *p.first); 1057 } 1058 if (!config->isPic) 1059 continue; 1060 // Dynamic relocations for "local" entries in case of PIC. 1061 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1062 got.pagesMap) { 1063 size_t pageCount = l.second.count; 1064 for (size_t pi = 0; pi < pageCount; ++pi) { 1065 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1066 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1067 int64_t(pi * 0x10000)}); 1068 } 1069 } 1070 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1071 uint64_t offset = p.second * config->wordsize; 1072 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, 1073 DynamicReloc::AddendOnlyWithTargetVA, 1074 *p.first.first, p.first.second, R_ABS}); 1075 } 1076 } 1077 } 1078 1079 bool MipsGotSection::isNeeded() const { 1080 // We add the .got section to the result for dynamic MIPS target because 1081 // its address and properties are mentioned in the .dynamic section. 1082 return !config->relocatable; 1083 } 1084 1085 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1086 // For files without related GOT or files refer a primary GOT 1087 // returns "common" _gp value. For secondary GOTs calculate 1088 // individual _gp values. 1089 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) 1090 return ElfSym::mipsGp->getVA(0); 1091 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0; 1092 } 1093 1094 void MipsGotSection::writeTo(uint8_t *buf) { 1095 // Set the MSB of the second GOT slot. This is not required by any 1096 // MIPS ABI documentation, though. 1097 // 1098 // There is a comment in glibc saying that "The MSB of got[1] of a 1099 // gnu object is set to identify gnu objects," and in GNU gold it 1100 // says "the second entry will be used by some runtime loaders". 1101 // But how this field is being used is unclear. 1102 // 1103 // We are not really willing to mimic other linkers behaviors 1104 // without understanding why they do that, but because all files 1105 // generated by GNU tools have this special GOT value, and because 1106 // we've been doing this for years, it is probably a safe bet to 1107 // keep doing this for now. We really need to revisit this to see 1108 // if we had to do this. 1109 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1110 for (const FileGot &g : gots) { 1111 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1112 uint64_t va = a; 1113 if (s) 1114 va = s->getVA(a); 1115 writeUint(buf + i * config->wordsize, va); 1116 }; 1117 // Write 'page address' entries to the local part of the GOT. 1118 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1119 g.pagesMap) { 1120 size_t pageCount = l.second.count; 1121 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1122 for (size_t pi = 0; pi < pageCount; ++pi) 1123 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1124 } 1125 // Local, global, TLS, reloc-only entries. 1126 // If TLS entry has a corresponding dynamic relocations, leave it 1127 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1128 // To calculate the adjustments use offsets for thread-local storage. 1129 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL 1130 for (const std::pair<GotEntry, size_t> &p : g.local16) 1131 write(p.second, p.first.first, p.first.second); 1132 // Write VA to the primary GOT only. For secondary GOTs that 1133 // will be done by REL32 dynamic relocations. 1134 if (&g == &gots.front()) 1135 for (const std::pair<Symbol *, size_t> &p : g.global) 1136 write(p.second, p.first, 0); 1137 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1138 write(p.second, p.first, 0); 1139 for (const std::pair<Symbol *, size_t> &p : g.tls) 1140 write(p.second, p.first, 1141 p.first->isPreemptible || config->shared ? 0 : -0x7000); 1142 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1143 if (p.first == nullptr && !config->shared) 1144 write(p.second, nullptr, 1); 1145 else if (p.first && !p.first->isPreemptible) { 1146 // If we are emitting a shared library with relocations we mustn't write 1147 // anything to the GOT here. When using Elf_Rel relocations the value 1148 // one will be treated as an addend and will cause crashes at runtime 1149 if (!config->shared) 1150 write(p.second, nullptr, 1); 1151 write(p.second + 1, p.first, -0x8000); 1152 } 1153 } 1154 } 1155 } 1156 1157 // On PowerPC the .plt section is used to hold the table of function addresses 1158 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1159 // section. I don't know why we have a BSS style type for the section but it is 1160 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1161 GotPltSection::GotPltSection() 1162 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1163 ".got.plt") { 1164 if (config->emachine == EM_PPC) { 1165 name = ".plt"; 1166 } else if (config->emachine == EM_PPC64) { 1167 type = SHT_NOBITS; 1168 name = ".plt"; 1169 } 1170 } 1171 1172 void GotPltSection::addEntry(Symbol &sym) { 1173 assert(sym.auxIdx == symAux.size() - 1 && 1174 symAux.back().pltIdx == entries.size()); 1175 entries.push_back(&sym); 1176 } 1177 1178 size_t GotPltSection::getSize() const { 1179 return (target->gotPltHeaderEntriesNum + entries.size()) * 1180 target->gotEntrySize; 1181 } 1182 1183 void GotPltSection::writeTo(uint8_t *buf) { 1184 target->writeGotPltHeader(buf); 1185 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize; 1186 for (const Symbol *b : entries) { 1187 target->writeGotPlt(buf, *b); 1188 buf += target->gotEntrySize; 1189 } 1190 } 1191 1192 bool GotPltSection::isNeeded() const { 1193 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1194 // to it. 1195 return !entries.empty() || hasGotPltOffRel; 1196 } 1197 1198 static StringRef getIgotPltName() { 1199 // On ARM the IgotPltSection is part of the GotSection. 1200 if (config->emachine == EM_ARM) 1201 return ".got"; 1202 1203 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1204 // needs to be named the same. 1205 if (config->emachine == EM_PPC64) 1206 return ".plt"; 1207 1208 return ".got.plt"; 1209 } 1210 1211 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1212 // with the IgotPltSection. 1213 IgotPltSection::IgotPltSection() 1214 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1215 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1216 target->gotEntrySize, getIgotPltName()) {} 1217 1218 void IgotPltSection::addEntry(Symbol &sym) { 1219 assert(symAux.back().pltIdx == entries.size()); 1220 entries.push_back(&sym); 1221 } 1222 1223 size_t IgotPltSection::getSize() const { 1224 return entries.size() * target->gotEntrySize; 1225 } 1226 1227 void IgotPltSection::writeTo(uint8_t *buf) { 1228 for (const Symbol *b : entries) { 1229 target->writeIgotPlt(buf, *b); 1230 buf += target->gotEntrySize; 1231 } 1232 } 1233 1234 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1235 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1236 dynamic(dynamic) { 1237 // ELF string tables start with a NUL byte. 1238 strings.push_back(""); 1239 stringMap.try_emplace(CachedHashStringRef(""), 0); 1240 size = 1; 1241 } 1242 1243 // Adds a string to the string table. If `hashIt` is true we hash and check for 1244 // duplicates. It is optional because the name of global symbols are already 1245 // uniqued and hashing them again has a big cost for a small value: uniquing 1246 // them with some other string that happens to be the same. 1247 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1248 if (hashIt) { 1249 auto r = stringMap.try_emplace(CachedHashStringRef(s), size); 1250 if (!r.second) 1251 return r.first->second; 1252 } 1253 if (s.empty()) 1254 return 0; 1255 unsigned ret = this->size; 1256 this->size = this->size + s.size() + 1; 1257 strings.push_back(s); 1258 return ret; 1259 } 1260 1261 void StringTableSection::writeTo(uint8_t *buf) { 1262 for (StringRef s : strings) { 1263 memcpy(buf, s.data(), s.size()); 1264 buf[s.size()] = '\0'; 1265 buf += s.size() + 1; 1266 } 1267 } 1268 1269 // Returns the number of entries in .gnu.version_d: the number of 1270 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1271 // Note that we don't support vd_cnt > 1 yet. 1272 static unsigned getVerDefNum() { 1273 return namedVersionDefs().size() + 1; 1274 } 1275 1276 template <class ELFT> 1277 DynamicSection<ELFT>::DynamicSection() 1278 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1279 ".dynamic") { 1280 this->entsize = ELFT::Is64Bits ? 16 : 8; 1281 1282 // .dynamic section is not writable on MIPS and on Fuchsia OS 1283 // which passes -z rodynamic. 1284 // See "Special Section" in Chapter 4 in the following document: 1285 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1286 if (config->emachine == EM_MIPS || config->zRodynamic) 1287 this->flags = SHF_ALLOC; 1288 } 1289 1290 // The output section .rela.dyn may include these synthetic sections: 1291 // 1292 // - part.relaDyn 1293 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1294 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1295 // .rela.dyn 1296 // 1297 // DT_RELASZ is the total size of the included sections. 1298 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) { 1299 size_t size = relaDyn.getSize(); 1300 if (in.relaIplt->getParent() == relaDyn.getParent()) 1301 size += in.relaIplt->getSize(); 1302 if (in.relaPlt->getParent() == relaDyn.getParent()) 1303 size += in.relaPlt->getSize(); 1304 return size; 1305 } 1306 1307 // A Linker script may assign the RELA relocation sections to the same 1308 // output section. When this occurs we cannot just use the OutputSection 1309 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1310 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1311 static uint64_t addPltRelSz() { 1312 size_t size = in.relaPlt->getSize(); 1313 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1314 in.relaIplt->name == in.relaPlt->name) 1315 size += in.relaIplt->getSize(); 1316 return size; 1317 } 1318 1319 // Add remaining entries to complete .dynamic contents. 1320 template <class ELFT> 1321 std::vector<std::pair<int32_t, uint64_t>> 1322 DynamicSection<ELFT>::computeContents() { 1323 elf::Partition &part = getPartition(); 1324 bool isMain = part.name.empty(); 1325 std::vector<std::pair<int32_t, uint64_t>> entries; 1326 1327 auto addInt = [&](int32_t tag, uint64_t val) { 1328 entries.emplace_back(tag, val); 1329 }; 1330 auto addInSec = [&](int32_t tag, const InputSection &sec) { 1331 entries.emplace_back(tag, sec.getVA()); 1332 }; 1333 1334 for (StringRef s : config->filterList) 1335 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1336 for (StringRef s : config->auxiliaryList) 1337 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1338 1339 if (!config->rpath.empty()) 1340 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1341 part.dynStrTab->addString(config->rpath)); 1342 1343 for (SharedFile *file : ctx->sharedFiles) 1344 if (file->isNeeded) 1345 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1346 1347 if (isMain) { 1348 if (!config->soName.empty()) 1349 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1350 } else { 1351 if (!config->soName.empty()) 1352 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1353 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1354 } 1355 1356 // Set DT_FLAGS and DT_FLAGS_1. 1357 uint32_t dtFlags = 0; 1358 uint32_t dtFlags1 = 0; 1359 if (config->bsymbolic == BsymbolicKind::All) 1360 dtFlags |= DF_SYMBOLIC; 1361 if (config->zGlobal) 1362 dtFlags1 |= DF_1_GLOBAL; 1363 if (config->zInitfirst) 1364 dtFlags1 |= DF_1_INITFIRST; 1365 if (config->zInterpose) 1366 dtFlags1 |= DF_1_INTERPOSE; 1367 if (config->zNodefaultlib) 1368 dtFlags1 |= DF_1_NODEFLIB; 1369 if (config->zNodelete) 1370 dtFlags1 |= DF_1_NODELETE; 1371 if (config->zNodlopen) 1372 dtFlags1 |= DF_1_NOOPEN; 1373 if (config->pie) 1374 dtFlags1 |= DF_1_PIE; 1375 if (config->zNow) { 1376 dtFlags |= DF_BIND_NOW; 1377 dtFlags1 |= DF_1_NOW; 1378 } 1379 if (config->zOrigin) { 1380 dtFlags |= DF_ORIGIN; 1381 dtFlags1 |= DF_1_ORIGIN; 1382 } 1383 if (!config->zText) 1384 dtFlags |= DF_TEXTREL; 1385 if (config->hasTlsIe && config->shared) 1386 dtFlags |= DF_STATIC_TLS; 1387 1388 if (dtFlags) 1389 addInt(DT_FLAGS, dtFlags); 1390 if (dtFlags1) 1391 addInt(DT_FLAGS_1, dtFlags1); 1392 1393 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1394 // need it for each process, so we don't write it for DSOs. The loader writes 1395 // the pointer into this entry. 1396 // 1397 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1398 // systems (currently only Fuchsia OS) provide other means to give the 1399 // debugger this information. Such systems may choose make .dynamic read-only. 1400 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1401 if (!config->shared && !config->relocatable && !config->zRodynamic) 1402 addInt(DT_DEBUG, 0); 1403 1404 if (part.relaDyn->isNeeded() || 1405 (in.relaIplt->isNeeded() && 1406 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1407 addInSec(part.relaDyn->dynamicTag, *part.relaDyn); 1408 entries.emplace_back(part.relaDyn->sizeDynamicTag, 1409 addRelaSz(*part.relaDyn)); 1410 1411 bool isRela = config->isRela; 1412 addInt(isRela ? DT_RELAENT : DT_RELENT, 1413 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1414 1415 // MIPS dynamic loader does not support RELCOUNT tag. 1416 // The problem is in the tight relation between dynamic 1417 // relocations and GOT. So do not emit this tag on MIPS. 1418 if (config->emachine != EM_MIPS) { 1419 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1420 if (config->zCombreloc && numRelativeRels) 1421 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1422 } 1423 } 1424 if (part.relrDyn && part.relrDyn->getParent() && 1425 !part.relrDyn->relocs.empty()) { 1426 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1427 *part.relrDyn); 1428 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1429 part.relrDyn->getParent()->size); 1430 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1431 sizeof(Elf_Relr)); 1432 } 1433 // .rel[a].plt section usually consists of two parts, containing plt and 1434 // iplt relocations. It is possible to have only iplt relocations in the 1435 // output. In that case relaPlt is empty and have zero offset, the same offset 1436 // as relaIplt has. And we still want to emit proper dynamic tags for that 1437 // case, so here we always use relaPlt as marker for the beginning of 1438 // .rel[a].plt section. 1439 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1440 addInSec(DT_JMPREL, *in.relaPlt); 1441 entries.emplace_back(DT_PLTRELSZ, addPltRelSz()); 1442 switch (config->emachine) { 1443 case EM_MIPS: 1444 addInSec(DT_MIPS_PLTGOT, *in.gotPlt); 1445 break; 1446 case EM_SPARCV9: 1447 addInSec(DT_PLTGOT, *in.plt); 1448 break; 1449 case EM_AARCH64: 1450 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1451 return r.type == target->pltRel && 1452 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1453 }) != in.relaPlt->relocs.end()) 1454 addInt(DT_AARCH64_VARIANT_PCS, 0); 1455 LLVM_FALLTHROUGH; 1456 default: 1457 addInSec(DT_PLTGOT, *in.gotPlt); 1458 break; 1459 } 1460 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1461 } 1462 1463 if (config->emachine == EM_AARCH64) { 1464 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1465 addInt(DT_AARCH64_BTI_PLT, 0); 1466 if (config->zPacPlt) 1467 addInt(DT_AARCH64_PAC_PLT, 0); 1468 } 1469 1470 addInSec(DT_SYMTAB, *part.dynSymTab); 1471 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1472 addInSec(DT_STRTAB, *part.dynStrTab); 1473 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1474 if (!config->zText) 1475 addInt(DT_TEXTREL, 0); 1476 if (part.gnuHashTab && part.gnuHashTab->getParent()) 1477 addInSec(DT_GNU_HASH, *part.gnuHashTab); 1478 if (part.hashTab && part.hashTab->getParent()) 1479 addInSec(DT_HASH, *part.hashTab); 1480 1481 if (isMain) { 1482 if (Out::preinitArray) { 1483 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr); 1484 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size); 1485 } 1486 if (Out::initArray) { 1487 addInt(DT_INIT_ARRAY, Out::initArray->addr); 1488 addInt(DT_INIT_ARRAYSZ, Out::initArray->size); 1489 } 1490 if (Out::finiArray) { 1491 addInt(DT_FINI_ARRAY, Out::finiArray->addr); 1492 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size); 1493 } 1494 1495 if (Symbol *b = symtab->find(config->init)) 1496 if (b->isDefined()) 1497 addInt(DT_INIT, b->getVA()); 1498 if (Symbol *b = symtab->find(config->fini)) 1499 if (b->isDefined()) 1500 addInt(DT_FINI, b->getVA()); 1501 } 1502 1503 if (part.verSym && part.verSym->isNeeded()) 1504 addInSec(DT_VERSYM, *part.verSym); 1505 if (part.verDef && part.verDef->isLive()) { 1506 addInSec(DT_VERDEF, *part.verDef); 1507 addInt(DT_VERDEFNUM, getVerDefNum()); 1508 } 1509 if (part.verNeed && part.verNeed->isNeeded()) { 1510 addInSec(DT_VERNEED, *part.verNeed); 1511 unsigned needNum = 0; 1512 for (SharedFile *f : ctx->sharedFiles) 1513 if (!f->vernauxs.empty()) 1514 ++needNum; 1515 addInt(DT_VERNEEDNUM, needNum); 1516 } 1517 1518 if (config->emachine == EM_MIPS) { 1519 addInt(DT_MIPS_RLD_VERSION, 1); 1520 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1521 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1522 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1523 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum()); 1524 1525 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1526 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1527 else 1528 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1529 addInSec(DT_PLTGOT, *in.mipsGot); 1530 if (in.mipsRldMap) { 1531 if (!config->pie) 1532 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap); 1533 // Store the offset to the .rld_map section 1534 // relative to the address of the tag. 1535 addInt(DT_MIPS_RLD_MAP_REL, 1536 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); 1537 } 1538 } 1539 1540 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1541 // glibc assumes the old-style BSS PLT layout which we don't support. 1542 if (config->emachine == EM_PPC) 1543 addInSec(DT_PPC_GOT, *in.got); 1544 1545 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1546 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1547 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1548 // stub, which starts directly after the header. 1549 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32); 1550 } 1551 1552 addInt(DT_NULL, 0); 1553 return entries; 1554 } 1555 1556 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1557 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 1558 getParent()->link = sec->sectionIndex; 1559 this->size = computeContents().size() * this->entsize; 1560 } 1561 1562 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1563 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1564 1565 for (std::pair<int32_t, uint64_t> kv : computeContents()) { 1566 p->d_tag = kv.first; 1567 p->d_un.d_val = kv.second; 1568 ++p; 1569 } 1570 } 1571 1572 uint64_t DynamicReloc::getOffset() const { 1573 return inputSec->getVA(offsetInSec); 1574 } 1575 1576 int64_t DynamicReloc::computeAddend() const { 1577 switch (kind) { 1578 case AddendOnly: 1579 assert(sym == nullptr); 1580 return addend; 1581 case AgainstSymbol: 1582 assert(sym != nullptr); 1583 return addend; 1584 case AddendOnlyWithTargetVA: 1585 case AgainstSymbolWithTargetVA: 1586 return InputSection::getRelocTargetVA(inputSec->file, type, addend, 1587 getOffset(), *sym, expr); 1588 case MipsMultiGotPage: 1589 assert(sym == nullptr); 1590 return getMipsPageAddr(outputSec->addr) + addend; 1591 } 1592 llvm_unreachable("Unknown DynamicReloc::Kind enum"); 1593 } 1594 1595 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1596 if (!needsDynSymIndex()) 1597 return 0; 1598 1599 size_t index = symTab->getSymbolIndex(sym); 1600 assert((index != 0 || (type != target->gotRel && type != target->pltRel) || 1601 !mainPart->dynSymTab->getParent()) && 1602 "GOT or PLT relocation must refer to symbol in dynamic symbol table"); 1603 return index; 1604 } 1605 1606 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1607 int32_t dynamicTag, 1608 int32_t sizeDynamicTag, 1609 bool combreloc) 1610 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1611 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), 1612 combreloc(combreloc) {} 1613 1614 void RelocationBaseSection::addSymbolReloc(RelType dynType, 1615 InputSectionBase &isec, 1616 uint64_t offsetInSec, Symbol &sym, 1617 int64_t addend, 1618 Optional<RelType> addendRelType) { 1619 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, 1620 R_ADDEND, addendRelType ? *addendRelType : target->noneRel); 1621 } 1622 1623 void RelocationBaseSection::addRelativeReloc( 1624 RelType dynType, InputSectionBase &inputSec, uint64_t offsetInSec, 1625 Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) { 1626 // This function should only be called for non-preemptible symbols or 1627 // RelExpr values that refer to an address inside the output file (e.g. the 1628 // address of the GOT entry for a potentially preemptible symbol). 1629 assert((!sym.isPreemptible || expr == R_GOT) && 1630 "cannot add relative relocation against preemptible symbol"); 1631 assert(expr != R_ADDEND && "expected non-addend relocation expression"); 1632 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec, 1633 sym, addend, expr, addendRelType); 1634 } 1635 1636 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( 1637 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, 1638 RelType addendRelType) { 1639 // No need to write an addend to the section for preemptible symbols. 1640 if (sym.isPreemptible) 1641 addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, 1642 R_ABS}); 1643 else 1644 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, 1645 sym, 0, R_ABS, addendRelType); 1646 } 1647 1648 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType, 1649 InputSectionBase &inputSec, 1650 uint64_t offsetInSec, Symbol &sym, 1651 int64_t addend, RelExpr expr, 1652 RelType addendRelType) { 1653 // Write the addends to the relocated address if required. We skip 1654 // it if the written value would be zero. 1655 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1656 inputSec.relocations.push_back( 1657 {expr, addendRelType, offsetInSec, addend, &sym}); 1658 addReloc({dynType, &inputSec, offsetInSec, kind, sym, addend, expr}); 1659 } 1660 1661 void RelocationBaseSection::partitionRels() { 1662 if (!combreloc) 1663 return; 1664 const RelType relativeRel = target->relativeRel; 1665 numRelativeRelocs = 1666 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) - 1667 relocs.begin(); 1668 } 1669 1670 void RelocationBaseSection::finalizeContents() { 1671 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1672 1673 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1674 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1675 // case. 1676 if (symTab && symTab->getParent()) 1677 getParent()->link = symTab->getParent()->sectionIndex; 1678 else 1679 getParent()->link = 0; 1680 1681 if (in.relaPlt.get() == this && in.gotPlt->getParent()) { 1682 getParent()->flags |= ELF::SHF_INFO_LINK; 1683 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1684 } 1685 if (in.relaIplt.get() == this && in.igotPlt->getParent()) { 1686 getParent()->flags |= ELF::SHF_INFO_LINK; 1687 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1688 } 1689 } 1690 1691 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) { 1692 r_offset = getOffset(); 1693 r_sym = getSymIndex(symtab); 1694 addend = computeAddend(); 1695 kind = AddendOnly; // Catch errors 1696 } 1697 1698 void RelocationBaseSection::computeRels() { 1699 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1700 parallelForEach(relocs, 1701 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); }); 1702 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1703 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1704 // is to make results easier to read. 1705 if (combreloc) { 1706 auto nonRelative = relocs.begin() + numRelativeRelocs; 1707 parallelSort(relocs.begin(), nonRelative, 1708 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); 1709 // Non-relative relocations are few, so don't bother with parallelSort. 1710 llvm::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) { 1711 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); 1712 }); 1713 } 1714 } 1715 1716 template <class ELFT> 1717 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc) 1718 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1719 config->isRela ? DT_RELA : DT_REL, 1720 config->isRela ? DT_RELASZ : DT_RELSZ, combreloc) { 1721 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1722 } 1723 1724 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1725 computeRels(); 1726 for (const DynamicReloc &rel : relocs) { 1727 auto *p = reinterpret_cast<Elf_Rela *>(buf); 1728 p->r_offset = rel.r_offset; 1729 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL); 1730 if (config->isRela) 1731 p->r_addend = rel.addend; 1732 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1733 } 1734 } 1735 1736 RelrBaseSection::RelrBaseSection() 1737 : SyntheticSection(SHF_ALLOC, 1738 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1739 config->wordsize, ".relr.dyn") {} 1740 1741 template <class ELFT> 1742 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1743 StringRef name) 1744 : RelocationBaseSection( 1745 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1746 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1747 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, 1748 /*combreloc=*/false) { 1749 this->entsize = 1; 1750 } 1751 1752 template <class ELFT> 1753 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1754 // This function computes the contents of an Android-format packed relocation 1755 // section. 1756 // 1757 // This format compresses relocations by using relocation groups to factor out 1758 // fields that are common between relocations and storing deltas from previous 1759 // relocations in SLEB128 format (which has a short representation for small 1760 // numbers). A good example of a relocation type with common fields is 1761 // R_*_RELATIVE, which is normally used to represent function pointers in 1762 // vtables. In the REL format, each relative relocation has the same r_info 1763 // field, and is only different from other relative relocations in terms of 1764 // the r_offset field. By sorting relocations by offset, grouping them by 1765 // r_info and representing each relocation with only the delta from the 1766 // previous offset, each 8-byte relocation can be compressed to as little as 1 1767 // byte (or less with run-length encoding). This relocation packer was able to 1768 // reduce the size of the relocation section in an Android Chromium DSO from 1769 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1770 // 1771 // A relocation section consists of a header containing the literal bytes 1772 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1773 // elements are the total number of relocations in the section and an initial 1774 // r_offset value. The remaining elements define a sequence of relocation 1775 // groups. Each relocation group starts with a header consisting of the 1776 // following elements: 1777 // 1778 // - the number of relocations in the relocation group 1779 // - flags for the relocation group 1780 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1781 // for each relocation in the group. 1782 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1783 // field for each relocation in the group. 1784 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1785 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1786 // each relocation in the group. 1787 // 1788 // Following the relocation group header are descriptions of each of the 1789 // relocations in the group. They consist of the following elements: 1790 // 1791 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1792 // delta for this relocation. 1793 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1794 // field for this relocation. 1795 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1796 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1797 // this relocation. 1798 1799 size_t oldSize = relocData.size(); 1800 1801 relocData = {'A', 'P', 'S', '2'}; 1802 raw_svector_ostream os(relocData); 1803 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1804 1805 // The format header includes the number of relocations and the initial 1806 // offset (we set this to zero because the first relocation group will 1807 // perform the initial adjustment). 1808 add(relocs.size()); 1809 add(0); 1810 1811 std::vector<Elf_Rela> relatives, nonRelatives; 1812 1813 for (const DynamicReloc &rel : relocs) { 1814 Elf_Rela r; 1815 r.r_offset = rel.getOffset(); 1816 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()), 1817 rel.type, false); 1818 if (config->isRela) 1819 r.r_addend = rel.computeAddend(); 1820 1821 if (r.getType(config->isMips64EL) == target->relativeRel) 1822 relatives.push_back(r); 1823 else 1824 nonRelatives.push_back(r); 1825 } 1826 1827 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1828 return a.r_offset < b.r_offset; 1829 }); 1830 1831 // Try to find groups of relative relocations which are spaced one word 1832 // apart from one another. These generally correspond to vtable entries. The 1833 // format allows these groups to be encoded using a sort of run-length 1834 // encoding, but each group will cost 7 bytes in addition to the offset from 1835 // the previous group, so it is only profitable to do this for groups of 1836 // size 8 or larger. 1837 std::vector<Elf_Rela> ungroupedRelatives; 1838 std::vector<std::vector<Elf_Rela>> relativeGroups; 1839 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1840 std::vector<Elf_Rela> group; 1841 do { 1842 group.push_back(*i++); 1843 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1844 1845 if (group.size() < 8) 1846 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1847 group.end()); 1848 else 1849 relativeGroups.emplace_back(std::move(group)); 1850 } 1851 1852 // For non-relative relocations, we would like to: 1853 // 1. Have relocations with the same symbol offset to be consecutive, so 1854 // that the runtime linker can speed-up symbol lookup by implementing an 1855 // 1-entry cache. 1856 // 2. Group relocations by r_info to reduce the size of the relocation 1857 // section. 1858 // Since the symbol offset is the high bits in r_info, sorting by r_info 1859 // allows us to do both. 1860 // 1861 // For Rela, we also want to sort by r_addend when r_info is the same. This 1862 // enables us to group by r_addend as well. 1863 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1864 if (a.r_info != b.r_info) 1865 return a.r_info < b.r_info; 1866 if (config->isRela) 1867 return a.r_addend < b.r_addend; 1868 return false; 1869 }); 1870 1871 // Group relocations with the same r_info. Note that each group emits a group 1872 // header and that may make the relocation section larger. It is hard to 1873 // estimate the size of a group header as the encoded size of that varies 1874 // based on r_info. However, we can approximate this trade-off by the number 1875 // of values encoded. Each group header contains 3 values, and each relocation 1876 // in a group encodes one less value, as compared to when it is not grouped. 1877 // Therefore, we only group relocations if there are 3 or more of them with 1878 // the same r_info. 1879 // 1880 // For Rela, the addend for most non-relative relocations is zero, and thus we 1881 // can usually get a smaller relocation section if we group relocations with 0 1882 // addend as well. 1883 std::vector<Elf_Rela> ungroupedNonRelatives; 1884 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1885 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1886 auto j = i + 1; 1887 while (j != e && i->r_info == j->r_info && 1888 (!config->isRela || i->r_addend == j->r_addend)) 1889 ++j; 1890 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1891 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1892 else 1893 nonRelativeGroups.emplace_back(i, j); 1894 i = j; 1895 } 1896 1897 // Sort ungrouped relocations by offset to minimize the encoded length. 1898 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1899 return a.r_offset < b.r_offset; 1900 }); 1901 1902 unsigned hasAddendIfRela = 1903 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1904 1905 uint64_t offset = 0; 1906 uint64_t addend = 0; 1907 1908 // Emit the run-length encoding for the groups of adjacent relative 1909 // relocations. Each group is represented using two groups in the packed 1910 // format. The first is used to set the current offset to the start of the 1911 // group (and also encodes the first relocation), and the second encodes the 1912 // remaining relocations. 1913 for (std::vector<Elf_Rela> &g : relativeGroups) { 1914 // The first relocation in the group. 1915 add(1); 1916 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1917 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1918 add(g[0].r_offset - offset); 1919 add(target->relativeRel); 1920 if (config->isRela) { 1921 add(g[0].r_addend - addend); 1922 addend = g[0].r_addend; 1923 } 1924 1925 // The remaining relocations. 1926 add(g.size() - 1); 1927 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1928 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1929 add(config->wordsize); 1930 add(target->relativeRel); 1931 if (config->isRela) { 1932 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1933 add(i->r_addend - addend); 1934 addend = i->r_addend; 1935 } 1936 } 1937 1938 offset = g.back().r_offset; 1939 } 1940 1941 // Now the ungrouped relatives. 1942 if (!ungroupedRelatives.empty()) { 1943 add(ungroupedRelatives.size()); 1944 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1945 add(target->relativeRel); 1946 for (Elf_Rela &r : ungroupedRelatives) { 1947 add(r.r_offset - offset); 1948 offset = r.r_offset; 1949 if (config->isRela) { 1950 add(r.r_addend - addend); 1951 addend = r.r_addend; 1952 } 1953 } 1954 } 1955 1956 // Grouped non-relatives. 1957 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1958 add(g.size()); 1959 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1960 add(g[0].r_info); 1961 for (const Elf_Rela &r : g) { 1962 add(r.r_offset - offset); 1963 offset = r.r_offset; 1964 } 1965 addend = 0; 1966 } 1967 1968 // Finally the ungrouped non-relative relocations. 1969 if (!ungroupedNonRelatives.empty()) { 1970 add(ungroupedNonRelatives.size()); 1971 add(hasAddendIfRela); 1972 for (Elf_Rela &r : ungroupedNonRelatives) { 1973 add(r.r_offset - offset); 1974 offset = r.r_offset; 1975 add(r.r_info); 1976 if (config->isRela) { 1977 add(r.r_addend - addend); 1978 addend = r.r_addend; 1979 } 1980 } 1981 } 1982 1983 // Don't allow the section to shrink; otherwise the size of the section can 1984 // oscillate infinitely. 1985 if (relocData.size() < oldSize) 1986 relocData.append(oldSize - relocData.size(), 0); 1987 1988 // Returns whether the section size changed. We need to keep recomputing both 1989 // section layout and the contents of this section until the size converges 1990 // because changing this section's size can affect section layout, which in 1991 // turn can affect the sizes of the LEB-encoded integers stored in this 1992 // section. 1993 return relocData.size() != oldSize; 1994 } 1995 1996 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1997 this->entsize = config->wordsize; 1998 } 1999 2000 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 2001 // This function computes the contents of an SHT_RELR packed relocation 2002 // section. 2003 // 2004 // Proposal for adding SHT_RELR sections to generic-abi is here: 2005 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 2006 // 2007 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 2008 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 2009 // 2010 // i.e. start with an address, followed by any number of bitmaps. The address 2011 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 2012 // relocations each, at subsequent offsets following the last address entry. 2013 // 2014 // The bitmap entries must have 1 in the least significant bit. The assumption 2015 // here is that an address cannot have 1 in lsb. Odd addresses are not 2016 // supported. 2017 // 2018 // Excluding the least significant bit in the bitmap, each non-zero bit in 2019 // the bitmap represents a relocation to be applied to a corresponding machine 2020 // word that follows the base address word. The second least significant bit 2021 // represents the machine word immediately following the initial address, and 2022 // each bit that follows represents the next word, in linear order. As such, 2023 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 2024 // 63 relocations in a 64-bit object. 2025 // 2026 // This encoding has a couple of interesting properties: 2027 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 2028 // even means address, odd means bitmap. 2029 // 2. Just a simple list of addresses is a valid encoding. 2030 2031 size_t oldSize = relrRelocs.size(); 2032 relrRelocs.clear(); 2033 2034 // Same as Config->Wordsize but faster because this is a compile-time 2035 // constant. 2036 const size_t wordsize = sizeof(typename ELFT::uint); 2037 2038 // Number of bits to use for the relocation offsets bitmap. 2039 // Must be either 63 or 31. 2040 const size_t nBits = wordsize * 8 - 1; 2041 2042 // Get offsets for all relative relocations and sort them. 2043 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); 2044 for (auto it : llvm::enumerate(relocs)) 2045 offsets[it.index()] = it.value().getOffset(); 2046 llvm::sort(offsets.get(), offsets.get() + relocs.size()); 2047 2048 // For each leading relocation, find following ones that can be folded 2049 // as a bitmap and fold them. 2050 for (size_t i = 0, e = relocs.size(); i != e;) { 2051 // Add a leading relocation. 2052 relrRelocs.push_back(Elf_Relr(offsets[i])); 2053 uint64_t base = offsets[i] + wordsize; 2054 ++i; 2055 2056 // Find foldable relocations to construct bitmaps. 2057 for (;;) { 2058 uint64_t bitmap = 0; 2059 for (; i != e; ++i) { 2060 uint64_t d = offsets[i] - base; 2061 if (d >= nBits * wordsize || d % wordsize) 2062 break; 2063 bitmap |= uint64_t(1) << (d / wordsize); 2064 } 2065 if (!bitmap) 2066 break; 2067 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2068 base += nBits * wordsize; 2069 } 2070 } 2071 2072 // Don't allow the section to shrink; otherwise the size of the section can 2073 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2074 if (relrRelocs.size() < oldSize) { 2075 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2076 " padding word(s)"); 2077 relrRelocs.resize(oldSize, Elf_Relr(1)); 2078 } 2079 2080 return relrRelocs.size() != oldSize; 2081 } 2082 2083 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2084 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2085 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2086 config->wordsize, 2087 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2088 strTabSec(strTabSec) {} 2089 2090 // Orders symbols according to their positions in the GOT, 2091 // in compliance with MIPS ABI rules. 2092 // See "Global Offset Table" in Chapter 5 in the following document 2093 // for detailed description: 2094 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2095 static bool sortMipsSymbols(const SymbolTableEntry &l, 2096 const SymbolTableEntry &r) { 2097 // Sort entries related to non-local preemptible symbols by GOT indexes. 2098 // All other entries go to the beginning of a dynsym in arbitrary order. 2099 if (l.sym->isInGot() && r.sym->isInGot()) 2100 return l.sym->getGotIdx() < r.sym->getGotIdx(); 2101 if (!l.sym->isInGot() && !r.sym->isInGot()) 2102 return false; 2103 return !l.sym->isInGot(); 2104 } 2105 2106 void SymbolTableBaseSection::finalizeContents() { 2107 if (OutputSection *sec = strTabSec.getParent()) 2108 getParent()->link = sec->sectionIndex; 2109 2110 if (this->type != SHT_DYNSYM) { 2111 sortSymTabSymbols(); 2112 return; 2113 } 2114 2115 // If it is a .dynsym, there should be no local symbols, but we need 2116 // to do a few things for the dynamic linker. 2117 2118 // Section's Info field has the index of the first non-local symbol. 2119 // Because the first symbol entry is a null entry, 1 is the first. 2120 getParent()->info = 1; 2121 2122 if (getPartition().gnuHashTab) { 2123 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2124 getPartition().gnuHashTab->addSymbols(symbols); 2125 } else if (config->emachine == EM_MIPS) { 2126 llvm::stable_sort(symbols, sortMipsSymbols); 2127 } 2128 2129 // Only the main partition's dynsym indexes are stored in the symbols 2130 // themselves. All other partitions use a lookup table. 2131 if (this == mainPart->dynSymTab.get()) { 2132 size_t i = 0; 2133 for (const SymbolTableEntry &s : symbols) 2134 s.sym->dynsymIndex = ++i; 2135 } 2136 } 2137 2138 // The ELF spec requires that all local symbols precede global symbols, so we 2139 // sort symbol entries in this function. (For .dynsym, we don't do that because 2140 // symbols for dynamic linking are inherently all globals.) 2141 // 2142 // Aside from above, we put local symbols in groups starting with the STT_FILE 2143 // symbol. That is convenient for purpose of identifying where are local symbols 2144 // coming from. 2145 void SymbolTableBaseSection::sortSymTabSymbols() { 2146 // Move all local symbols before global symbols. 2147 auto e = std::stable_partition( 2148 symbols.begin(), symbols.end(), 2149 [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); 2150 size_t numLocals = e - symbols.begin(); 2151 getParent()->info = numLocals + 1; 2152 2153 // We want to group the local symbols by file. For that we rebuild the local 2154 // part of the symbols vector. We do not need to care about the STT_FILE 2155 // symbols, they are already naturally placed first in each group. That 2156 // happens because STT_FILE is always the first symbol in the object and hence 2157 // precede all other local symbols we add for a file. 2158 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; 2159 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2160 arr[s.sym->file].push_back(s); 2161 2162 auto i = symbols.begin(); 2163 for (auto &p : arr) 2164 for (SymbolTableEntry &entry : p.second) 2165 *i++ = entry; 2166 } 2167 2168 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2169 // Adding a local symbol to a .dynsym is a bug. 2170 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2171 symbols.push_back({b, strTabSec.addString(b->getName(), false)}); 2172 } 2173 2174 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2175 if (this == mainPart->dynSymTab.get()) 2176 return sym->dynsymIndex; 2177 2178 // Initializes symbol lookup tables lazily. This is used only for -r, 2179 // --emit-relocs and dynsyms in partitions other than the main one. 2180 llvm::call_once(onceFlag, [&] { 2181 symbolIndexMap.reserve(symbols.size()); 2182 size_t i = 0; 2183 for (const SymbolTableEntry &e : symbols) { 2184 if (e.sym->type == STT_SECTION) 2185 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2186 else 2187 symbolIndexMap[e.sym] = ++i; 2188 } 2189 }); 2190 2191 // Section symbols are mapped based on their output sections 2192 // to maintain their semantics. 2193 if (sym->type == STT_SECTION) 2194 return sectionIndexMap.lookup(sym->getOutputSection()); 2195 return symbolIndexMap.lookup(sym); 2196 } 2197 2198 template <class ELFT> 2199 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2200 : SymbolTableBaseSection(strTabSec) { 2201 this->entsize = sizeof(Elf_Sym); 2202 } 2203 2204 static BssSection *getCommonSec(Symbol *sym) { 2205 if (config->relocatable) 2206 if (auto *d = dyn_cast<Defined>(sym)) 2207 return dyn_cast_or_null<BssSection>(d->section); 2208 return nullptr; 2209 } 2210 2211 static uint32_t getSymSectionIndex(Symbol *sym) { 2212 assert(!(sym->needsCopy && sym->isObject())); 2213 if (!isa<Defined>(sym) || sym->needsCopy) 2214 return SHN_UNDEF; 2215 if (const OutputSection *os = sym->getOutputSection()) 2216 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2217 : os->sectionIndex; 2218 return SHN_ABS; 2219 } 2220 2221 // Write the internal symbol table contents to the output symbol table. 2222 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2223 // The first entry is a null entry as per the ELF spec. 2224 buf += sizeof(Elf_Sym); 2225 2226 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2227 2228 for (SymbolTableEntry &ent : symbols) { 2229 Symbol *sym = ent.sym; 2230 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2231 2232 // Set st_name, st_info and st_other. 2233 eSym->st_name = ent.strTabOffset; 2234 eSym->setBindingAndType(sym->binding, sym->type); 2235 eSym->st_other = sym->visibility; 2236 2237 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2238 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2239 if (config->emachine == EM_PPC64) 2240 eSym->st_other |= sym->stOther & 0xe0; 2241 // The most significant bit of st_other is used by AArch64 ABI for the 2242 // variant PCS. 2243 else if (config->emachine == EM_AARCH64) 2244 eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS; 2245 2246 if (BssSection *commonSec = getCommonSec(sym)) { 2247 // When -r is specified, a COMMON symbol is not allocated. Its st_shndx 2248 // holds SHN_COMMON and st_value holds the alignment. 2249 eSym->st_shndx = SHN_COMMON; 2250 eSym->st_value = commonSec->alignment; 2251 eSym->st_size = cast<Defined>(sym)->size; 2252 } else { 2253 const uint32_t shndx = getSymSectionIndex(sym); 2254 if (isDefinedHere) { 2255 eSym->st_shndx = shndx; 2256 eSym->st_value = sym->getVA(); 2257 // Copy symbol size if it is a defined symbol. st_size is not 2258 // significant for undefined symbols, so whether copying it or not is up 2259 // to us if that's the case. We'll leave it as zero because by not 2260 // setting a value, we can get the exact same outputs for two sets of 2261 // input files that differ only in undefined symbol size in DSOs. 2262 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; 2263 } else { 2264 eSym->st_shndx = 0; 2265 eSym->st_value = 0; 2266 eSym->st_size = 0; 2267 } 2268 } 2269 2270 ++eSym; 2271 } 2272 2273 // On MIPS we need to mark symbol which has a PLT entry and requires 2274 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2275 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2276 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2277 if (config->emachine == EM_MIPS) { 2278 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2279 2280 for (SymbolTableEntry &ent : symbols) { 2281 Symbol *sym = ent.sym; 2282 if (sym->isInPlt() && sym->needsCopy) 2283 eSym->st_other |= STO_MIPS_PLT; 2284 if (isMicroMips()) { 2285 // We already set the less-significant bit for symbols 2286 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2287 // records. That allows us to distinguish such symbols in 2288 // the `MIPS<ELFT>::relocate()` routine. Now we should 2289 // clear that bit for non-dynamic symbol table, so tools 2290 // like `objdump` will be able to deal with a correct 2291 // symbol position. 2292 if (sym->isDefined() && 2293 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsCopy)) { 2294 if (!strTabSec.isDynamic()) 2295 eSym->st_value &= ~1; 2296 eSym->st_other |= STO_MIPS_MICROMIPS; 2297 } 2298 } 2299 if (config->relocatable) 2300 if (auto *d = dyn_cast<Defined>(sym)) 2301 if (isMipsPIC<ELFT>(d)) 2302 eSym->st_other |= STO_MIPS_PIC; 2303 ++eSym; 2304 } 2305 } 2306 } 2307 2308 SymtabShndxSection::SymtabShndxSection() 2309 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2310 this->entsize = 4; 2311 } 2312 2313 void SymtabShndxSection::writeTo(uint8_t *buf) { 2314 // We write an array of 32 bit values, where each value has 1:1 association 2315 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2316 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2317 buf += 4; // Ignore .symtab[0] entry. 2318 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2319 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX) 2320 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2321 buf += 4; 2322 } 2323 } 2324 2325 bool SymtabShndxSection::isNeeded() const { 2326 // SHT_SYMTAB can hold symbols with section indices values up to 2327 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2328 // section. Problem is that we reveal the final section indices a bit too 2329 // late, and we do not know them here. For simplicity, we just always create 2330 // a .symtab_shndx section when the amount of output sections is huge. 2331 size_t size = 0; 2332 for (SectionCommand *cmd : script->sectionCommands) 2333 if (isa<OutputDesc>(cmd)) 2334 ++size; 2335 return size >= SHN_LORESERVE; 2336 } 2337 2338 void SymtabShndxSection::finalizeContents() { 2339 getParent()->link = in.symTab->getParent()->sectionIndex; 2340 } 2341 2342 size_t SymtabShndxSection::getSize() const { 2343 return in.symTab->getNumSymbols() * 4; 2344 } 2345 2346 // .hash and .gnu.hash sections contain on-disk hash tables that map 2347 // symbol names to their dynamic symbol table indices. Their purpose 2348 // is to help the dynamic linker resolve symbols quickly. If ELF files 2349 // don't have them, the dynamic linker has to do linear search on all 2350 // dynamic symbols, which makes programs slower. Therefore, a .hash 2351 // section is added to a DSO by default. 2352 // 2353 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2354 // Each ELF file has a list of DSOs that the ELF file depends on and a 2355 // list of dynamic symbols that need to be resolved from any of the 2356 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2357 // where m is the number of DSOs and n is the number of dynamic 2358 // symbols. For modern large programs, both m and n are large. So 2359 // making each step faster by using hash tables substantially 2360 // improves time to load programs. 2361 // 2362 // (Note that this is not the only way to design the shared library. 2363 // For instance, the Windows DLL takes a different approach. On 2364 // Windows, each dynamic symbol has a name of DLL from which the symbol 2365 // has to be resolved. That makes the cost of symbol resolution O(n). 2366 // This disables some hacky techniques you can use on Unix such as 2367 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2368 // 2369 // Due to historical reasons, we have two different hash tables, .hash 2370 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2371 // and better version of .hash. .hash is just an on-disk hash table, but 2372 // .gnu.hash has a bloom filter in addition to a hash table to skip 2373 // DSOs very quickly. If you are sure that your dynamic linker knows 2374 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a 2375 // safe bet is to specify --hash-style=both for backward compatibility. 2376 GnuHashTableSection::GnuHashTableSection() 2377 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2378 } 2379 2380 void GnuHashTableSection::finalizeContents() { 2381 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2382 getParent()->link = sec->sectionIndex; 2383 2384 // Computes bloom filter size in word size. We want to allocate 12 2385 // bits for each symbol. It must be a power of two. 2386 if (symbols.empty()) { 2387 maskWords = 1; 2388 } else { 2389 uint64_t numBits = symbols.size() * 12; 2390 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2391 } 2392 2393 size = 16; // Header 2394 size += config->wordsize * maskWords; // Bloom filter 2395 size += nBuckets * 4; // Hash buckets 2396 size += symbols.size() * 4; // Hash values 2397 } 2398 2399 void GnuHashTableSection::writeTo(uint8_t *buf) { 2400 // Write a header. 2401 write32(buf, nBuckets); 2402 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2403 write32(buf + 8, maskWords); 2404 write32(buf + 12, Shift2); 2405 buf += 16; 2406 2407 // Write the 2-bit bloom filter. 2408 const unsigned c = config->is64 ? 64 : 32; 2409 for (const Entry &sym : symbols) { 2410 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2411 // the word using bits [0:5] and [26:31]. 2412 size_t i = (sym.hash / c) & (maskWords - 1); 2413 uint64_t val = readUint(buf + i * config->wordsize); 2414 val |= uint64_t(1) << (sym.hash % c); 2415 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2416 writeUint(buf + i * config->wordsize, val); 2417 } 2418 buf += config->wordsize * maskWords; 2419 2420 // Write the hash table. 2421 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2422 uint32_t oldBucket = -1; 2423 uint32_t *values = buckets + nBuckets; 2424 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2425 // Write a hash value. It represents a sequence of chains that share the 2426 // same hash modulo value. The last element of each chain is terminated by 2427 // LSB 1. 2428 uint32_t hash = i->hash; 2429 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2430 hash = isLastInChain ? hash | 1 : hash & ~1; 2431 write32(values++, hash); 2432 2433 if (i->bucketIdx == oldBucket) 2434 continue; 2435 // Write a hash bucket. Hash buckets contain indices in the following hash 2436 // value table. 2437 write32(buckets + i->bucketIdx, 2438 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2439 oldBucket = i->bucketIdx; 2440 } 2441 } 2442 2443 static uint32_t hashGnu(StringRef name) { 2444 uint32_t h = 5381; 2445 for (uint8_t c : name) 2446 h = (h << 5) + h + c; 2447 return h; 2448 } 2449 2450 // Add symbols to this symbol hash table. Note that this function 2451 // destructively sort a given vector -- which is needed because 2452 // GNU-style hash table places some sorting requirements. 2453 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { 2454 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2455 // its type correctly. 2456 auto mid = 2457 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2458 return !s.sym->isDefined() || s.sym->partition != partition; 2459 }); 2460 2461 // We chose load factor 4 for the on-disk hash table. For each hash 2462 // collision, the dynamic linker will compare a uint32_t hash value. 2463 // Since the integer comparison is quite fast, we believe we can 2464 // make the load factor even larger. 4 is just a conservative choice. 2465 // 2466 // Note that we don't want to create a zero-sized hash table because 2467 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2468 // table. If that's the case, we create a hash table with one unused 2469 // dummy slot. 2470 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2471 2472 if (mid == v.end()) 2473 return; 2474 2475 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2476 Symbol *b = ent.sym; 2477 uint32_t hash = hashGnu(b->getName()); 2478 uint32_t bucketIdx = hash % nBuckets; 2479 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2480 } 2481 2482 llvm::sort(symbols, [](const Entry &l, const Entry &r) { 2483 return std::tie(l.bucketIdx, l.strTabOffset) < 2484 std::tie(r.bucketIdx, r.strTabOffset); 2485 }); 2486 2487 v.erase(mid, v.end()); 2488 for (const Entry &ent : symbols) 2489 v.push_back({ent.sym, ent.strTabOffset}); 2490 } 2491 2492 HashTableSection::HashTableSection() 2493 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2494 this->entsize = 4; 2495 } 2496 2497 void HashTableSection::finalizeContents() { 2498 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2499 2500 if (OutputSection *sec = symTab->getParent()) 2501 getParent()->link = sec->sectionIndex; 2502 2503 unsigned numEntries = 2; // nbucket and nchain. 2504 numEntries += symTab->getNumSymbols(); // The chain entries. 2505 2506 // Create as many buckets as there are symbols. 2507 numEntries += symTab->getNumSymbols(); 2508 this->size = numEntries * 4; 2509 } 2510 2511 void HashTableSection::writeTo(uint8_t *buf) { 2512 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2513 unsigned numSymbols = symTab->getNumSymbols(); 2514 2515 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2516 write32(p++, numSymbols); // nbucket 2517 write32(p++, numSymbols); // nchain 2518 2519 uint32_t *buckets = p; 2520 uint32_t *chains = p + numSymbols; 2521 2522 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2523 Symbol *sym = s.sym; 2524 StringRef name = sym->getName(); 2525 unsigned i = sym->dynsymIndex; 2526 uint32_t hash = hashSysV(name) % numSymbols; 2527 chains[i] = buckets[hash]; 2528 write32(buckets + hash, i); 2529 } 2530 } 2531 2532 PltSection::PltSection() 2533 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2534 headerSize(target->pltHeaderSize) { 2535 // On PowerPC, this section contains lazy symbol resolvers. 2536 if (config->emachine == EM_PPC64) { 2537 name = ".glink"; 2538 alignment = 4; 2539 } 2540 2541 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2542 // symbol resolvers). 2543 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2544 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2545 name = ".plt.sec"; 2546 2547 // The PLT needs to be writable on SPARC as the dynamic linker will 2548 // modify the instructions in the PLT entries. 2549 if (config->emachine == EM_SPARCV9) 2550 this->flags |= SHF_WRITE; 2551 } 2552 2553 void PltSection::writeTo(uint8_t *buf) { 2554 // At beginning of PLT, we have code to call the dynamic 2555 // linker to resolve dynsyms at runtime. Write such code. 2556 target->writePltHeader(buf); 2557 size_t off = headerSize; 2558 2559 for (const Symbol *sym : entries) { 2560 target->writePlt(buf + off, *sym, getVA() + off); 2561 off += target->pltEntrySize; 2562 } 2563 } 2564 2565 void PltSection::addEntry(Symbol &sym) { 2566 assert(sym.auxIdx == symAux.size() - 1); 2567 symAux.back().pltIdx = entries.size(); 2568 entries.push_back(&sym); 2569 } 2570 2571 size_t PltSection::getSize() const { 2572 return headerSize + entries.size() * target->pltEntrySize; 2573 } 2574 2575 bool PltSection::isNeeded() const { 2576 // For -z retpolineplt, .iplt needs the .plt header. 2577 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2578 } 2579 2580 // Used by ARM to add mapping symbols in the PLT section, which aid 2581 // disassembly. 2582 void PltSection::addSymbols() { 2583 target->addPltHeaderSymbols(*this); 2584 2585 size_t off = headerSize; 2586 for (size_t i = 0; i < entries.size(); ++i) { 2587 target->addPltSymbols(*this, off); 2588 off += target->pltEntrySize; 2589 } 2590 } 2591 2592 IpltSection::IpltSection() 2593 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2594 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2595 name = ".glink"; 2596 alignment = 4; 2597 } 2598 } 2599 2600 void IpltSection::writeTo(uint8_t *buf) { 2601 uint32_t off = 0; 2602 for (const Symbol *sym : entries) { 2603 target->writeIplt(buf + off, *sym, getVA() + off); 2604 off += target->ipltEntrySize; 2605 } 2606 } 2607 2608 size_t IpltSection::getSize() const { 2609 return entries.size() * target->ipltEntrySize; 2610 } 2611 2612 void IpltSection::addEntry(Symbol &sym) { 2613 assert(sym.auxIdx == symAux.size() - 1); 2614 symAux.back().pltIdx = entries.size(); 2615 entries.push_back(&sym); 2616 } 2617 2618 // ARM uses mapping symbols to aid disassembly. 2619 void IpltSection::addSymbols() { 2620 size_t off = 0; 2621 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2622 target->addPltSymbols(*this, off); 2623 off += target->pltEntrySize; 2624 } 2625 } 2626 2627 PPC32GlinkSection::PPC32GlinkSection() { 2628 name = ".glink"; 2629 alignment = 4; 2630 } 2631 2632 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2633 writePPC32GlinkSection(buf, entries.size()); 2634 } 2635 2636 size_t PPC32GlinkSection::getSize() const { 2637 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2638 } 2639 2640 // This is an x86-only extra PLT section and used only when a security 2641 // enhancement feature called CET is enabled. In this comment, I'll explain what 2642 // the feature is and why we have two PLT sections if CET is enabled. 2643 // 2644 // So, what does CET do? CET introduces a new restriction to indirect jump 2645 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2646 // execute an indirect jump instruction, the processor verifies that a special 2647 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2648 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2649 // does not start with that instruction, the processor raises an exception 2650 // instead of continuing executing code. 2651 // 2652 // If CET is enabled, the compiler emits endbr to all locations where indirect 2653 // jumps may jump to. 2654 // 2655 // This mechanism makes it extremely hard to transfer the control to a middle of 2656 // a function that is not supporsed to be a indirect jump target, preventing 2657 // certain types of attacks such as ROP or JOP. 2658 // 2659 // Note that the processors in the market as of 2019 don't actually support the 2660 // feature. Only the spec is available at the moment. 2661 // 2662 // Now, I'll explain why we have this extra PLT section for CET. 2663 // 2664 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2665 // start with endbr. The problem is there's no extra space for endbr (which is 4 2666 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2667 // used. 2668 // 2669 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2670 // Remember that each PLT entry contains code to jump to an address read from 2671 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2672 // the former code is written to .plt.sec, and the latter code is written to 2673 // .plt. 2674 // 2675 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2676 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2677 // contain only code for lazy symbol resolution. 2678 // 2679 // In other words, this is how the 2-PLT scheme works. Application code is 2680 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2681 // entry contains code to read an address from a corresponding .got.plt entry 2682 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2683 // when an application calls an external function for the first time, the 2684 // control is transferred to a function that resolves a symbol name from 2685 // external shared object files. That function then rewrites a .got.plt entry 2686 // with a resolved address, so that the subsequent function calls directly jump 2687 // to a desired location from .plt.sec. 2688 // 2689 // There is an open question as to whether the 2-PLT scheme was desirable or 2690 // not. We could have simply extended the PLT entry size to 32-bytes to 2691 // accommodate endbr, and that scheme would have been much simpler than the 2692 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2693 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2694 // that the optimization actually makes a difference. 2695 // 2696 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2697 // depend on it, so we implement the ABI. 2698 IBTPltSection::IBTPltSection() 2699 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2700 2701 void IBTPltSection::writeTo(uint8_t *buf) { 2702 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2703 } 2704 2705 size_t IBTPltSection::getSize() const { 2706 // 16 is the header size of .plt. 2707 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2708 } 2709 2710 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; } 2711 2712 // The string hash function for .gdb_index. 2713 static uint32_t computeGdbHash(StringRef s) { 2714 uint32_t h = 0; 2715 for (uint8_t c : s) 2716 h = h * 67 + toLower(c) - 113; 2717 return h; 2718 } 2719 2720 GdbIndexSection::GdbIndexSection() 2721 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2722 2723 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2724 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2725 size_t GdbIndexSection::computeSymtabSize() const { 2726 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2727 } 2728 2729 // Compute the output section size. 2730 void GdbIndexSection::initOutputSize() { 2731 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2732 2733 for (GdbChunk &chunk : chunks) 2734 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2735 2736 // Add the constant pool size if exists. 2737 if (!symbols.empty()) { 2738 GdbSymbol &sym = symbols.back(); 2739 size += sym.nameOff + sym.name.size() + 1; 2740 } 2741 } 2742 2743 static SmallVector<GdbIndexSection::CuEntry, 0> 2744 readCuList(DWARFContext &dwarf) { 2745 SmallVector<GdbIndexSection::CuEntry, 0> ret; 2746 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2747 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2748 return ret; 2749 } 2750 2751 static SmallVector<GdbIndexSection::AddressEntry, 0> 2752 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2753 SmallVector<GdbIndexSection::AddressEntry, 0> ret; 2754 2755 uint32_t cuIdx = 0; 2756 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2757 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2758 warn(toString(sec) + ": " + toString(std::move(e))); 2759 return {}; 2760 } 2761 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2762 if (!ranges) { 2763 warn(toString(sec) + ": " + toString(ranges.takeError())); 2764 return {}; 2765 } 2766 2767 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2768 for (DWARFAddressRange &r : *ranges) { 2769 if (r.SectionIndex == -1ULL) 2770 continue; 2771 // Range list with zero size has no effect. 2772 InputSectionBase *s = sections[r.SectionIndex]; 2773 if (s && s != &InputSection::discarded && s->isLive()) 2774 if (r.LowPC != r.HighPC) 2775 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2776 } 2777 ++cuIdx; 2778 } 2779 2780 return ret; 2781 } 2782 2783 template <class ELFT> 2784 static SmallVector<GdbIndexSection::NameAttrEntry, 0> 2785 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2786 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { 2787 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2788 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2789 2790 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret; 2791 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2792 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2793 DWARFDebugPubTable table; 2794 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2795 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2796 }); 2797 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2798 // The value written into the constant pool is kind << 24 | cuIndex. As we 2799 // don't know how many compilation units precede this object to compute 2800 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2801 // the number of preceding compilation units later. 2802 uint32_t i = llvm::partition_point(cus, 2803 [&](GdbIndexSection::CuEntry cu) { 2804 return cu.cuOffset < set.Offset; 2805 }) - 2806 cus.begin(); 2807 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2808 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2809 (ent.Descriptor.toBits() << 24) | i}); 2810 } 2811 } 2812 return ret; 2813 } 2814 2815 // Create a list of symbols from a given list of symbol names and types 2816 // by uniquifying them by name. 2817 static SmallVector<GdbIndexSection::GdbSymbol, 0> createSymbols( 2818 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs, 2819 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) { 2820 using GdbSymbol = GdbIndexSection::GdbSymbol; 2821 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2822 2823 // For each chunk, compute the number of compilation units preceding it. 2824 uint32_t cuIdx = 0; 2825 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); 2826 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2827 cuIdxs[i] = cuIdx; 2828 cuIdx += chunks[i].compilationUnits.size(); 2829 } 2830 2831 // The number of symbols we will handle in this function is of the order 2832 // of millions for very large executables, so we use multi-threading to 2833 // speed it up. 2834 constexpr size_t numShards = 32; 2835 size_t concurrency = PowerOf2Floor( 2836 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 2837 .compute_thread_count(), 2838 numShards)); 2839 2840 // A sharded map to uniquify symbols by name. 2841 auto map = 2842 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards); 2843 size_t shift = 32 - countTrailingZeros(numShards); 2844 2845 // Instantiate GdbSymbols while uniqufying them by name. 2846 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards); 2847 2848 parallelFor(0, concurrency, [&](size_t threadId) { 2849 uint32_t i = 0; 2850 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2851 for (const NameAttrEntry &ent : entries) { 2852 size_t shardId = ent.name.hash() >> shift; 2853 if ((shardId & (concurrency - 1)) != threadId) 2854 continue; 2855 2856 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2857 size_t &idx = map[shardId][ent.name]; 2858 if (idx) { 2859 symbols[shardId][idx - 1].cuVector.push_back(v); 2860 continue; 2861 } 2862 2863 idx = symbols[shardId].size() + 1; 2864 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2865 } 2866 ++i; 2867 } 2868 }); 2869 2870 size_t numSymbols = 0; 2871 for (ArrayRef<GdbSymbol> v : makeArrayRef(symbols.get(), numShards)) 2872 numSymbols += v.size(); 2873 2874 // The return type is a flattened vector, so we'll copy each vector 2875 // contents to Ret. 2876 SmallVector<GdbSymbol, 0> ret; 2877 ret.reserve(numSymbols); 2878 for (SmallVector<GdbSymbol, 0> &vec : 2879 makeMutableArrayRef(symbols.get(), numShards)) 2880 for (GdbSymbol &sym : vec) 2881 ret.push_back(std::move(sym)); 2882 2883 // CU vectors and symbol names are adjacent in the output file. 2884 // We can compute their offsets in the output file now. 2885 size_t off = 0; 2886 for (GdbSymbol &sym : ret) { 2887 sym.cuVectorOff = off; 2888 off += (sym.cuVector.size() + 1) * 4; 2889 } 2890 for (GdbSymbol &sym : ret) { 2891 sym.nameOff = off; 2892 off += sym.name.size() + 1; 2893 } 2894 2895 return ret; 2896 } 2897 2898 // Returns a newly-created .gdb_index section. 2899 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2900 // Collect InputFiles with .debug_info. See the comment in 2901 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2902 // note that isec->data() may uncompress the full content, which should be 2903 // parallelized. 2904 SetVector<InputFile *> files; 2905 for (InputSectionBase *s : inputSections) { 2906 InputSection *isec = dyn_cast<InputSection>(s); 2907 if (!isec) 2908 continue; 2909 // .debug_gnu_pub{names,types} are useless in executables. 2910 // They are present in input object files solely for creating 2911 // a .gdb_index. So we can remove them from the output. 2912 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2913 s->markDead(); 2914 else if (isec->name == ".debug_info") 2915 files.insert(isec->file); 2916 } 2917 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 2918 llvm::erase_if(inputSections, [](InputSectionBase *s) { 2919 if (auto *isec = dyn_cast<InputSection>(s)) 2920 if (InputSectionBase *rel = isec->getRelocatedSection()) 2921 return !rel->isLive(); 2922 return !s->isLive(); 2923 }); 2924 2925 SmallVector<GdbChunk, 0> chunks(files.size()); 2926 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size()); 2927 2928 parallelFor(0, files.size(), [&](size_t i) { 2929 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2930 // avoid getDwarf() here. 2931 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2932 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2933 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2934 2935 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2936 // this only picks the last one. Other address ranges are lost. 2937 chunks[i].sec = dobj.getInfoSection(); 2938 chunks[i].compilationUnits = readCuList(dwarf); 2939 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2940 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2941 }); 2942 2943 auto *ret = make<GdbIndexSection>(); 2944 ret->chunks = std::move(chunks); 2945 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2946 ret->initOutputSize(); 2947 return ret; 2948 } 2949 2950 void GdbIndexSection::writeTo(uint8_t *buf) { 2951 // Write the header. 2952 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2953 uint8_t *start = buf; 2954 hdr->version = 7; 2955 buf += sizeof(*hdr); 2956 2957 // Write the CU list. 2958 hdr->cuListOff = buf - start; 2959 for (GdbChunk &chunk : chunks) { 2960 for (CuEntry &cu : chunk.compilationUnits) { 2961 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2962 write64le(buf + 8, cu.cuLength); 2963 buf += 16; 2964 } 2965 } 2966 2967 // Write the address area. 2968 hdr->cuTypesOff = buf - start; 2969 hdr->addressAreaOff = buf - start; 2970 uint32_t cuOff = 0; 2971 for (GdbChunk &chunk : chunks) { 2972 for (AddressEntry &e : chunk.addressAreas) { 2973 // In the case of ICF there may be duplicate address range entries. 2974 const uint64_t baseAddr = e.section->repl->getVA(0); 2975 write64le(buf, baseAddr + e.lowAddress); 2976 write64le(buf + 8, baseAddr + e.highAddress); 2977 write32le(buf + 16, e.cuIndex + cuOff); 2978 buf += 20; 2979 } 2980 cuOff += chunk.compilationUnits.size(); 2981 } 2982 2983 // Write the on-disk open-addressing hash table containing symbols. 2984 hdr->symtabOff = buf - start; 2985 size_t symtabSize = computeSymtabSize(); 2986 uint32_t mask = symtabSize - 1; 2987 2988 for (GdbSymbol &sym : symbols) { 2989 uint32_t h = sym.name.hash(); 2990 uint32_t i = h & mask; 2991 uint32_t step = ((h * 17) & mask) | 1; 2992 2993 while (read32le(buf + i * 8)) 2994 i = (i + step) & mask; 2995 2996 write32le(buf + i * 8, sym.nameOff); 2997 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2998 } 2999 3000 buf += symtabSize * 8; 3001 3002 // Write the string pool. 3003 hdr->constantPoolOff = buf - start; 3004 parallelForEach(symbols, [&](GdbSymbol &sym) { 3005 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 3006 }); 3007 3008 // Write the CU vectors. 3009 for (GdbSymbol &sym : symbols) { 3010 write32le(buf, sym.cuVector.size()); 3011 buf += 4; 3012 for (uint32_t val : sym.cuVector) { 3013 write32le(buf, val); 3014 buf += 4; 3015 } 3016 } 3017 } 3018 3019 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 3020 3021 EhFrameHeader::EhFrameHeader() 3022 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 3023 3024 void EhFrameHeader::writeTo(uint8_t *buf) { 3025 // Unlike most sections, the EhFrameHeader section is written while writing 3026 // another section, namely EhFrameSection, which calls the write() function 3027 // below from its writeTo() function. This is necessary because the contents 3028 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 3029 // don't know which order the sections will be written in. 3030 } 3031 3032 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 3033 // Each entry of the search table consists of two values, 3034 // the starting PC from where FDEs covers, and the FDE's address. 3035 // It is sorted by PC. 3036 void EhFrameHeader::write() { 3037 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3038 using FdeData = EhFrameSection::FdeData; 3039 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData(); 3040 3041 buf[0] = 1; 3042 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3043 buf[2] = DW_EH_PE_udata4; 3044 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3045 write32(buf + 4, 3046 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3047 write32(buf + 8, fdes.size()); 3048 buf += 12; 3049 3050 for (FdeData &fde : fdes) { 3051 write32(buf, fde.pcRel); 3052 write32(buf + 4, fde.fdeVARel); 3053 buf += 8; 3054 } 3055 } 3056 3057 size_t EhFrameHeader::getSize() const { 3058 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3059 return 12 + getPartition().ehFrame->numFdes * 8; 3060 } 3061 3062 bool EhFrameHeader::isNeeded() const { 3063 return isLive() && getPartition().ehFrame->isNeeded(); 3064 } 3065 3066 VersionDefinitionSection::VersionDefinitionSection() 3067 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3068 ".gnu.version_d") {} 3069 3070 StringRef VersionDefinitionSection::getFileDefName() { 3071 if (!getPartition().name.empty()) 3072 return getPartition().name; 3073 if (!config->soName.empty()) 3074 return config->soName; 3075 return config->outputFile; 3076 } 3077 3078 void VersionDefinitionSection::finalizeContents() { 3079 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3080 for (const VersionDefinition &v : namedVersionDefs()) 3081 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3082 3083 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3084 getParent()->link = sec->sectionIndex; 3085 3086 // sh_info should be set to the number of definitions. This fact is missed in 3087 // documentation, but confirmed by binutils community: 3088 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3089 getParent()->info = getVerDefNum(); 3090 } 3091 3092 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3093 StringRef name, size_t nameOff) { 3094 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3095 3096 // Write a verdef. 3097 write16(buf, 1); // vd_version 3098 write16(buf + 2, flags); // vd_flags 3099 write16(buf + 4, index); // vd_ndx 3100 write16(buf + 6, 1); // vd_cnt 3101 write32(buf + 8, hashSysV(name)); // vd_hash 3102 write32(buf + 12, 20); // vd_aux 3103 write32(buf + 16, 28); // vd_next 3104 3105 // Write a veraux. 3106 write32(buf + 20, nameOff); // vda_name 3107 write32(buf + 24, 0); // vda_next 3108 } 3109 3110 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3111 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3112 3113 auto nameOffIt = verDefNameOffs.begin(); 3114 for (const VersionDefinition &v : namedVersionDefs()) { 3115 buf += EntrySize; 3116 writeOne(buf, v.id, v.name, *nameOffIt++); 3117 } 3118 3119 // Need to terminate the last version definition. 3120 write32(buf + 16, 0); // vd_next 3121 } 3122 3123 size_t VersionDefinitionSection::getSize() const { 3124 return EntrySize * getVerDefNum(); 3125 } 3126 3127 // .gnu.version is a table where each entry is 2 byte long. 3128 VersionTableSection::VersionTableSection() 3129 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3130 ".gnu.version") { 3131 this->entsize = 2; 3132 } 3133 3134 void VersionTableSection::finalizeContents() { 3135 // At the moment of june 2016 GNU docs does not mention that sh_link field 3136 // should be set, but Sun docs do. Also readelf relies on this field. 3137 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3138 } 3139 3140 size_t VersionTableSection::getSize() const { 3141 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3142 } 3143 3144 void VersionTableSection::writeTo(uint8_t *buf) { 3145 buf += 2; 3146 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3147 // For an unextracted lazy symbol (undefined weak), it must have been 3148 // converted to Undefined and have VER_NDX_GLOBAL version here. 3149 assert(!s.sym->isLazy()); 3150 write16(buf, s.sym->versionId); 3151 buf += 2; 3152 } 3153 } 3154 3155 bool VersionTableSection::isNeeded() const { 3156 return isLive() && 3157 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3158 } 3159 3160 void elf::addVerneed(Symbol *ss) { 3161 auto &file = cast<SharedFile>(*ss->file); 3162 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3163 ss->versionId = VER_NDX_GLOBAL; 3164 return; 3165 } 3166 3167 if (file.vernauxs.empty()) 3168 file.vernauxs.resize(file.verdefs.size()); 3169 3170 // Select a version identifier for the vernaux data structure, if we haven't 3171 // already allocated one. The verdef identifiers cover the range 3172 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3173 // getVerDefNum()+1. 3174 if (file.vernauxs[ss->verdefIndex] == 0) 3175 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3176 3177 ss->versionId = file.vernauxs[ss->verdefIndex]; 3178 } 3179 3180 template <class ELFT> 3181 VersionNeedSection<ELFT>::VersionNeedSection() 3182 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3183 ".gnu.version_r") {} 3184 3185 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3186 for (SharedFile *f : ctx->sharedFiles) { 3187 if (f->vernauxs.empty()) 3188 continue; 3189 verneeds.emplace_back(); 3190 Verneed &vn = verneeds.back(); 3191 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3192 bool isLibc = config->relrGlibc && f->soName.startswith("libc.so."); 3193 bool isGlibc2 = false; 3194 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3195 if (f->vernauxs[i] == 0) 3196 continue; 3197 auto *verdef = 3198 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3199 StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name); 3200 if (isLibc && ver.startswith("GLIBC_2.")) 3201 isGlibc2 = true; 3202 vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i], 3203 getPartition().dynStrTab->addString(ver)}); 3204 } 3205 if (isGlibc2) { 3206 const char *ver = "GLIBC_ABI_DT_RELR"; 3207 vn.vernauxs.push_back({hashSysV(ver), 3208 ++SharedFile::vernauxNum + getVerDefNum(), 3209 getPartition().dynStrTab->addString(ver)}); 3210 } 3211 } 3212 3213 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3214 getParent()->link = sec->sectionIndex; 3215 getParent()->info = verneeds.size(); 3216 } 3217 3218 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3219 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3220 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3221 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3222 3223 for (auto &vn : verneeds) { 3224 // Create an Elf_Verneed for this DSO. 3225 verneed->vn_version = 1; 3226 verneed->vn_cnt = vn.vernauxs.size(); 3227 verneed->vn_file = vn.nameStrTab; 3228 verneed->vn_aux = 3229 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3230 verneed->vn_next = sizeof(Elf_Verneed); 3231 ++verneed; 3232 3233 // Create the Elf_Vernauxs for this Elf_Verneed. 3234 for (auto &vna : vn.vernauxs) { 3235 vernaux->vna_hash = vna.hash; 3236 vernaux->vna_flags = 0; 3237 vernaux->vna_other = vna.verneedIndex; 3238 vernaux->vna_name = vna.nameStrTab; 3239 vernaux->vna_next = sizeof(Elf_Vernaux); 3240 ++vernaux; 3241 } 3242 3243 vernaux[-1].vna_next = 0; 3244 } 3245 verneed[-1].vn_next = 0; 3246 } 3247 3248 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3249 return verneeds.size() * sizeof(Elf_Verneed) + 3250 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3251 } 3252 3253 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3254 return isLive() && SharedFile::vernauxNum != 0; 3255 } 3256 3257 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3258 ms->parent = this; 3259 sections.push_back(ms); 3260 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3261 alignment = std::max(alignment, ms->alignment); 3262 } 3263 3264 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3265 uint64_t flags, uint32_t alignment) 3266 : MergeSyntheticSection(name, type, flags, alignment), 3267 builder(StringTableBuilder::RAW, alignment) {} 3268 3269 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3270 3271 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3272 3273 void MergeTailSection::finalizeContents() { 3274 // Add all string pieces to the string table builder to create section 3275 // contents. 3276 for (MergeInputSection *sec : sections) 3277 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3278 if (sec->pieces[i].live) 3279 builder.add(sec->getData(i)); 3280 3281 // Fix the string table content. After this, the contents will never change. 3282 builder.finalize(); 3283 3284 // finalize() fixed tail-optimized strings, so we can now get 3285 // offsets of strings. Get an offset for each string and save it 3286 // to a corresponding SectionPiece for easy access. 3287 for (MergeInputSection *sec : sections) 3288 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3289 if (sec->pieces[i].live) 3290 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3291 } 3292 3293 void MergeNoTailSection::writeTo(uint8_t *buf) { 3294 parallelFor(0, numShards, 3295 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); 3296 } 3297 3298 // This function is very hot (i.e. it can take several seconds to finish) 3299 // because sometimes the number of inputs is in an order of magnitude of 3300 // millions. So, we use multi-threading. 3301 // 3302 // For any strings S and T, we know S is not mergeable with T if S's hash 3303 // value is different from T's. If that's the case, we can safely put S and 3304 // T into different string builders without worrying about merge misses. 3305 // We do it in parallel. 3306 void MergeNoTailSection::finalizeContents() { 3307 // Initializes string table builders. 3308 for (size_t i = 0; i < numShards; ++i) 3309 shards.emplace_back(StringTableBuilder::RAW, alignment); 3310 3311 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3312 // operations in the following tight loop. 3313 size_t concurrency = PowerOf2Floor( 3314 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 3315 .compute_thread_count(), 3316 numShards)); 3317 3318 // Add section pieces to the builders. 3319 parallelFor(0, concurrency, [&](size_t threadId) { 3320 for (MergeInputSection *sec : sections) { 3321 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3322 if (!sec->pieces[i].live) 3323 continue; 3324 size_t shardId = getShardId(sec->pieces[i].hash); 3325 if ((shardId & (concurrency - 1)) == threadId) 3326 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3327 } 3328 } 3329 }); 3330 3331 // Compute an in-section offset for each shard. 3332 size_t off = 0; 3333 for (size_t i = 0; i < numShards; ++i) { 3334 shards[i].finalizeInOrder(); 3335 if (shards[i].getSize() > 0) 3336 off = alignToPowerOf2(off, alignment); 3337 shardOffsets[i] = off; 3338 off += shards[i].getSize(); 3339 } 3340 size = off; 3341 3342 // So far, section pieces have offsets from beginning of shards, but 3343 // we want offsets from beginning of the whole section. Fix them. 3344 parallelForEach(sections, [&](MergeInputSection *sec) { 3345 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3346 if (sec->pieces[i].live) 3347 sec->pieces[i].outputOff += 3348 shardOffsets[getShardId(sec->pieces[i].hash)]; 3349 }); 3350 } 3351 3352 template <class ELFT> void elf::splitSections() { 3353 llvm::TimeTraceScope timeScope("Split sections"); 3354 // splitIntoPieces needs to be called on each MergeInputSection 3355 // before calling finalizeContents(). 3356 parallelForEach(ctx->objectFiles, [](ELFFileBase *file) { 3357 for (InputSectionBase *sec : file->getSections()) { 3358 if (!sec) 3359 continue; 3360 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3361 s->splitIntoPieces(); 3362 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3363 eh->split<ELFT>(); 3364 } 3365 }); 3366 } 3367 3368 MipsRldMapSection::MipsRldMapSection() 3369 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3370 ".rld_map") {} 3371 3372 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3373 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3374 config->wordsize, ".ARM.exidx") {} 3375 3376 static InputSection *findExidxSection(InputSection *isec) { 3377 for (InputSection *d : isec->dependentSections) 3378 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3379 return d; 3380 return nullptr; 3381 } 3382 3383 static bool isValidExidxSectionDep(InputSection *isec) { 3384 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3385 isec->getSize() > 0; 3386 } 3387 3388 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3389 if (isec->type == SHT_ARM_EXIDX) { 3390 if (InputSection *dep = isec->getLinkOrderDep()) 3391 if (isValidExidxSectionDep(dep)) { 3392 exidxSections.push_back(isec); 3393 // Every exidxSection is 8 bytes, we need an estimate of 3394 // size before assignAddresses can be called. Final size 3395 // will only be known after finalize is called. 3396 size += 8; 3397 } 3398 return true; 3399 } 3400 3401 if (isValidExidxSectionDep(isec)) { 3402 executableSections.push_back(isec); 3403 return false; 3404 } 3405 3406 // FIXME: we do not output a relocation section when --emit-relocs is used 3407 // as we do not have relocation sections for linker generated table entries 3408 // and we would have to erase at a late stage relocations from merged entries. 3409 // Given that exception tables are already position independent and a binary 3410 // analyzer could derive the relocations we choose to erase the relocations. 3411 if (config->emitRelocs && isec->type == SHT_REL) 3412 if (InputSectionBase *ex = isec->getRelocatedSection()) 3413 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3414 return true; 3415 3416 return false; 3417 } 3418 3419 // References to .ARM.Extab Sections have bit 31 clear and are not the 3420 // special EXIDX_CANTUNWIND bit-pattern. 3421 static bool isExtabRef(uint32_t unwind) { 3422 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3423 } 3424 3425 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3426 // section Prev, where Cur follows Prev in the table. This can be done if the 3427 // unwinding instructions in Cur are identical to Prev. Linker generated 3428 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3429 // InputSection. 3430 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3431 3432 struct ExidxEntry { 3433 ulittle32_t fn; 3434 ulittle32_t unwind; 3435 }; 3436 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3437 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3438 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3439 if (prev) 3440 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3441 if (isExtabRef(prevEntry.unwind)) 3442 return false; 3443 3444 // We consider the unwind instructions of an .ARM.exidx table entry 3445 // a duplicate if the previous unwind instructions if: 3446 // - Both are the special EXIDX_CANTUNWIND. 3447 // - Both are the same inline unwind instructions. 3448 // We do not attempt to follow and check links into .ARM.extab tables as 3449 // consecutive identical entries are rare and the effort to check that they 3450 // are identical is high. 3451 3452 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3453 if (cur == nullptr) 3454 return prevEntry.unwind == 1; 3455 3456 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3457 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3458 return false; 3459 3460 // All table entries in this .ARM.exidx Section can be merged into the 3461 // previous Section. 3462 return true; 3463 } 3464 3465 // The .ARM.exidx table must be sorted in ascending order of the address of the 3466 // functions the table describes. Optionally duplicate adjacent table entries 3467 // can be removed. At the end of the function the executableSections must be 3468 // sorted in ascending order of address, Sentinel is set to the InputSection 3469 // with the highest address and any InputSections that have mergeable 3470 // .ARM.exidx table entries are removed from it. 3471 void ARMExidxSyntheticSection::finalizeContents() { 3472 // The executableSections and exidxSections that we use to derive the final 3473 // contents of this SyntheticSection are populated before 3474 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3475 // ICF may remove executable InputSections and their dependent .ARM.exidx 3476 // section that we recorded earlier. 3477 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3478 llvm::erase_if(exidxSections, isDiscarded); 3479 // We need to remove discarded InputSections and InputSections without 3480 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3481 // of range. 3482 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3483 if (!isec->isLive()) 3484 return true; 3485 if (findExidxSection(isec)) 3486 return false; 3487 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3488 return off != llvm::SignExtend64(off, 31); 3489 }; 3490 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3491 3492 // Sort the executable sections that may or may not have associated 3493 // .ARM.exidx sections by order of ascending address. This requires the 3494 // relative positions of InputSections and OutputSections to be known. 3495 auto compareByFilePosition = [](const InputSection *a, 3496 const InputSection *b) { 3497 OutputSection *aOut = a->getParent(); 3498 OutputSection *bOut = b->getParent(); 3499 3500 if (aOut != bOut) 3501 return aOut->addr < bOut->addr; 3502 return a->outSecOff < b->outSecOff; 3503 }; 3504 llvm::stable_sort(executableSections, compareByFilePosition); 3505 sentinel = executableSections.back(); 3506 // Optionally merge adjacent duplicate entries. 3507 if (config->mergeArmExidx) { 3508 SmallVector<InputSection *, 0> selectedSections; 3509 selectedSections.reserve(executableSections.size()); 3510 selectedSections.push_back(executableSections[0]); 3511 size_t prev = 0; 3512 for (size_t i = 1; i < executableSections.size(); ++i) { 3513 InputSection *ex1 = findExidxSection(executableSections[prev]); 3514 InputSection *ex2 = findExidxSection(executableSections[i]); 3515 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3516 selectedSections.push_back(executableSections[i]); 3517 prev = i; 3518 } 3519 } 3520 executableSections = std::move(selectedSections); 3521 } 3522 3523 size_t offset = 0; 3524 size = 0; 3525 for (InputSection *isec : executableSections) { 3526 if (InputSection *d = findExidxSection(isec)) { 3527 d->outSecOff = offset; 3528 d->parent = getParent(); 3529 offset += d->getSize(); 3530 } else { 3531 offset += 8; 3532 } 3533 } 3534 // Size includes Sentinel. 3535 size = offset + 8; 3536 } 3537 3538 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3539 return executableSections.front(); 3540 } 3541 3542 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3543 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3544 // We write the .ARM.exidx section contents and apply its relocations. 3545 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3546 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3547 // start of the InputSection as the purpose of the linker generated 3548 // section is to terminate the address range of the previous entry. 3549 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3550 // the table to terminate the address range of the final entry. 3551 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3552 3553 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3554 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3555 3556 uint64_t offset = 0; 3557 for (InputSection *isec : executableSections) { 3558 assert(isec->getParent() != nullptr); 3559 if (InputSection *d = findExidxSection(isec)) { 3560 memcpy(buf + offset, d->rawData.data(), d->rawData.size()); 3561 d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize()); 3562 offset += d->getSize(); 3563 } else { 3564 // A Linker generated CANTUNWIND section. 3565 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3566 uint64_t s = isec->getVA(); 3567 uint64_t p = getVA() + offset; 3568 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3569 offset += 8; 3570 } 3571 } 3572 // Write Sentinel. 3573 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3574 uint64_t s = sentinel->getVA(sentinel->getSize()); 3575 uint64_t p = getVA() + offset; 3576 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3577 assert(size == offset + 8); 3578 } 3579 3580 bool ARMExidxSyntheticSection::isNeeded() const { 3581 return llvm::any_of(exidxSections, 3582 [](InputSection *isec) { return isec->isLive(); }); 3583 } 3584 3585 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3586 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 3587 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 3588 this->parent = os; 3589 this->outSecOff = off; 3590 } 3591 3592 size_t ThunkSection::getSize() const { 3593 if (roundUpSizeForErrata) 3594 return alignTo(size, 4096); 3595 return size; 3596 } 3597 3598 void ThunkSection::addThunk(Thunk *t) { 3599 thunks.push_back(t); 3600 t->addSymbols(*this); 3601 } 3602 3603 void ThunkSection::writeTo(uint8_t *buf) { 3604 for (Thunk *t : thunks) 3605 t->writeTo(buf + t->offset); 3606 } 3607 3608 InputSection *ThunkSection::getTargetInputSection() const { 3609 if (thunks.empty()) 3610 return nullptr; 3611 const Thunk *t = thunks.front(); 3612 return t->getTargetInputSection(); 3613 } 3614 3615 bool ThunkSection::assignOffsets() { 3616 uint64_t off = 0; 3617 for (Thunk *t : thunks) { 3618 off = alignToPowerOf2(off, t->alignment); 3619 t->setOffset(off); 3620 uint32_t size = t->size(); 3621 t->getThunkTargetSym()->size = size; 3622 off += size; 3623 } 3624 bool changed = off != size; 3625 size = off; 3626 return changed; 3627 } 3628 3629 PPC32Got2Section::PPC32Got2Section() 3630 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3631 3632 bool PPC32Got2Section::isNeeded() const { 3633 // See the comment below. This is not needed if there is no other 3634 // InputSection. 3635 for (SectionCommand *cmd : getParent()->commands) 3636 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 3637 for (InputSection *isec : isd->sections) 3638 if (isec != this) 3639 return true; 3640 return false; 3641 } 3642 3643 void PPC32Got2Section::finalizeContents() { 3644 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3645 // .got2 . This function computes outSecOff of each .got2 to be used in 3646 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3647 // to collect input sections named ".got2". 3648 for (SectionCommand *cmd : getParent()->commands) 3649 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 3650 for (InputSection *isec : isd->sections) { 3651 // isec->file may be nullptr for MergeSyntheticSection. 3652 if (isec != this && isec->file) 3653 isec->file->ppc32Got2 = isec; 3654 } 3655 } 3656 } 3657 3658 // If linking position-dependent code then the table will store the addresses 3659 // directly in the binary so the section has type SHT_PROGBITS. If linking 3660 // position-independent code the section has type SHT_NOBITS since it will be 3661 // allocated and filled in by the dynamic linker. 3662 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3663 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3664 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3665 ".branch_lt") {} 3666 3667 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3668 int64_t addend) { 3669 return getVA() + entry_index.find({sym, addend})->second * 8; 3670 } 3671 3672 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3673 int64_t addend) { 3674 auto res = 3675 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3676 if (!res.second) 3677 return None; 3678 entries.emplace_back(sym, addend); 3679 return res.first->second; 3680 } 3681 3682 size_t PPC64LongBranchTargetSection::getSize() const { 3683 return entries.size() * 8; 3684 } 3685 3686 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3687 // If linking non-pic we have the final addresses of the targets and they get 3688 // written to the table directly. For pic the dynamic linker will allocate 3689 // the section and fill it it. 3690 if (config->isPic) 3691 return; 3692 3693 for (auto entry : entries) { 3694 const Symbol *sym = entry.first; 3695 int64_t addend = entry.second; 3696 assert(sym->getVA()); 3697 // Need calls to branch to the local entry-point since a long-branch 3698 // must be a local-call. 3699 write64(buf, sym->getVA(addend) + 3700 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3701 buf += 8; 3702 } 3703 } 3704 3705 bool PPC64LongBranchTargetSection::isNeeded() const { 3706 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3707 // is too early to determine if this section will be empty or not. We need 3708 // Finalized to keep the section alive until after thunk creation. Finalized 3709 // only gets set to true once `finalizeSections()` is called after thunk 3710 // creation. Because of this, if we don't create any long-branch thunks we end 3711 // up with an empty .branch_lt section in the binary. 3712 return !finalized || !entries.empty(); 3713 } 3714 3715 static uint8_t getAbiVersion() { 3716 // MIPS non-PIC executable gets ABI version 1. 3717 if (config->emachine == EM_MIPS) { 3718 if (!config->isPic && !config->relocatable && 3719 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3720 return 1; 3721 return 0; 3722 } 3723 3724 if (config->emachine == EM_AMDGPU && !ctx->objectFiles.empty()) { 3725 uint8_t ver = ctx->objectFiles[0]->abiVersion; 3726 for (InputFile *file : makeArrayRef(ctx->objectFiles).slice(1)) 3727 if (file->abiVersion != ver) 3728 error("incompatible ABI version: " + toString(file)); 3729 return ver; 3730 } 3731 3732 return 0; 3733 } 3734 3735 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3736 memcpy(buf, "\177ELF", 4); 3737 3738 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3739 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3740 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3741 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3742 eHdr->e_ident[EI_OSABI] = config->osabi; 3743 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3744 eHdr->e_machine = config->emachine; 3745 eHdr->e_version = EV_CURRENT; 3746 eHdr->e_flags = config->eflags; 3747 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3748 eHdr->e_phnum = part.phdrs.size(); 3749 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3750 3751 if (!config->relocatable) { 3752 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3753 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3754 } 3755 } 3756 3757 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3758 // Write the program header table. 3759 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3760 for (PhdrEntry *p : part.phdrs) { 3761 hBuf->p_type = p->p_type; 3762 hBuf->p_flags = p->p_flags; 3763 hBuf->p_offset = p->p_offset; 3764 hBuf->p_vaddr = p->p_vaddr; 3765 hBuf->p_paddr = p->p_paddr; 3766 hBuf->p_filesz = p->p_filesz; 3767 hBuf->p_memsz = p->p_memsz; 3768 hBuf->p_align = p->p_align; 3769 ++hBuf; 3770 } 3771 } 3772 3773 template <typename ELFT> 3774 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3775 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3776 3777 template <typename ELFT> 3778 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3779 return sizeof(typename ELFT::Ehdr); 3780 } 3781 3782 template <typename ELFT> 3783 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3784 writeEhdr<ELFT>(buf, getPartition()); 3785 3786 // Loadable partitions are always ET_DYN. 3787 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3788 eHdr->e_type = ET_DYN; 3789 } 3790 3791 template <typename ELFT> 3792 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3793 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3794 3795 template <typename ELFT> 3796 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3797 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3798 } 3799 3800 template <typename ELFT> 3801 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3802 writePhdrs<ELFT>(buf, getPartition()); 3803 } 3804 3805 PartitionIndexSection::PartitionIndexSection() 3806 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3807 3808 size_t PartitionIndexSection::getSize() const { 3809 return 12 * (partitions.size() - 1); 3810 } 3811 3812 void PartitionIndexSection::finalizeContents() { 3813 for (size_t i = 1; i != partitions.size(); ++i) 3814 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3815 } 3816 3817 void PartitionIndexSection::writeTo(uint8_t *buf) { 3818 uint64_t va = getVA(); 3819 for (size_t i = 1; i != partitions.size(); ++i) { 3820 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3821 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3822 3823 SyntheticSection *next = i == partitions.size() - 1 3824 ? in.partEnd.get() 3825 : partitions[i + 1].elfHeader.get(); 3826 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3827 3828 va += 12; 3829 buf += 12; 3830 } 3831 } 3832 3833 void InStruct::reset() { 3834 attributes.reset(); 3835 bss.reset(); 3836 bssRelRo.reset(); 3837 got.reset(); 3838 gotPlt.reset(); 3839 igotPlt.reset(); 3840 ppc64LongBranchTarget.reset(); 3841 mipsAbiFlags.reset(); 3842 mipsGot.reset(); 3843 mipsOptions.reset(); 3844 mipsReginfo.reset(); 3845 mipsRldMap.reset(); 3846 partEnd.reset(); 3847 partIndex.reset(); 3848 plt.reset(); 3849 iplt.reset(); 3850 ppc32Got2.reset(); 3851 ibtPlt.reset(); 3852 relaPlt.reset(); 3853 relaIplt.reset(); 3854 shStrTab.reset(); 3855 strTab.reset(); 3856 symTab.reset(); 3857 symTabShndx.reset(); 3858 } 3859 3860 constexpr char kMemtagAndroidNoteName[] = "Android"; 3861 void MemtagAndroidNote::writeTo(uint8_t *buf) { 3862 static_assert(sizeof(kMemtagAndroidNoteName) == 8, 3863 "ABI check for Android 11 & 12."); 3864 assert((config->androidMemtagStack || config->androidMemtagHeap) && 3865 "Should only be synthesizing a note if heap || stack is enabled."); 3866 3867 write32(buf, sizeof(kMemtagAndroidNoteName)); 3868 write32(buf + 4, sizeof(uint32_t)); 3869 write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG); 3870 memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName)); 3871 buf += 12 + sizeof(kMemtagAndroidNoteName); 3872 3873 uint32_t value = 0; 3874 value |= config->androidMemtagMode; 3875 if (config->androidMemtagHeap) 3876 value |= ELF::NT_MEMTAG_HEAP; 3877 // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled 3878 // binary on Android 11 or 12 will result in a checkfail in the loader. 3879 if (config->androidMemtagStack) 3880 value |= ELF::NT_MEMTAG_STACK; 3881 write32(buf, value); // note value 3882 } 3883 3884 size_t MemtagAndroidNote::getSize() const { 3885 return sizeof(llvm::ELF::Elf64_Nhdr) + 3886 /*namesz=*/sizeof(kMemtagAndroidNoteName) + 3887 /*descsz=*/sizeof(uint32_t); 3888 } 3889 3890 void PackageMetadataNote::writeTo(uint8_t *buf) { 3891 write32(buf, 4); 3892 write32(buf + 4, config->packageMetadata.size() + 1); 3893 write32(buf + 8, FDO_PACKAGING_METADATA); 3894 memcpy(buf + 12, "FDO", 4); 3895 memcpy(buf + 16, config->packageMetadata.data(), 3896 config->packageMetadata.size()); 3897 } 3898 3899 size_t PackageMetadataNote::getSize() const { 3900 return sizeof(llvm::ELF::Elf64_Nhdr) + 4 + 3901 alignTo(config->packageMetadata.size() + 1, 4); 3902 } 3903 3904 InStruct elf::in; 3905 3906 std::vector<Partition> elf::partitions; 3907 Partition *elf::mainPart; 3908 3909 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3910 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3911 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3912 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3913 3914 template void elf::splitSections<ELF32LE>(); 3915 template void elf::splitSections<ELF32BE>(); 3916 template void elf::splitSections<ELF64LE>(); 3917 template void elf::splitSections<ELF64BE>(); 3918 3919 template class elf::MipsAbiFlagsSection<ELF32LE>; 3920 template class elf::MipsAbiFlagsSection<ELF32BE>; 3921 template class elf::MipsAbiFlagsSection<ELF64LE>; 3922 template class elf::MipsAbiFlagsSection<ELF64BE>; 3923 3924 template class elf::MipsOptionsSection<ELF32LE>; 3925 template class elf::MipsOptionsSection<ELF32BE>; 3926 template class elf::MipsOptionsSection<ELF64LE>; 3927 template class elf::MipsOptionsSection<ELF64BE>; 3928 3929 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 3930 function_ref<void(InputSection &)>); 3931 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 3932 function_ref<void(InputSection &)>); 3933 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 3934 function_ref<void(InputSection &)>); 3935 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 3936 function_ref<void(InputSection &)>); 3937 3938 template class elf::MipsReginfoSection<ELF32LE>; 3939 template class elf::MipsReginfoSection<ELF32BE>; 3940 template class elf::MipsReginfoSection<ELF64LE>; 3941 template class elf::MipsReginfoSection<ELF64BE>; 3942 3943 template class elf::DynamicSection<ELF32LE>; 3944 template class elf::DynamicSection<ELF32BE>; 3945 template class elf::DynamicSection<ELF64LE>; 3946 template class elf::DynamicSection<ELF64BE>; 3947 3948 template class elf::RelocationSection<ELF32LE>; 3949 template class elf::RelocationSection<ELF32BE>; 3950 template class elf::RelocationSection<ELF64LE>; 3951 template class elf::RelocationSection<ELF64BE>; 3952 3953 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3954 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3955 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3956 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3957 3958 template class elf::RelrSection<ELF32LE>; 3959 template class elf::RelrSection<ELF32BE>; 3960 template class elf::RelrSection<ELF64LE>; 3961 template class elf::RelrSection<ELF64BE>; 3962 3963 template class elf::SymbolTableSection<ELF32LE>; 3964 template class elf::SymbolTableSection<ELF32BE>; 3965 template class elf::SymbolTableSection<ELF64LE>; 3966 template class elf::SymbolTableSection<ELF64BE>; 3967 3968 template class elf::VersionNeedSection<ELF32LE>; 3969 template class elf::VersionNeedSection<ELF32BE>; 3970 template class elf::VersionNeedSection<ELF64LE>; 3971 template class elf::VersionNeedSection<ELF64BE>; 3972 3973 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3974 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3975 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3976 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3977 3978 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3979 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3980 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3981 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3982 3983 template class elf::PartitionElfHeaderSection<ELF32LE>; 3984 template class elf::PartitionElfHeaderSection<ELF32BE>; 3985 template class elf::PartitionElfHeaderSection<ELF64LE>; 3986 template class elf::PartitionElfHeaderSection<ELF64BE>; 3987 3988 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3989 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3990 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3991 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3992