1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "InputFiles.h" 19 #include "LinkerScript.h" 20 #include "OutputSections.h" 21 #include "SymbolTable.h" 22 #include "Symbols.h" 23 #include "Target.h" 24 #include "Writer.h" 25 #include "lld/Common/CommonLinkerContext.h" 26 #include "lld/Common/DWARF.h" 27 #include "lld/Common/Strings.h" 28 #include "lld/Common/Version.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 33 #include "llvm/Object/ELFObjectFile.h" 34 #include "llvm/Support/Compression.h" 35 #include "llvm/Support/Endian.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/MD5.h" 38 #include "llvm/Support/Parallel.h" 39 #include "llvm/Support/TimeProfiler.h" 40 #include <cstdlib> 41 #include <thread> 42 43 using namespace llvm; 44 using namespace llvm::dwarf; 45 using namespace llvm::ELF; 46 using namespace llvm::object; 47 using namespace llvm::support; 48 using namespace lld; 49 using namespace lld::elf; 50 51 using llvm::support::endian::read32le; 52 using llvm::support::endian::write32le; 53 using llvm::support::endian::write64le; 54 55 constexpr size_t MergeNoTailSection::numShards; 56 57 static uint64_t readUint(uint8_t *buf) { 58 return config->is64 ? read64(buf) : read32(buf); 59 } 60 61 static void writeUint(uint8_t *buf, uint64_t val) { 62 if (config->is64) 63 write64(buf, val); 64 else 65 write32(buf, val); 66 } 67 68 // Returns an LLD version string. 69 static ArrayRef<uint8_t> getVersion() { 70 // Check LLD_VERSION first for ease of testing. 71 // You can get consistent output by using the environment variable. 72 // This is only for testing. 73 StringRef s = getenv("LLD_VERSION"); 74 if (s.empty()) 75 s = saver().save(Twine("Linker: ") + getLLDVersion()); 76 77 // +1 to include the terminating '\0'. 78 return {(const uint8_t *)s.data(), s.size() + 1}; 79 } 80 81 // Creates a .comment section containing LLD version info. 82 // With this feature, you can identify LLD-generated binaries easily 83 // by "readelf --string-dump .comment <file>". 84 // The returned object is a mergeable string section. 85 MergeInputSection *elf::createCommentSection() { 86 auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 87 getVersion(), ".comment"); 88 sec->splitIntoPieces(); 89 return sec; 90 } 91 92 // .MIPS.abiflags section. 93 template <class ELFT> 94 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 95 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 96 flags(flags) { 97 this->entsize = sizeof(Elf_Mips_ABIFlags); 98 } 99 100 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 101 memcpy(buf, &flags, sizeof(flags)); 102 } 103 104 template <class ELFT> 105 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() { 106 Elf_Mips_ABIFlags flags = {}; 107 bool create = false; 108 109 for (InputSectionBase *sec : inputSections) { 110 if (sec->type != SHT_MIPS_ABIFLAGS) 111 continue; 112 sec->markDead(); 113 create = true; 114 115 std::string filename = toString(sec->file); 116 const size_t size = sec->data().size(); 117 // Older version of BFD (such as the default FreeBSD linker) concatenate 118 // .MIPS.abiflags instead of merging. To allow for this case (or potential 119 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 120 if (size < sizeof(Elf_Mips_ABIFlags)) { 121 error(filename + ": invalid size of .MIPS.abiflags section: got " + 122 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 123 return nullptr; 124 } 125 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data()); 126 if (s->version != 0) { 127 error(filename + ": unexpected .MIPS.abiflags version " + 128 Twine(s->version)); 129 return nullptr; 130 } 131 132 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 133 // select the highest number of ISA/Rev/Ext. 134 flags.isa_level = std::max(flags.isa_level, s->isa_level); 135 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 136 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 137 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 138 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 139 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 140 flags.ases |= s->ases; 141 flags.flags1 |= s->flags1; 142 flags.flags2 |= s->flags2; 143 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 144 }; 145 146 if (create) 147 return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags); 148 return nullptr; 149 } 150 151 // .MIPS.options section. 152 template <class ELFT> 153 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 154 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 155 reginfo(reginfo) { 156 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 157 } 158 159 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 160 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 161 options->kind = ODK_REGINFO; 162 options->size = getSize(); 163 164 if (!config->relocatable) 165 reginfo.ri_gp_value = in.mipsGot->getGp(); 166 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 167 } 168 169 template <class ELFT> 170 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() { 171 // N64 ABI only. 172 if (!ELFT::Is64Bits) 173 return nullptr; 174 175 SmallVector<InputSectionBase *, 0> sections; 176 for (InputSectionBase *sec : inputSections) 177 if (sec->type == SHT_MIPS_OPTIONS) 178 sections.push_back(sec); 179 180 if (sections.empty()) 181 return nullptr; 182 183 Elf_Mips_RegInfo reginfo = {}; 184 for (InputSectionBase *sec : sections) { 185 sec->markDead(); 186 187 std::string filename = toString(sec->file); 188 ArrayRef<uint8_t> d = sec->data(); 189 190 while (!d.empty()) { 191 if (d.size() < sizeof(Elf_Mips_Options)) { 192 error(filename + ": invalid size of .MIPS.options section"); 193 break; 194 } 195 196 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 197 if (opt->kind == ODK_REGINFO) { 198 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 199 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 200 break; 201 } 202 203 if (!opt->size) 204 fatal(filename + ": zero option descriptor size"); 205 d = d.slice(opt->size); 206 } 207 }; 208 209 return std::make_unique<MipsOptionsSection<ELFT>>(reginfo); 210 } 211 212 // MIPS .reginfo section. 213 template <class ELFT> 214 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 215 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 216 reginfo(reginfo) { 217 this->entsize = sizeof(Elf_Mips_RegInfo); 218 } 219 220 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 221 if (!config->relocatable) 222 reginfo.ri_gp_value = in.mipsGot->getGp(); 223 memcpy(buf, ®info, sizeof(reginfo)); 224 } 225 226 template <class ELFT> 227 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() { 228 // Section should be alive for O32 and N32 ABIs only. 229 if (ELFT::Is64Bits) 230 return nullptr; 231 232 SmallVector<InputSectionBase *, 0> sections; 233 for (InputSectionBase *sec : inputSections) 234 if (sec->type == SHT_MIPS_REGINFO) 235 sections.push_back(sec); 236 237 if (sections.empty()) 238 return nullptr; 239 240 Elf_Mips_RegInfo reginfo = {}; 241 for (InputSectionBase *sec : sections) { 242 sec->markDead(); 243 244 if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) { 245 error(toString(sec->file) + ": invalid size of .reginfo section"); 246 return nullptr; 247 } 248 249 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data()); 250 reginfo.ri_gprmask |= r->ri_gprmask; 251 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 252 }; 253 254 return std::make_unique<MipsReginfoSection<ELFT>>(reginfo); 255 } 256 257 InputSection *elf::createInterpSection() { 258 // StringSaver guarantees that the returned string ends with '\0'. 259 StringRef s = saver().save(config->dynamicLinker); 260 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 261 262 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 263 ".interp"); 264 } 265 266 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 267 uint64_t size, InputSectionBase §ion) { 268 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type, 269 value, size, §ion); 270 if (in.symTab) 271 in.symTab->addSymbol(s); 272 return s; 273 } 274 275 static size_t getHashSize() { 276 switch (config->buildId) { 277 case BuildIdKind::Fast: 278 return 8; 279 case BuildIdKind::Md5: 280 case BuildIdKind::Uuid: 281 return 16; 282 case BuildIdKind::Sha1: 283 return 20; 284 case BuildIdKind::Hexstring: 285 return config->buildIdVector.size(); 286 default: 287 llvm_unreachable("unknown BuildIdKind"); 288 } 289 } 290 291 // This class represents a linker-synthesized .note.gnu.property section. 292 // 293 // In x86 and AArch64, object files may contain feature flags indicating the 294 // features that they have used. The flags are stored in a .note.gnu.property 295 // section. 296 // 297 // lld reads the sections from input files and merges them by computing AND of 298 // the flags. The result is written as a new .note.gnu.property section. 299 // 300 // If the flag is zero (which indicates that the intersection of the feature 301 // sets is empty, or some input files didn't have .note.gnu.property sections), 302 // we don't create this section. 303 GnuPropertySection::GnuPropertySection() 304 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 305 config->wordsize, ".note.gnu.property") {} 306 307 void GnuPropertySection::writeTo(uint8_t *buf) { 308 uint32_t featureAndType = config->emachine == EM_AARCH64 309 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 310 : GNU_PROPERTY_X86_FEATURE_1_AND; 311 312 write32(buf, 4); // Name size 313 write32(buf + 4, config->is64 ? 16 : 12); // Content size 314 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 315 memcpy(buf + 12, "GNU", 4); // Name string 316 write32(buf + 16, featureAndType); // Feature type 317 write32(buf + 20, 4); // Feature size 318 write32(buf + 24, config->andFeatures); // Feature flags 319 if (config->is64) 320 write32(buf + 28, 0); // Padding 321 } 322 323 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 324 325 BuildIdSection::BuildIdSection() 326 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 327 hashSize(getHashSize()) {} 328 329 void BuildIdSection::writeTo(uint8_t *buf) { 330 write32(buf, 4); // Name size 331 write32(buf + 4, hashSize); // Content size 332 write32(buf + 8, NT_GNU_BUILD_ID); // Type 333 memcpy(buf + 12, "GNU", 4); // Name string 334 hashBuf = buf + 16; 335 } 336 337 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 338 assert(buf.size() == hashSize); 339 memcpy(hashBuf, buf.data(), hashSize); 340 } 341 342 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 343 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 344 this->bss = true; 345 this->size = size; 346 } 347 348 EhFrameSection::EhFrameSection() 349 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 350 351 // Search for an existing CIE record or create a new one. 352 // CIE records from input object files are uniquified by their contents 353 // and where their relocations point to. 354 template <class ELFT, class RelTy> 355 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 356 Symbol *personality = nullptr; 357 unsigned firstRelI = cie.firstRelocation; 358 if (firstRelI != (unsigned)-1) 359 personality = 360 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 361 362 // Search for an existing CIE by CIE contents/relocation target pair. 363 CieRecord *&rec = cieMap[{cie.data(), personality}]; 364 365 // If not found, create a new one. 366 if (!rec) { 367 rec = make<CieRecord>(); 368 rec->cie = &cie; 369 cieRecords.push_back(rec); 370 } 371 return rec; 372 } 373 374 // There is one FDE per function. Returns a non-null pointer to the function 375 // symbol if the given FDE points to a live function. 376 template <class ELFT, class RelTy> 377 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 378 auto *sec = cast<EhInputSection>(fde.sec); 379 unsigned firstRelI = fde.firstRelocation; 380 381 // An FDE should point to some function because FDEs are to describe 382 // functions. That's however not always the case due to an issue of 383 // ld.gold with -r. ld.gold may discard only functions and leave their 384 // corresponding FDEs, which results in creating bad .eh_frame sections. 385 // To deal with that, we ignore such FDEs. 386 if (firstRelI == (unsigned)-1) 387 return nullptr; 388 389 const RelTy &rel = rels[firstRelI]; 390 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 391 392 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 393 // another partition, are dead. 394 if (auto *d = dyn_cast<Defined>(&b)) 395 if (!d->folded && d->section && d->section->partition == partition) 396 return d; 397 return nullptr; 398 } 399 400 // .eh_frame is a sequence of CIE or FDE records. In general, there 401 // is one CIE record per input object file which is followed by 402 // a list of FDEs. This function searches an existing CIE or create a new 403 // one and associates FDEs to the CIE. 404 template <class ELFT, class RelTy> 405 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 406 offsetToCie.clear(); 407 for (EhSectionPiece &piece : sec->pieces) { 408 // The empty record is the end marker. 409 if (piece.size == 4) 410 return; 411 412 size_t offset = piece.inputOff; 413 uint32_t id = read32(piece.data().data() + 4); 414 if (id == 0) { 415 offsetToCie[offset] = addCie<ELFT>(piece, rels); 416 continue; 417 } 418 419 uint32_t cieOffset = offset + 4 - id; 420 CieRecord *rec = offsetToCie[cieOffset]; 421 if (!rec) 422 fatal(toString(sec) + ": invalid CIE reference"); 423 424 if (!isFdeLive<ELFT>(piece, rels)) 425 continue; 426 rec->fdes.push_back(&piece); 427 numFdes++; 428 } 429 } 430 431 template <class ELFT> 432 void EhFrameSection::addSectionAux(EhInputSection *sec) { 433 if (!sec->isLive()) 434 return; 435 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 436 if (rels.areRelocsRel()) 437 addRecords<ELFT>(sec, rels.rels); 438 else 439 addRecords<ELFT>(sec, rels.relas); 440 } 441 442 void EhFrameSection::addSection(EhInputSection *sec) { 443 sec->parent = this; 444 445 alignment = std::max(alignment, sec->alignment); 446 sections.push_back(sec); 447 448 for (auto *ds : sec->dependentSections) 449 dependentSections.push_back(ds); 450 } 451 452 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 453 // EhFrameSection::addRecords(). 454 template <class ELFT, class RelTy> 455 void EhFrameSection::iterateFDEWithLSDAAux( 456 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 457 llvm::function_ref<void(InputSection &)> fn) { 458 for (EhSectionPiece &piece : sec.pieces) { 459 // Skip ZERO terminator. 460 if (piece.size == 4) 461 continue; 462 463 size_t offset = piece.inputOff; 464 uint32_t id = 465 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 466 if (id == 0) { 467 if (hasLSDA(piece)) 468 ciesWithLSDA.insert(offset); 469 continue; 470 } 471 uint32_t cieOffset = offset + 4 - id; 472 if (ciesWithLSDA.count(cieOffset) == 0) 473 continue; 474 475 // The CIE has a LSDA argument. Call fn with d's section. 476 if (Defined *d = isFdeLive<ELFT>(piece, rels)) 477 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 478 fn(*s); 479 } 480 } 481 482 template <class ELFT> 483 void EhFrameSection::iterateFDEWithLSDA( 484 llvm::function_ref<void(InputSection &)> fn) { 485 DenseSet<size_t> ciesWithLSDA; 486 for (EhInputSection *sec : sections) { 487 ciesWithLSDA.clear(); 488 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 489 if (rels.areRelocsRel()) 490 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); 491 else 492 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); 493 } 494 } 495 496 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 497 memcpy(buf, d.data(), d.size()); 498 499 size_t aligned = alignTo(d.size(), config->wordsize); 500 assert(std::all_of(buf + d.size(), buf + aligned, 501 [](uint8_t c) { return c == 0; })); 502 503 // Fix the size field. -4 since size does not include the size field itself. 504 write32(buf, aligned - 4); 505 } 506 507 void EhFrameSection::finalizeContents() { 508 assert(!this->size); // Not finalized. 509 510 switch (config->ekind) { 511 case ELFNoneKind: 512 llvm_unreachable("invalid ekind"); 513 case ELF32LEKind: 514 for (EhInputSection *sec : sections) 515 addSectionAux<ELF32LE>(sec); 516 break; 517 case ELF32BEKind: 518 for (EhInputSection *sec : sections) 519 addSectionAux<ELF32BE>(sec); 520 break; 521 case ELF64LEKind: 522 for (EhInputSection *sec : sections) 523 addSectionAux<ELF64LE>(sec); 524 break; 525 case ELF64BEKind: 526 for (EhInputSection *sec : sections) 527 addSectionAux<ELF64BE>(sec); 528 break; 529 } 530 531 size_t off = 0; 532 for (CieRecord *rec : cieRecords) { 533 rec->cie->outputOff = off; 534 off += alignTo(rec->cie->size, config->wordsize); 535 536 for (EhSectionPiece *fde : rec->fdes) { 537 fde->outputOff = off; 538 off += alignTo(fde->size, config->wordsize); 539 } 540 } 541 542 // The LSB standard does not allow a .eh_frame section with zero 543 // Call Frame Information records. glibc unwind-dw2-fde.c 544 // classify_object_over_fdes expects there is a CIE record length 0 as a 545 // terminator. Thus we add one unconditionally. 546 off += 4; 547 548 this->size = off; 549 } 550 551 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 552 // to get an FDE from an address to which FDE is applied. This function 553 // returns a list of such pairs. 554 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { 555 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 556 SmallVector<FdeData, 0> ret; 557 558 uint64_t va = getPartition().ehFrameHdr->getVA(); 559 for (CieRecord *rec : cieRecords) { 560 uint8_t enc = getFdeEncoding(rec->cie); 561 for (EhSectionPiece *fde : rec->fdes) { 562 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 563 uint64_t fdeVA = getParent()->addr + fde->outputOff; 564 if (!isInt<32>(pc - va)) 565 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 566 Twine::utohexstr(pc - va)); 567 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 568 } 569 } 570 571 // Sort the FDE list by their PC and uniqueify. Usually there is only 572 // one FDE for a PC (i.e. function), but if ICF merges two functions 573 // into one, there can be more than one FDEs pointing to the address. 574 auto less = [](const FdeData &a, const FdeData &b) { 575 return a.pcRel < b.pcRel; 576 }; 577 llvm::stable_sort(ret, less); 578 auto eq = [](const FdeData &a, const FdeData &b) { 579 return a.pcRel == b.pcRel; 580 }; 581 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 582 583 return ret; 584 } 585 586 static uint64_t readFdeAddr(uint8_t *buf, int size) { 587 switch (size) { 588 case DW_EH_PE_udata2: 589 return read16(buf); 590 case DW_EH_PE_sdata2: 591 return (int16_t)read16(buf); 592 case DW_EH_PE_udata4: 593 return read32(buf); 594 case DW_EH_PE_sdata4: 595 return (int32_t)read32(buf); 596 case DW_EH_PE_udata8: 597 case DW_EH_PE_sdata8: 598 return read64(buf); 599 case DW_EH_PE_absptr: 600 return readUint(buf); 601 } 602 fatal("unknown FDE size encoding"); 603 } 604 605 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 606 // We need it to create .eh_frame_hdr section. 607 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 608 uint8_t enc) const { 609 // The starting address to which this FDE applies is 610 // stored at FDE + 8 byte. 611 size_t off = fdeOff + 8; 612 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 613 if ((enc & 0x70) == DW_EH_PE_absptr) 614 return addr; 615 if ((enc & 0x70) == DW_EH_PE_pcrel) 616 return addr + getParent()->addr + off; 617 fatal("unknown FDE size relative encoding"); 618 } 619 620 void EhFrameSection::writeTo(uint8_t *buf) { 621 // Write CIE and FDE records. 622 for (CieRecord *rec : cieRecords) { 623 size_t cieOffset = rec->cie->outputOff; 624 writeCieFde(buf + cieOffset, rec->cie->data()); 625 626 for (EhSectionPiece *fde : rec->fdes) { 627 size_t off = fde->outputOff; 628 writeCieFde(buf + off, fde->data()); 629 630 // FDE's second word should have the offset to an associated CIE. 631 // Write it. 632 write32(buf + off + 4, off + 4 - cieOffset); 633 } 634 } 635 636 // Apply relocations. .eh_frame section contents are not contiguous 637 // in the output buffer, but relocateAlloc() still works because 638 // getOffset() takes care of discontiguous section pieces. 639 for (EhInputSection *s : sections) 640 s->relocateAlloc(buf, nullptr); 641 642 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 643 getPartition().ehFrameHdr->write(); 644 } 645 646 GotSection::GotSection() 647 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 648 target->gotEntrySize, ".got") { 649 numEntries = target->gotHeaderEntriesNum; 650 } 651 652 void GotSection::addEntry(Symbol &sym) { 653 assert(sym.auxIdx == symAux.size() - 1); 654 symAux.back().gotIdx = numEntries++; 655 } 656 657 bool GotSection::addTlsDescEntry(Symbol &sym) { 658 assert(sym.auxIdx == symAux.size() - 1); 659 symAux.back().tlsDescIdx = numEntries; 660 numEntries += 2; 661 return true; 662 } 663 664 bool GotSection::addDynTlsEntry(Symbol &sym) { 665 assert(sym.auxIdx == symAux.size() - 1); 666 symAux.back().tlsGdIdx = numEntries; 667 // Global Dynamic TLS entries take two GOT slots. 668 numEntries += 2; 669 return true; 670 } 671 672 // Reserves TLS entries for a TLS module ID and a TLS block offset. 673 // In total it takes two GOT slots. 674 bool GotSection::addTlsIndex() { 675 if (tlsIndexOff != uint32_t(-1)) 676 return false; 677 tlsIndexOff = numEntries * config->wordsize; 678 numEntries += 2; 679 return true; 680 } 681 682 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { 683 return sym.getTlsDescIdx() * config->wordsize; 684 } 685 686 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { 687 return getVA() + getTlsDescOffset(sym); 688 } 689 690 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 691 return this->getVA() + b.getTlsGdIdx() * config->wordsize; 692 } 693 694 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 695 return b.getTlsGdIdx() * config->wordsize; 696 } 697 698 void GotSection::finalizeContents() { 699 if (config->emachine == EM_PPC64 && 700 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable) 701 size = 0; 702 else 703 size = numEntries * config->wordsize; 704 } 705 706 bool GotSection::isNeeded() const { 707 // Needed if the GOT symbol is used or the number of entries is more than just 708 // the header. A GOT with just the header may not be needed. 709 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum; 710 } 711 712 void GotSection::writeTo(uint8_t *buf) { 713 target->writeGotHeader(buf); 714 relocateAlloc(buf, buf + size); 715 } 716 717 static uint64_t getMipsPageAddr(uint64_t addr) { 718 return (addr + 0x8000) & ~0xffff; 719 } 720 721 static uint64_t getMipsPageCount(uint64_t size) { 722 return (size + 0xfffe) / 0xffff + 1; 723 } 724 725 MipsGotSection::MipsGotSection() 726 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 727 ".got") {} 728 729 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 730 RelExpr expr) { 731 FileGot &g = getGot(file); 732 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 733 if (const OutputSection *os = sym.getOutputSection()) 734 g.pagesMap.insert({os, {}}); 735 else 736 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 737 } else if (sym.isTls()) 738 g.tls.insert({&sym, 0}); 739 else if (sym.isPreemptible && expr == R_ABS) 740 g.relocs.insert({&sym, 0}); 741 else if (sym.isPreemptible) 742 g.global.insert({&sym, 0}); 743 else if (expr == R_MIPS_GOT_OFF32) 744 g.local32.insert({{&sym, addend}, 0}); 745 else 746 g.local16.insert({{&sym, addend}, 0}); 747 } 748 749 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 750 getGot(file).dynTlsSymbols.insert({&sym, 0}); 751 } 752 753 void MipsGotSection::addTlsIndex(InputFile &file) { 754 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 755 } 756 757 size_t MipsGotSection::FileGot::getEntriesNum() const { 758 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 759 tls.size() + dynTlsSymbols.size() * 2; 760 } 761 762 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 763 size_t num = 0; 764 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 765 num += p.second.count; 766 return num; 767 } 768 769 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 770 size_t count = getPageEntriesNum() + local16.size() + global.size(); 771 // If there are relocation-only entries in the GOT, TLS entries 772 // are allocated after them. TLS entries should be addressable 773 // by 16-bit index so count both reloc-only and TLS entries. 774 if (!tls.empty() || !dynTlsSymbols.empty()) 775 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 776 return count; 777 } 778 779 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 780 if (f.mipsGotIndex == uint32_t(-1)) { 781 gots.emplace_back(); 782 gots.back().file = &f; 783 f.mipsGotIndex = gots.size() - 1; 784 } 785 return gots[f.mipsGotIndex]; 786 } 787 788 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 789 const Symbol &sym, 790 int64_t addend) const { 791 const FileGot &g = gots[f->mipsGotIndex]; 792 uint64_t index = 0; 793 if (const OutputSection *outSec = sym.getOutputSection()) { 794 uint64_t secAddr = getMipsPageAddr(outSec->addr); 795 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 796 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 797 } else { 798 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 799 } 800 return index * config->wordsize; 801 } 802 803 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 804 int64_t addend) const { 805 const FileGot &g = gots[f->mipsGotIndex]; 806 Symbol *sym = const_cast<Symbol *>(&s); 807 if (sym->isTls()) 808 return g.tls.lookup(sym) * config->wordsize; 809 if (sym->isPreemptible) 810 return g.global.lookup(sym) * config->wordsize; 811 return g.local16.lookup({sym, addend}) * config->wordsize; 812 } 813 814 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 815 const FileGot &g = gots[f->mipsGotIndex]; 816 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 817 } 818 819 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 820 const Symbol &s) const { 821 const FileGot &g = gots[f->mipsGotIndex]; 822 Symbol *sym = const_cast<Symbol *>(&s); 823 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 824 } 825 826 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 827 if (gots.empty()) 828 return nullptr; 829 const FileGot &primGot = gots.front(); 830 if (!primGot.global.empty()) 831 return primGot.global.front().first; 832 if (!primGot.relocs.empty()) 833 return primGot.relocs.front().first; 834 return nullptr; 835 } 836 837 unsigned MipsGotSection::getLocalEntriesNum() const { 838 if (gots.empty()) 839 return headerEntriesNum; 840 return headerEntriesNum + gots.front().getPageEntriesNum() + 841 gots.front().local16.size(); 842 } 843 844 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 845 FileGot tmp = dst; 846 set_union(tmp.pagesMap, src.pagesMap); 847 set_union(tmp.local16, src.local16); 848 set_union(tmp.global, src.global); 849 set_union(tmp.relocs, src.relocs); 850 set_union(tmp.tls, src.tls); 851 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 852 853 size_t count = isPrimary ? headerEntriesNum : 0; 854 count += tmp.getIndexedEntriesNum(); 855 856 if (count * config->wordsize > config->mipsGotSize) 857 return false; 858 859 std::swap(tmp, dst); 860 return true; 861 } 862 863 void MipsGotSection::finalizeContents() { updateAllocSize(); } 864 865 bool MipsGotSection::updateAllocSize() { 866 size = headerEntriesNum * config->wordsize; 867 for (const FileGot &g : gots) 868 size += g.getEntriesNum() * config->wordsize; 869 return false; 870 } 871 872 void MipsGotSection::build() { 873 if (gots.empty()) 874 return; 875 876 std::vector<FileGot> mergedGots(1); 877 878 // For each GOT move non-preemptible symbols from the `Global` 879 // to `Local16` list. Preemptible symbol might become non-preemptible 880 // one if, for example, it gets a related copy relocation. 881 for (FileGot &got : gots) { 882 for (auto &p: got.global) 883 if (!p.first->isPreemptible) 884 got.local16.insert({{p.first, 0}, 0}); 885 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 886 return !p.first->isPreemptible; 887 }); 888 } 889 890 // For each GOT remove "reloc-only" entry if there is "global" 891 // entry for the same symbol. And add local entries which indexed 892 // using 32-bit value at the end of 16-bit entries. 893 for (FileGot &got : gots) { 894 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 895 return got.global.count(p.first); 896 }); 897 set_union(got.local16, got.local32); 898 got.local32.clear(); 899 } 900 901 // Evaluate number of "reloc-only" entries in the resulting GOT. 902 // To do that put all unique "reloc-only" and "global" entries 903 // from all GOTs to the future primary GOT. 904 FileGot *primGot = &mergedGots.front(); 905 for (FileGot &got : gots) { 906 set_union(primGot->relocs, got.global); 907 set_union(primGot->relocs, got.relocs); 908 got.relocs.clear(); 909 } 910 911 // Evaluate number of "page" entries in each GOT. 912 for (FileGot &got : gots) { 913 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 914 got.pagesMap) { 915 const OutputSection *os = p.first; 916 uint64_t secSize = 0; 917 for (SectionCommand *cmd : os->commands) { 918 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 919 for (InputSection *isec : isd->sections) { 920 uint64_t off = alignTo(secSize, isec->alignment); 921 secSize = off + isec->getSize(); 922 } 923 } 924 p.second.count = getMipsPageCount(secSize); 925 } 926 } 927 928 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 929 // maximum GOT size. At first, try to fill the primary GOT because 930 // the primary GOT can be accessed in the most effective way. If it 931 // is not possible, try to fill the last GOT in the list, and finally 932 // create a new GOT if both attempts failed. 933 for (FileGot &srcGot : gots) { 934 InputFile *file = srcGot.file; 935 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 936 file->mipsGotIndex = 0; 937 } else { 938 // If this is the first time we failed to merge with the primary GOT, 939 // MergedGots.back() will also be the primary GOT. We must make sure not 940 // to try to merge again with isPrimary=false, as otherwise, if the 941 // inputs are just right, we could allow the primary GOT to become 1 or 2 942 // words bigger due to ignoring the header size. 943 if (mergedGots.size() == 1 || 944 !tryMergeGots(mergedGots.back(), srcGot, false)) { 945 mergedGots.emplace_back(); 946 std::swap(mergedGots.back(), srcGot); 947 } 948 file->mipsGotIndex = mergedGots.size() - 1; 949 } 950 } 951 std::swap(gots, mergedGots); 952 953 // Reduce number of "reloc-only" entries in the primary GOT 954 // by subtracting "global" entries in the primary GOT. 955 primGot = &gots.front(); 956 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 957 return primGot->global.count(p.first); 958 }); 959 960 // Calculate indexes for each GOT entry. 961 size_t index = headerEntriesNum; 962 for (FileGot &got : gots) { 963 got.startIndex = &got == primGot ? 0 : index; 964 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 965 got.pagesMap) { 966 // For each output section referenced by GOT page relocations calculate 967 // and save into pagesMap an upper bound of MIPS GOT entries required 968 // to store page addresses of local symbols. We assume the worst case - 969 // each 64kb page of the output section has at least one GOT relocation 970 // against it. And take in account the case when the section intersects 971 // page boundaries. 972 p.second.firstIndex = index; 973 index += p.second.count; 974 } 975 for (auto &p: got.local16) 976 p.second = index++; 977 for (auto &p: got.global) 978 p.second = index++; 979 for (auto &p: got.relocs) 980 p.second = index++; 981 for (auto &p: got.tls) 982 p.second = index++; 983 for (auto &p: got.dynTlsSymbols) { 984 p.second = index; 985 index += 2; 986 } 987 } 988 989 // Update SymbolAux::gotIdx field to use this 990 // value later in the `sortMipsSymbols` function. 991 for (auto &p : primGot->global) { 992 if (p.first->auxIdx == uint32_t(-1)) 993 p.first->allocateAux(); 994 symAux.back().gotIdx = p.second; 995 } 996 for (auto &p : primGot->relocs) { 997 if (p.first->auxIdx == uint32_t(-1)) 998 p.first->allocateAux(); 999 symAux.back().gotIdx = p.second; 1000 } 1001 1002 // Create dynamic relocations. 1003 for (FileGot &got : gots) { 1004 // Create dynamic relocations for TLS entries. 1005 for (std::pair<Symbol *, size_t> &p : got.tls) { 1006 Symbol *s = p.first; 1007 uint64_t offset = p.second * config->wordsize; 1008 // When building a shared library we still need a dynamic relocation 1009 // for the TP-relative offset as we don't know how much other data will 1010 // be allocated before us in the static TLS block. 1011 if (s->isPreemptible || config->shared) 1012 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset, 1013 DynamicReloc::AgainstSymbolWithTargetVA, 1014 *s, 0, R_ABS}); 1015 } 1016 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 1017 Symbol *s = p.first; 1018 uint64_t offset = p.second * config->wordsize; 1019 if (s == nullptr) { 1020 if (!config->shared) 1021 continue; 1022 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset}); 1023 } else { 1024 // When building a shared library we still need a dynamic relocation 1025 // for the module index. Therefore only checking for 1026 // S->isPreemptible is not sufficient (this happens e.g. for 1027 // thread-locals that have been marked as local through a linker script) 1028 if (!s->isPreemptible && !config->shared) 1029 continue; 1030 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this, 1031 offset, *s); 1032 // However, we can skip writing the TLS offset reloc for non-preemptible 1033 // symbols since it is known even in shared libraries 1034 if (!s->isPreemptible) 1035 continue; 1036 offset += config->wordsize; 1037 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset, 1038 *s); 1039 } 1040 } 1041 1042 // Do not create dynamic relocations for non-TLS 1043 // entries in the primary GOT. 1044 if (&got == primGot) 1045 continue; 1046 1047 // Dynamic relocations for "global" entries. 1048 for (const std::pair<Symbol *, size_t> &p : got.global) { 1049 uint64_t offset = p.second * config->wordsize; 1050 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset, 1051 *p.first); 1052 } 1053 if (!config->isPic) 1054 continue; 1055 // Dynamic relocations for "local" entries in case of PIC. 1056 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1057 got.pagesMap) { 1058 size_t pageCount = l.second.count; 1059 for (size_t pi = 0; pi < pageCount; ++pi) { 1060 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1061 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1062 int64_t(pi * 0x10000)}); 1063 } 1064 } 1065 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1066 uint64_t offset = p.second * config->wordsize; 1067 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, 1068 DynamicReloc::AddendOnlyWithTargetVA, 1069 *p.first.first, p.first.second, R_ABS}); 1070 } 1071 } 1072 } 1073 1074 bool MipsGotSection::isNeeded() const { 1075 // We add the .got section to the result for dynamic MIPS target because 1076 // its address and properties are mentioned in the .dynamic section. 1077 return !config->relocatable; 1078 } 1079 1080 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1081 // For files without related GOT or files refer a primary GOT 1082 // returns "common" _gp value. For secondary GOTs calculate 1083 // individual _gp values. 1084 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) 1085 return ElfSym::mipsGp->getVA(0); 1086 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0; 1087 } 1088 1089 void MipsGotSection::writeTo(uint8_t *buf) { 1090 // Set the MSB of the second GOT slot. This is not required by any 1091 // MIPS ABI documentation, though. 1092 // 1093 // There is a comment in glibc saying that "The MSB of got[1] of a 1094 // gnu object is set to identify gnu objects," and in GNU gold it 1095 // says "the second entry will be used by some runtime loaders". 1096 // But how this field is being used is unclear. 1097 // 1098 // We are not really willing to mimic other linkers behaviors 1099 // without understanding why they do that, but because all files 1100 // generated by GNU tools have this special GOT value, and because 1101 // we've been doing this for years, it is probably a safe bet to 1102 // keep doing this for now. We really need to revisit this to see 1103 // if we had to do this. 1104 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1105 for (const FileGot &g : gots) { 1106 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1107 uint64_t va = a; 1108 if (s) 1109 va = s->getVA(a); 1110 writeUint(buf + i * config->wordsize, va); 1111 }; 1112 // Write 'page address' entries to the local part of the GOT. 1113 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1114 g.pagesMap) { 1115 size_t pageCount = l.second.count; 1116 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1117 for (size_t pi = 0; pi < pageCount; ++pi) 1118 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1119 } 1120 // Local, global, TLS, reloc-only entries. 1121 // If TLS entry has a corresponding dynamic relocations, leave it 1122 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1123 // To calculate the adjustments use offsets for thread-local storage. 1124 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL 1125 for (const std::pair<GotEntry, size_t> &p : g.local16) 1126 write(p.second, p.first.first, p.first.second); 1127 // Write VA to the primary GOT only. For secondary GOTs that 1128 // will be done by REL32 dynamic relocations. 1129 if (&g == &gots.front()) 1130 for (const std::pair<Symbol *, size_t> &p : g.global) 1131 write(p.second, p.first, 0); 1132 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1133 write(p.second, p.first, 0); 1134 for (const std::pair<Symbol *, size_t> &p : g.tls) 1135 write(p.second, p.first, 1136 p.first->isPreemptible || config->shared ? 0 : -0x7000); 1137 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1138 if (p.first == nullptr && !config->shared) 1139 write(p.second, nullptr, 1); 1140 else if (p.first && !p.first->isPreemptible) { 1141 // If we are emitting a shared library with relocations we mustn't write 1142 // anything to the GOT here. When using Elf_Rel relocations the value 1143 // one will be treated as an addend and will cause crashes at runtime 1144 if (!config->shared) 1145 write(p.second, nullptr, 1); 1146 write(p.second + 1, p.first, -0x8000); 1147 } 1148 } 1149 } 1150 } 1151 1152 // On PowerPC the .plt section is used to hold the table of function addresses 1153 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1154 // section. I don't know why we have a BSS style type for the section but it is 1155 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1156 GotPltSection::GotPltSection() 1157 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1158 ".got.plt") { 1159 if (config->emachine == EM_PPC) { 1160 name = ".plt"; 1161 } else if (config->emachine == EM_PPC64) { 1162 type = SHT_NOBITS; 1163 name = ".plt"; 1164 } 1165 } 1166 1167 void GotPltSection::addEntry(Symbol &sym) { 1168 assert(sym.auxIdx == symAux.size() - 1 && 1169 symAux.back().pltIdx == entries.size()); 1170 entries.push_back(&sym); 1171 } 1172 1173 size_t GotPltSection::getSize() const { 1174 return (target->gotPltHeaderEntriesNum + entries.size()) * 1175 target->gotEntrySize; 1176 } 1177 1178 void GotPltSection::writeTo(uint8_t *buf) { 1179 target->writeGotPltHeader(buf); 1180 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize; 1181 for (const Symbol *b : entries) { 1182 target->writeGotPlt(buf, *b); 1183 buf += target->gotEntrySize; 1184 } 1185 } 1186 1187 bool GotPltSection::isNeeded() const { 1188 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1189 // to it. 1190 return !entries.empty() || hasGotPltOffRel; 1191 } 1192 1193 static StringRef getIgotPltName() { 1194 // On ARM the IgotPltSection is part of the GotSection. 1195 if (config->emachine == EM_ARM) 1196 return ".got"; 1197 1198 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1199 // needs to be named the same. 1200 if (config->emachine == EM_PPC64) 1201 return ".plt"; 1202 1203 return ".got.plt"; 1204 } 1205 1206 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1207 // with the IgotPltSection. 1208 IgotPltSection::IgotPltSection() 1209 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1210 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1211 target->gotEntrySize, getIgotPltName()) {} 1212 1213 void IgotPltSection::addEntry(Symbol &sym) { 1214 assert(symAux.back().pltIdx == entries.size()); 1215 entries.push_back(&sym); 1216 } 1217 1218 size_t IgotPltSection::getSize() const { 1219 return entries.size() * target->gotEntrySize; 1220 } 1221 1222 void IgotPltSection::writeTo(uint8_t *buf) { 1223 for (const Symbol *b : entries) { 1224 target->writeIgotPlt(buf, *b); 1225 buf += target->gotEntrySize; 1226 } 1227 } 1228 1229 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1230 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1231 dynamic(dynamic) { 1232 // ELF string tables start with a NUL byte. 1233 strings.push_back(""); 1234 stringMap.try_emplace(CachedHashStringRef(""), 0); 1235 size = 1; 1236 } 1237 1238 // Adds a string to the string table. If `hashIt` is true we hash and check for 1239 // duplicates. It is optional because the name of global symbols are already 1240 // uniqued and hashing them again has a big cost for a small value: uniquing 1241 // them with some other string that happens to be the same. 1242 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1243 if (hashIt) { 1244 auto r = stringMap.try_emplace(CachedHashStringRef(s), size); 1245 if (!r.second) 1246 return r.first->second; 1247 } 1248 if (s.empty()) 1249 return 0; 1250 unsigned ret = this->size; 1251 this->size = this->size + s.size() + 1; 1252 strings.push_back(s); 1253 return ret; 1254 } 1255 1256 void StringTableSection::writeTo(uint8_t *buf) { 1257 for (StringRef s : strings) { 1258 memcpy(buf, s.data(), s.size()); 1259 buf[s.size()] = '\0'; 1260 buf += s.size() + 1; 1261 } 1262 } 1263 1264 // Returns the number of entries in .gnu.version_d: the number of 1265 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1266 // Note that we don't support vd_cnt > 1 yet. 1267 static unsigned getVerDefNum() { 1268 return namedVersionDefs().size() + 1; 1269 } 1270 1271 template <class ELFT> 1272 DynamicSection<ELFT>::DynamicSection() 1273 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1274 ".dynamic") { 1275 this->entsize = ELFT::Is64Bits ? 16 : 8; 1276 1277 // .dynamic section is not writable on MIPS and on Fuchsia OS 1278 // which passes -z rodynamic. 1279 // See "Special Section" in Chapter 4 in the following document: 1280 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1281 if (config->emachine == EM_MIPS || config->zRodynamic) 1282 this->flags = SHF_ALLOC; 1283 } 1284 1285 // The output section .rela.dyn may include these synthetic sections: 1286 // 1287 // - part.relaDyn 1288 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1289 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1290 // .rela.dyn 1291 // 1292 // DT_RELASZ is the total size of the included sections. 1293 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) { 1294 size_t size = relaDyn.getSize(); 1295 if (in.relaIplt->getParent() == relaDyn.getParent()) 1296 size += in.relaIplt->getSize(); 1297 if (in.relaPlt->getParent() == relaDyn.getParent()) 1298 size += in.relaPlt->getSize(); 1299 return size; 1300 } 1301 1302 // A Linker script may assign the RELA relocation sections to the same 1303 // output section. When this occurs we cannot just use the OutputSection 1304 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1305 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1306 static uint64_t addPltRelSz() { 1307 size_t size = in.relaPlt->getSize(); 1308 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1309 in.relaIplt->name == in.relaPlt->name) 1310 size += in.relaIplt->getSize(); 1311 return size; 1312 } 1313 1314 // Add remaining entries to complete .dynamic contents. 1315 template <class ELFT> 1316 std::vector<std::pair<int32_t, uint64_t>> 1317 DynamicSection<ELFT>::computeContents() { 1318 elf::Partition &part = getPartition(); 1319 bool isMain = part.name.empty(); 1320 std::vector<std::pair<int32_t, uint64_t>> entries; 1321 1322 auto addInt = [&](int32_t tag, uint64_t val) { 1323 entries.emplace_back(tag, val); 1324 }; 1325 auto addInSec = [&](int32_t tag, const InputSection &sec) { 1326 entries.emplace_back(tag, sec.getVA()); 1327 }; 1328 1329 for (StringRef s : config->filterList) 1330 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1331 for (StringRef s : config->auxiliaryList) 1332 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1333 1334 if (!config->rpath.empty()) 1335 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1336 part.dynStrTab->addString(config->rpath)); 1337 1338 for (SharedFile *file : sharedFiles) 1339 if (file->isNeeded) 1340 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1341 1342 if (isMain) { 1343 if (!config->soName.empty()) 1344 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1345 } else { 1346 if (!config->soName.empty()) 1347 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1348 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1349 } 1350 1351 // Set DT_FLAGS and DT_FLAGS_1. 1352 uint32_t dtFlags = 0; 1353 uint32_t dtFlags1 = 0; 1354 if (config->bsymbolic == BsymbolicKind::All) 1355 dtFlags |= DF_SYMBOLIC; 1356 if (config->zGlobal) 1357 dtFlags1 |= DF_1_GLOBAL; 1358 if (config->zInitfirst) 1359 dtFlags1 |= DF_1_INITFIRST; 1360 if (config->zInterpose) 1361 dtFlags1 |= DF_1_INTERPOSE; 1362 if (config->zNodefaultlib) 1363 dtFlags1 |= DF_1_NODEFLIB; 1364 if (config->zNodelete) 1365 dtFlags1 |= DF_1_NODELETE; 1366 if (config->zNodlopen) 1367 dtFlags1 |= DF_1_NOOPEN; 1368 if (config->pie) 1369 dtFlags1 |= DF_1_PIE; 1370 if (config->zNow) { 1371 dtFlags |= DF_BIND_NOW; 1372 dtFlags1 |= DF_1_NOW; 1373 } 1374 if (config->zOrigin) { 1375 dtFlags |= DF_ORIGIN; 1376 dtFlags1 |= DF_1_ORIGIN; 1377 } 1378 if (!config->zText) 1379 dtFlags |= DF_TEXTREL; 1380 if (config->hasTlsIe && config->shared) 1381 dtFlags |= DF_STATIC_TLS; 1382 1383 if (dtFlags) 1384 addInt(DT_FLAGS, dtFlags); 1385 if (dtFlags1) 1386 addInt(DT_FLAGS_1, dtFlags1); 1387 1388 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1389 // need it for each process, so we don't write it for DSOs. The loader writes 1390 // the pointer into this entry. 1391 // 1392 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1393 // systems (currently only Fuchsia OS) provide other means to give the 1394 // debugger this information. Such systems may choose make .dynamic read-only. 1395 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1396 if (!config->shared && !config->relocatable && !config->zRodynamic) 1397 addInt(DT_DEBUG, 0); 1398 1399 if (part.relaDyn->isNeeded() || 1400 (in.relaIplt->isNeeded() && 1401 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1402 addInSec(part.relaDyn->dynamicTag, *part.relaDyn); 1403 entries.emplace_back(part.relaDyn->sizeDynamicTag, 1404 addRelaSz(*part.relaDyn)); 1405 1406 bool isRela = config->isRela; 1407 addInt(isRela ? DT_RELAENT : DT_RELENT, 1408 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1409 1410 // MIPS dynamic loader does not support RELCOUNT tag. 1411 // The problem is in the tight relation between dynamic 1412 // relocations and GOT. So do not emit this tag on MIPS. 1413 if (config->emachine != EM_MIPS) { 1414 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1415 if (config->zCombreloc && numRelativeRels) 1416 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1417 } 1418 } 1419 if (part.relrDyn && part.relrDyn->getParent() && 1420 !part.relrDyn->relocs.empty()) { 1421 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1422 *part.relrDyn); 1423 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1424 part.relrDyn->getParent()->size); 1425 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1426 sizeof(Elf_Relr)); 1427 } 1428 // .rel[a].plt section usually consists of two parts, containing plt and 1429 // iplt relocations. It is possible to have only iplt relocations in the 1430 // output. In that case relaPlt is empty and have zero offset, the same offset 1431 // as relaIplt has. And we still want to emit proper dynamic tags for that 1432 // case, so here we always use relaPlt as marker for the beginning of 1433 // .rel[a].plt section. 1434 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1435 addInSec(DT_JMPREL, *in.relaPlt); 1436 entries.emplace_back(DT_PLTRELSZ, addPltRelSz()); 1437 switch (config->emachine) { 1438 case EM_MIPS: 1439 addInSec(DT_MIPS_PLTGOT, *in.gotPlt); 1440 break; 1441 case EM_SPARCV9: 1442 addInSec(DT_PLTGOT, *in.plt); 1443 break; 1444 case EM_AARCH64: 1445 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1446 return r.type == target->pltRel && 1447 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1448 }) != in.relaPlt->relocs.end()) 1449 addInt(DT_AARCH64_VARIANT_PCS, 0); 1450 LLVM_FALLTHROUGH; 1451 default: 1452 addInSec(DT_PLTGOT, *in.gotPlt); 1453 break; 1454 } 1455 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1456 } 1457 1458 if (config->emachine == EM_AARCH64) { 1459 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1460 addInt(DT_AARCH64_BTI_PLT, 0); 1461 if (config->zPacPlt) 1462 addInt(DT_AARCH64_PAC_PLT, 0); 1463 } 1464 1465 addInSec(DT_SYMTAB, *part.dynSymTab); 1466 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1467 addInSec(DT_STRTAB, *part.dynStrTab); 1468 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1469 if (!config->zText) 1470 addInt(DT_TEXTREL, 0); 1471 if (part.gnuHashTab && part.gnuHashTab->getParent()) 1472 addInSec(DT_GNU_HASH, *part.gnuHashTab); 1473 if (part.hashTab && part.hashTab->getParent()) 1474 addInSec(DT_HASH, *part.hashTab); 1475 1476 if (isMain) { 1477 if (Out::preinitArray) { 1478 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr); 1479 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size); 1480 } 1481 if (Out::initArray) { 1482 addInt(DT_INIT_ARRAY, Out::initArray->addr); 1483 addInt(DT_INIT_ARRAYSZ, Out::initArray->size); 1484 } 1485 if (Out::finiArray) { 1486 addInt(DT_FINI_ARRAY, Out::finiArray->addr); 1487 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size); 1488 } 1489 1490 if (Symbol *b = symtab->find(config->init)) 1491 if (b->isDefined()) 1492 addInt(DT_INIT, b->getVA()); 1493 if (Symbol *b = symtab->find(config->fini)) 1494 if (b->isDefined()) 1495 addInt(DT_FINI, b->getVA()); 1496 } 1497 1498 if (part.verSym && part.verSym->isNeeded()) 1499 addInSec(DT_VERSYM, *part.verSym); 1500 if (part.verDef && part.verDef->isLive()) { 1501 addInSec(DT_VERDEF, *part.verDef); 1502 addInt(DT_VERDEFNUM, getVerDefNum()); 1503 } 1504 if (part.verNeed && part.verNeed->isNeeded()) { 1505 addInSec(DT_VERNEED, *part.verNeed); 1506 unsigned needNum = 0; 1507 for (SharedFile *f : sharedFiles) 1508 if (!f->vernauxs.empty()) 1509 ++needNum; 1510 addInt(DT_VERNEEDNUM, needNum); 1511 } 1512 1513 if (config->emachine == EM_MIPS) { 1514 addInt(DT_MIPS_RLD_VERSION, 1); 1515 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1516 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1517 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1518 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum()); 1519 1520 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1521 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1522 else 1523 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1524 addInSec(DT_PLTGOT, *in.mipsGot); 1525 if (in.mipsRldMap) { 1526 if (!config->pie) 1527 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap); 1528 // Store the offset to the .rld_map section 1529 // relative to the address of the tag. 1530 addInt(DT_MIPS_RLD_MAP_REL, 1531 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); 1532 } 1533 } 1534 1535 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1536 // glibc assumes the old-style BSS PLT layout which we don't support. 1537 if (config->emachine == EM_PPC) 1538 addInSec(DT_PPC_GOT, *in.got); 1539 1540 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1541 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1542 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1543 // stub, which starts directly after the header. 1544 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32); 1545 } 1546 1547 addInt(DT_NULL, 0); 1548 return entries; 1549 } 1550 1551 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1552 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 1553 getParent()->link = sec->sectionIndex; 1554 this->size = computeContents().size() * this->entsize; 1555 } 1556 1557 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1558 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1559 1560 for (std::pair<int32_t, uint64_t> kv : computeContents()) { 1561 p->d_tag = kv.first; 1562 p->d_un.d_val = kv.second; 1563 ++p; 1564 } 1565 } 1566 1567 uint64_t DynamicReloc::getOffset() const { 1568 return inputSec->getVA(offsetInSec); 1569 } 1570 1571 int64_t DynamicReloc::computeAddend() const { 1572 switch (kind) { 1573 case AddendOnly: 1574 assert(sym == nullptr); 1575 return addend; 1576 case AgainstSymbol: 1577 assert(sym != nullptr); 1578 return addend; 1579 case AddendOnlyWithTargetVA: 1580 case AgainstSymbolWithTargetVA: 1581 return InputSection::getRelocTargetVA(inputSec->file, type, addend, 1582 getOffset(), *sym, expr); 1583 case MipsMultiGotPage: 1584 assert(sym == nullptr); 1585 return getMipsPageAddr(outputSec->addr) + addend; 1586 } 1587 llvm_unreachable("Unknown DynamicReloc::Kind enum"); 1588 } 1589 1590 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1591 if (needsDynSymIndex()) 1592 return symTab->getSymbolIndex(sym); 1593 return 0; 1594 } 1595 1596 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1597 int32_t dynamicTag, 1598 int32_t sizeDynamicTag, 1599 bool combreloc) 1600 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1601 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), 1602 combreloc(combreloc) {} 1603 1604 void RelocationBaseSection::addSymbolReloc(RelType dynType, 1605 InputSectionBase &isec, 1606 uint64_t offsetInSec, Symbol &sym, 1607 int64_t addend, 1608 Optional<RelType> addendRelType) { 1609 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, 1610 R_ADDEND, addendRelType ? *addendRelType : target->noneRel); 1611 } 1612 1613 void RelocationBaseSection::addRelativeReloc( 1614 RelType dynType, InputSectionBase &inputSec, uint64_t offsetInSec, 1615 Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) { 1616 // This function should only be called for non-preemptible symbols or 1617 // RelExpr values that refer to an address inside the output file (e.g. the 1618 // address of the GOT entry for a potentially preemptible symbol). 1619 assert((!sym.isPreemptible || expr == R_GOT) && 1620 "cannot add relative relocation against preemptible symbol"); 1621 assert(expr != R_ADDEND && "expected non-addend relocation expression"); 1622 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec, 1623 sym, addend, expr, addendRelType); 1624 } 1625 1626 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( 1627 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, 1628 RelType addendRelType) { 1629 // No need to write an addend to the section for preemptible symbols. 1630 if (sym.isPreemptible) 1631 addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, 1632 R_ABS}); 1633 else 1634 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, 1635 sym, 0, R_ABS, addendRelType); 1636 } 1637 1638 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType, 1639 InputSectionBase &inputSec, 1640 uint64_t offsetInSec, Symbol &sym, 1641 int64_t addend, RelExpr expr, 1642 RelType addendRelType) { 1643 // Write the addends to the relocated address if required. We skip 1644 // it if the written value would be zero. 1645 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1646 inputSec.relocations.push_back( 1647 {expr, addendRelType, offsetInSec, addend, &sym}); 1648 addReloc({dynType, &inputSec, offsetInSec, kind, sym, addend, expr}); 1649 } 1650 1651 void RelocationBaseSection::partitionRels() { 1652 if (!combreloc) 1653 return; 1654 const RelType relativeRel = target->relativeRel; 1655 numRelativeRelocs = 1656 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) - 1657 relocs.begin(); 1658 } 1659 1660 void RelocationBaseSection::finalizeContents() { 1661 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1662 1663 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1664 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1665 // case. 1666 if (symTab && symTab->getParent()) 1667 getParent()->link = symTab->getParent()->sectionIndex; 1668 else 1669 getParent()->link = 0; 1670 1671 if (in.relaPlt.get() == this && in.gotPlt->getParent()) { 1672 getParent()->flags |= ELF::SHF_INFO_LINK; 1673 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1674 } 1675 if (in.relaIplt.get() == this && in.igotPlt->getParent()) { 1676 getParent()->flags |= ELF::SHF_INFO_LINK; 1677 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1678 } 1679 } 1680 1681 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) { 1682 r_offset = getOffset(); 1683 r_sym = getSymIndex(symtab); 1684 addend = computeAddend(); 1685 kind = AddendOnly; // Catch errors 1686 } 1687 1688 void RelocationBaseSection::computeRels() { 1689 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1690 parallelForEach(relocs, 1691 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); }); 1692 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1693 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1694 // is to make results easier to read. 1695 if (combreloc) { 1696 auto nonRelative = relocs.begin() + numRelativeRelocs; 1697 parallelSort(relocs.begin(), nonRelative, 1698 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); 1699 // Non-relative relocations are few, so don't bother with parallelSort. 1700 std::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) { 1701 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); 1702 }); 1703 } 1704 } 1705 1706 template <class ELFT> 1707 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc) 1708 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1709 config->isRela ? DT_RELA : DT_REL, 1710 config->isRela ? DT_RELASZ : DT_RELSZ, combreloc) { 1711 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1712 } 1713 1714 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1715 computeRels(); 1716 for (const DynamicReloc &rel : relocs) { 1717 auto *p = reinterpret_cast<Elf_Rela *>(buf); 1718 p->r_offset = rel.r_offset; 1719 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL); 1720 if (config->isRela) 1721 p->r_addend = rel.addend; 1722 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1723 } 1724 } 1725 1726 RelrBaseSection::RelrBaseSection() 1727 : SyntheticSection(SHF_ALLOC, 1728 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1729 config->wordsize, ".relr.dyn") {} 1730 1731 template <class ELFT> 1732 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1733 StringRef name) 1734 : RelocationBaseSection( 1735 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1736 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1737 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, 1738 /*combreloc=*/false) { 1739 this->entsize = 1; 1740 } 1741 1742 template <class ELFT> 1743 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1744 // This function computes the contents of an Android-format packed relocation 1745 // section. 1746 // 1747 // This format compresses relocations by using relocation groups to factor out 1748 // fields that are common between relocations and storing deltas from previous 1749 // relocations in SLEB128 format (which has a short representation for small 1750 // numbers). A good example of a relocation type with common fields is 1751 // R_*_RELATIVE, which is normally used to represent function pointers in 1752 // vtables. In the REL format, each relative relocation has the same r_info 1753 // field, and is only different from other relative relocations in terms of 1754 // the r_offset field. By sorting relocations by offset, grouping them by 1755 // r_info and representing each relocation with only the delta from the 1756 // previous offset, each 8-byte relocation can be compressed to as little as 1 1757 // byte (or less with run-length encoding). This relocation packer was able to 1758 // reduce the size of the relocation section in an Android Chromium DSO from 1759 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1760 // 1761 // A relocation section consists of a header containing the literal bytes 1762 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1763 // elements are the total number of relocations in the section and an initial 1764 // r_offset value. The remaining elements define a sequence of relocation 1765 // groups. Each relocation group starts with a header consisting of the 1766 // following elements: 1767 // 1768 // - the number of relocations in the relocation group 1769 // - flags for the relocation group 1770 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1771 // for each relocation in the group. 1772 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1773 // field for each relocation in the group. 1774 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1775 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1776 // each relocation in the group. 1777 // 1778 // Following the relocation group header are descriptions of each of the 1779 // relocations in the group. They consist of the following elements: 1780 // 1781 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1782 // delta for this relocation. 1783 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1784 // field for this relocation. 1785 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1786 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1787 // this relocation. 1788 1789 size_t oldSize = relocData.size(); 1790 1791 relocData = {'A', 'P', 'S', '2'}; 1792 raw_svector_ostream os(relocData); 1793 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1794 1795 // The format header includes the number of relocations and the initial 1796 // offset (we set this to zero because the first relocation group will 1797 // perform the initial adjustment). 1798 add(relocs.size()); 1799 add(0); 1800 1801 std::vector<Elf_Rela> relatives, nonRelatives; 1802 1803 for (const DynamicReloc &rel : relocs) { 1804 Elf_Rela r; 1805 r.r_offset = rel.getOffset(); 1806 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()), 1807 rel.type, false); 1808 if (config->isRela) 1809 r.r_addend = rel.computeAddend(); 1810 1811 if (r.getType(config->isMips64EL) == target->relativeRel) 1812 relatives.push_back(r); 1813 else 1814 nonRelatives.push_back(r); 1815 } 1816 1817 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1818 return a.r_offset < b.r_offset; 1819 }); 1820 1821 // Try to find groups of relative relocations which are spaced one word 1822 // apart from one another. These generally correspond to vtable entries. The 1823 // format allows these groups to be encoded using a sort of run-length 1824 // encoding, but each group will cost 7 bytes in addition to the offset from 1825 // the previous group, so it is only profitable to do this for groups of 1826 // size 8 or larger. 1827 std::vector<Elf_Rela> ungroupedRelatives; 1828 std::vector<std::vector<Elf_Rela>> relativeGroups; 1829 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1830 std::vector<Elf_Rela> group; 1831 do { 1832 group.push_back(*i++); 1833 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1834 1835 if (group.size() < 8) 1836 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1837 group.end()); 1838 else 1839 relativeGroups.emplace_back(std::move(group)); 1840 } 1841 1842 // For non-relative relocations, we would like to: 1843 // 1. Have relocations with the same symbol offset to be consecutive, so 1844 // that the runtime linker can speed-up symbol lookup by implementing an 1845 // 1-entry cache. 1846 // 2. Group relocations by r_info to reduce the size of the relocation 1847 // section. 1848 // Since the symbol offset is the high bits in r_info, sorting by r_info 1849 // allows us to do both. 1850 // 1851 // For Rela, we also want to sort by r_addend when r_info is the same. This 1852 // enables us to group by r_addend as well. 1853 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1854 if (a.r_info != b.r_info) 1855 return a.r_info < b.r_info; 1856 if (config->isRela) 1857 return a.r_addend < b.r_addend; 1858 return false; 1859 }); 1860 1861 // Group relocations with the same r_info. Note that each group emits a group 1862 // header and that may make the relocation section larger. It is hard to 1863 // estimate the size of a group header as the encoded size of that varies 1864 // based on r_info. However, we can approximate this trade-off by the number 1865 // of values encoded. Each group header contains 3 values, and each relocation 1866 // in a group encodes one less value, as compared to when it is not grouped. 1867 // Therefore, we only group relocations if there are 3 or more of them with 1868 // the same r_info. 1869 // 1870 // For Rela, the addend for most non-relative relocations is zero, and thus we 1871 // can usually get a smaller relocation section if we group relocations with 0 1872 // addend as well. 1873 std::vector<Elf_Rela> ungroupedNonRelatives; 1874 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1875 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1876 auto j = i + 1; 1877 while (j != e && i->r_info == j->r_info && 1878 (!config->isRela || i->r_addend == j->r_addend)) 1879 ++j; 1880 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1881 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1882 else 1883 nonRelativeGroups.emplace_back(i, j); 1884 i = j; 1885 } 1886 1887 // Sort ungrouped relocations by offset to minimize the encoded length. 1888 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1889 return a.r_offset < b.r_offset; 1890 }); 1891 1892 unsigned hasAddendIfRela = 1893 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1894 1895 uint64_t offset = 0; 1896 uint64_t addend = 0; 1897 1898 // Emit the run-length encoding for the groups of adjacent relative 1899 // relocations. Each group is represented using two groups in the packed 1900 // format. The first is used to set the current offset to the start of the 1901 // group (and also encodes the first relocation), and the second encodes the 1902 // remaining relocations. 1903 for (std::vector<Elf_Rela> &g : relativeGroups) { 1904 // The first relocation in the group. 1905 add(1); 1906 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1907 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1908 add(g[0].r_offset - offset); 1909 add(target->relativeRel); 1910 if (config->isRela) { 1911 add(g[0].r_addend - addend); 1912 addend = g[0].r_addend; 1913 } 1914 1915 // The remaining relocations. 1916 add(g.size() - 1); 1917 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1918 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1919 add(config->wordsize); 1920 add(target->relativeRel); 1921 if (config->isRela) { 1922 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1923 add(i->r_addend - addend); 1924 addend = i->r_addend; 1925 } 1926 } 1927 1928 offset = g.back().r_offset; 1929 } 1930 1931 // Now the ungrouped relatives. 1932 if (!ungroupedRelatives.empty()) { 1933 add(ungroupedRelatives.size()); 1934 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1935 add(target->relativeRel); 1936 for (Elf_Rela &r : ungroupedRelatives) { 1937 add(r.r_offset - offset); 1938 offset = r.r_offset; 1939 if (config->isRela) { 1940 add(r.r_addend - addend); 1941 addend = r.r_addend; 1942 } 1943 } 1944 } 1945 1946 // Grouped non-relatives. 1947 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1948 add(g.size()); 1949 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1950 add(g[0].r_info); 1951 for (const Elf_Rela &r : g) { 1952 add(r.r_offset - offset); 1953 offset = r.r_offset; 1954 } 1955 addend = 0; 1956 } 1957 1958 // Finally the ungrouped non-relative relocations. 1959 if (!ungroupedNonRelatives.empty()) { 1960 add(ungroupedNonRelatives.size()); 1961 add(hasAddendIfRela); 1962 for (Elf_Rela &r : ungroupedNonRelatives) { 1963 add(r.r_offset - offset); 1964 offset = r.r_offset; 1965 add(r.r_info); 1966 if (config->isRela) { 1967 add(r.r_addend - addend); 1968 addend = r.r_addend; 1969 } 1970 } 1971 } 1972 1973 // Don't allow the section to shrink; otherwise the size of the section can 1974 // oscillate infinitely. 1975 if (relocData.size() < oldSize) 1976 relocData.append(oldSize - relocData.size(), 0); 1977 1978 // Returns whether the section size changed. We need to keep recomputing both 1979 // section layout and the contents of this section until the size converges 1980 // because changing this section's size can affect section layout, which in 1981 // turn can affect the sizes of the LEB-encoded integers stored in this 1982 // section. 1983 return relocData.size() != oldSize; 1984 } 1985 1986 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1987 this->entsize = config->wordsize; 1988 } 1989 1990 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1991 // This function computes the contents of an SHT_RELR packed relocation 1992 // section. 1993 // 1994 // Proposal for adding SHT_RELR sections to generic-abi is here: 1995 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1996 // 1997 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 1998 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 1999 // 2000 // i.e. start with an address, followed by any number of bitmaps. The address 2001 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 2002 // relocations each, at subsequent offsets following the last address entry. 2003 // 2004 // The bitmap entries must have 1 in the least significant bit. The assumption 2005 // here is that an address cannot have 1 in lsb. Odd addresses are not 2006 // supported. 2007 // 2008 // Excluding the least significant bit in the bitmap, each non-zero bit in 2009 // the bitmap represents a relocation to be applied to a corresponding machine 2010 // word that follows the base address word. The second least significant bit 2011 // represents the machine word immediately following the initial address, and 2012 // each bit that follows represents the next word, in linear order. As such, 2013 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 2014 // 63 relocations in a 64-bit object. 2015 // 2016 // This encoding has a couple of interesting properties: 2017 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 2018 // even means address, odd means bitmap. 2019 // 2. Just a simple list of addresses is a valid encoding. 2020 2021 size_t oldSize = relrRelocs.size(); 2022 relrRelocs.clear(); 2023 2024 // Same as Config->Wordsize but faster because this is a compile-time 2025 // constant. 2026 const size_t wordsize = sizeof(typename ELFT::uint); 2027 2028 // Number of bits to use for the relocation offsets bitmap. 2029 // Must be either 63 or 31. 2030 const size_t nBits = wordsize * 8 - 1; 2031 2032 // Get offsets for all relative relocations and sort them. 2033 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); 2034 for (auto it : llvm::enumerate(relocs)) 2035 offsets[it.index()] = it.value().getOffset(); 2036 std::sort(offsets.get(), offsets.get() + relocs.size()); 2037 2038 // For each leading relocation, find following ones that can be folded 2039 // as a bitmap and fold them. 2040 for (size_t i = 0, e = relocs.size(); i != e;) { 2041 // Add a leading relocation. 2042 relrRelocs.push_back(Elf_Relr(offsets[i])); 2043 uint64_t base = offsets[i] + wordsize; 2044 ++i; 2045 2046 // Find foldable relocations to construct bitmaps. 2047 for (;;) { 2048 uint64_t bitmap = 0; 2049 for (; i != e; ++i) { 2050 uint64_t d = offsets[i] - base; 2051 if (d >= nBits * wordsize || d % wordsize) 2052 break; 2053 bitmap |= uint64_t(1) << (d / wordsize); 2054 } 2055 if (!bitmap) 2056 break; 2057 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2058 base += nBits * wordsize; 2059 } 2060 } 2061 2062 // Don't allow the section to shrink; otherwise the size of the section can 2063 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2064 if (relrRelocs.size() < oldSize) { 2065 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2066 " padding word(s)"); 2067 relrRelocs.resize(oldSize, Elf_Relr(1)); 2068 } 2069 2070 return relrRelocs.size() != oldSize; 2071 } 2072 2073 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2074 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2075 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2076 config->wordsize, 2077 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2078 strTabSec(strTabSec) {} 2079 2080 // Orders symbols according to their positions in the GOT, 2081 // in compliance with MIPS ABI rules. 2082 // See "Global Offset Table" in Chapter 5 in the following document 2083 // for detailed description: 2084 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2085 static bool sortMipsSymbols(const SymbolTableEntry &l, 2086 const SymbolTableEntry &r) { 2087 // Sort entries related to non-local preemptible symbols by GOT indexes. 2088 // All other entries go to the beginning of a dynsym in arbitrary order. 2089 if (l.sym->isInGot() && r.sym->isInGot()) 2090 return l.sym->getGotIdx() < r.sym->getGotIdx(); 2091 if (!l.sym->isInGot() && !r.sym->isInGot()) 2092 return false; 2093 return !l.sym->isInGot(); 2094 } 2095 2096 void SymbolTableBaseSection::finalizeContents() { 2097 if (OutputSection *sec = strTabSec.getParent()) 2098 getParent()->link = sec->sectionIndex; 2099 2100 if (this->type != SHT_DYNSYM) { 2101 sortSymTabSymbols(); 2102 return; 2103 } 2104 2105 // If it is a .dynsym, there should be no local symbols, but we need 2106 // to do a few things for the dynamic linker. 2107 2108 // Section's Info field has the index of the first non-local symbol. 2109 // Because the first symbol entry is a null entry, 1 is the first. 2110 getParent()->info = 1; 2111 2112 if (getPartition().gnuHashTab) { 2113 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2114 getPartition().gnuHashTab->addSymbols(symbols); 2115 } else if (config->emachine == EM_MIPS) { 2116 llvm::stable_sort(symbols, sortMipsSymbols); 2117 } 2118 2119 // Only the main partition's dynsym indexes are stored in the symbols 2120 // themselves. All other partitions use a lookup table. 2121 if (this == mainPart->dynSymTab.get()) { 2122 size_t i = 0; 2123 for (const SymbolTableEntry &s : symbols) 2124 s.sym->dynsymIndex = ++i; 2125 } 2126 } 2127 2128 // The ELF spec requires that all local symbols precede global symbols, so we 2129 // sort symbol entries in this function. (For .dynsym, we don't do that because 2130 // symbols for dynamic linking are inherently all globals.) 2131 // 2132 // Aside from above, we put local symbols in groups starting with the STT_FILE 2133 // symbol. That is convenient for purpose of identifying where are local symbols 2134 // coming from. 2135 void SymbolTableBaseSection::sortSymTabSymbols() { 2136 // Move all local symbols before global symbols. 2137 auto e = std::stable_partition( 2138 symbols.begin(), symbols.end(), 2139 [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); 2140 size_t numLocals = e - symbols.begin(); 2141 getParent()->info = numLocals + 1; 2142 2143 // We want to group the local symbols by file. For that we rebuild the local 2144 // part of the symbols vector. We do not need to care about the STT_FILE 2145 // symbols, they are already naturally placed first in each group. That 2146 // happens because STT_FILE is always the first symbol in the object and hence 2147 // precede all other local symbols we add for a file. 2148 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; 2149 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2150 arr[s.sym->file].push_back(s); 2151 2152 auto i = symbols.begin(); 2153 for (auto &p : arr) 2154 for (SymbolTableEntry &entry : p.second) 2155 *i++ = entry; 2156 } 2157 2158 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2159 // Adding a local symbol to a .dynsym is a bug. 2160 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2161 2162 bool hashIt = b->isLocal() && config->optimize >= 2; 2163 symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)}); 2164 } 2165 2166 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2167 if (this == mainPart->dynSymTab.get()) 2168 return sym->dynsymIndex; 2169 2170 // Initializes symbol lookup tables lazily. This is used only for -r, 2171 // --emit-relocs and dynsyms in partitions other than the main one. 2172 llvm::call_once(onceFlag, [&] { 2173 symbolIndexMap.reserve(symbols.size()); 2174 size_t i = 0; 2175 for (const SymbolTableEntry &e : symbols) { 2176 if (e.sym->type == STT_SECTION) 2177 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2178 else 2179 symbolIndexMap[e.sym] = ++i; 2180 } 2181 }); 2182 2183 // Section symbols are mapped based on their output sections 2184 // to maintain their semantics. 2185 if (sym->type == STT_SECTION) 2186 return sectionIndexMap.lookup(sym->getOutputSection()); 2187 return symbolIndexMap.lookup(sym); 2188 } 2189 2190 template <class ELFT> 2191 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2192 : SymbolTableBaseSection(strTabSec) { 2193 this->entsize = sizeof(Elf_Sym); 2194 } 2195 2196 static BssSection *getCommonSec(Symbol *sym) { 2197 if (!config->defineCommon) 2198 if (auto *d = dyn_cast<Defined>(sym)) 2199 return dyn_cast_or_null<BssSection>(d->section); 2200 return nullptr; 2201 } 2202 2203 static uint32_t getSymSectionIndex(Symbol *sym) { 2204 assert(!(sym->needsCopy && sym->isObject())); 2205 if (!isa<Defined>(sym) || sym->needsCopy) 2206 return SHN_UNDEF; 2207 if (const OutputSection *os = sym->getOutputSection()) 2208 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2209 : os->sectionIndex; 2210 return SHN_ABS; 2211 } 2212 2213 // Write the internal symbol table contents to the output symbol table. 2214 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2215 // The first entry is a null entry as per the ELF spec. 2216 buf += sizeof(Elf_Sym); 2217 2218 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2219 2220 for (SymbolTableEntry &ent : symbols) { 2221 Symbol *sym = ent.sym; 2222 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2223 2224 // Set st_name, st_info and st_other. 2225 eSym->st_name = ent.strTabOffset; 2226 eSym->setBindingAndType(sym->binding, sym->type); 2227 eSym->st_other = sym->visibility; 2228 2229 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2230 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2231 if (config->emachine == EM_PPC64) 2232 eSym->st_other |= sym->stOther & 0xe0; 2233 // The most significant bit of st_other is used by AArch64 ABI for the 2234 // variant PCS. 2235 else if (config->emachine == EM_AARCH64) 2236 eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS; 2237 2238 if (BssSection *commonSec = getCommonSec(sym)) { 2239 // st_value is usually an address of a symbol, but that has a special 2240 // meaning for uninstantiated common symbols (--no-define-common). 2241 eSym->st_shndx = SHN_COMMON; 2242 eSym->st_value = commonSec->alignment; 2243 eSym->st_size = cast<Defined>(sym)->size; 2244 } else { 2245 const uint32_t shndx = getSymSectionIndex(sym); 2246 if (isDefinedHere) { 2247 eSym->st_shndx = shndx; 2248 eSym->st_value = sym->getVA(); 2249 // Copy symbol size if it is a defined symbol. st_size is not 2250 // significant for undefined symbols, so whether copying it or not is up 2251 // to us if that's the case. We'll leave it as zero because by not 2252 // setting a value, we can get the exact same outputs for two sets of 2253 // input files that differ only in undefined symbol size in DSOs. 2254 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; 2255 } else { 2256 eSym->st_shndx = 0; 2257 eSym->st_value = 0; 2258 eSym->st_size = 0; 2259 } 2260 } 2261 2262 ++eSym; 2263 } 2264 2265 // On MIPS we need to mark symbol which has a PLT entry and requires 2266 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2267 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2268 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2269 if (config->emachine == EM_MIPS) { 2270 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2271 2272 for (SymbolTableEntry &ent : symbols) { 2273 Symbol *sym = ent.sym; 2274 if (sym->isInPlt() && sym->needsCopy) 2275 eSym->st_other |= STO_MIPS_PLT; 2276 if (isMicroMips()) { 2277 // We already set the less-significant bit for symbols 2278 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2279 // records. That allows us to distinguish such symbols in 2280 // the `MIPS<ELFT>::relocate()` routine. Now we should 2281 // clear that bit for non-dynamic symbol table, so tools 2282 // like `objdump` will be able to deal with a correct 2283 // symbol position. 2284 if (sym->isDefined() && 2285 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsCopy)) { 2286 if (!strTabSec.isDynamic()) 2287 eSym->st_value &= ~1; 2288 eSym->st_other |= STO_MIPS_MICROMIPS; 2289 } 2290 } 2291 if (config->relocatable) 2292 if (auto *d = dyn_cast<Defined>(sym)) 2293 if (isMipsPIC<ELFT>(d)) 2294 eSym->st_other |= STO_MIPS_PIC; 2295 ++eSym; 2296 } 2297 } 2298 } 2299 2300 SymtabShndxSection::SymtabShndxSection() 2301 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2302 this->entsize = 4; 2303 } 2304 2305 void SymtabShndxSection::writeTo(uint8_t *buf) { 2306 // We write an array of 32 bit values, where each value has 1:1 association 2307 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2308 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2309 buf += 4; // Ignore .symtab[0] entry. 2310 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2311 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX) 2312 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2313 buf += 4; 2314 } 2315 } 2316 2317 bool SymtabShndxSection::isNeeded() const { 2318 // SHT_SYMTAB can hold symbols with section indices values up to 2319 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2320 // section. Problem is that we reveal the final section indices a bit too 2321 // late, and we do not know them here. For simplicity, we just always create 2322 // a .symtab_shndx section when the amount of output sections is huge. 2323 size_t size = 0; 2324 for (SectionCommand *cmd : script->sectionCommands) 2325 if (isa<OutputSection>(cmd)) 2326 ++size; 2327 return size >= SHN_LORESERVE; 2328 } 2329 2330 void SymtabShndxSection::finalizeContents() { 2331 getParent()->link = in.symTab->getParent()->sectionIndex; 2332 } 2333 2334 size_t SymtabShndxSection::getSize() const { 2335 return in.symTab->getNumSymbols() * 4; 2336 } 2337 2338 // .hash and .gnu.hash sections contain on-disk hash tables that map 2339 // symbol names to their dynamic symbol table indices. Their purpose 2340 // is to help the dynamic linker resolve symbols quickly. If ELF files 2341 // don't have them, the dynamic linker has to do linear search on all 2342 // dynamic symbols, which makes programs slower. Therefore, a .hash 2343 // section is added to a DSO by default. 2344 // 2345 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2346 // Each ELF file has a list of DSOs that the ELF file depends on and a 2347 // list of dynamic symbols that need to be resolved from any of the 2348 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2349 // where m is the number of DSOs and n is the number of dynamic 2350 // symbols. For modern large programs, both m and n are large. So 2351 // making each step faster by using hash tables substantially 2352 // improves time to load programs. 2353 // 2354 // (Note that this is not the only way to design the shared library. 2355 // For instance, the Windows DLL takes a different approach. On 2356 // Windows, each dynamic symbol has a name of DLL from which the symbol 2357 // has to be resolved. That makes the cost of symbol resolution O(n). 2358 // This disables some hacky techniques you can use on Unix such as 2359 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2360 // 2361 // Due to historical reasons, we have two different hash tables, .hash 2362 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2363 // and better version of .hash. .hash is just an on-disk hash table, but 2364 // .gnu.hash has a bloom filter in addition to a hash table to skip 2365 // DSOs very quickly. If you are sure that your dynamic linker knows 2366 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a 2367 // safe bet is to specify --hash-style=both for backward compatibility. 2368 GnuHashTableSection::GnuHashTableSection() 2369 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2370 } 2371 2372 void GnuHashTableSection::finalizeContents() { 2373 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2374 getParent()->link = sec->sectionIndex; 2375 2376 // Computes bloom filter size in word size. We want to allocate 12 2377 // bits for each symbol. It must be a power of two. 2378 if (symbols.empty()) { 2379 maskWords = 1; 2380 } else { 2381 uint64_t numBits = symbols.size() * 12; 2382 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2383 } 2384 2385 size = 16; // Header 2386 size += config->wordsize * maskWords; // Bloom filter 2387 size += nBuckets * 4; // Hash buckets 2388 size += symbols.size() * 4; // Hash values 2389 } 2390 2391 void GnuHashTableSection::writeTo(uint8_t *buf) { 2392 // Write a header. 2393 write32(buf, nBuckets); 2394 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2395 write32(buf + 8, maskWords); 2396 write32(buf + 12, Shift2); 2397 buf += 16; 2398 2399 // Write the 2-bit bloom filter. 2400 const unsigned c = config->is64 ? 64 : 32; 2401 for (const Entry &sym : symbols) { 2402 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2403 // the word using bits [0:5] and [26:31]. 2404 size_t i = (sym.hash / c) & (maskWords - 1); 2405 uint64_t val = readUint(buf + i * config->wordsize); 2406 val |= uint64_t(1) << (sym.hash % c); 2407 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2408 writeUint(buf + i * config->wordsize, val); 2409 } 2410 buf += config->wordsize * maskWords; 2411 2412 // Write the hash table. 2413 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2414 uint32_t oldBucket = -1; 2415 uint32_t *values = buckets + nBuckets; 2416 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2417 // Write a hash value. It represents a sequence of chains that share the 2418 // same hash modulo value. The last element of each chain is terminated by 2419 // LSB 1. 2420 uint32_t hash = i->hash; 2421 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2422 hash = isLastInChain ? hash | 1 : hash & ~1; 2423 write32(values++, hash); 2424 2425 if (i->bucketIdx == oldBucket) 2426 continue; 2427 // Write a hash bucket. Hash buckets contain indices in the following hash 2428 // value table. 2429 write32(buckets + i->bucketIdx, 2430 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2431 oldBucket = i->bucketIdx; 2432 } 2433 } 2434 2435 static uint32_t hashGnu(StringRef name) { 2436 uint32_t h = 5381; 2437 for (uint8_t c : name) 2438 h = (h << 5) + h + c; 2439 return h; 2440 } 2441 2442 // Add symbols to this symbol hash table. Note that this function 2443 // destructively sort a given vector -- which is needed because 2444 // GNU-style hash table places some sorting requirements. 2445 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { 2446 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2447 // its type correctly. 2448 auto mid = 2449 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2450 return !s.sym->isDefined() || s.sym->partition != partition; 2451 }); 2452 2453 // We chose load factor 4 for the on-disk hash table. For each hash 2454 // collision, the dynamic linker will compare a uint32_t hash value. 2455 // Since the integer comparison is quite fast, we believe we can 2456 // make the load factor even larger. 4 is just a conservative choice. 2457 // 2458 // Note that we don't want to create a zero-sized hash table because 2459 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2460 // table. If that's the case, we create a hash table with one unused 2461 // dummy slot. 2462 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2463 2464 if (mid == v.end()) 2465 return; 2466 2467 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2468 Symbol *b = ent.sym; 2469 uint32_t hash = hashGnu(b->getName()); 2470 uint32_t bucketIdx = hash % nBuckets; 2471 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2472 } 2473 2474 llvm::sort(symbols, [](const Entry &l, const Entry &r) { 2475 return std::tie(l.bucketIdx, l.strTabOffset) < 2476 std::tie(r.bucketIdx, r.strTabOffset); 2477 }); 2478 2479 v.erase(mid, v.end()); 2480 for (const Entry &ent : symbols) 2481 v.push_back({ent.sym, ent.strTabOffset}); 2482 } 2483 2484 HashTableSection::HashTableSection() 2485 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2486 this->entsize = 4; 2487 } 2488 2489 void HashTableSection::finalizeContents() { 2490 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2491 2492 if (OutputSection *sec = symTab->getParent()) 2493 getParent()->link = sec->sectionIndex; 2494 2495 unsigned numEntries = 2; // nbucket and nchain. 2496 numEntries += symTab->getNumSymbols(); // The chain entries. 2497 2498 // Create as many buckets as there are symbols. 2499 numEntries += symTab->getNumSymbols(); 2500 this->size = numEntries * 4; 2501 } 2502 2503 void HashTableSection::writeTo(uint8_t *buf) { 2504 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2505 unsigned numSymbols = symTab->getNumSymbols(); 2506 2507 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2508 write32(p++, numSymbols); // nbucket 2509 write32(p++, numSymbols); // nchain 2510 2511 uint32_t *buckets = p; 2512 uint32_t *chains = p + numSymbols; 2513 2514 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2515 Symbol *sym = s.sym; 2516 StringRef name = sym->getName(); 2517 unsigned i = sym->dynsymIndex; 2518 uint32_t hash = hashSysV(name) % numSymbols; 2519 chains[i] = buckets[hash]; 2520 write32(buckets + hash, i); 2521 } 2522 } 2523 2524 PltSection::PltSection() 2525 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2526 headerSize(target->pltHeaderSize) { 2527 // On PowerPC, this section contains lazy symbol resolvers. 2528 if (config->emachine == EM_PPC64) { 2529 name = ".glink"; 2530 alignment = 4; 2531 } 2532 2533 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2534 // symbol resolvers). 2535 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2536 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2537 name = ".plt.sec"; 2538 2539 // The PLT needs to be writable on SPARC as the dynamic linker will 2540 // modify the instructions in the PLT entries. 2541 if (config->emachine == EM_SPARCV9) 2542 this->flags |= SHF_WRITE; 2543 } 2544 2545 void PltSection::writeTo(uint8_t *buf) { 2546 // At beginning of PLT, we have code to call the dynamic 2547 // linker to resolve dynsyms at runtime. Write such code. 2548 target->writePltHeader(buf); 2549 size_t off = headerSize; 2550 2551 for (const Symbol *sym : entries) { 2552 target->writePlt(buf + off, *sym, getVA() + off); 2553 off += target->pltEntrySize; 2554 } 2555 } 2556 2557 void PltSection::addEntry(Symbol &sym) { 2558 assert(sym.auxIdx == symAux.size() - 1); 2559 symAux.back().pltIdx = entries.size(); 2560 entries.push_back(&sym); 2561 } 2562 2563 size_t PltSection::getSize() const { 2564 return headerSize + entries.size() * target->pltEntrySize; 2565 } 2566 2567 bool PltSection::isNeeded() const { 2568 // For -z retpolineplt, .iplt needs the .plt header. 2569 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2570 } 2571 2572 // Used by ARM to add mapping symbols in the PLT section, which aid 2573 // disassembly. 2574 void PltSection::addSymbols() { 2575 target->addPltHeaderSymbols(*this); 2576 2577 size_t off = headerSize; 2578 for (size_t i = 0; i < entries.size(); ++i) { 2579 target->addPltSymbols(*this, off); 2580 off += target->pltEntrySize; 2581 } 2582 } 2583 2584 IpltSection::IpltSection() 2585 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2586 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2587 name = ".glink"; 2588 alignment = 4; 2589 } 2590 } 2591 2592 void IpltSection::writeTo(uint8_t *buf) { 2593 uint32_t off = 0; 2594 for (const Symbol *sym : entries) { 2595 target->writeIplt(buf + off, *sym, getVA() + off); 2596 off += target->ipltEntrySize; 2597 } 2598 } 2599 2600 size_t IpltSection::getSize() const { 2601 return entries.size() * target->ipltEntrySize; 2602 } 2603 2604 void IpltSection::addEntry(Symbol &sym) { 2605 assert(sym.auxIdx == symAux.size() - 1); 2606 symAux.back().pltIdx = entries.size(); 2607 entries.push_back(&sym); 2608 } 2609 2610 // ARM uses mapping symbols to aid disassembly. 2611 void IpltSection::addSymbols() { 2612 size_t off = 0; 2613 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2614 target->addPltSymbols(*this, off); 2615 off += target->pltEntrySize; 2616 } 2617 } 2618 2619 PPC32GlinkSection::PPC32GlinkSection() { 2620 name = ".glink"; 2621 alignment = 4; 2622 } 2623 2624 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2625 writePPC32GlinkSection(buf, entries.size()); 2626 } 2627 2628 size_t PPC32GlinkSection::getSize() const { 2629 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2630 } 2631 2632 // This is an x86-only extra PLT section and used only when a security 2633 // enhancement feature called CET is enabled. In this comment, I'll explain what 2634 // the feature is and why we have two PLT sections if CET is enabled. 2635 // 2636 // So, what does CET do? CET introduces a new restriction to indirect jump 2637 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2638 // execute an indirect jump instruction, the processor verifies that a special 2639 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2640 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2641 // does not start with that instruction, the processor raises an exception 2642 // instead of continuing executing code. 2643 // 2644 // If CET is enabled, the compiler emits endbr to all locations where indirect 2645 // jumps may jump to. 2646 // 2647 // This mechanism makes it extremely hard to transfer the control to a middle of 2648 // a function that is not supporsed to be a indirect jump target, preventing 2649 // certain types of attacks such as ROP or JOP. 2650 // 2651 // Note that the processors in the market as of 2019 don't actually support the 2652 // feature. Only the spec is available at the moment. 2653 // 2654 // Now, I'll explain why we have this extra PLT section for CET. 2655 // 2656 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2657 // start with endbr. The problem is there's no extra space for endbr (which is 4 2658 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2659 // used. 2660 // 2661 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2662 // Remember that each PLT entry contains code to jump to an address read from 2663 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2664 // the former code is written to .plt.sec, and the latter code is written to 2665 // .plt. 2666 // 2667 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2668 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2669 // contain only code for lazy symbol resolution. 2670 // 2671 // In other words, this is how the 2-PLT scheme works. Application code is 2672 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2673 // entry contains code to read an address from a corresponding .got.plt entry 2674 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2675 // when an application calls an external function for the first time, the 2676 // control is transferred to a function that resolves a symbol name from 2677 // external shared object files. That function then rewrites a .got.plt entry 2678 // with a resolved address, so that the subsequent function calls directly jump 2679 // to a desired location from .plt.sec. 2680 // 2681 // There is an open question as to whether the 2-PLT scheme was desirable or 2682 // not. We could have simply extended the PLT entry size to 32-bytes to 2683 // accommodate endbr, and that scheme would have been much simpler than the 2684 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2685 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2686 // that the optimization actually makes a difference. 2687 // 2688 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2689 // depend on it, so we implement the ABI. 2690 IBTPltSection::IBTPltSection() 2691 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2692 2693 void IBTPltSection::writeTo(uint8_t *buf) { 2694 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2695 } 2696 2697 size_t IBTPltSection::getSize() const { 2698 // 16 is the header size of .plt. 2699 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2700 } 2701 2702 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; } 2703 2704 // The string hash function for .gdb_index. 2705 static uint32_t computeGdbHash(StringRef s) { 2706 uint32_t h = 0; 2707 for (uint8_t c : s) 2708 h = h * 67 + toLower(c) - 113; 2709 return h; 2710 } 2711 2712 GdbIndexSection::GdbIndexSection() 2713 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2714 2715 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2716 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2717 size_t GdbIndexSection::computeSymtabSize() const { 2718 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2719 } 2720 2721 // Compute the output section size. 2722 void GdbIndexSection::initOutputSize() { 2723 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2724 2725 for (GdbChunk &chunk : chunks) 2726 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2727 2728 // Add the constant pool size if exists. 2729 if (!symbols.empty()) { 2730 GdbSymbol &sym = symbols.back(); 2731 size += sym.nameOff + sym.name.size() + 1; 2732 } 2733 } 2734 2735 static SmallVector<GdbIndexSection::CuEntry, 0> 2736 readCuList(DWARFContext &dwarf) { 2737 SmallVector<GdbIndexSection::CuEntry, 0> ret; 2738 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2739 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2740 return ret; 2741 } 2742 2743 static SmallVector<GdbIndexSection::AddressEntry, 0> 2744 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2745 SmallVector<GdbIndexSection::AddressEntry, 0> ret; 2746 2747 uint32_t cuIdx = 0; 2748 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2749 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2750 warn(toString(sec) + ": " + toString(std::move(e))); 2751 return {}; 2752 } 2753 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2754 if (!ranges) { 2755 warn(toString(sec) + ": " + toString(ranges.takeError())); 2756 return {}; 2757 } 2758 2759 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2760 for (DWARFAddressRange &r : *ranges) { 2761 if (r.SectionIndex == -1ULL) 2762 continue; 2763 // Range list with zero size has no effect. 2764 InputSectionBase *s = sections[r.SectionIndex]; 2765 if (s && s != &InputSection::discarded && s->isLive()) 2766 if (r.LowPC != r.HighPC) 2767 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2768 } 2769 ++cuIdx; 2770 } 2771 2772 return ret; 2773 } 2774 2775 template <class ELFT> 2776 static SmallVector<GdbIndexSection::NameAttrEntry, 0> 2777 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2778 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { 2779 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2780 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2781 2782 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret; 2783 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2784 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2785 DWARFDebugPubTable table; 2786 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2787 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2788 }); 2789 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2790 // The value written into the constant pool is kind << 24 | cuIndex. As we 2791 // don't know how many compilation units precede this object to compute 2792 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2793 // the number of preceding compilation units later. 2794 uint32_t i = llvm::partition_point(cus, 2795 [&](GdbIndexSection::CuEntry cu) { 2796 return cu.cuOffset < set.Offset; 2797 }) - 2798 cus.begin(); 2799 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2800 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2801 (ent.Descriptor.toBits() << 24) | i}); 2802 } 2803 } 2804 return ret; 2805 } 2806 2807 // Create a list of symbols from a given list of symbol names and types 2808 // by uniquifying them by name. 2809 static SmallVector<GdbIndexSection::GdbSymbol, 0> createSymbols( 2810 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs, 2811 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) { 2812 using GdbSymbol = GdbIndexSection::GdbSymbol; 2813 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2814 2815 // For each chunk, compute the number of compilation units preceding it. 2816 uint32_t cuIdx = 0; 2817 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); 2818 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2819 cuIdxs[i] = cuIdx; 2820 cuIdx += chunks[i].compilationUnits.size(); 2821 } 2822 2823 // The number of symbols we will handle in this function is of the order 2824 // of millions for very large executables, so we use multi-threading to 2825 // speed it up. 2826 constexpr size_t numShards = 32; 2827 size_t concurrency = PowerOf2Floor( 2828 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 2829 .compute_thread_count(), 2830 numShards)); 2831 2832 // A sharded map to uniquify symbols by name. 2833 auto map = 2834 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards); 2835 size_t shift = 32 - countTrailingZeros(numShards); 2836 2837 // Instantiate GdbSymbols while uniqufying them by name. 2838 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards); 2839 2840 parallelForEachN(0, concurrency, [&](size_t threadId) { 2841 uint32_t i = 0; 2842 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2843 for (const NameAttrEntry &ent : entries) { 2844 size_t shardId = ent.name.hash() >> shift; 2845 if ((shardId & (concurrency - 1)) != threadId) 2846 continue; 2847 2848 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2849 size_t &idx = map[shardId][ent.name]; 2850 if (idx) { 2851 symbols[shardId][idx - 1].cuVector.push_back(v); 2852 continue; 2853 } 2854 2855 idx = symbols[shardId].size() + 1; 2856 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2857 } 2858 ++i; 2859 } 2860 }); 2861 2862 size_t numSymbols = 0; 2863 for (ArrayRef<GdbSymbol> v : makeArrayRef(symbols.get(), numShards)) 2864 numSymbols += v.size(); 2865 2866 // The return type is a flattened vector, so we'll copy each vector 2867 // contents to Ret. 2868 SmallVector<GdbSymbol, 0> ret; 2869 ret.reserve(numSymbols); 2870 for (SmallVector<GdbSymbol, 0> &vec : 2871 makeMutableArrayRef(symbols.get(), numShards)) 2872 for (GdbSymbol &sym : vec) 2873 ret.push_back(std::move(sym)); 2874 2875 // CU vectors and symbol names are adjacent in the output file. 2876 // We can compute their offsets in the output file now. 2877 size_t off = 0; 2878 for (GdbSymbol &sym : ret) { 2879 sym.cuVectorOff = off; 2880 off += (sym.cuVector.size() + 1) * 4; 2881 } 2882 for (GdbSymbol &sym : ret) { 2883 sym.nameOff = off; 2884 off += sym.name.size() + 1; 2885 } 2886 2887 return ret; 2888 } 2889 2890 // Returns a newly-created .gdb_index section. 2891 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2892 // Collect InputFiles with .debug_info. See the comment in 2893 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2894 // note that isec->data() may uncompress the full content, which should be 2895 // parallelized. 2896 SetVector<InputFile *> files; 2897 for (InputSectionBase *s : inputSections) { 2898 InputSection *isec = dyn_cast<InputSection>(s); 2899 if (!isec) 2900 continue; 2901 // .debug_gnu_pub{names,types} are useless in executables. 2902 // They are present in input object files solely for creating 2903 // a .gdb_index. So we can remove them from the output. 2904 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2905 s->markDead(); 2906 else if (isec->name == ".debug_info") 2907 files.insert(isec->file); 2908 } 2909 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 2910 llvm::erase_if(inputSections, [](InputSectionBase *s) { 2911 if (auto *isec = dyn_cast<InputSection>(s)) 2912 if (InputSectionBase *rel = isec->getRelocatedSection()) 2913 return !rel->isLive(); 2914 return !s->isLive(); 2915 }); 2916 2917 SmallVector<GdbChunk, 0> chunks(files.size()); 2918 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size()); 2919 2920 parallelForEachN(0, files.size(), [&](size_t i) { 2921 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2922 // avoid getDwarf() here. 2923 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2924 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2925 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2926 2927 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2928 // this only picks the last one. Other address ranges are lost. 2929 chunks[i].sec = dobj.getInfoSection(); 2930 chunks[i].compilationUnits = readCuList(dwarf); 2931 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2932 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2933 }); 2934 2935 auto *ret = make<GdbIndexSection>(); 2936 ret->chunks = std::move(chunks); 2937 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2938 ret->initOutputSize(); 2939 return ret; 2940 } 2941 2942 void GdbIndexSection::writeTo(uint8_t *buf) { 2943 // Write the header. 2944 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2945 uint8_t *start = buf; 2946 hdr->version = 7; 2947 buf += sizeof(*hdr); 2948 2949 // Write the CU list. 2950 hdr->cuListOff = buf - start; 2951 for (GdbChunk &chunk : chunks) { 2952 for (CuEntry &cu : chunk.compilationUnits) { 2953 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2954 write64le(buf + 8, cu.cuLength); 2955 buf += 16; 2956 } 2957 } 2958 2959 // Write the address area. 2960 hdr->cuTypesOff = buf - start; 2961 hdr->addressAreaOff = buf - start; 2962 uint32_t cuOff = 0; 2963 for (GdbChunk &chunk : chunks) { 2964 for (AddressEntry &e : chunk.addressAreas) { 2965 // In the case of ICF there may be duplicate address range entries. 2966 const uint64_t baseAddr = e.section->repl->getVA(0); 2967 write64le(buf, baseAddr + e.lowAddress); 2968 write64le(buf + 8, baseAddr + e.highAddress); 2969 write32le(buf + 16, e.cuIndex + cuOff); 2970 buf += 20; 2971 } 2972 cuOff += chunk.compilationUnits.size(); 2973 } 2974 2975 // Write the on-disk open-addressing hash table containing symbols. 2976 hdr->symtabOff = buf - start; 2977 size_t symtabSize = computeSymtabSize(); 2978 uint32_t mask = symtabSize - 1; 2979 2980 for (GdbSymbol &sym : symbols) { 2981 uint32_t h = sym.name.hash(); 2982 uint32_t i = h & mask; 2983 uint32_t step = ((h * 17) & mask) | 1; 2984 2985 while (read32le(buf + i * 8)) 2986 i = (i + step) & mask; 2987 2988 write32le(buf + i * 8, sym.nameOff); 2989 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2990 } 2991 2992 buf += symtabSize * 8; 2993 2994 // Write the string pool. 2995 hdr->constantPoolOff = buf - start; 2996 parallelForEach(symbols, [&](GdbSymbol &sym) { 2997 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 2998 }); 2999 3000 // Write the CU vectors. 3001 for (GdbSymbol &sym : symbols) { 3002 write32le(buf, sym.cuVector.size()); 3003 buf += 4; 3004 for (uint32_t val : sym.cuVector) { 3005 write32le(buf, val); 3006 buf += 4; 3007 } 3008 } 3009 } 3010 3011 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 3012 3013 EhFrameHeader::EhFrameHeader() 3014 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 3015 3016 void EhFrameHeader::writeTo(uint8_t *buf) { 3017 // Unlike most sections, the EhFrameHeader section is written while writing 3018 // another section, namely EhFrameSection, which calls the write() function 3019 // below from its writeTo() function. This is necessary because the contents 3020 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 3021 // don't know which order the sections will be written in. 3022 } 3023 3024 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 3025 // Each entry of the search table consists of two values, 3026 // the starting PC from where FDEs covers, and the FDE's address. 3027 // It is sorted by PC. 3028 void EhFrameHeader::write() { 3029 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3030 using FdeData = EhFrameSection::FdeData; 3031 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData(); 3032 3033 buf[0] = 1; 3034 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3035 buf[2] = DW_EH_PE_udata4; 3036 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3037 write32(buf + 4, 3038 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3039 write32(buf + 8, fdes.size()); 3040 buf += 12; 3041 3042 for (FdeData &fde : fdes) { 3043 write32(buf, fde.pcRel); 3044 write32(buf + 4, fde.fdeVARel); 3045 buf += 8; 3046 } 3047 } 3048 3049 size_t EhFrameHeader::getSize() const { 3050 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3051 return 12 + getPartition().ehFrame->numFdes * 8; 3052 } 3053 3054 bool EhFrameHeader::isNeeded() const { 3055 return isLive() && getPartition().ehFrame->isNeeded(); 3056 } 3057 3058 VersionDefinitionSection::VersionDefinitionSection() 3059 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3060 ".gnu.version_d") {} 3061 3062 StringRef VersionDefinitionSection::getFileDefName() { 3063 if (!getPartition().name.empty()) 3064 return getPartition().name; 3065 if (!config->soName.empty()) 3066 return config->soName; 3067 return config->outputFile; 3068 } 3069 3070 void VersionDefinitionSection::finalizeContents() { 3071 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3072 for (const VersionDefinition &v : namedVersionDefs()) 3073 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3074 3075 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3076 getParent()->link = sec->sectionIndex; 3077 3078 // sh_info should be set to the number of definitions. This fact is missed in 3079 // documentation, but confirmed by binutils community: 3080 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3081 getParent()->info = getVerDefNum(); 3082 } 3083 3084 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3085 StringRef name, size_t nameOff) { 3086 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3087 3088 // Write a verdef. 3089 write16(buf, 1); // vd_version 3090 write16(buf + 2, flags); // vd_flags 3091 write16(buf + 4, index); // vd_ndx 3092 write16(buf + 6, 1); // vd_cnt 3093 write32(buf + 8, hashSysV(name)); // vd_hash 3094 write32(buf + 12, 20); // vd_aux 3095 write32(buf + 16, 28); // vd_next 3096 3097 // Write a veraux. 3098 write32(buf + 20, nameOff); // vda_name 3099 write32(buf + 24, 0); // vda_next 3100 } 3101 3102 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3103 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3104 3105 auto nameOffIt = verDefNameOffs.begin(); 3106 for (const VersionDefinition &v : namedVersionDefs()) { 3107 buf += EntrySize; 3108 writeOne(buf, v.id, v.name, *nameOffIt++); 3109 } 3110 3111 // Need to terminate the last version definition. 3112 write32(buf + 16, 0); // vd_next 3113 } 3114 3115 size_t VersionDefinitionSection::getSize() const { 3116 return EntrySize * getVerDefNum(); 3117 } 3118 3119 // .gnu.version is a table where each entry is 2 byte long. 3120 VersionTableSection::VersionTableSection() 3121 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3122 ".gnu.version") { 3123 this->entsize = 2; 3124 } 3125 3126 void VersionTableSection::finalizeContents() { 3127 // At the moment of june 2016 GNU docs does not mention that sh_link field 3128 // should be set, but Sun docs do. Also readelf relies on this field. 3129 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3130 } 3131 3132 size_t VersionTableSection::getSize() const { 3133 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3134 } 3135 3136 void VersionTableSection::writeTo(uint8_t *buf) { 3137 buf += 2; 3138 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3139 // For an unextracted lazy symbol (undefined weak), it must have been 3140 // converted to Undefined and have VER_NDX_GLOBAL version here. 3141 assert(!s.sym->isLazy()); 3142 write16(buf, s.sym->versionId); 3143 buf += 2; 3144 } 3145 } 3146 3147 bool VersionTableSection::isNeeded() const { 3148 return isLive() && 3149 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3150 } 3151 3152 void elf::addVerneed(Symbol *ss) { 3153 auto &file = cast<SharedFile>(*ss->file); 3154 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3155 ss->versionId = VER_NDX_GLOBAL; 3156 return; 3157 } 3158 3159 if (file.vernauxs.empty()) 3160 file.vernauxs.resize(file.verdefs.size()); 3161 3162 // Select a version identifier for the vernaux data structure, if we haven't 3163 // already allocated one. The verdef identifiers cover the range 3164 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3165 // getVerDefNum()+1. 3166 if (file.vernauxs[ss->verdefIndex] == 0) 3167 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3168 3169 ss->versionId = file.vernauxs[ss->verdefIndex]; 3170 } 3171 3172 template <class ELFT> 3173 VersionNeedSection<ELFT>::VersionNeedSection() 3174 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3175 ".gnu.version_r") {} 3176 3177 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3178 for (SharedFile *f : sharedFiles) { 3179 if (f->vernauxs.empty()) 3180 continue; 3181 verneeds.emplace_back(); 3182 Verneed &vn = verneeds.back(); 3183 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3184 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3185 if (f->vernauxs[i] == 0) 3186 continue; 3187 auto *verdef = 3188 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3189 vn.vernauxs.push_back( 3190 {verdef->vd_hash, f->vernauxs[i], 3191 getPartition().dynStrTab->addString(f->getStringTable().data() + 3192 verdef->getAux()->vda_name)}); 3193 } 3194 } 3195 3196 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3197 getParent()->link = sec->sectionIndex; 3198 getParent()->info = verneeds.size(); 3199 } 3200 3201 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3202 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3203 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3204 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3205 3206 for (auto &vn : verneeds) { 3207 // Create an Elf_Verneed for this DSO. 3208 verneed->vn_version = 1; 3209 verneed->vn_cnt = vn.vernauxs.size(); 3210 verneed->vn_file = vn.nameStrTab; 3211 verneed->vn_aux = 3212 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3213 verneed->vn_next = sizeof(Elf_Verneed); 3214 ++verneed; 3215 3216 // Create the Elf_Vernauxs for this Elf_Verneed. 3217 for (auto &vna : vn.vernauxs) { 3218 vernaux->vna_hash = vna.hash; 3219 vernaux->vna_flags = 0; 3220 vernaux->vna_other = vna.verneedIndex; 3221 vernaux->vna_name = vna.nameStrTab; 3222 vernaux->vna_next = sizeof(Elf_Vernaux); 3223 ++vernaux; 3224 } 3225 3226 vernaux[-1].vna_next = 0; 3227 } 3228 verneed[-1].vn_next = 0; 3229 } 3230 3231 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3232 return verneeds.size() * sizeof(Elf_Verneed) + 3233 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3234 } 3235 3236 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3237 return isLive() && SharedFile::vernauxNum != 0; 3238 } 3239 3240 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3241 ms->parent = this; 3242 sections.push_back(ms); 3243 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3244 alignment = std::max(alignment, ms->alignment); 3245 } 3246 3247 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3248 uint64_t flags, uint32_t alignment) 3249 : MergeSyntheticSection(name, type, flags, alignment), 3250 builder(StringTableBuilder::RAW, alignment) {} 3251 3252 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3253 3254 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3255 3256 void MergeTailSection::finalizeContents() { 3257 // Add all string pieces to the string table builder to create section 3258 // contents. 3259 for (MergeInputSection *sec : sections) 3260 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3261 if (sec->pieces[i].live) 3262 builder.add(sec->getData(i)); 3263 3264 // Fix the string table content. After this, the contents will never change. 3265 builder.finalize(); 3266 3267 // finalize() fixed tail-optimized strings, so we can now get 3268 // offsets of strings. Get an offset for each string and save it 3269 // to a corresponding SectionPiece for easy access. 3270 for (MergeInputSection *sec : sections) 3271 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3272 if (sec->pieces[i].live) 3273 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3274 } 3275 3276 void MergeNoTailSection::writeTo(uint8_t *buf) { 3277 parallelForEachN(0, numShards, 3278 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); 3279 } 3280 3281 // This function is very hot (i.e. it can take several seconds to finish) 3282 // because sometimes the number of inputs is in an order of magnitude of 3283 // millions. So, we use multi-threading. 3284 // 3285 // For any strings S and T, we know S is not mergeable with T if S's hash 3286 // value is different from T's. If that's the case, we can safely put S and 3287 // T into different string builders without worrying about merge misses. 3288 // We do it in parallel. 3289 void MergeNoTailSection::finalizeContents() { 3290 // Initializes string table builders. 3291 for (size_t i = 0; i < numShards; ++i) 3292 shards.emplace_back(StringTableBuilder::RAW, alignment); 3293 3294 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3295 // operations in the following tight loop. 3296 size_t concurrency = PowerOf2Floor( 3297 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 3298 .compute_thread_count(), 3299 numShards)); 3300 3301 // Add section pieces to the builders. 3302 parallelForEachN(0, concurrency, [&](size_t threadId) { 3303 for (MergeInputSection *sec : sections) { 3304 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3305 if (!sec->pieces[i].live) 3306 continue; 3307 size_t shardId = getShardId(sec->pieces[i].hash); 3308 if ((shardId & (concurrency - 1)) == threadId) 3309 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3310 } 3311 } 3312 }); 3313 3314 // Compute an in-section offset for each shard. 3315 size_t off = 0; 3316 for (size_t i = 0; i < numShards; ++i) { 3317 shards[i].finalizeInOrder(); 3318 if (shards[i].getSize() > 0) 3319 off = alignTo(off, alignment); 3320 shardOffsets[i] = off; 3321 off += shards[i].getSize(); 3322 } 3323 size = off; 3324 3325 // So far, section pieces have offsets from beginning of shards, but 3326 // we want offsets from beginning of the whole section. Fix them. 3327 parallelForEach(sections, [&](MergeInputSection *sec) { 3328 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3329 if (sec->pieces[i].live) 3330 sec->pieces[i].outputOff += 3331 shardOffsets[getShardId(sec->pieces[i].hash)]; 3332 }); 3333 } 3334 3335 template <class ELFT> void elf::splitSections() { 3336 llvm::TimeTraceScope timeScope("Split sections"); 3337 // splitIntoPieces needs to be called on each MergeInputSection 3338 // before calling finalizeContents(). 3339 parallelForEach(objectFiles, [](ELFFileBase *file) { 3340 for (InputSectionBase *sec : file->getSections()) { 3341 if (!sec) 3342 continue; 3343 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3344 s->splitIntoPieces(); 3345 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3346 eh->split<ELFT>(); 3347 } 3348 }); 3349 } 3350 3351 MipsRldMapSection::MipsRldMapSection() 3352 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3353 ".rld_map") {} 3354 3355 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3356 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3357 config->wordsize, ".ARM.exidx") {} 3358 3359 static InputSection *findExidxSection(InputSection *isec) { 3360 for (InputSection *d : isec->dependentSections) 3361 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3362 return d; 3363 return nullptr; 3364 } 3365 3366 static bool isValidExidxSectionDep(InputSection *isec) { 3367 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3368 isec->getSize() > 0; 3369 } 3370 3371 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3372 if (isec->type == SHT_ARM_EXIDX) { 3373 if (InputSection *dep = isec->getLinkOrderDep()) 3374 if (isValidExidxSectionDep(dep)) { 3375 exidxSections.push_back(isec); 3376 // Every exidxSection is 8 bytes, we need an estimate of 3377 // size before assignAddresses can be called. Final size 3378 // will only be known after finalize is called. 3379 size += 8; 3380 } 3381 return true; 3382 } 3383 3384 if (isValidExidxSectionDep(isec)) { 3385 executableSections.push_back(isec); 3386 return false; 3387 } 3388 3389 // FIXME: we do not output a relocation section when --emit-relocs is used 3390 // as we do not have relocation sections for linker generated table entries 3391 // and we would have to erase at a late stage relocations from merged entries. 3392 // Given that exception tables are already position independent and a binary 3393 // analyzer could derive the relocations we choose to erase the relocations. 3394 if (config->emitRelocs && isec->type == SHT_REL) 3395 if (InputSectionBase *ex = isec->getRelocatedSection()) 3396 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3397 return true; 3398 3399 return false; 3400 } 3401 3402 // References to .ARM.Extab Sections have bit 31 clear and are not the 3403 // special EXIDX_CANTUNWIND bit-pattern. 3404 static bool isExtabRef(uint32_t unwind) { 3405 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3406 } 3407 3408 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3409 // section Prev, where Cur follows Prev in the table. This can be done if the 3410 // unwinding instructions in Cur are identical to Prev. Linker generated 3411 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3412 // InputSection. 3413 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3414 3415 struct ExidxEntry { 3416 ulittle32_t fn; 3417 ulittle32_t unwind; 3418 }; 3419 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3420 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3421 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3422 if (prev) 3423 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3424 if (isExtabRef(prevEntry.unwind)) 3425 return false; 3426 3427 // We consider the unwind instructions of an .ARM.exidx table entry 3428 // a duplicate if the previous unwind instructions if: 3429 // - Both are the special EXIDX_CANTUNWIND. 3430 // - Both are the same inline unwind instructions. 3431 // We do not attempt to follow and check links into .ARM.extab tables as 3432 // consecutive identical entries are rare and the effort to check that they 3433 // are identical is high. 3434 3435 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3436 if (cur == nullptr) 3437 return prevEntry.unwind == 1; 3438 3439 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3440 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3441 return false; 3442 3443 // All table entries in this .ARM.exidx Section can be merged into the 3444 // previous Section. 3445 return true; 3446 } 3447 3448 // The .ARM.exidx table must be sorted in ascending order of the address of the 3449 // functions the table describes. Optionally duplicate adjacent table entries 3450 // can be removed. At the end of the function the executableSections must be 3451 // sorted in ascending order of address, Sentinel is set to the InputSection 3452 // with the highest address and any InputSections that have mergeable 3453 // .ARM.exidx table entries are removed from it. 3454 void ARMExidxSyntheticSection::finalizeContents() { 3455 // The executableSections and exidxSections that we use to derive the final 3456 // contents of this SyntheticSection are populated before 3457 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3458 // ICF may remove executable InputSections and their dependent .ARM.exidx 3459 // section that we recorded earlier. 3460 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3461 llvm::erase_if(exidxSections, isDiscarded); 3462 // We need to remove discarded InputSections and InputSections without 3463 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3464 // of range. 3465 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3466 if (!isec->isLive()) 3467 return true; 3468 if (findExidxSection(isec)) 3469 return false; 3470 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3471 return off != llvm::SignExtend64(off, 31); 3472 }; 3473 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3474 3475 // Sort the executable sections that may or may not have associated 3476 // .ARM.exidx sections by order of ascending address. This requires the 3477 // relative positions of InputSections and OutputSections to be known. 3478 auto compareByFilePosition = [](const InputSection *a, 3479 const InputSection *b) { 3480 OutputSection *aOut = a->getParent(); 3481 OutputSection *bOut = b->getParent(); 3482 3483 if (aOut != bOut) 3484 return aOut->addr < bOut->addr; 3485 return a->outSecOff < b->outSecOff; 3486 }; 3487 llvm::stable_sort(executableSections, compareByFilePosition); 3488 sentinel = executableSections.back(); 3489 // Optionally merge adjacent duplicate entries. 3490 if (config->mergeArmExidx) { 3491 SmallVector<InputSection *, 0> selectedSections; 3492 selectedSections.reserve(executableSections.size()); 3493 selectedSections.push_back(executableSections[0]); 3494 size_t prev = 0; 3495 for (size_t i = 1; i < executableSections.size(); ++i) { 3496 InputSection *ex1 = findExidxSection(executableSections[prev]); 3497 InputSection *ex2 = findExidxSection(executableSections[i]); 3498 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3499 selectedSections.push_back(executableSections[i]); 3500 prev = i; 3501 } 3502 } 3503 executableSections = std::move(selectedSections); 3504 } 3505 3506 size_t offset = 0; 3507 size = 0; 3508 for (InputSection *isec : executableSections) { 3509 if (InputSection *d = findExidxSection(isec)) { 3510 d->outSecOff = offset; 3511 d->parent = getParent(); 3512 offset += d->getSize(); 3513 } else { 3514 offset += 8; 3515 } 3516 } 3517 // Size includes Sentinel. 3518 size = offset + 8; 3519 } 3520 3521 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3522 return executableSections.front(); 3523 } 3524 3525 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3526 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3527 // We write the .ARM.exidx section contents and apply its relocations. 3528 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3529 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3530 // start of the InputSection as the purpose of the linker generated 3531 // section is to terminate the address range of the previous entry. 3532 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3533 // the table to terminate the address range of the final entry. 3534 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3535 3536 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3537 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3538 3539 uint64_t offset = 0; 3540 for (InputSection *isec : executableSections) { 3541 assert(isec->getParent() != nullptr); 3542 if (InputSection *d = findExidxSection(isec)) { 3543 memcpy(buf + offset, d->data().data(), d->data().size()); 3544 d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize()); 3545 offset += d->getSize(); 3546 } else { 3547 // A Linker generated CANTUNWIND section. 3548 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3549 uint64_t s = isec->getVA(); 3550 uint64_t p = getVA() + offset; 3551 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3552 offset += 8; 3553 } 3554 } 3555 // Write Sentinel. 3556 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3557 uint64_t s = sentinel->getVA(sentinel->getSize()); 3558 uint64_t p = getVA() + offset; 3559 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3560 assert(size == offset + 8); 3561 } 3562 3563 bool ARMExidxSyntheticSection::isNeeded() const { 3564 return llvm::any_of(exidxSections, 3565 [](InputSection *isec) { return isec->isLive(); }); 3566 } 3567 3568 bool ARMExidxSyntheticSection::classof(const SectionBase *d) { 3569 return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX; 3570 } 3571 3572 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3573 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 3574 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 3575 this->parent = os; 3576 this->outSecOff = off; 3577 } 3578 3579 size_t ThunkSection::getSize() const { 3580 if (roundUpSizeForErrata) 3581 return alignTo(size, 4096); 3582 return size; 3583 } 3584 3585 void ThunkSection::addThunk(Thunk *t) { 3586 thunks.push_back(t); 3587 t->addSymbols(*this); 3588 } 3589 3590 void ThunkSection::writeTo(uint8_t *buf) { 3591 for (Thunk *t : thunks) 3592 t->writeTo(buf + t->offset); 3593 } 3594 3595 InputSection *ThunkSection::getTargetInputSection() const { 3596 if (thunks.empty()) 3597 return nullptr; 3598 const Thunk *t = thunks.front(); 3599 return t->getTargetInputSection(); 3600 } 3601 3602 bool ThunkSection::assignOffsets() { 3603 uint64_t off = 0; 3604 for (Thunk *t : thunks) { 3605 off = alignTo(off, t->alignment); 3606 t->setOffset(off); 3607 uint32_t size = t->size(); 3608 t->getThunkTargetSym()->size = size; 3609 off += size; 3610 } 3611 bool changed = off != size; 3612 size = off; 3613 return changed; 3614 } 3615 3616 PPC32Got2Section::PPC32Got2Section() 3617 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3618 3619 bool PPC32Got2Section::isNeeded() const { 3620 // See the comment below. This is not needed if there is no other 3621 // InputSection. 3622 for (SectionCommand *cmd : getParent()->commands) 3623 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 3624 for (InputSection *isec : isd->sections) 3625 if (isec != this) 3626 return true; 3627 return false; 3628 } 3629 3630 void PPC32Got2Section::finalizeContents() { 3631 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3632 // .got2 . This function computes outSecOff of each .got2 to be used in 3633 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3634 // to collect input sections named ".got2". 3635 for (SectionCommand *cmd : getParent()->commands) 3636 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 3637 for (InputSection *isec : isd->sections) { 3638 // isec->file may be nullptr for MergeSyntheticSection. 3639 if (isec != this && isec->file) 3640 isec->file->ppc32Got2 = isec; 3641 } 3642 } 3643 } 3644 3645 // If linking position-dependent code then the table will store the addresses 3646 // directly in the binary so the section has type SHT_PROGBITS. If linking 3647 // position-independent code the section has type SHT_NOBITS since it will be 3648 // allocated and filled in by the dynamic linker. 3649 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3650 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3651 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3652 ".branch_lt") {} 3653 3654 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3655 int64_t addend) { 3656 return getVA() + entry_index.find({sym, addend})->second * 8; 3657 } 3658 3659 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3660 int64_t addend) { 3661 auto res = 3662 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3663 if (!res.second) 3664 return None; 3665 entries.emplace_back(sym, addend); 3666 return res.first->second; 3667 } 3668 3669 size_t PPC64LongBranchTargetSection::getSize() const { 3670 return entries.size() * 8; 3671 } 3672 3673 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3674 // If linking non-pic we have the final addresses of the targets and they get 3675 // written to the table directly. For pic the dynamic linker will allocate 3676 // the section and fill it it. 3677 if (config->isPic) 3678 return; 3679 3680 for (auto entry : entries) { 3681 const Symbol *sym = entry.first; 3682 int64_t addend = entry.second; 3683 assert(sym->getVA()); 3684 // Need calls to branch to the local entry-point since a long-branch 3685 // must be a local-call. 3686 write64(buf, sym->getVA(addend) + 3687 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3688 buf += 8; 3689 } 3690 } 3691 3692 bool PPC64LongBranchTargetSection::isNeeded() const { 3693 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3694 // is too early to determine if this section will be empty or not. We need 3695 // Finalized to keep the section alive until after thunk creation. Finalized 3696 // only gets set to true once `finalizeSections()` is called after thunk 3697 // creation. Because of this, if we don't create any long-branch thunks we end 3698 // up with an empty .branch_lt section in the binary. 3699 return !finalized || !entries.empty(); 3700 } 3701 3702 static uint8_t getAbiVersion() { 3703 // MIPS non-PIC executable gets ABI version 1. 3704 if (config->emachine == EM_MIPS) { 3705 if (!config->isPic && !config->relocatable && 3706 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3707 return 1; 3708 return 0; 3709 } 3710 3711 if (config->emachine == EM_AMDGPU) { 3712 uint8_t ver = objectFiles[0]->abiVersion; 3713 for (InputFile *file : makeArrayRef(objectFiles).slice(1)) 3714 if (file->abiVersion != ver) 3715 error("incompatible ABI version: " + toString(file)); 3716 return ver; 3717 } 3718 3719 return 0; 3720 } 3721 3722 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3723 memcpy(buf, "\177ELF", 4); 3724 3725 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3726 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3727 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3728 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3729 eHdr->e_ident[EI_OSABI] = config->osabi; 3730 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3731 eHdr->e_machine = config->emachine; 3732 eHdr->e_version = EV_CURRENT; 3733 eHdr->e_flags = config->eflags; 3734 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3735 eHdr->e_phnum = part.phdrs.size(); 3736 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3737 3738 if (!config->relocatable) { 3739 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3740 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3741 } 3742 } 3743 3744 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3745 // Write the program header table. 3746 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3747 for (PhdrEntry *p : part.phdrs) { 3748 hBuf->p_type = p->p_type; 3749 hBuf->p_flags = p->p_flags; 3750 hBuf->p_offset = p->p_offset; 3751 hBuf->p_vaddr = p->p_vaddr; 3752 hBuf->p_paddr = p->p_paddr; 3753 hBuf->p_filesz = p->p_filesz; 3754 hBuf->p_memsz = p->p_memsz; 3755 hBuf->p_align = p->p_align; 3756 ++hBuf; 3757 } 3758 } 3759 3760 template <typename ELFT> 3761 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3762 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3763 3764 template <typename ELFT> 3765 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3766 return sizeof(typename ELFT::Ehdr); 3767 } 3768 3769 template <typename ELFT> 3770 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3771 writeEhdr<ELFT>(buf, getPartition()); 3772 3773 // Loadable partitions are always ET_DYN. 3774 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3775 eHdr->e_type = ET_DYN; 3776 } 3777 3778 template <typename ELFT> 3779 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3780 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3781 3782 template <typename ELFT> 3783 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3784 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3785 } 3786 3787 template <typename ELFT> 3788 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3789 writePhdrs<ELFT>(buf, getPartition()); 3790 } 3791 3792 PartitionIndexSection::PartitionIndexSection() 3793 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3794 3795 size_t PartitionIndexSection::getSize() const { 3796 return 12 * (partitions.size() - 1); 3797 } 3798 3799 void PartitionIndexSection::finalizeContents() { 3800 for (size_t i = 1; i != partitions.size(); ++i) 3801 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3802 } 3803 3804 void PartitionIndexSection::writeTo(uint8_t *buf) { 3805 uint64_t va = getVA(); 3806 for (size_t i = 1; i != partitions.size(); ++i) { 3807 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3808 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3809 3810 SyntheticSection *next = i == partitions.size() - 1 3811 ? in.partEnd.get() 3812 : partitions[i + 1].elfHeader.get(); 3813 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3814 3815 va += 12; 3816 buf += 12; 3817 } 3818 } 3819 3820 void InStruct::reset() { 3821 attributes.reset(); 3822 bss.reset(); 3823 bssRelRo.reset(); 3824 got.reset(); 3825 gotPlt.reset(); 3826 igotPlt.reset(); 3827 ppc64LongBranchTarget.reset(); 3828 mipsAbiFlags.reset(); 3829 mipsGot.reset(); 3830 mipsOptions.reset(); 3831 mipsReginfo.reset(); 3832 mipsRldMap.reset(); 3833 partEnd.reset(); 3834 partIndex.reset(); 3835 plt.reset(); 3836 iplt.reset(); 3837 ppc32Got2.reset(); 3838 ibtPlt.reset(); 3839 relaPlt.reset(); 3840 relaIplt.reset(); 3841 shStrTab.reset(); 3842 strTab.reset(); 3843 symTab.reset(); 3844 symTabShndx.reset(); 3845 } 3846 3847 InStruct elf::in; 3848 3849 std::vector<Partition> elf::partitions; 3850 Partition *elf::mainPart; 3851 3852 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3853 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3854 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3855 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3856 3857 template void elf::splitSections<ELF32LE>(); 3858 template void elf::splitSections<ELF32BE>(); 3859 template void elf::splitSections<ELF64LE>(); 3860 template void elf::splitSections<ELF64BE>(); 3861 3862 template class elf::MipsAbiFlagsSection<ELF32LE>; 3863 template class elf::MipsAbiFlagsSection<ELF32BE>; 3864 template class elf::MipsAbiFlagsSection<ELF64LE>; 3865 template class elf::MipsAbiFlagsSection<ELF64BE>; 3866 3867 template class elf::MipsOptionsSection<ELF32LE>; 3868 template class elf::MipsOptionsSection<ELF32BE>; 3869 template class elf::MipsOptionsSection<ELF64LE>; 3870 template class elf::MipsOptionsSection<ELF64BE>; 3871 3872 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 3873 function_ref<void(InputSection &)>); 3874 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 3875 function_ref<void(InputSection &)>); 3876 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 3877 function_ref<void(InputSection &)>); 3878 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 3879 function_ref<void(InputSection &)>); 3880 3881 template class elf::MipsReginfoSection<ELF32LE>; 3882 template class elf::MipsReginfoSection<ELF32BE>; 3883 template class elf::MipsReginfoSection<ELF64LE>; 3884 template class elf::MipsReginfoSection<ELF64BE>; 3885 3886 template class elf::DynamicSection<ELF32LE>; 3887 template class elf::DynamicSection<ELF32BE>; 3888 template class elf::DynamicSection<ELF64LE>; 3889 template class elf::DynamicSection<ELF64BE>; 3890 3891 template class elf::RelocationSection<ELF32LE>; 3892 template class elf::RelocationSection<ELF32BE>; 3893 template class elf::RelocationSection<ELF64LE>; 3894 template class elf::RelocationSection<ELF64BE>; 3895 3896 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3897 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3898 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3899 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3900 3901 template class elf::RelrSection<ELF32LE>; 3902 template class elf::RelrSection<ELF32BE>; 3903 template class elf::RelrSection<ELF64LE>; 3904 template class elf::RelrSection<ELF64BE>; 3905 3906 template class elf::SymbolTableSection<ELF32LE>; 3907 template class elf::SymbolTableSection<ELF32BE>; 3908 template class elf::SymbolTableSection<ELF64LE>; 3909 template class elf::SymbolTableSection<ELF64BE>; 3910 3911 template class elf::VersionNeedSection<ELF32LE>; 3912 template class elf::VersionNeedSection<ELF32BE>; 3913 template class elf::VersionNeedSection<ELF64LE>; 3914 template class elf::VersionNeedSection<ELF64BE>; 3915 3916 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3917 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3918 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3919 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3920 3921 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3922 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3923 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3924 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3925 3926 template class elf::PartitionElfHeaderSection<ELF32LE>; 3927 template class elf::PartitionElfHeaderSection<ELF32BE>; 3928 template class elf::PartitionElfHeaderSection<ELF64LE>; 3929 template class elf::PartitionElfHeaderSection<ELF64BE>; 3930 3931 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3932 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3933 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3934 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3935