xref: /freebsd/contrib/llvm-project/lld/ELF/SyntheticSections.cpp (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 //===- SyntheticSections.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains linker-synthesized sections. Currently,
10 // synthetic sections are created either output sections or input sections,
11 // but we are rewriting code so that all synthetic sections are created as
12 // input sections.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "SyntheticSections.h"
17 #include "Config.h"
18 #include "InputFiles.h"
19 #include "LinkerScript.h"
20 #include "OutputSections.h"
21 #include "SymbolTable.h"
22 #include "Symbols.h"
23 #include "Target.h"
24 #include "Writer.h"
25 #include "lld/Common/DWARF.h"
26 #include "lld/Common/ErrorHandler.h"
27 #include "lld/Common/Memory.h"
28 #include "lld/Common/Strings.h"
29 #include "lld/Common/Version.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/BinaryFormat/Dwarf.h"
34 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
35 #include "llvm/Object/ELFObjectFile.h"
36 #include "llvm/Support/Compression.h"
37 #include "llvm/Support/Endian.h"
38 #include "llvm/Support/LEB128.h"
39 #include "llvm/Support/MD5.h"
40 #include "llvm/Support/Parallel.h"
41 #include "llvm/Support/TimeProfiler.h"
42 #include <cstdlib>
43 #include <thread>
44 
45 using namespace llvm;
46 using namespace llvm::dwarf;
47 using namespace llvm::ELF;
48 using namespace llvm::object;
49 using namespace llvm::support;
50 using namespace lld;
51 using namespace lld::elf;
52 
53 using llvm::support::endian::read32le;
54 using llvm::support::endian::write32le;
55 using llvm::support::endian::write64le;
56 
57 constexpr size_t MergeNoTailSection::numShards;
58 
59 static uint64_t readUint(uint8_t *buf) {
60   return config->is64 ? read64(buf) : read32(buf);
61 }
62 
63 static void writeUint(uint8_t *buf, uint64_t val) {
64   if (config->is64)
65     write64(buf, val);
66   else
67     write32(buf, val);
68 }
69 
70 // Returns an LLD version string.
71 static ArrayRef<uint8_t> getVersion() {
72   // Check LLD_VERSION first for ease of testing.
73   // You can get consistent output by using the environment variable.
74   // This is only for testing.
75   StringRef s = getenv("LLD_VERSION");
76   if (s.empty())
77     s = saver.save(Twine("Linker: ") + getLLDVersion());
78 
79   // +1 to include the terminating '\0'.
80   return {(const uint8_t *)s.data(), s.size() + 1};
81 }
82 
83 // Creates a .comment section containing LLD version info.
84 // With this feature, you can identify LLD-generated binaries easily
85 // by "readelf --string-dump .comment <file>".
86 // The returned object is a mergeable string section.
87 MergeInputSection *elf::createCommentSection() {
88   return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
89                                  getVersion(), ".comment");
90 }
91 
92 // .MIPS.abiflags section.
93 template <class ELFT>
94 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
95     : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
96       flags(flags) {
97   this->entsize = sizeof(Elf_Mips_ABIFlags);
98 }
99 
100 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
101   memcpy(buf, &flags, sizeof(flags));
102 }
103 
104 template <class ELFT>
105 MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() {
106   Elf_Mips_ABIFlags flags = {};
107   bool create = false;
108 
109   for (InputSectionBase *sec : inputSections) {
110     if (sec->type != SHT_MIPS_ABIFLAGS)
111       continue;
112     sec->markDead();
113     create = true;
114 
115     std::string filename = toString(sec->file);
116     const size_t size = sec->data().size();
117     // Older version of BFD (such as the default FreeBSD linker) concatenate
118     // .MIPS.abiflags instead of merging. To allow for this case (or potential
119     // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
120     if (size < sizeof(Elf_Mips_ABIFlags)) {
121       error(filename + ": invalid size of .MIPS.abiflags section: got " +
122             Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
123       return nullptr;
124     }
125     auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data());
126     if (s->version != 0) {
127       error(filename + ": unexpected .MIPS.abiflags version " +
128             Twine(s->version));
129       return nullptr;
130     }
131 
132     // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
133     // select the highest number of ISA/Rev/Ext.
134     flags.isa_level = std::max(flags.isa_level, s->isa_level);
135     flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
136     flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
137     flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
138     flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
139     flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
140     flags.ases |= s->ases;
141     flags.flags1 |= s->flags1;
142     flags.flags2 |= s->flags2;
143     flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
144   };
145 
146   if (create)
147     return make<MipsAbiFlagsSection<ELFT>>(flags);
148   return nullptr;
149 }
150 
151 // .MIPS.options section.
152 template <class ELFT>
153 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
154     : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
155       reginfo(reginfo) {
156   this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
157 }
158 
159 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
160   auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
161   options->kind = ODK_REGINFO;
162   options->size = getSize();
163 
164   if (!config->relocatable)
165     reginfo.ri_gp_value = in.mipsGot->getGp();
166   memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
167 }
168 
169 template <class ELFT>
170 MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() {
171   // N64 ABI only.
172   if (!ELFT::Is64Bits)
173     return nullptr;
174 
175   std::vector<InputSectionBase *> sections;
176   for (InputSectionBase *sec : inputSections)
177     if (sec->type == SHT_MIPS_OPTIONS)
178       sections.push_back(sec);
179 
180   if (sections.empty())
181     return nullptr;
182 
183   Elf_Mips_RegInfo reginfo = {};
184   for (InputSectionBase *sec : sections) {
185     sec->markDead();
186 
187     std::string filename = toString(sec->file);
188     ArrayRef<uint8_t> d = sec->data();
189 
190     while (!d.empty()) {
191       if (d.size() < sizeof(Elf_Mips_Options)) {
192         error(filename + ": invalid size of .MIPS.options section");
193         break;
194       }
195 
196       auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
197       if (opt->kind == ODK_REGINFO) {
198         reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
199         sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
200         break;
201       }
202 
203       if (!opt->size)
204         fatal(filename + ": zero option descriptor size");
205       d = d.slice(opt->size);
206     }
207   };
208 
209   return make<MipsOptionsSection<ELFT>>(reginfo);
210 }
211 
212 // MIPS .reginfo section.
213 template <class ELFT>
214 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
215     : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
216       reginfo(reginfo) {
217   this->entsize = sizeof(Elf_Mips_RegInfo);
218 }
219 
220 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
221   if (!config->relocatable)
222     reginfo.ri_gp_value = in.mipsGot->getGp();
223   memcpy(buf, &reginfo, sizeof(reginfo));
224 }
225 
226 template <class ELFT>
227 MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() {
228   // Section should be alive for O32 and N32 ABIs only.
229   if (ELFT::Is64Bits)
230     return nullptr;
231 
232   std::vector<InputSectionBase *> sections;
233   for (InputSectionBase *sec : inputSections)
234     if (sec->type == SHT_MIPS_REGINFO)
235       sections.push_back(sec);
236 
237   if (sections.empty())
238     return nullptr;
239 
240   Elf_Mips_RegInfo reginfo = {};
241   for (InputSectionBase *sec : sections) {
242     sec->markDead();
243 
244     if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) {
245       error(toString(sec->file) + ": invalid size of .reginfo section");
246       return nullptr;
247     }
248 
249     auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data());
250     reginfo.ri_gprmask |= r->ri_gprmask;
251     sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
252   };
253 
254   return make<MipsReginfoSection<ELFT>>(reginfo);
255 }
256 
257 InputSection *elf::createInterpSection() {
258   // StringSaver guarantees that the returned string ends with '\0'.
259   StringRef s = saver.save(config->dynamicLinker);
260   ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
261 
262   return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
263                             ".interp");
264 }
265 
266 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
267                                 uint64_t size, InputSectionBase &section) {
268   auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type,
269                           value, size, &section);
270   if (in.symTab)
271     in.symTab->addSymbol(s);
272   return s;
273 }
274 
275 static size_t getHashSize() {
276   switch (config->buildId) {
277   case BuildIdKind::Fast:
278     return 8;
279   case BuildIdKind::Md5:
280   case BuildIdKind::Uuid:
281     return 16;
282   case BuildIdKind::Sha1:
283     return 20;
284   case BuildIdKind::Hexstring:
285     return config->buildIdVector.size();
286   default:
287     llvm_unreachable("unknown BuildIdKind");
288   }
289 }
290 
291 // This class represents a linker-synthesized .note.gnu.property section.
292 //
293 // In x86 and AArch64, object files may contain feature flags indicating the
294 // features that they have used. The flags are stored in a .note.gnu.property
295 // section.
296 //
297 // lld reads the sections from input files and merges them by computing AND of
298 // the flags. The result is written as a new .note.gnu.property section.
299 //
300 // If the flag is zero (which indicates that the intersection of the feature
301 // sets is empty, or some input files didn't have .note.gnu.property sections),
302 // we don't create this section.
303 GnuPropertySection::GnuPropertySection()
304     : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
305                        config->wordsize, ".note.gnu.property") {}
306 
307 void GnuPropertySection::writeTo(uint8_t *buf) {
308   uint32_t featureAndType = config->emachine == EM_AARCH64
309                                 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
310                                 : GNU_PROPERTY_X86_FEATURE_1_AND;
311 
312   write32(buf, 4);                                   // Name size
313   write32(buf + 4, config->is64 ? 16 : 12);          // Content size
314   write32(buf + 8, NT_GNU_PROPERTY_TYPE_0);          // Type
315   memcpy(buf + 12, "GNU", 4);                        // Name string
316   write32(buf + 16, featureAndType);                 // Feature type
317   write32(buf + 20, 4);                              // Feature size
318   write32(buf + 24, config->andFeatures);            // Feature flags
319   if (config->is64)
320     write32(buf + 28, 0); // Padding
321 }
322 
323 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
324 
325 BuildIdSection::BuildIdSection()
326     : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
327       hashSize(getHashSize()) {}
328 
329 void BuildIdSection::writeTo(uint8_t *buf) {
330   write32(buf, 4);                      // Name size
331   write32(buf + 4, hashSize);           // Content size
332   write32(buf + 8, NT_GNU_BUILD_ID);    // Type
333   memcpy(buf + 12, "GNU", 4);           // Name string
334   hashBuf = buf + 16;
335 }
336 
337 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
338   assert(buf.size() == hashSize);
339   memcpy(hashBuf, buf.data(), hashSize);
340 }
341 
342 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
343     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
344   this->bss = true;
345   this->size = size;
346 }
347 
348 EhFrameSection::EhFrameSection()
349     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
350 
351 // Search for an existing CIE record or create a new one.
352 // CIE records from input object files are uniquified by their contents
353 // and where their relocations point to.
354 template <class ELFT, class RelTy>
355 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
356   Symbol *personality = nullptr;
357   unsigned firstRelI = cie.firstRelocation;
358   if (firstRelI != (unsigned)-1)
359     personality =
360         &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
361 
362   // Search for an existing CIE by CIE contents/relocation target pair.
363   CieRecord *&rec = cieMap[{cie.data(), personality}];
364 
365   // If not found, create a new one.
366   if (!rec) {
367     rec = make<CieRecord>();
368     rec->cie = &cie;
369     cieRecords.push_back(rec);
370   }
371   return rec;
372 }
373 
374 // There is one FDE per function. Returns true if a given FDE
375 // points to a live function.
376 template <class ELFT, class RelTy>
377 bool EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
378   auto *sec = cast<EhInputSection>(fde.sec);
379   unsigned firstRelI = fde.firstRelocation;
380 
381   // An FDE should point to some function because FDEs are to describe
382   // functions. That's however not always the case due to an issue of
383   // ld.gold with -r. ld.gold may discard only functions and leave their
384   // corresponding FDEs, which results in creating bad .eh_frame sections.
385   // To deal with that, we ignore such FDEs.
386   if (firstRelI == (unsigned)-1)
387     return false;
388 
389   const RelTy &rel = rels[firstRelI];
390   Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
391 
392   // FDEs for garbage-collected or merged-by-ICF sections, or sections in
393   // another partition, are dead.
394   if (auto *d = dyn_cast<Defined>(&b))
395     if (SectionBase *sec = d->section)
396       return sec->partition == partition;
397   return false;
398 }
399 
400 // .eh_frame is a sequence of CIE or FDE records. In general, there
401 // is one CIE record per input object file which is followed by
402 // a list of FDEs. This function searches an existing CIE or create a new
403 // one and associates FDEs to the CIE.
404 template <class ELFT, class RelTy>
405 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
406   offsetToCie.clear();
407   for (EhSectionPiece &piece : sec->pieces) {
408     // The empty record is the end marker.
409     if (piece.size == 4)
410       return;
411 
412     size_t offset = piece.inputOff;
413     uint32_t id = read32(piece.data().data() + 4);
414     if (id == 0) {
415       offsetToCie[offset] = addCie<ELFT>(piece, rels);
416       continue;
417     }
418 
419     uint32_t cieOffset = offset + 4 - id;
420     CieRecord *rec = offsetToCie[cieOffset];
421     if (!rec)
422       fatal(toString(sec) + ": invalid CIE reference");
423 
424     if (!isFdeLive<ELFT>(piece, rels))
425       continue;
426     rec->fdes.push_back(&piece);
427     numFdes++;
428   }
429 }
430 
431 template <class ELFT>
432 void EhFrameSection::addSectionAux(EhInputSection *sec) {
433   if (!sec->isLive())
434     return;
435   if (sec->areRelocsRela)
436     addRecords<ELFT>(sec, sec->template relas<ELFT>());
437   else
438     addRecords<ELFT>(sec, sec->template rels<ELFT>());
439 }
440 
441 void EhFrameSection::addSection(EhInputSection *sec) {
442   sec->parent = this;
443 
444   alignment = std::max(alignment, sec->alignment);
445   sections.push_back(sec);
446 
447   for (auto *ds : sec->dependentSections)
448     dependentSections.push_back(ds);
449 }
450 
451 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
452   memcpy(buf, d.data(), d.size());
453 
454   size_t aligned = alignTo(d.size(), config->wordsize);
455 
456   // Zero-clear trailing padding if it exists.
457   memset(buf + d.size(), 0, aligned - d.size());
458 
459   // Fix the size field. -4 since size does not include the size field itself.
460   write32(buf, aligned - 4);
461 }
462 
463 void EhFrameSection::finalizeContents() {
464   assert(!this->size); // Not finalized.
465 
466   switch (config->ekind) {
467   case ELFNoneKind:
468     llvm_unreachable("invalid ekind");
469   case ELF32LEKind:
470     for (EhInputSection *sec : sections)
471       addSectionAux<ELF32LE>(sec);
472     break;
473   case ELF32BEKind:
474     for (EhInputSection *sec : sections)
475       addSectionAux<ELF32BE>(sec);
476     break;
477   case ELF64LEKind:
478     for (EhInputSection *sec : sections)
479       addSectionAux<ELF64LE>(sec);
480     break;
481   case ELF64BEKind:
482     for (EhInputSection *sec : sections)
483       addSectionAux<ELF64BE>(sec);
484     break;
485   }
486 
487   size_t off = 0;
488   for (CieRecord *rec : cieRecords) {
489     rec->cie->outputOff = off;
490     off += alignTo(rec->cie->size, config->wordsize);
491 
492     for (EhSectionPiece *fde : rec->fdes) {
493       fde->outputOff = off;
494       off += alignTo(fde->size, config->wordsize);
495     }
496   }
497 
498   // The LSB standard does not allow a .eh_frame section with zero
499   // Call Frame Information records. glibc unwind-dw2-fde.c
500   // classify_object_over_fdes expects there is a CIE record length 0 as a
501   // terminator. Thus we add one unconditionally.
502   off += 4;
503 
504   this->size = off;
505 }
506 
507 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
508 // to get an FDE from an address to which FDE is applied. This function
509 // returns a list of such pairs.
510 std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const {
511   uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
512   std::vector<FdeData> ret;
513 
514   uint64_t va = getPartition().ehFrameHdr->getVA();
515   for (CieRecord *rec : cieRecords) {
516     uint8_t enc = getFdeEncoding(rec->cie);
517     for (EhSectionPiece *fde : rec->fdes) {
518       uint64_t pc = getFdePc(buf, fde->outputOff, enc);
519       uint64_t fdeVA = getParent()->addr + fde->outputOff;
520       if (!isInt<32>(pc - va))
521         fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
522               Twine::utohexstr(pc - va));
523       ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
524     }
525   }
526 
527   // Sort the FDE list by their PC and uniqueify. Usually there is only
528   // one FDE for a PC (i.e. function), but if ICF merges two functions
529   // into one, there can be more than one FDEs pointing to the address.
530   auto less = [](const FdeData &a, const FdeData &b) {
531     return a.pcRel < b.pcRel;
532   };
533   llvm::stable_sort(ret, less);
534   auto eq = [](const FdeData &a, const FdeData &b) {
535     return a.pcRel == b.pcRel;
536   };
537   ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
538 
539   return ret;
540 }
541 
542 static uint64_t readFdeAddr(uint8_t *buf, int size) {
543   switch (size) {
544   case DW_EH_PE_udata2:
545     return read16(buf);
546   case DW_EH_PE_sdata2:
547     return (int16_t)read16(buf);
548   case DW_EH_PE_udata4:
549     return read32(buf);
550   case DW_EH_PE_sdata4:
551     return (int32_t)read32(buf);
552   case DW_EH_PE_udata8:
553   case DW_EH_PE_sdata8:
554     return read64(buf);
555   case DW_EH_PE_absptr:
556     return readUint(buf);
557   }
558   fatal("unknown FDE size encoding");
559 }
560 
561 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
562 // We need it to create .eh_frame_hdr section.
563 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
564                                   uint8_t enc) const {
565   // The starting address to which this FDE applies is
566   // stored at FDE + 8 byte.
567   size_t off = fdeOff + 8;
568   uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
569   if ((enc & 0x70) == DW_EH_PE_absptr)
570     return addr;
571   if ((enc & 0x70) == DW_EH_PE_pcrel)
572     return addr + getParent()->addr + off;
573   fatal("unknown FDE size relative encoding");
574 }
575 
576 void EhFrameSection::writeTo(uint8_t *buf) {
577   // Write CIE and FDE records.
578   for (CieRecord *rec : cieRecords) {
579     size_t cieOffset = rec->cie->outputOff;
580     writeCieFde(buf + cieOffset, rec->cie->data());
581 
582     for (EhSectionPiece *fde : rec->fdes) {
583       size_t off = fde->outputOff;
584       writeCieFde(buf + off, fde->data());
585 
586       // FDE's second word should have the offset to an associated CIE.
587       // Write it.
588       write32(buf + off + 4, off + 4 - cieOffset);
589     }
590   }
591 
592   // Apply relocations. .eh_frame section contents are not contiguous
593   // in the output buffer, but relocateAlloc() still works because
594   // getOffset() takes care of discontiguous section pieces.
595   for (EhInputSection *s : sections)
596     s->relocateAlloc(buf, nullptr);
597 
598   if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
599     getPartition().ehFrameHdr->write();
600 }
601 
602 GotSection::GotSection()
603     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
604                        ".got") {
605   // If ElfSym::globalOffsetTable is relative to .got and is referenced,
606   // increase numEntries by the number of entries used to emit
607   // ElfSym::globalOffsetTable.
608   if (ElfSym::globalOffsetTable && !target->gotBaseSymInGotPlt)
609     numEntries += target->gotHeaderEntriesNum;
610 }
611 
612 void GotSection::addEntry(Symbol &sym) {
613   sym.gotIndex = numEntries;
614   ++numEntries;
615 }
616 
617 bool GotSection::addDynTlsEntry(Symbol &sym) {
618   if (sym.globalDynIndex != -1U)
619     return false;
620   sym.globalDynIndex = numEntries;
621   // Global Dynamic TLS entries take two GOT slots.
622   numEntries += 2;
623   return true;
624 }
625 
626 // Reserves TLS entries for a TLS module ID and a TLS block offset.
627 // In total it takes two GOT slots.
628 bool GotSection::addTlsIndex() {
629   if (tlsIndexOff != uint32_t(-1))
630     return false;
631   tlsIndexOff = numEntries * config->wordsize;
632   numEntries += 2;
633   return true;
634 }
635 
636 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
637   return this->getVA() + b.globalDynIndex * config->wordsize;
638 }
639 
640 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
641   return b.globalDynIndex * config->wordsize;
642 }
643 
644 void GotSection::finalizeContents() {
645   size = numEntries * config->wordsize;
646 }
647 
648 bool GotSection::isNeeded() const {
649   // We need to emit a GOT even if it's empty if there's a relocation that is
650   // relative to GOT(such as GOTOFFREL).
651   return numEntries || hasGotOffRel;
652 }
653 
654 void GotSection::writeTo(uint8_t *buf) {
655   // Buf points to the start of this section's buffer,
656   // whereas InputSectionBase::relocateAlloc() expects its argument
657   // to point to the start of the output section.
658   target->writeGotHeader(buf);
659   relocateAlloc(buf - outSecOff, buf - outSecOff + size);
660 }
661 
662 static uint64_t getMipsPageAddr(uint64_t addr) {
663   return (addr + 0x8000) & ~0xffff;
664 }
665 
666 static uint64_t getMipsPageCount(uint64_t size) {
667   return (size + 0xfffe) / 0xffff + 1;
668 }
669 
670 MipsGotSection::MipsGotSection()
671     : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
672                        ".got") {}
673 
674 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
675                               RelExpr expr) {
676   FileGot &g = getGot(file);
677   if (expr == R_MIPS_GOT_LOCAL_PAGE) {
678     if (const OutputSection *os = sym.getOutputSection())
679       g.pagesMap.insert({os, {}});
680     else
681       g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
682   } else if (sym.isTls())
683     g.tls.insert({&sym, 0});
684   else if (sym.isPreemptible && expr == R_ABS)
685     g.relocs.insert({&sym, 0});
686   else if (sym.isPreemptible)
687     g.global.insert({&sym, 0});
688   else if (expr == R_MIPS_GOT_OFF32)
689     g.local32.insert({{&sym, addend}, 0});
690   else
691     g.local16.insert({{&sym, addend}, 0});
692 }
693 
694 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
695   getGot(file).dynTlsSymbols.insert({&sym, 0});
696 }
697 
698 void MipsGotSection::addTlsIndex(InputFile &file) {
699   getGot(file).dynTlsSymbols.insert({nullptr, 0});
700 }
701 
702 size_t MipsGotSection::FileGot::getEntriesNum() const {
703   return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
704          tls.size() + dynTlsSymbols.size() * 2;
705 }
706 
707 size_t MipsGotSection::FileGot::getPageEntriesNum() const {
708   size_t num = 0;
709   for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
710     num += p.second.count;
711   return num;
712 }
713 
714 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
715   size_t count = getPageEntriesNum() + local16.size() + global.size();
716   // If there are relocation-only entries in the GOT, TLS entries
717   // are allocated after them. TLS entries should be addressable
718   // by 16-bit index so count both reloc-only and TLS entries.
719   if (!tls.empty() || !dynTlsSymbols.empty())
720     count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
721   return count;
722 }
723 
724 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
725   if (!f.mipsGotIndex.hasValue()) {
726     gots.emplace_back();
727     gots.back().file = &f;
728     f.mipsGotIndex = gots.size() - 1;
729   }
730   return gots[*f.mipsGotIndex];
731 }
732 
733 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
734                                             const Symbol &sym,
735                                             int64_t addend) const {
736   const FileGot &g = gots[*f->mipsGotIndex];
737   uint64_t index = 0;
738   if (const OutputSection *outSec = sym.getOutputSection()) {
739     uint64_t secAddr = getMipsPageAddr(outSec->addr);
740     uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
741     index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
742   } else {
743     index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
744   }
745   return index * config->wordsize;
746 }
747 
748 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
749                                            int64_t addend) const {
750   const FileGot &g = gots[*f->mipsGotIndex];
751   Symbol *sym = const_cast<Symbol *>(&s);
752   if (sym->isTls())
753     return g.tls.lookup(sym) * config->wordsize;
754   if (sym->isPreemptible)
755     return g.global.lookup(sym) * config->wordsize;
756   return g.local16.lookup({sym, addend}) * config->wordsize;
757 }
758 
759 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
760   const FileGot &g = gots[*f->mipsGotIndex];
761   return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
762 }
763 
764 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
765                                             const Symbol &s) const {
766   const FileGot &g = gots[*f->mipsGotIndex];
767   Symbol *sym = const_cast<Symbol *>(&s);
768   return g.dynTlsSymbols.lookup(sym) * config->wordsize;
769 }
770 
771 const Symbol *MipsGotSection::getFirstGlobalEntry() const {
772   if (gots.empty())
773     return nullptr;
774   const FileGot &primGot = gots.front();
775   if (!primGot.global.empty())
776     return primGot.global.front().first;
777   if (!primGot.relocs.empty())
778     return primGot.relocs.front().first;
779   return nullptr;
780 }
781 
782 unsigned MipsGotSection::getLocalEntriesNum() const {
783   if (gots.empty())
784     return headerEntriesNum;
785   return headerEntriesNum + gots.front().getPageEntriesNum() +
786          gots.front().local16.size();
787 }
788 
789 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
790   FileGot tmp = dst;
791   set_union(tmp.pagesMap, src.pagesMap);
792   set_union(tmp.local16, src.local16);
793   set_union(tmp.global, src.global);
794   set_union(tmp.relocs, src.relocs);
795   set_union(tmp.tls, src.tls);
796   set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
797 
798   size_t count = isPrimary ? headerEntriesNum : 0;
799   count += tmp.getIndexedEntriesNum();
800 
801   if (count * config->wordsize > config->mipsGotSize)
802     return false;
803 
804   std::swap(tmp, dst);
805   return true;
806 }
807 
808 void MipsGotSection::finalizeContents() { updateAllocSize(); }
809 
810 bool MipsGotSection::updateAllocSize() {
811   size = headerEntriesNum * config->wordsize;
812   for (const FileGot &g : gots)
813     size += g.getEntriesNum() * config->wordsize;
814   return false;
815 }
816 
817 void MipsGotSection::build() {
818   if (gots.empty())
819     return;
820 
821   std::vector<FileGot> mergedGots(1);
822 
823   // For each GOT move non-preemptible symbols from the `Global`
824   // to `Local16` list. Preemptible symbol might become non-preemptible
825   // one if, for example, it gets a related copy relocation.
826   for (FileGot &got : gots) {
827     for (auto &p: got.global)
828       if (!p.first->isPreemptible)
829         got.local16.insert({{p.first, 0}, 0});
830     got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
831       return !p.first->isPreemptible;
832     });
833   }
834 
835   // For each GOT remove "reloc-only" entry if there is "global"
836   // entry for the same symbol. And add local entries which indexed
837   // using 32-bit value at the end of 16-bit entries.
838   for (FileGot &got : gots) {
839     got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
840       return got.global.count(p.first);
841     });
842     set_union(got.local16, got.local32);
843     got.local32.clear();
844   }
845 
846   // Evaluate number of "reloc-only" entries in the resulting GOT.
847   // To do that put all unique "reloc-only" and "global" entries
848   // from all GOTs to the future primary GOT.
849   FileGot *primGot = &mergedGots.front();
850   for (FileGot &got : gots) {
851     set_union(primGot->relocs, got.global);
852     set_union(primGot->relocs, got.relocs);
853     got.relocs.clear();
854   }
855 
856   // Evaluate number of "page" entries in each GOT.
857   for (FileGot &got : gots) {
858     for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
859          got.pagesMap) {
860       const OutputSection *os = p.first;
861       uint64_t secSize = 0;
862       for (BaseCommand *cmd : os->sectionCommands) {
863         if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
864           for (InputSection *isec : isd->sections) {
865             uint64_t off = alignTo(secSize, isec->alignment);
866             secSize = off + isec->getSize();
867           }
868       }
869       p.second.count = getMipsPageCount(secSize);
870     }
871   }
872 
873   // Merge GOTs. Try to join as much as possible GOTs but do not exceed
874   // maximum GOT size. At first, try to fill the primary GOT because
875   // the primary GOT can be accessed in the most effective way. If it
876   // is not possible, try to fill the last GOT in the list, and finally
877   // create a new GOT if both attempts failed.
878   for (FileGot &srcGot : gots) {
879     InputFile *file = srcGot.file;
880     if (tryMergeGots(mergedGots.front(), srcGot, true)) {
881       file->mipsGotIndex = 0;
882     } else {
883       // If this is the first time we failed to merge with the primary GOT,
884       // MergedGots.back() will also be the primary GOT. We must make sure not
885       // to try to merge again with isPrimary=false, as otherwise, if the
886       // inputs are just right, we could allow the primary GOT to become 1 or 2
887       // words bigger due to ignoring the header size.
888       if (mergedGots.size() == 1 ||
889           !tryMergeGots(mergedGots.back(), srcGot, false)) {
890         mergedGots.emplace_back();
891         std::swap(mergedGots.back(), srcGot);
892       }
893       file->mipsGotIndex = mergedGots.size() - 1;
894     }
895   }
896   std::swap(gots, mergedGots);
897 
898   // Reduce number of "reloc-only" entries in the primary GOT
899   // by subtracting "global" entries in the primary GOT.
900   primGot = &gots.front();
901   primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
902     return primGot->global.count(p.first);
903   });
904 
905   // Calculate indexes for each GOT entry.
906   size_t index = headerEntriesNum;
907   for (FileGot &got : gots) {
908     got.startIndex = &got == primGot ? 0 : index;
909     for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
910          got.pagesMap) {
911       // For each output section referenced by GOT page relocations calculate
912       // and save into pagesMap an upper bound of MIPS GOT entries required
913       // to store page addresses of local symbols. We assume the worst case -
914       // each 64kb page of the output section has at least one GOT relocation
915       // against it. And take in account the case when the section intersects
916       // page boundaries.
917       p.second.firstIndex = index;
918       index += p.second.count;
919     }
920     for (auto &p: got.local16)
921       p.second = index++;
922     for (auto &p: got.global)
923       p.second = index++;
924     for (auto &p: got.relocs)
925       p.second = index++;
926     for (auto &p: got.tls)
927       p.second = index++;
928     for (auto &p: got.dynTlsSymbols) {
929       p.second = index;
930       index += 2;
931     }
932   }
933 
934   // Update Symbol::gotIndex field to use this
935   // value later in the `sortMipsSymbols` function.
936   for (auto &p : primGot->global)
937     p.first->gotIndex = p.second;
938   for (auto &p : primGot->relocs)
939     p.first->gotIndex = p.second;
940 
941   // Create dynamic relocations.
942   for (FileGot &got : gots) {
943     // Create dynamic relocations for TLS entries.
944     for (std::pair<Symbol *, size_t> &p : got.tls) {
945       Symbol *s = p.first;
946       uint64_t offset = p.second * config->wordsize;
947       if (s->isPreemptible)
948         mainPart->relaDyn->addReloc(target->tlsGotRel, this, offset, s);
949     }
950     for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
951       Symbol *s = p.first;
952       uint64_t offset = p.second * config->wordsize;
953       if (s == nullptr) {
954         if (!config->isPic)
955           continue;
956         mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
957       } else {
958         // When building a shared library we still need a dynamic relocation
959         // for the module index. Therefore only checking for
960         // S->isPreemptible is not sufficient (this happens e.g. for
961         // thread-locals that have been marked as local through a linker script)
962         if (!s->isPreemptible && !config->isPic)
963           continue;
964         mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
965         // However, we can skip writing the TLS offset reloc for non-preemptible
966         // symbols since it is known even in shared libraries
967         if (!s->isPreemptible)
968           continue;
969         offset += config->wordsize;
970         mainPart->relaDyn->addReloc(target->tlsOffsetRel, this, offset, s);
971       }
972     }
973 
974     // Do not create dynamic relocations for non-TLS
975     // entries in the primary GOT.
976     if (&got == primGot)
977       continue;
978 
979     // Dynamic relocations for "global" entries.
980     for (const std::pair<Symbol *, size_t> &p : got.global) {
981       uint64_t offset = p.second * config->wordsize;
982       mainPart->relaDyn->addReloc(target->relativeRel, this, offset, p.first);
983     }
984     if (!config->isPic)
985       continue;
986     // Dynamic relocations for "local" entries in case of PIC.
987     for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
988          got.pagesMap) {
989       size_t pageCount = l.second.count;
990       for (size_t pi = 0; pi < pageCount; ++pi) {
991         uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
992         mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
993                                  int64_t(pi * 0x10000)});
994       }
995     }
996     for (const std::pair<GotEntry, size_t> &p : got.local16) {
997       uint64_t offset = p.second * config->wordsize;
998       mainPart->relaDyn->addReloc({target->relativeRel, this, offset, true,
999                                p.first.first, p.first.second});
1000     }
1001   }
1002 }
1003 
1004 bool MipsGotSection::isNeeded() const {
1005   // We add the .got section to the result for dynamic MIPS target because
1006   // its address and properties are mentioned in the .dynamic section.
1007   return !config->relocatable;
1008 }
1009 
1010 uint64_t MipsGotSection::getGp(const InputFile *f) const {
1011   // For files without related GOT or files refer a primary GOT
1012   // returns "common" _gp value. For secondary GOTs calculate
1013   // individual _gp values.
1014   if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0)
1015     return ElfSym::mipsGp->getVA(0);
1016   return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize +
1017          0x7ff0;
1018 }
1019 
1020 void MipsGotSection::writeTo(uint8_t *buf) {
1021   // Set the MSB of the second GOT slot. This is not required by any
1022   // MIPS ABI documentation, though.
1023   //
1024   // There is a comment in glibc saying that "The MSB of got[1] of a
1025   // gnu object is set to identify gnu objects," and in GNU gold it
1026   // says "the second entry will be used by some runtime loaders".
1027   // But how this field is being used is unclear.
1028   //
1029   // We are not really willing to mimic other linkers behaviors
1030   // without understanding why they do that, but because all files
1031   // generated by GNU tools have this special GOT value, and because
1032   // we've been doing this for years, it is probably a safe bet to
1033   // keep doing this for now. We really need to revisit this to see
1034   // if we had to do this.
1035   writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1036   for (const FileGot &g : gots) {
1037     auto write = [&](size_t i, const Symbol *s, int64_t a) {
1038       uint64_t va = a;
1039       if (s)
1040         va = s->getVA(a);
1041       writeUint(buf + i * config->wordsize, va);
1042     };
1043     // Write 'page address' entries to the local part of the GOT.
1044     for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1045          g.pagesMap) {
1046       size_t pageCount = l.second.count;
1047       uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1048       for (size_t pi = 0; pi < pageCount; ++pi)
1049         write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1050     }
1051     // Local, global, TLS, reloc-only  entries.
1052     // If TLS entry has a corresponding dynamic relocations, leave it
1053     // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1054     // To calculate the adjustments use offsets for thread-local storage.
1055     // https://www.linux-mips.org/wiki/NPTL
1056     for (const std::pair<GotEntry, size_t> &p : g.local16)
1057       write(p.second, p.first.first, p.first.second);
1058     // Write VA to the primary GOT only. For secondary GOTs that
1059     // will be done by REL32 dynamic relocations.
1060     if (&g == &gots.front())
1061       for (const std::pair<Symbol *, size_t> &p : g.global)
1062         write(p.second, p.first, 0);
1063     for (const std::pair<Symbol *, size_t> &p : g.relocs)
1064       write(p.second, p.first, 0);
1065     for (const std::pair<Symbol *, size_t> &p : g.tls)
1066       write(p.second, p.first, p.first->isPreemptible ? 0 : -0x7000);
1067     for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1068       if (p.first == nullptr && !config->isPic)
1069         write(p.second, nullptr, 1);
1070       else if (p.first && !p.first->isPreemptible) {
1071         // If we are emitting PIC code with relocations we mustn't write
1072         // anything to the GOT here. When using Elf_Rel relocations the value
1073         // one will be treated as an addend and will cause crashes at runtime
1074         if (!config->isPic)
1075           write(p.second, nullptr, 1);
1076         write(p.second + 1, p.first, -0x8000);
1077       }
1078     }
1079   }
1080 }
1081 
1082 // On PowerPC the .plt section is used to hold the table of function addresses
1083 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1084 // section. I don't know why we have a BSS style type for the section but it is
1085 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1086 GotPltSection::GotPltSection()
1087     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1088                        ".got.plt") {
1089   if (config->emachine == EM_PPC) {
1090     name = ".plt";
1091   } else if (config->emachine == EM_PPC64) {
1092     type = SHT_NOBITS;
1093     name = ".plt";
1094   }
1095 }
1096 
1097 void GotPltSection::addEntry(Symbol &sym) {
1098   assert(sym.pltIndex == entries.size());
1099   entries.push_back(&sym);
1100 }
1101 
1102 size_t GotPltSection::getSize() const {
1103   return (target->gotPltHeaderEntriesNum + entries.size()) * config->wordsize;
1104 }
1105 
1106 void GotPltSection::writeTo(uint8_t *buf) {
1107   target->writeGotPltHeader(buf);
1108   buf += target->gotPltHeaderEntriesNum * config->wordsize;
1109   for (const Symbol *b : entries) {
1110     target->writeGotPlt(buf, *b);
1111     buf += config->wordsize;
1112   }
1113 }
1114 
1115 bool GotPltSection::isNeeded() const {
1116   // We need to emit GOTPLT even if it's empty if there's a relocation relative
1117   // to it.
1118   return !entries.empty() || hasGotPltOffRel;
1119 }
1120 
1121 static StringRef getIgotPltName() {
1122   // On ARM the IgotPltSection is part of the GotSection.
1123   if (config->emachine == EM_ARM)
1124     return ".got";
1125 
1126   // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1127   // needs to be named the same.
1128   if (config->emachine == EM_PPC64)
1129     return ".plt";
1130 
1131   return ".got.plt";
1132 }
1133 
1134 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1135 // with the IgotPltSection.
1136 IgotPltSection::IgotPltSection()
1137     : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1138                        config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1139                        config->wordsize, getIgotPltName()) {}
1140 
1141 void IgotPltSection::addEntry(Symbol &sym) {
1142   assert(sym.pltIndex == entries.size());
1143   entries.push_back(&sym);
1144 }
1145 
1146 size_t IgotPltSection::getSize() const {
1147   return entries.size() * config->wordsize;
1148 }
1149 
1150 void IgotPltSection::writeTo(uint8_t *buf) {
1151   for (const Symbol *b : entries) {
1152     target->writeIgotPlt(buf, *b);
1153     buf += config->wordsize;
1154   }
1155 }
1156 
1157 StringTableSection::StringTableSection(StringRef name, bool dynamic)
1158     : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1159       dynamic(dynamic) {
1160   // ELF string tables start with a NUL byte.
1161   addString("");
1162 }
1163 
1164 // Adds a string to the string table. If `hashIt` is true we hash and check for
1165 // duplicates. It is optional because the name of global symbols are already
1166 // uniqued and hashing them again has a big cost for a small value: uniquing
1167 // them with some other string that happens to be the same.
1168 unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1169   if (hashIt) {
1170     auto r = stringMap.insert(std::make_pair(s, this->size));
1171     if (!r.second)
1172       return r.first->second;
1173   }
1174   unsigned ret = this->size;
1175   this->size = this->size + s.size() + 1;
1176   strings.push_back(s);
1177   return ret;
1178 }
1179 
1180 void StringTableSection::writeTo(uint8_t *buf) {
1181   for (StringRef s : strings) {
1182     memcpy(buf, s.data(), s.size());
1183     buf[s.size()] = '\0';
1184     buf += s.size() + 1;
1185   }
1186 }
1187 
1188 // Returns the number of entries in .gnu.version_d: the number of
1189 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1190 // Note that we don't support vd_cnt > 1 yet.
1191 static unsigned getVerDefNum() {
1192   return namedVersionDefs().size() + 1;
1193 }
1194 
1195 template <class ELFT>
1196 DynamicSection<ELFT>::DynamicSection()
1197     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1198                        ".dynamic") {
1199   this->entsize = ELFT::Is64Bits ? 16 : 8;
1200 
1201   // .dynamic section is not writable on MIPS and on Fuchsia OS
1202   // which passes -z rodynamic.
1203   // See "Special Section" in Chapter 4 in the following document:
1204   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1205   if (config->emachine == EM_MIPS || config->zRodynamic)
1206     this->flags = SHF_ALLOC;
1207 }
1208 
1209 template <class ELFT>
1210 void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) {
1211   entries.push_back({tag, fn});
1212 }
1213 
1214 template <class ELFT>
1215 void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) {
1216   entries.push_back({tag, [=] { return val; }});
1217 }
1218 
1219 template <class ELFT>
1220 void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) {
1221   entries.push_back({tag, [=] { return sec->getVA(0); }});
1222 }
1223 
1224 template <class ELFT>
1225 void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) {
1226   size_t tagOffset = entries.size() * entsize;
1227   entries.push_back(
1228       {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }});
1229 }
1230 
1231 template <class ELFT>
1232 void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) {
1233   entries.push_back({tag, [=] { return sec->addr; }});
1234 }
1235 
1236 template <class ELFT>
1237 void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) {
1238   entries.push_back({tag, [=] { return sec->size; }});
1239 }
1240 
1241 template <class ELFT>
1242 void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) {
1243   entries.push_back({tag, [=] { return sym->getVA(); }});
1244 }
1245 
1246 // The output section .rela.dyn may include these synthetic sections:
1247 //
1248 // - part.relaDyn
1249 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1250 // - in.relaPlt: this is included if a linker script places .rela.plt inside
1251 //   .rela.dyn
1252 //
1253 // DT_RELASZ is the total size of the included sections.
1254 static std::function<uint64_t()> addRelaSz(RelocationBaseSection *relaDyn) {
1255   return [=]() {
1256     size_t size = relaDyn->getSize();
1257     if (in.relaIplt->getParent() == relaDyn->getParent())
1258       size += in.relaIplt->getSize();
1259     if (in.relaPlt->getParent() == relaDyn->getParent())
1260       size += in.relaPlt->getSize();
1261     return size;
1262   };
1263 }
1264 
1265 // A Linker script may assign the RELA relocation sections to the same
1266 // output section. When this occurs we cannot just use the OutputSection
1267 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1268 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1269 static uint64_t addPltRelSz() {
1270   size_t size = in.relaPlt->getSize();
1271   if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1272       in.relaIplt->name == in.relaPlt->name)
1273     size += in.relaIplt->getSize();
1274   return size;
1275 }
1276 
1277 // Add remaining entries to complete .dynamic contents.
1278 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1279   elf::Partition &part = getPartition();
1280   bool isMain = part.name.empty();
1281 
1282   for (StringRef s : config->filterList)
1283     addInt(DT_FILTER, part.dynStrTab->addString(s));
1284   for (StringRef s : config->auxiliaryList)
1285     addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1286 
1287   if (!config->rpath.empty())
1288     addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1289            part.dynStrTab->addString(config->rpath));
1290 
1291   for (SharedFile *file : sharedFiles)
1292     if (file->isNeeded)
1293       addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1294 
1295   if (isMain) {
1296     if (!config->soName.empty())
1297       addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1298   } else {
1299     if (!config->soName.empty())
1300       addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1301     addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1302   }
1303 
1304   // Set DT_FLAGS and DT_FLAGS_1.
1305   uint32_t dtFlags = 0;
1306   uint32_t dtFlags1 = 0;
1307   if (config->bsymbolic)
1308     dtFlags |= DF_SYMBOLIC;
1309   if (config->zGlobal)
1310     dtFlags1 |= DF_1_GLOBAL;
1311   if (config->zInitfirst)
1312     dtFlags1 |= DF_1_INITFIRST;
1313   if (config->zInterpose)
1314     dtFlags1 |= DF_1_INTERPOSE;
1315   if (config->zNodefaultlib)
1316     dtFlags1 |= DF_1_NODEFLIB;
1317   if (config->zNodelete)
1318     dtFlags1 |= DF_1_NODELETE;
1319   if (config->zNodlopen)
1320     dtFlags1 |= DF_1_NOOPEN;
1321   if (config->pie)
1322     dtFlags1 |= DF_1_PIE;
1323   if (config->zNow) {
1324     dtFlags |= DF_BIND_NOW;
1325     dtFlags1 |= DF_1_NOW;
1326   }
1327   if (config->zOrigin) {
1328     dtFlags |= DF_ORIGIN;
1329     dtFlags1 |= DF_1_ORIGIN;
1330   }
1331   if (!config->zText)
1332     dtFlags |= DF_TEXTREL;
1333   if (config->hasStaticTlsModel)
1334     dtFlags |= DF_STATIC_TLS;
1335 
1336   if (dtFlags)
1337     addInt(DT_FLAGS, dtFlags);
1338   if (dtFlags1)
1339     addInt(DT_FLAGS_1, dtFlags1);
1340 
1341   // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1342   // need it for each process, so we don't write it for DSOs. The loader writes
1343   // the pointer into this entry.
1344   //
1345   // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1346   // systems (currently only Fuchsia OS) provide other means to give the
1347   // debugger this information. Such systems may choose make .dynamic read-only.
1348   // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1349   if (!config->shared && !config->relocatable && !config->zRodynamic)
1350     addInt(DT_DEBUG, 0);
1351 
1352   if (OutputSection *sec = part.dynStrTab->getParent())
1353     this->link = sec->sectionIndex;
1354 
1355   if (part.relaDyn->isNeeded() ||
1356       (in.relaIplt->isNeeded() &&
1357        part.relaDyn->getParent() == in.relaIplt->getParent())) {
1358     addInSec(part.relaDyn->dynamicTag, part.relaDyn);
1359     entries.push_back({part.relaDyn->sizeDynamicTag, addRelaSz(part.relaDyn)});
1360 
1361     bool isRela = config->isRela;
1362     addInt(isRela ? DT_RELAENT : DT_RELENT,
1363            isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1364 
1365     // MIPS dynamic loader does not support RELCOUNT tag.
1366     // The problem is in the tight relation between dynamic
1367     // relocations and GOT. So do not emit this tag on MIPS.
1368     if (config->emachine != EM_MIPS) {
1369       size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1370       if (config->zCombreloc && numRelativeRels)
1371         addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1372     }
1373   }
1374   if (part.relrDyn && !part.relrDyn->relocs.empty()) {
1375     addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1376              part.relrDyn);
1377     addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1378             part.relrDyn->getParent());
1379     addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1380            sizeof(Elf_Relr));
1381   }
1382   // .rel[a].plt section usually consists of two parts, containing plt and
1383   // iplt relocations. It is possible to have only iplt relocations in the
1384   // output. In that case relaPlt is empty and have zero offset, the same offset
1385   // as relaIplt has. And we still want to emit proper dynamic tags for that
1386   // case, so here we always use relaPlt as marker for the beginning of
1387   // .rel[a].plt section.
1388   if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1389     addInSec(DT_JMPREL, in.relaPlt);
1390     entries.push_back({DT_PLTRELSZ, addPltRelSz});
1391     switch (config->emachine) {
1392     case EM_MIPS:
1393       addInSec(DT_MIPS_PLTGOT, in.gotPlt);
1394       break;
1395     case EM_SPARCV9:
1396       addInSec(DT_PLTGOT, in.plt);
1397       break;
1398     default:
1399       addInSec(DT_PLTGOT, in.gotPlt);
1400       break;
1401     }
1402     addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1403   }
1404 
1405   if (config->emachine == EM_AARCH64) {
1406     if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1407       addInt(DT_AARCH64_BTI_PLT, 0);
1408     if (config->zPacPlt)
1409       addInt(DT_AARCH64_PAC_PLT, 0);
1410   }
1411 
1412   addInSec(DT_SYMTAB, part.dynSymTab);
1413   addInt(DT_SYMENT, sizeof(Elf_Sym));
1414   addInSec(DT_STRTAB, part.dynStrTab);
1415   addInt(DT_STRSZ, part.dynStrTab->getSize());
1416   if (!config->zText)
1417     addInt(DT_TEXTREL, 0);
1418   if (part.gnuHashTab)
1419     addInSec(DT_GNU_HASH, part.gnuHashTab);
1420   if (part.hashTab)
1421     addInSec(DT_HASH, part.hashTab);
1422 
1423   if (isMain) {
1424     if (Out::preinitArray) {
1425       addOutSec(DT_PREINIT_ARRAY, Out::preinitArray);
1426       addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray);
1427     }
1428     if (Out::initArray) {
1429       addOutSec(DT_INIT_ARRAY, Out::initArray);
1430       addSize(DT_INIT_ARRAYSZ, Out::initArray);
1431     }
1432     if (Out::finiArray) {
1433       addOutSec(DT_FINI_ARRAY, Out::finiArray);
1434       addSize(DT_FINI_ARRAYSZ, Out::finiArray);
1435     }
1436 
1437     if (Symbol *b = symtab->find(config->init))
1438       if (b->isDefined())
1439         addSym(DT_INIT, b);
1440     if (Symbol *b = symtab->find(config->fini))
1441       if (b->isDefined())
1442         addSym(DT_FINI, b);
1443   }
1444 
1445   if (part.verSym && part.verSym->isNeeded())
1446     addInSec(DT_VERSYM, part.verSym);
1447   if (part.verDef && part.verDef->isLive()) {
1448     addInSec(DT_VERDEF, part.verDef);
1449     addInt(DT_VERDEFNUM, getVerDefNum());
1450   }
1451   if (part.verNeed && part.verNeed->isNeeded()) {
1452     addInSec(DT_VERNEED, part.verNeed);
1453     unsigned needNum = 0;
1454     for (SharedFile *f : sharedFiles)
1455       if (!f->vernauxs.empty())
1456         ++needNum;
1457     addInt(DT_VERNEEDNUM, needNum);
1458   }
1459 
1460   if (config->emachine == EM_MIPS) {
1461     addInt(DT_MIPS_RLD_VERSION, 1);
1462     addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1463     addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1464     addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1465 
1466     add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); });
1467 
1468     if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1469       addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1470     else
1471       addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1472     addInSec(DT_PLTGOT, in.mipsGot);
1473     if (in.mipsRldMap) {
1474       if (!config->pie)
1475         addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap);
1476       // Store the offset to the .rld_map section
1477       // relative to the address of the tag.
1478       addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap);
1479     }
1480   }
1481 
1482   // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1483   // glibc assumes the old-style BSS PLT layout which we don't support.
1484   if (config->emachine == EM_PPC)
1485     add(DT_PPC_GOT, [] { return in.got->getVA(); });
1486 
1487   // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1488   if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1489     // The Glink tag points to 32 bytes before the first lazy symbol resolution
1490     // stub, which starts directly after the header.
1491     entries.push_back({DT_PPC64_GLINK, [=] {
1492                          unsigned offset = target->pltHeaderSize - 32;
1493                          return in.plt->getVA(0) + offset;
1494                        }});
1495   }
1496 
1497   addInt(DT_NULL, 0);
1498 
1499   getParent()->link = this->link;
1500   this->size = entries.size() * this->entsize;
1501 }
1502 
1503 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1504   auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1505 
1506   for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) {
1507     p->d_tag = kv.first;
1508     p->d_un.d_val = kv.second();
1509     ++p;
1510   }
1511 }
1512 
1513 uint64_t DynamicReloc::getOffset() const {
1514   return inputSec->getVA(offsetInSec);
1515 }
1516 
1517 int64_t DynamicReloc::computeAddend() const {
1518   if (useSymVA)
1519     return sym->getVA(addend);
1520   if (!outputSec)
1521     return addend;
1522   // See the comment in the DynamicReloc ctor.
1523   return getMipsPageAddr(outputSec->addr) + addend;
1524 }
1525 
1526 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1527   if (sym && !useSymVA)
1528     return symTab->getSymbolIndex(sym);
1529   return 0;
1530 }
1531 
1532 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1533                                              int32_t dynamicTag,
1534                                              int32_t sizeDynamicTag)
1535     : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1536       dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {}
1537 
1538 void RelocationBaseSection::addReloc(RelType dynType, InputSectionBase *isec,
1539                                      uint64_t offsetInSec, Symbol *sym) {
1540   addReloc({dynType, isec, offsetInSec, false, sym, 0});
1541 }
1542 
1543 void RelocationBaseSection::addReloc(RelType dynType,
1544                                      InputSectionBase *inputSec,
1545                                      uint64_t offsetInSec, Symbol *sym,
1546                                      int64_t addend, RelExpr expr,
1547                                      RelType type) {
1548   // Write the addends to the relocated address if required. We skip
1549   // it if the written value would be zero.
1550   if (config->writeAddends && (expr != R_ADDEND || addend != 0))
1551     inputSec->relocations.push_back({expr, type, offsetInSec, addend, sym});
1552   addReloc({dynType, inputSec, offsetInSec, expr != R_ADDEND, sym, addend});
1553 }
1554 
1555 void RelocationBaseSection::addReloc(const DynamicReloc &reloc) {
1556   if (reloc.type == target->relativeRel)
1557     ++numRelativeRelocs;
1558   relocs.push_back(reloc);
1559 }
1560 
1561 void RelocationBaseSection::finalizeContents() {
1562   SymbolTableBaseSection *symTab = getPartition().dynSymTab;
1563 
1564   // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1565   // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1566   // case.
1567   if (symTab && symTab->getParent())
1568     getParent()->link = symTab->getParent()->sectionIndex;
1569   else
1570     getParent()->link = 0;
1571 
1572   if (in.relaPlt == this)
1573     getParent()->info = in.gotPlt->getParent()->sectionIndex;
1574   if (in.relaIplt == this)
1575     getParent()->info = in.igotPlt->getParent()->sectionIndex;
1576 }
1577 
1578 RelrBaseSection::RelrBaseSection()
1579     : SyntheticSection(SHF_ALLOC,
1580                        config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1581                        config->wordsize, ".relr.dyn") {}
1582 
1583 template <class ELFT>
1584 static void encodeDynamicReloc(SymbolTableBaseSection *symTab,
1585                                typename ELFT::Rela *p,
1586                                const DynamicReloc &rel) {
1587   if (config->isRela)
1588     p->r_addend = rel.computeAddend();
1589   p->r_offset = rel.getOffset();
1590   p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL);
1591 }
1592 
1593 template <class ELFT>
1594 RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort)
1595     : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1596                             config->isRela ? DT_RELA : DT_REL,
1597                             config->isRela ? DT_RELASZ : DT_RELSZ),
1598       sort(sort) {
1599   this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1600 }
1601 
1602 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1603   SymbolTableBaseSection *symTab = getPartition().dynSymTab;
1604 
1605   // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1606   // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1607   // is to make results easier to read.
1608   if (sort)
1609     llvm::stable_sort(
1610         relocs, [&](const DynamicReloc &a, const DynamicReloc &b) {
1611           return std::make_tuple(a.type != target->relativeRel,
1612                                  a.getSymIndex(symTab), a.getOffset()) <
1613                  std::make_tuple(b.type != target->relativeRel,
1614                                  b.getSymIndex(symTab), b.getOffset());
1615         });
1616 
1617   for (const DynamicReloc &rel : relocs) {
1618     encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel);
1619     buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1620   }
1621 }
1622 
1623 template <class ELFT>
1624 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1625     StringRef name)
1626     : RelocationBaseSection(
1627           name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1628           config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1629           config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) {
1630   this->entsize = 1;
1631 }
1632 
1633 template <class ELFT>
1634 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1635   // This function computes the contents of an Android-format packed relocation
1636   // section.
1637   //
1638   // This format compresses relocations by using relocation groups to factor out
1639   // fields that are common between relocations and storing deltas from previous
1640   // relocations in SLEB128 format (which has a short representation for small
1641   // numbers). A good example of a relocation type with common fields is
1642   // R_*_RELATIVE, which is normally used to represent function pointers in
1643   // vtables. In the REL format, each relative relocation has the same r_info
1644   // field, and is only different from other relative relocations in terms of
1645   // the r_offset field. By sorting relocations by offset, grouping them by
1646   // r_info and representing each relocation with only the delta from the
1647   // previous offset, each 8-byte relocation can be compressed to as little as 1
1648   // byte (or less with run-length encoding). This relocation packer was able to
1649   // reduce the size of the relocation section in an Android Chromium DSO from
1650   // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1651   //
1652   // A relocation section consists of a header containing the literal bytes
1653   // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1654   // elements are the total number of relocations in the section and an initial
1655   // r_offset value. The remaining elements define a sequence of relocation
1656   // groups. Each relocation group starts with a header consisting of the
1657   // following elements:
1658   //
1659   // - the number of relocations in the relocation group
1660   // - flags for the relocation group
1661   // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1662   //   for each relocation in the group.
1663   // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1664   //   field for each relocation in the group.
1665   // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1666   //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1667   //   each relocation in the group.
1668   //
1669   // Following the relocation group header are descriptions of each of the
1670   // relocations in the group. They consist of the following elements:
1671   //
1672   // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1673   //   delta for this relocation.
1674   // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1675   //   field for this relocation.
1676   // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1677   //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1678   //   this relocation.
1679 
1680   size_t oldSize = relocData.size();
1681 
1682   relocData = {'A', 'P', 'S', '2'};
1683   raw_svector_ostream os(relocData);
1684   auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1685 
1686   // The format header includes the number of relocations and the initial
1687   // offset (we set this to zero because the first relocation group will
1688   // perform the initial adjustment).
1689   add(relocs.size());
1690   add(0);
1691 
1692   std::vector<Elf_Rela> relatives, nonRelatives;
1693 
1694   for (const DynamicReloc &rel : relocs) {
1695     Elf_Rela r;
1696     encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel);
1697 
1698     if (r.getType(config->isMips64EL) == target->relativeRel)
1699       relatives.push_back(r);
1700     else
1701       nonRelatives.push_back(r);
1702   }
1703 
1704   llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1705     return a.r_offset < b.r_offset;
1706   });
1707 
1708   // Try to find groups of relative relocations which are spaced one word
1709   // apart from one another. These generally correspond to vtable entries. The
1710   // format allows these groups to be encoded using a sort of run-length
1711   // encoding, but each group will cost 7 bytes in addition to the offset from
1712   // the previous group, so it is only profitable to do this for groups of
1713   // size 8 or larger.
1714   std::vector<Elf_Rela> ungroupedRelatives;
1715   std::vector<std::vector<Elf_Rela>> relativeGroups;
1716   for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1717     std::vector<Elf_Rela> group;
1718     do {
1719       group.push_back(*i++);
1720     } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1721 
1722     if (group.size() < 8)
1723       ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1724                                 group.end());
1725     else
1726       relativeGroups.emplace_back(std::move(group));
1727   }
1728 
1729   // For non-relative relocations, we would like to:
1730   //   1. Have relocations with the same symbol offset to be consecutive, so
1731   //      that the runtime linker can speed-up symbol lookup by implementing an
1732   //      1-entry cache.
1733   //   2. Group relocations by r_info to reduce the size of the relocation
1734   //      section.
1735   // Since the symbol offset is the high bits in r_info, sorting by r_info
1736   // allows us to do both.
1737   //
1738   // For Rela, we also want to sort by r_addend when r_info is the same. This
1739   // enables us to group by r_addend as well.
1740   llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1741     if (a.r_info != b.r_info)
1742       return a.r_info < b.r_info;
1743     if (config->isRela)
1744       return a.r_addend < b.r_addend;
1745     return false;
1746   });
1747 
1748   // Group relocations with the same r_info. Note that each group emits a group
1749   // header and that may make the relocation section larger. It is hard to
1750   // estimate the size of a group header as the encoded size of that varies
1751   // based on r_info. However, we can approximate this trade-off by the number
1752   // of values encoded. Each group header contains 3 values, and each relocation
1753   // in a group encodes one less value, as compared to when it is not grouped.
1754   // Therefore, we only group relocations if there are 3 or more of them with
1755   // the same r_info.
1756   //
1757   // For Rela, the addend for most non-relative relocations is zero, and thus we
1758   // can usually get a smaller relocation section if we group relocations with 0
1759   // addend as well.
1760   std::vector<Elf_Rela> ungroupedNonRelatives;
1761   std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1762   for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1763     auto j = i + 1;
1764     while (j != e && i->r_info == j->r_info &&
1765            (!config->isRela || i->r_addend == j->r_addend))
1766       ++j;
1767     if (j - i < 3 || (config->isRela && i->r_addend != 0))
1768       ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1769     else
1770       nonRelativeGroups.emplace_back(i, j);
1771     i = j;
1772   }
1773 
1774   // Sort ungrouped relocations by offset to minimize the encoded length.
1775   llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1776     return a.r_offset < b.r_offset;
1777   });
1778 
1779   unsigned hasAddendIfRela =
1780       config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1781 
1782   uint64_t offset = 0;
1783   uint64_t addend = 0;
1784 
1785   // Emit the run-length encoding for the groups of adjacent relative
1786   // relocations. Each group is represented using two groups in the packed
1787   // format. The first is used to set the current offset to the start of the
1788   // group (and also encodes the first relocation), and the second encodes the
1789   // remaining relocations.
1790   for (std::vector<Elf_Rela> &g : relativeGroups) {
1791     // The first relocation in the group.
1792     add(1);
1793     add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1794         RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1795     add(g[0].r_offset - offset);
1796     add(target->relativeRel);
1797     if (config->isRela) {
1798       add(g[0].r_addend - addend);
1799       addend = g[0].r_addend;
1800     }
1801 
1802     // The remaining relocations.
1803     add(g.size() - 1);
1804     add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1805         RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1806     add(config->wordsize);
1807     add(target->relativeRel);
1808     if (config->isRela) {
1809       for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) {
1810         add(i->r_addend - addend);
1811         addend = i->r_addend;
1812       }
1813     }
1814 
1815     offset = g.back().r_offset;
1816   }
1817 
1818   // Now the ungrouped relatives.
1819   if (!ungroupedRelatives.empty()) {
1820     add(ungroupedRelatives.size());
1821     add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1822     add(target->relativeRel);
1823     for (Elf_Rela &r : ungroupedRelatives) {
1824       add(r.r_offset - offset);
1825       offset = r.r_offset;
1826       if (config->isRela) {
1827         add(r.r_addend - addend);
1828         addend = r.r_addend;
1829       }
1830     }
1831   }
1832 
1833   // Grouped non-relatives.
1834   for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1835     add(g.size());
1836     add(RELOCATION_GROUPED_BY_INFO_FLAG);
1837     add(g[0].r_info);
1838     for (const Elf_Rela &r : g) {
1839       add(r.r_offset - offset);
1840       offset = r.r_offset;
1841     }
1842     addend = 0;
1843   }
1844 
1845   // Finally the ungrouped non-relative relocations.
1846   if (!ungroupedNonRelatives.empty()) {
1847     add(ungroupedNonRelatives.size());
1848     add(hasAddendIfRela);
1849     for (Elf_Rela &r : ungroupedNonRelatives) {
1850       add(r.r_offset - offset);
1851       offset = r.r_offset;
1852       add(r.r_info);
1853       if (config->isRela) {
1854         add(r.r_addend - addend);
1855         addend = r.r_addend;
1856       }
1857     }
1858   }
1859 
1860   // Don't allow the section to shrink; otherwise the size of the section can
1861   // oscillate infinitely.
1862   if (relocData.size() < oldSize)
1863     relocData.append(oldSize - relocData.size(), 0);
1864 
1865   // Returns whether the section size changed. We need to keep recomputing both
1866   // section layout and the contents of this section until the size converges
1867   // because changing this section's size can affect section layout, which in
1868   // turn can affect the sizes of the LEB-encoded integers stored in this
1869   // section.
1870   return relocData.size() != oldSize;
1871 }
1872 
1873 template <class ELFT> RelrSection<ELFT>::RelrSection() {
1874   this->entsize = config->wordsize;
1875 }
1876 
1877 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
1878   // This function computes the contents of an SHT_RELR packed relocation
1879   // section.
1880   //
1881   // Proposal for adding SHT_RELR sections to generic-abi is here:
1882   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
1883   //
1884   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
1885   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
1886   //
1887   // i.e. start with an address, followed by any number of bitmaps. The address
1888   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
1889   // relocations each, at subsequent offsets following the last address entry.
1890   //
1891   // The bitmap entries must have 1 in the least significant bit. The assumption
1892   // here is that an address cannot have 1 in lsb. Odd addresses are not
1893   // supported.
1894   //
1895   // Excluding the least significant bit in the bitmap, each non-zero bit in
1896   // the bitmap represents a relocation to be applied to a corresponding machine
1897   // word that follows the base address word. The second least significant bit
1898   // represents the machine word immediately following the initial address, and
1899   // each bit that follows represents the next word, in linear order. As such,
1900   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
1901   // 63 relocations in a 64-bit object.
1902   //
1903   // This encoding has a couple of interesting properties:
1904   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
1905   //    even means address, odd means bitmap.
1906   // 2. Just a simple list of addresses is a valid encoding.
1907 
1908   size_t oldSize = relrRelocs.size();
1909   relrRelocs.clear();
1910 
1911   // Same as Config->Wordsize but faster because this is a compile-time
1912   // constant.
1913   const size_t wordsize = sizeof(typename ELFT::uint);
1914 
1915   // Number of bits to use for the relocation offsets bitmap.
1916   // Must be either 63 or 31.
1917   const size_t nBits = wordsize * 8 - 1;
1918 
1919   // Get offsets for all relative relocations and sort them.
1920   std::vector<uint64_t> offsets;
1921   for (const RelativeReloc &rel : relocs)
1922     offsets.push_back(rel.getOffset());
1923   llvm::sort(offsets);
1924 
1925   // For each leading relocation, find following ones that can be folded
1926   // as a bitmap and fold them.
1927   for (size_t i = 0, e = offsets.size(); i < e;) {
1928     // Add a leading relocation.
1929     relrRelocs.push_back(Elf_Relr(offsets[i]));
1930     uint64_t base = offsets[i] + wordsize;
1931     ++i;
1932 
1933     // Find foldable relocations to construct bitmaps.
1934     while (i < e) {
1935       uint64_t bitmap = 0;
1936 
1937       while (i < e) {
1938         uint64_t delta = offsets[i] - base;
1939 
1940         // If it is too far, it cannot be folded.
1941         if (delta >= nBits * wordsize)
1942           break;
1943 
1944         // If it is not a multiple of wordsize away, it cannot be folded.
1945         if (delta % wordsize)
1946           break;
1947 
1948         // Fold it.
1949         bitmap |= 1ULL << (delta / wordsize);
1950         ++i;
1951       }
1952 
1953       if (!bitmap)
1954         break;
1955 
1956       relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
1957       base += nBits * wordsize;
1958     }
1959   }
1960 
1961   // Don't allow the section to shrink; otherwise the size of the section can
1962   // oscillate infinitely. Trailing 1s do not decode to more relocations.
1963   if (relrRelocs.size() < oldSize) {
1964     log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
1965         " padding word(s)");
1966     relrRelocs.resize(oldSize, Elf_Relr(1));
1967   }
1968 
1969   return relrRelocs.size() != oldSize;
1970 }
1971 
1972 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
1973     : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
1974                        strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
1975                        config->wordsize,
1976                        strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
1977       strTabSec(strTabSec) {}
1978 
1979 // Orders symbols according to their positions in the GOT,
1980 // in compliance with MIPS ABI rules.
1981 // See "Global Offset Table" in Chapter 5 in the following document
1982 // for detailed description:
1983 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1984 static bool sortMipsSymbols(const SymbolTableEntry &l,
1985                             const SymbolTableEntry &r) {
1986   // Sort entries related to non-local preemptible symbols by GOT indexes.
1987   // All other entries go to the beginning of a dynsym in arbitrary order.
1988   if (l.sym->isInGot() && r.sym->isInGot())
1989     return l.sym->gotIndex < r.sym->gotIndex;
1990   if (!l.sym->isInGot() && !r.sym->isInGot())
1991     return false;
1992   return !l.sym->isInGot();
1993 }
1994 
1995 void SymbolTableBaseSection::finalizeContents() {
1996   if (OutputSection *sec = strTabSec.getParent())
1997     getParent()->link = sec->sectionIndex;
1998 
1999   if (this->type != SHT_DYNSYM) {
2000     sortSymTabSymbols();
2001     return;
2002   }
2003 
2004   // If it is a .dynsym, there should be no local symbols, but we need
2005   // to do a few things for the dynamic linker.
2006 
2007   // Section's Info field has the index of the first non-local symbol.
2008   // Because the first symbol entry is a null entry, 1 is the first.
2009   getParent()->info = 1;
2010 
2011   if (getPartition().gnuHashTab) {
2012     // NB: It also sorts Symbols to meet the GNU hash table requirements.
2013     getPartition().gnuHashTab->addSymbols(symbols);
2014   } else if (config->emachine == EM_MIPS) {
2015     llvm::stable_sort(symbols, sortMipsSymbols);
2016   }
2017 
2018   // Only the main partition's dynsym indexes are stored in the symbols
2019   // themselves. All other partitions use a lookup table.
2020   if (this == mainPart->dynSymTab) {
2021     size_t i = 0;
2022     for (const SymbolTableEntry &s : symbols)
2023       s.sym->dynsymIndex = ++i;
2024   }
2025 }
2026 
2027 // The ELF spec requires that all local symbols precede global symbols, so we
2028 // sort symbol entries in this function. (For .dynsym, we don't do that because
2029 // symbols for dynamic linking are inherently all globals.)
2030 //
2031 // Aside from above, we put local symbols in groups starting with the STT_FILE
2032 // symbol. That is convenient for purpose of identifying where are local symbols
2033 // coming from.
2034 void SymbolTableBaseSection::sortSymTabSymbols() {
2035   // Move all local symbols before global symbols.
2036   auto e = std::stable_partition(
2037       symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) {
2038         return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL;
2039       });
2040   size_t numLocals = e - symbols.begin();
2041   getParent()->info = numLocals + 1;
2042 
2043   // We want to group the local symbols by file. For that we rebuild the local
2044   // part of the symbols vector. We do not need to care about the STT_FILE
2045   // symbols, they are already naturally placed first in each group. That
2046   // happens because STT_FILE is always the first symbol in the object and hence
2047   // precede all other local symbols we add for a file.
2048   MapVector<InputFile *, std::vector<SymbolTableEntry>> arr;
2049   for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2050     arr[s.sym->file].push_back(s);
2051 
2052   auto i = symbols.begin();
2053   for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr)
2054     for (SymbolTableEntry &entry : p.second)
2055       *i++ = entry;
2056 }
2057 
2058 void SymbolTableBaseSection::addSymbol(Symbol *b) {
2059   // Adding a local symbol to a .dynsym is a bug.
2060   assert(this->type != SHT_DYNSYM || !b->isLocal());
2061 
2062   bool hashIt = b->isLocal();
2063   symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)});
2064 }
2065 
2066 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2067   if (this == mainPart->dynSymTab)
2068     return sym->dynsymIndex;
2069 
2070   // Initializes symbol lookup tables lazily. This is used only for -r,
2071   // -emit-relocs and dynsyms in partitions other than the main one.
2072   llvm::call_once(onceFlag, [&] {
2073     symbolIndexMap.reserve(symbols.size());
2074     size_t i = 0;
2075     for (const SymbolTableEntry &e : symbols) {
2076       if (e.sym->type == STT_SECTION)
2077         sectionIndexMap[e.sym->getOutputSection()] = ++i;
2078       else
2079         symbolIndexMap[e.sym] = ++i;
2080     }
2081   });
2082 
2083   // Section symbols are mapped based on their output sections
2084   // to maintain their semantics.
2085   if (sym->type == STT_SECTION)
2086     return sectionIndexMap.lookup(sym->getOutputSection());
2087   return symbolIndexMap.lookup(sym);
2088 }
2089 
2090 template <class ELFT>
2091 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2092     : SymbolTableBaseSection(strTabSec) {
2093   this->entsize = sizeof(Elf_Sym);
2094 }
2095 
2096 static BssSection *getCommonSec(Symbol *sym) {
2097   if (!config->defineCommon)
2098     if (auto *d = dyn_cast<Defined>(sym))
2099       return dyn_cast_or_null<BssSection>(d->section);
2100   return nullptr;
2101 }
2102 
2103 static uint32_t getSymSectionIndex(Symbol *sym) {
2104   if (getCommonSec(sym))
2105     return SHN_COMMON;
2106   if (!isa<Defined>(sym) || sym->needsPltAddr)
2107     return SHN_UNDEF;
2108   if (const OutputSection *os = sym->getOutputSection())
2109     return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2110                                              : os->sectionIndex;
2111   return SHN_ABS;
2112 }
2113 
2114 // Write the internal symbol table contents to the output symbol table.
2115 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2116   // The first entry is a null entry as per the ELF spec.
2117   memset(buf, 0, sizeof(Elf_Sym));
2118   buf += sizeof(Elf_Sym);
2119 
2120   auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2121 
2122   for (SymbolTableEntry &ent : symbols) {
2123     Symbol *sym = ent.sym;
2124     bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2125 
2126     // Set st_info and st_other.
2127     eSym->st_other = 0;
2128     if (sym->isLocal()) {
2129       eSym->setBindingAndType(STB_LOCAL, sym->type);
2130     } else {
2131       eSym->setBindingAndType(sym->computeBinding(), sym->type);
2132       eSym->setVisibility(sym->visibility);
2133     }
2134 
2135     // The 3 most significant bits of st_other are used by OpenPOWER ABI.
2136     // See getPPC64GlobalEntryToLocalEntryOffset() for more details.
2137     if (config->emachine == EM_PPC64)
2138       eSym->st_other |= sym->stOther & 0xe0;
2139 
2140     eSym->st_name = ent.strTabOffset;
2141     if (isDefinedHere)
2142       eSym->st_shndx = getSymSectionIndex(ent.sym);
2143     else
2144       eSym->st_shndx = 0;
2145 
2146     // Copy symbol size if it is a defined symbol. st_size is not significant
2147     // for undefined symbols, so whether copying it or not is up to us if that's
2148     // the case. We'll leave it as zero because by not setting a value, we can
2149     // get the exact same outputs for two sets of input files that differ only
2150     // in undefined symbol size in DSOs.
2151     if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere)
2152       eSym->st_size = 0;
2153     else
2154       eSym->st_size = sym->getSize();
2155 
2156     // st_value is usually an address of a symbol, but that has a
2157     // special meaning for uninstantiated common symbols (this can
2158     // occur if -r is given).
2159     if (BssSection *commonSec = getCommonSec(ent.sym))
2160       eSym->st_value = commonSec->alignment;
2161     else if (isDefinedHere)
2162       eSym->st_value = sym->getVA();
2163     else
2164       eSym->st_value = 0;
2165 
2166     ++eSym;
2167   }
2168 
2169   // On MIPS we need to mark symbol which has a PLT entry and requires
2170   // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2171   // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2172   // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2173   if (config->emachine == EM_MIPS) {
2174     auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2175 
2176     for (SymbolTableEntry &ent : symbols) {
2177       Symbol *sym = ent.sym;
2178       if (sym->isInPlt() && sym->needsPltAddr)
2179         eSym->st_other |= STO_MIPS_PLT;
2180       if (isMicroMips()) {
2181         // We already set the less-significant bit for symbols
2182         // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2183         // records. That allows us to distinguish such symbols in
2184         // the `MIPS<ELFT>::relocate()` routine. Now we should
2185         // clear that bit for non-dynamic symbol table, so tools
2186         // like `objdump` will be able to deal with a correct
2187         // symbol position.
2188         if (sym->isDefined() &&
2189             ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) {
2190           if (!strTabSec.isDynamic())
2191             eSym->st_value &= ~1;
2192           eSym->st_other |= STO_MIPS_MICROMIPS;
2193         }
2194       }
2195       if (config->relocatable)
2196         if (auto *d = dyn_cast<Defined>(sym))
2197           if (isMipsPIC<ELFT>(d))
2198             eSym->st_other |= STO_MIPS_PIC;
2199       ++eSym;
2200     }
2201   }
2202 }
2203 
2204 SymtabShndxSection::SymtabShndxSection()
2205     : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2206   this->entsize = 4;
2207 }
2208 
2209 void SymtabShndxSection::writeTo(uint8_t *buf) {
2210   // We write an array of 32 bit values, where each value has 1:1 association
2211   // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2212   // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2213   buf += 4; // Ignore .symtab[0] entry.
2214   for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2215     if (getSymSectionIndex(entry.sym) == SHN_XINDEX)
2216       write32(buf, entry.sym->getOutputSection()->sectionIndex);
2217     buf += 4;
2218   }
2219 }
2220 
2221 bool SymtabShndxSection::isNeeded() const {
2222   // SHT_SYMTAB can hold symbols with section indices values up to
2223   // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2224   // section. Problem is that we reveal the final section indices a bit too
2225   // late, and we do not know them here. For simplicity, we just always create
2226   // a .symtab_shndx section when the amount of output sections is huge.
2227   size_t size = 0;
2228   for (BaseCommand *base : script->sectionCommands)
2229     if (isa<OutputSection>(base))
2230       ++size;
2231   return size >= SHN_LORESERVE;
2232 }
2233 
2234 void SymtabShndxSection::finalizeContents() {
2235   getParent()->link = in.symTab->getParent()->sectionIndex;
2236 }
2237 
2238 size_t SymtabShndxSection::getSize() const {
2239   return in.symTab->getNumSymbols() * 4;
2240 }
2241 
2242 // .hash and .gnu.hash sections contain on-disk hash tables that map
2243 // symbol names to their dynamic symbol table indices. Their purpose
2244 // is to help the dynamic linker resolve symbols quickly. If ELF files
2245 // don't have them, the dynamic linker has to do linear search on all
2246 // dynamic symbols, which makes programs slower. Therefore, a .hash
2247 // section is added to a DSO by default. A .gnu.hash is added if you
2248 // give the -hash-style=gnu or -hash-style=both option.
2249 //
2250 // The Unix semantics of resolving dynamic symbols is somewhat expensive.
2251 // Each ELF file has a list of DSOs that the ELF file depends on and a
2252 // list of dynamic symbols that need to be resolved from any of the
2253 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2254 // where m is the number of DSOs and n is the number of dynamic
2255 // symbols. For modern large programs, both m and n are large.  So
2256 // making each step faster by using hash tables substantially
2257 // improves time to load programs.
2258 //
2259 // (Note that this is not the only way to design the shared library.
2260 // For instance, the Windows DLL takes a different approach. On
2261 // Windows, each dynamic symbol has a name of DLL from which the symbol
2262 // has to be resolved. That makes the cost of symbol resolution O(n).
2263 // This disables some hacky techniques you can use on Unix such as
2264 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2265 //
2266 // Due to historical reasons, we have two different hash tables, .hash
2267 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2268 // and better version of .hash. .hash is just an on-disk hash table, but
2269 // .gnu.hash has a bloom filter in addition to a hash table to skip
2270 // DSOs very quickly. If you are sure that your dynamic linker knows
2271 // about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a
2272 // safe bet is to specify -hash-style=both for backward compatibility.
2273 GnuHashTableSection::GnuHashTableSection()
2274     : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2275 }
2276 
2277 void GnuHashTableSection::finalizeContents() {
2278   if (OutputSection *sec = getPartition().dynSymTab->getParent())
2279     getParent()->link = sec->sectionIndex;
2280 
2281   // Computes bloom filter size in word size. We want to allocate 12
2282   // bits for each symbol. It must be a power of two.
2283   if (symbols.empty()) {
2284     maskWords = 1;
2285   } else {
2286     uint64_t numBits = symbols.size() * 12;
2287     maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2288   }
2289 
2290   size = 16;                            // Header
2291   size += config->wordsize * maskWords; // Bloom filter
2292   size += nBuckets * 4;                 // Hash buckets
2293   size += symbols.size() * 4;           // Hash values
2294 }
2295 
2296 void GnuHashTableSection::writeTo(uint8_t *buf) {
2297   // The output buffer is not guaranteed to be zero-cleared because we pre-
2298   // fill executable sections with trap instructions. This is a precaution
2299   // for that case, which happens only when -no-rosegment is given.
2300   memset(buf, 0, size);
2301 
2302   // Write a header.
2303   write32(buf, nBuckets);
2304   write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2305   write32(buf + 8, maskWords);
2306   write32(buf + 12, Shift2);
2307   buf += 16;
2308 
2309   // Write a bloom filter and a hash table.
2310   writeBloomFilter(buf);
2311   buf += config->wordsize * maskWords;
2312   writeHashTable(buf);
2313 }
2314 
2315 // This function writes a 2-bit bloom filter. This bloom filter alone
2316 // usually filters out 80% or more of all symbol lookups [1].
2317 // The dynamic linker uses the hash table only when a symbol is not
2318 // filtered out by a bloom filter.
2319 //
2320 // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2),
2321 //     p.9, https://www.akkadia.org/drepper/dsohowto.pdf
2322 void GnuHashTableSection::writeBloomFilter(uint8_t *buf) {
2323   unsigned c = config->is64 ? 64 : 32;
2324   for (const Entry &sym : symbols) {
2325     // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2326     // the word using bits [0:5] and [26:31].
2327     size_t i = (sym.hash / c) & (maskWords - 1);
2328     uint64_t val = readUint(buf + i * config->wordsize);
2329     val |= uint64_t(1) << (sym.hash % c);
2330     val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2331     writeUint(buf + i * config->wordsize, val);
2332   }
2333 }
2334 
2335 void GnuHashTableSection::writeHashTable(uint8_t *buf) {
2336   uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2337   uint32_t oldBucket = -1;
2338   uint32_t *values = buckets + nBuckets;
2339   for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2340     // Write a hash value. It represents a sequence of chains that share the
2341     // same hash modulo value. The last element of each chain is terminated by
2342     // LSB 1.
2343     uint32_t hash = i->hash;
2344     bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2345     hash = isLastInChain ? hash | 1 : hash & ~1;
2346     write32(values++, hash);
2347 
2348     if (i->bucketIdx == oldBucket)
2349       continue;
2350     // Write a hash bucket. Hash buckets contain indices in the following hash
2351     // value table.
2352     write32(buckets + i->bucketIdx,
2353             getPartition().dynSymTab->getSymbolIndex(i->sym));
2354     oldBucket = i->bucketIdx;
2355   }
2356 }
2357 
2358 static uint32_t hashGnu(StringRef name) {
2359   uint32_t h = 5381;
2360   for (uint8_t c : name)
2361     h = (h << 5) + h + c;
2362   return h;
2363 }
2364 
2365 // Add symbols to this symbol hash table. Note that this function
2366 // destructively sort a given vector -- which is needed because
2367 // GNU-style hash table places some sorting requirements.
2368 void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) {
2369   // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2370   // its type correctly.
2371   std::vector<SymbolTableEntry>::iterator mid =
2372       std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2373         return !s.sym->isDefined() || s.sym->partition != partition;
2374       });
2375 
2376   // We chose load factor 4 for the on-disk hash table. For each hash
2377   // collision, the dynamic linker will compare a uint32_t hash value.
2378   // Since the integer comparison is quite fast, we believe we can
2379   // make the load factor even larger. 4 is just a conservative choice.
2380   //
2381   // Note that we don't want to create a zero-sized hash table because
2382   // Android loader as of 2018 doesn't like a .gnu.hash containing such
2383   // table. If that's the case, we create a hash table with one unused
2384   // dummy slot.
2385   nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2386 
2387   if (mid == v.end())
2388     return;
2389 
2390   for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2391     Symbol *b = ent.sym;
2392     uint32_t hash = hashGnu(b->getName());
2393     uint32_t bucketIdx = hash % nBuckets;
2394     symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2395   }
2396 
2397   llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) {
2398     return l.bucketIdx < r.bucketIdx;
2399   });
2400 
2401   v.erase(mid, v.end());
2402   for (const Entry &ent : symbols)
2403     v.push_back({ent.sym, ent.strTabOffset});
2404 }
2405 
2406 HashTableSection::HashTableSection()
2407     : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2408   this->entsize = 4;
2409 }
2410 
2411 void HashTableSection::finalizeContents() {
2412   SymbolTableBaseSection *symTab = getPartition().dynSymTab;
2413 
2414   if (OutputSection *sec = symTab->getParent())
2415     getParent()->link = sec->sectionIndex;
2416 
2417   unsigned numEntries = 2;               // nbucket and nchain.
2418   numEntries += symTab->getNumSymbols(); // The chain entries.
2419 
2420   // Create as many buckets as there are symbols.
2421   numEntries += symTab->getNumSymbols();
2422   this->size = numEntries * 4;
2423 }
2424 
2425 void HashTableSection::writeTo(uint8_t *buf) {
2426   SymbolTableBaseSection *symTab = getPartition().dynSymTab;
2427 
2428   // See comment in GnuHashTableSection::writeTo.
2429   memset(buf, 0, size);
2430 
2431   unsigned numSymbols = symTab->getNumSymbols();
2432 
2433   uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2434   write32(p++, numSymbols); // nbucket
2435   write32(p++, numSymbols); // nchain
2436 
2437   uint32_t *buckets = p;
2438   uint32_t *chains = p + numSymbols;
2439 
2440   for (const SymbolTableEntry &s : symTab->getSymbols()) {
2441     Symbol *sym = s.sym;
2442     StringRef name = sym->getName();
2443     unsigned i = sym->dynsymIndex;
2444     uint32_t hash = hashSysV(name) % numSymbols;
2445     chains[i] = buckets[hash];
2446     write32(buckets + hash, i);
2447   }
2448 }
2449 
2450 PltSection::PltSection()
2451     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2452       headerSize(target->pltHeaderSize) {
2453   // On PowerPC, this section contains lazy symbol resolvers.
2454   if (config->emachine == EM_PPC64) {
2455     name = ".glink";
2456     alignment = 4;
2457   }
2458 
2459   // On x86 when IBT is enabled, this section contains the second PLT (lazy
2460   // symbol resolvers).
2461   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2462       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2463     name = ".plt.sec";
2464 
2465   // The PLT needs to be writable on SPARC as the dynamic linker will
2466   // modify the instructions in the PLT entries.
2467   if (config->emachine == EM_SPARCV9)
2468     this->flags |= SHF_WRITE;
2469 }
2470 
2471 void PltSection::writeTo(uint8_t *buf) {
2472   // At beginning of PLT, we have code to call the dynamic
2473   // linker to resolve dynsyms at runtime. Write such code.
2474   target->writePltHeader(buf);
2475   size_t off = headerSize;
2476 
2477   for (const Symbol *sym : entries) {
2478     target->writePlt(buf + off, *sym, getVA() + off);
2479     off += target->pltEntrySize;
2480   }
2481 }
2482 
2483 void PltSection::addEntry(Symbol &sym) {
2484   sym.pltIndex = entries.size();
2485   entries.push_back(&sym);
2486 }
2487 
2488 size_t PltSection::getSize() const {
2489   return headerSize + entries.size() * target->pltEntrySize;
2490 }
2491 
2492 bool PltSection::isNeeded() const {
2493   // For -z retpolineplt, .iplt needs the .plt header.
2494   return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2495 }
2496 
2497 // Used by ARM to add mapping symbols in the PLT section, which aid
2498 // disassembly.
2499 void PltSection::addSymbols() {
2500   target->addPltHeaderSymbols(*this);
2501 
2502   size_t off = headerSize;
2503   for (size_t i = 0; i < entries.size(); ++i) {
2504     target->addPltSymbols(*this, off);
2505     off += target->pltEntrySize;
2506   }
2507 }
2508 
2509 IpltSection::IpltSection()
2510     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2511   if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2512     name = ".glink";
2513     alignment = 4;
2514   }
2515 }
2516 
2517 void IpltSection::writeTo(uint8_t *buf) {
2518   uint32_t off = 0;
2519   for (const Symbol *sym : entries) {
2520     target->writeIplt(buf + off, *sym, getVA() + off);
2521     off += target->ipltEntrySize;
2522   }
2523 }
2524 
2525 size_t IpltSection::getSize() const {
2526   return entries.size() * target->ipltEntrySize;
2527 }
2528 
2529 void IpltSection::addEntry(Symbol &sym) {
2530   sym.pltIndex = entries.size();
2531   entries.push_back(&sym);
2532 }
2533 
2534 // ARM uses mapping symbols to aid disassembly.
2535 void IpltSection::addSymbols() {
2536   size_t off = 0;
2537   for (size_t i = 0, e = entries.size(); i != e; ++i) {
2538     target->addPltSymbols(*this, off);
2539     off += target->pltEntrySize;
2540   }
2541 }
2542 
2543 PPC32GlinkSection::PPC32GlinkSection() {
2544   name = ".glink";
2545   alignment = 4;
2546 }
2547 
2548 void PPC32GlinkSection::writeTo(uint8_t *buf) {
2549   writePPC32GlinkSection(buf, entries.size());
2550 }
2551 
2552 size_t PPC32GlinkSection::getSize() const {
2553   return headerSize + entries.size() * target->pltEntrySize + footerSize;
2554 }
2555 
2556 // This is an x86-only extra PLT section and used only when a security
2557 // enhancement feature called CET is enabled. In this comment, I'll explain what
2558 // the feature is and why we have two PLT sections if CET is enabled.
2559 //
2560 // So, what does CET do? CET introduces a new restriction to indirect jump
2561 // instructions. CET works this way. Assume that CET is enabled. Then, if you
2562 // execute an indirect jump instruction, the processor verifies that a special
2563 // "landing pad" instruction (which is actually a repurposed NOP instruction and
2564 // now called "endbr32" or "endbr64") is at the jump target. If the jump target
2565 // does not start with that instruction, the processor raises an exception
2566 // instead of continuing executing code.
2567 //
2568 // If CET is enabled, the compiler emits endbr to all locations where indirect
2569 // jumps may jump to.
2570 //
2571 // This mechanism makes it extremely hard to transfer the control to a middle of
2572 // a function that is not supporsed to be a indirect jump target, preventing
2573 // certain types of attacks such as ROP or JOP.
2574 //
2575 // Note that the processors in the market as of 2019 don't actually support the
2576 // feature. Only the spec is available at the moment.
2577 //
2578 // Now, I'll explain why we have this extra PLT section for CET.
2579 //
2580 // Since you can indirectly jump to a PLT entry, we have to make PLT entries
2581 // start with endbr. The problem is there's no extra space for endbr (which is 4
2582 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2583 // used.
2584 //
2585 // In order to deal with the issue, we split a PLT entry into two PLT entries.
2586 // Remember that each PLT entry contains code to jump to an address read from
2587 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2588 // the former code is written to .plt.sec, and the latter code is written to
2589 // .plt.
2590 //
2591 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2592 // that the regular .plt is now called .plt.sec and .plt is repurposed to
2593 // contain only code for lazy symbol resolution.
2594 //
2595 // In other words, this is how the 2-PLT scheme works. Application code is
2596 // supposed to jump to .plt.sec to call an external function. Each .plt.sec
2597 // entry contains code to read an address from a corresponding .got.plt entry
2598 // and jump to that address. Addresses in .got.plt initially point to .plt, so
2599 // when an application calls an external function for the first time, the
2600 // control is transferred to a function that resolves a symbol name from
2601 // external shared object files. That function then rewrites a .got.plt entry
2602 // with a resolved address, so that the subsequent function calls directly jump
2603 // to a desired location from .plt.sec.
2604 //
2605 // There is an open question as to whether the 2-PLT scheme was desirable or
2606 // not. We could have simply extended the PLT entry size to 32-bytes to
2607 // accommodate endbr, and that scheme would have been much simpler than the
2608 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2609 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2610 // that the optimization actually makes a difference.
2611 //
2612 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2613 // depend on it, so we implement the ABI.
2614 IBTPltSection::IBTPltSection()
2615     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2616 
2617 void IBTPltSection::writeTo(uint8_t *buf) {
2618   target->writeIBTPlt(buf, in.plt->getNumEntries());
2619 }
2620 
2621 size_t IBTPltSection::getSize() const {
2622   // 16 is the header size of .plt.
2623   return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2624 }
2625 
2626 // The string hash function for .gdb_index.
2627 static uint32_t computeGdbHash(StringRef s) {
2628   uint32_t h = 0;
2629   for (uint8_t c : s)
2630     h = h * 67 + toLower(c) - 113;
2631   return h;
2632 }
2633 
2634 GdbIndexSection::GdbIndexSection()
2635     : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2636 
2637 // Returns the desired size of an on-disk hash table for a .gdb_index section.
2638 // There's a tradeoff between size and collision rate. We aim 75% utilization.
2639 size_t GdbIndexSection::computeSymtabSize() const {
2640   return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2641 }
2642 
2643 // Compute the output section size.
2644 void GdbIndexSection::initOutputSize() {
2645   size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8;
2646 
2647   for (GdbChunk &chunk : chunks)
2648     size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2649 
2650   // Add the constant pool size if exists.
2651   if (!symbols.empty()) {
2652     GdbSymbol &sym = symbols.back();
2653     size += sym.nameOff + sym.name.size() + 1;
2654   }
2655 }
2656 
2657 static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) {
2658   std::vector<GdbIndexSection::CuEntry> ret;
2659   for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2660     ret.push_back({cu->getOffset(), cu->getLength() + 4});
2661   return ret;
2662 }
2663 
2664 static std::vector<GdbIndexSection::AddressEntry>
2665 readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2666   std::vector<GdbIndexSection::AddressEntry> ret;
2667 
2668   uint32_t cuIdx = 0;
2669   for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2670     if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2671       warn(toString(sec) + ": " + toString(std::move(e)));
2672       return {};
2673     }
2674     Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2675     if (!ranges) {
2676       warn(toString(sec) + ": " + toString(ranges.takeError()));
2677       return {};
2678     }
2679 
2680     ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2681     for (DWARFAddressRange &r : *ranges) {
2682       if (r.SectionIndex == -1ULL)
2683         continue;
2684       // Range list with zero size has no effect.
2685       InputSectionBase *s = sections[r.SectionIndex];
2686       if (s && s != &InputSection::discarded && s->isLive())
2687         if (r.LowPC != r.HighPC)
2688           ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2689     }
2690     ++cuIdx;
2691   }
2692 
2693   return ret;
2694 }
2695 
2696 template <class ELFT>
2697 static std::vector<GdbIndexSection::NameAttrEntry>
2698 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2699                      const std::vector<GdbIndexSection::CuEntry> &cus) {
2700   const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2701   const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2702 
2703   std::vector<GdbIndexSection::NameAttrEntry> ret;
2704   for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2705     DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2706     DWARFDebugPubTable table;
2707     table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2708       warn(toString(pub->sec) + ": " + toString(std::move(e)));
2709     });
2710     for (const DWARFDebugPubTable::Set &set : table.getData()) {
2711       // The value written into the constant pool is kind << 24 | cuIndex. As we
2712       // don't know how many compilation units precede this object to compute
2713       // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2714       // the number of preceding compilation units later.
2715       uint32_t i = llvm::partition_point(cus,
2716                                          [&](GdbIndexSection::CuEntry cu) {
2717                                            return cu.cuOffset < set.Offset;
2718                                          }) -
2719                    cus.begin();
2720       for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2721         ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2722                        (ent.Descriptor.toBits() << 24) | i});
2723     }
2724   }
2725   return ret;
2726 }
2727 
2728 // Create a list of symbols from a given list of symbol names and types
2729 // by uniquifying them by name.
2730 static std::vector<GdbIndexSection::GdbSymbol>
2731 createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs,
2732               const std::vector<GdbIndexSection::GdbChunk> &chunks) {
2733   using GdbSymbol = GdbIndexSection::GdbSymbol;
2734   using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2735 
2736   // For each chunk, compute the number of compilation units preceding it.
2737   uint32_t cuIdx = 0;
2738   std::vector<uint32_t> cuIdxs(chunks.size());
2739   for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2740     cuIdxs[i] = cuIdx;
2741     cuIdx += chunks[i].compilationUnits.size();
2742   }
2743 
2744   // The number of symbols we will handle in this function is of the order
2745   // of millions for very large executables, so we use multi-threading to
2746   // speed it up.
2747   constexpr size_t numShards = 32;
2748   size_t concurrency = PowerOf2Floor(
2749       std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
2750                            .compute_thread_count(),
2751                        numShards));
2752 
2753   // A sharded map to uniquify symbols by name.
2754   std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards);
2755   size_t shift = 32 - countTrailingZeros(numShards);
2756 
2757   // Instantiate GdbSymbols while uniqufying them by name.
2758   std::vector<std::vector<GdbSymbol>> symbols(numShards);
2759   parallelForEachN(0, concurrency, [&](size_t threadId) {
2760     uint32_t i = 0;
2761     for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2762       for (const NameAttrEntry &ent : entries) {
2763         size_t shardId = ent.name.hash() >> shift;
2764         if ((shardId & (concurrency - 1)) != threadId)
2765           continue;
2766 
2767         uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2768         size_t &idx = map[shardId][ent.name];
2769         if (idx) {
2770           symbols[shardId][idx - 1].cuVector.push_back(v);
2771           continue;
2772         }
2773 
2774         idx = symbols[shardId].size() + 1;
2775         symbols[shardId].push_back({ent.name, {v}, 0, 0});
2776       }
2777       ++i;
2778     }
2779   });
2780 
2781   size_t numSymbols = 0;
2782   for (ArrayRef<GdbSymbol> v : symbols)
2783     numSymbols += v.size();
2784 
2785   // The return type is a flattened vector, so we'll copy each vector
2786   // contents to Ret.
2787   std::vector<GdbSymbol> ret;
2788   ret.reserve(numSymbols);
2789   for (std::vector<GdbSymbol> &vec : symbols)
2790     for (GdbSymbol &sym : vec)
2791       ret.push_back(std::move(sym));
2792 
2793   // CU vectors and symbol names are adjacent in the output file.
2794   // We can compute their offsets in the output file now.
2795   size_t off = 0;
2796   for (GdbSymbol &sym : ret) {
2797     sym.cuVectorOff = off;
2798     off += (sym.cuVector.size() + 1) * 4;
2799   }
2800   for (GdbSymbol &sym : ret) {
2801     sym.nameOff = off;
2802     off += sym.name.size() + 1;
2803   }
2804 
2805   return ret;
2806 }
2807 
2808 // Returns a newly-created .gdb_index section.
2809 template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2810   // Collect InputFiles with .debug_info. See the comment in
2811   // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2812   // note that isec->data() may uncompress the full content, which should be
2813   // parallelized.
2814   SetVector<InputFile *> files;
2815   for (InputSectionBase *s : inputSections) {
2816     InputSection *isec = dyn_cast<InputSection>(s);
2817     if (!isec)
2818       continue;
2819     // .debug_gnu_pub{names,types} are useless in executables.
2820     // They are present in input object files solely for creating
2821     // a .gdb_index. So we can remove them from the output.
2822     if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2823       s->markDead();
2824     else if (isec->name == ".debug_info")
2825       files.insert(isec->file);
2826   }
2827 
2828   std::vector<GdbChunk> chunks(files.size());
2829   std::vector<std::vector<NameAttrEntry>> nameAttrs(files.size());
2830 
2831   parallelForEachN(0, files.size(), [&](size_t i) {
2832     // To keep memory usage low, we don't want to keep cached DWARFContext, so
2833     // avoid getDwarf() here.
2834     ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2835     DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2836     auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2837 
2838     // If the are multiple compile units .debug_info (very rare ld -r --unique),
2839     // this only picks the last one. Other address ranges are lost.
2840     chunks[i].sec = dobj.getInfoSection();
2841     chunks[i].compilationUnits = readCuList(dwarf);
2842     chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2843     nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2844   });
2845 
2846   auto *ret = make<GdbIndexSection>();
2847   ret->chunks = std::move(chunks);
2848   ret->symbols = createSymbols(nameAttrs, ret->chunks);
2849   ret->initOutputSize();
2850   return ret;
2851 }
2852 
2853 void GdbIndexSection::writeTo(uint8_t *buf) {
2854   // Write the header.
2855   auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2856   uint8_t *start = buf;
2857   hdr->version = 7;
2858   buf += sizeof(*hdr);
2859 
2860   // Write the CU list.
2861   hdr->cuListOff = buf - start;
2862   for (GdbChunk &chunk : chunks) {
2863     for (CuEntry &cu : chunk.compilationUnits) {
2864       write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2865       write64le(buf + 8, cu.cuLength);
2866       buf += 16;
2867     }
2868   }
2869 
2870   // Write the address area.
2871   hdr->cuTypesOff = buf - start;
2872   hdr->addressAreaOff = buf - start;
2873   uint32_t cuOff = 0;
2874   for (GdbChunk &chunk : chunks) {
2875     for (AddressEntry &e : chunk.addressAreas) {
2876       uint64_t baseAddr = e.section->getVA(0);
2877       write64le(buf, baseAddr + e.lowAddress);
2878       write64le(buf + 8, baseAddr + e.highAddress);
2879       write32le(buf + 16, e.cuIndex + cuOff);
2880       buf += 20;
2881     }
2882     cuOff += chunk.compilationUnits.size();
2883   }
2884 
2885   // Write the on-disk open-addressing hash table containing symbols.
2886   hdr->symtabOff = buf - start;
2887   size_t symtabSize = computeSymtabSize();
2888   uint32_t mask = symtabSize - 1;
2889 
2890   for (GdbSymbol &sym : symbols) {
2891     uint32_t h = sym.name.hash();
2892     uint32_t i = h & mask;
2893     uint32_t step = ((h * 17) & mask) | 1;
2894 
2895     while (read32le(buf + i * 8))
2896       i = (i + step) & mask;
2897 
2898     write32le(buf + i * 8, sym.nameOff);
2899     write32le(buf + i * 8 + 4, sym.cuVectorOff);
2900   }
2901 
2902   buf += symtabSize * 8;
2903 
2904   // Write the string pool.
2905   hdr->constantPoolOff = buf - start;
2906   parallelForEach(symbols, [&](GdbSymbol &sym) {
2907     memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
2908   });
2909 
2910   // Write the CU vectors.
2911   for (GdbSymbol &sym : symbols) {
2912     write32le(buf, sym.cuVector.size());
2913     buf += 4;
2914     for (uint32_t val : sym.cuVector) {
2915       write32le(buf, val);
2916       buf += 4;
2917     }
2918   }
2919 }
2920 
2921 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
2922 
2923 EhFrameHeader::EhFrameHeader()
2924     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
2925 
2926 void EhFrameHeader::writeTo(uint8_t *buf) {
2927   // Unlike most sections, the EhFrameHeader section is written while writing
2928   // another section, namely EhFrameSection, which calls the write() function
2929   // below from its writeTo() function. This is necessary because the contents
2930   // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
2931   // don't know which order the sections will be written in.
2932 }
2933 
2934 // .eh_frame_hdr contains a binary search table of pointers to FDEs.
2935 // Each entry of the search table consists of two values,
2936 // the starting PC from where FDEs covers, and the FDE's address.
2937 // It is sorted by PC.
2938 void EhFrameHeader::write() {
2939   uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
2940   using FdeData = EhFrameSection::FdeData;
2941 
2942   std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData();
2943 
2944   buf[0] = 1;
2945   buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
2946   buf[2] = DW_EH_PE_udata4;
2947   buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
2948   write32(buf + 4,
2949           getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
2950   write32(buf + 8, fdes.size());
2951   buf += 12;
2952 
2953   for (FdeData &fde : fdes) {
2954     write32(buf, fde.pcRel);
2955     write32(buf + 4, fde.fdeVARel);
2956     buf += 8;
2957   }
2958 }
2959 
2960 size_t EhFrameHeader::getSize() const {
2961   // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
2962   return 12 + getPartition().ehFrame->numFdes * 8;
2963 }
2964 
2965 bool EhFrameHeader::isNeeded() const {
2966   return isLive() && getPartition().ehFrame->isNeeded();
2967 }
2968 
2969 VersionDefinitionSection::VersionDefinitionSection()
2970     : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
2971                        ".gnu.version_d") {}
2972 
2973 StringRef VersionDefinitionSection::getFileDefName() {
2974   if (!getPartition().name.empty())
2975     return getPartition().name;
2976   if (!config->soName.empty())
2977     return config->soName;
2978   return config->outputFile;
2979 }
2980 
2981 void VersionDefinitionSection::finalizeContents() {
2982   fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
2983   for (const VersionDefinition &v : namedVersionDefs())
2984     verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
2985 
2986   if (OutputSection *sec = getPartition().dynStrTab->getParent())
2987     getParent()->link = sec->sectionIndex;
2988 
2989   // sh_info should be set to the number of definitions. This fact is missed in
2990   // documentation, but confirmed by binutils community:
2991   // https://sourceware.org/ml/binutils/2014-11/msg00355.html
2992   getParent()->info = getVerDefNum();
2993 }
2994 
2995 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
2996                                         StringRef name, size_t nameOff) {
2997   uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
2998 
2999   // Write a verdef.
3000   write16(buf, 1);                  // vd_version
3001   write16(buf + 2, flags);          // vd_flags
3002   write16(buf + 4, index);          // vd_ndx
3003   write16(buf + 6, 1);              // vd_cnt
3004   write32(buf + 8, hashSysV(name)); // vd_hash
3005   write32(buf + 12, 20);            // vd_aux
3006   write32(buf + 16, 28);            // vd_next
3007 
3008   // Write a veraux.
3009   write32(buf + 20, nameOff); // vda_name
3010   write32(buf + 24, 0);       // vda_next
3011 }
3012 
3013 void VersionDefinitionSection::writeTo(uint8_t *buf) {
3014   writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3015 
3016   auto nameOffIt = verDefNameOffs.begin();
3017   for (const VersionDefinition &v : namedVersionDefs()) {
3018     buf += EntrySize;
3019     writeOne(buf, v.id, v.name, *nameOffIt++);
3020   }
3021 
3022   // Need to terminate the last version definition.
3023   write32(buf + 16, 0); // vd_next
3024 }
3025 
3026 size_t VersionDefinitionSection::getSize() const {
3027   return EntrySize * getVerDefNum();
3028 }
3029 
3030 // .gnu.version is a table where each entry is 2 byte long.
3031 VersionTableSection::VersionTableSection()
3032     : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3033                        ".gnu.version") {
3034   this->entsize = 2;
3035 }
3036 
3037 void VersionTableSection::finalizeContents() {
3038   // At the moment of june 2016 GNU docs does not mention that sh_link field
3039   // should be set, but Sun docs do. Also readelf relies on this field.
3040   getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3041 }
3042 
3043 size_t VersionTableSection::getSize() const {
3044   return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3045 }
3046 
3047 void VersionTableSection::writeTo(uint8_t *buf) {
3048   buf += 2;
3049   for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3050     write16(buf, s.sym->versionId);
3051     buf += 2;
3052   }
3053 }
3054 
3055 bool VersionTableSection::isNeeded() const {
3056   return isLive() &&
3057          (getPartition().verDef || getPartition().verNeed->isNeeded());
3058 }
3059 
3060 void elf::addVerneed(Symbol *ss) {
3061   auto &file = cast<SharedFile>(*ss->file);
3062   if (ss->verdefIndex == VER_NDX_GLOBAL) {
3063     ss->versionId = VER_NDX_GLOBAL;
3064     return;
3065   }
3066 
3067   if (file.vernauxs.empty())
3068     file.vernauxs.resize(file.verdefs.size());
3069 
3070   // Select a version identifier for the vernaux data structure, if we haven't
3071   // already allocated one. The verdef identifiers cover the range
3072   // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3073   // getVerDefNum()+1.
3074   if (file.vernauxs[ss->verdefIndex] == 0)
3075     file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3076 
3077   ss->versionId = file.vernauxs[ss->verdefIndex];
3078 }
3079 
3080 template <class ELFT>
3081 VersionNeedSection<ELFT>::VersionNeedSection()
3082     : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3083                        ".gnu.version_r") {}
3084 
3085 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3086   for (SharedFile *f : sharedFiles) {
3087     if (f->vernauxs.empty())
3088       continue;
3089     verneeds.emplace_back();
3090     Verneed &vn = verneeds.back();
3091     vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3092     for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3093       if (f->vernauxs[i] == 0)
3094         continue;
3095       auto *verdef =
3096           reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3097       vn.vernauxs.push_back(
3098           {verdef->vd_hash, f->vernauxs[i],
3099            getPartition().dynStrTab->addString(f->getStringTable().data() +
3100                                                verdef->getAux()->vda_name)});
3101     }
3102   }
3103 
3104   if (OutputSection *sec = getPartition().dynStrTab->getParent())
3105     getParent()->link = sec->sectionIndex;
3106   getParent()->info = verneeds.size();
3107 }
3108 
3109 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3110   // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3111   auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3112   auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3113 
3114   for (auto &vn : verneeds) {
3115     // Create an Elf_Verneed for this DSO.
3116     verneed->vn_version = 1;
3117     verneed->vn_cnt = vn.vernauxs.size();
3118     verneed->vn_file = vn.nameStrTab;
3119     verneed->vn_aux =
3120         reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3121     verneed->vn_next = sizeof(Elf_Verneed);
3122     ++verneed;
3123 
3124     // Create the Elf_Vernauxs for this Elf_Verneed.
3125     for (auto &vna : vn.vernauxs) {
3126       vernaux->vna_hash = vna.hash;
3127       vernaux->vna_flags = 0;
3128       vernaux->vna_other = vna.verneedIndex;
3129       vernaux->vna_name = vna.nameStrTab;
3130       vernaux->vna_next = sizeof(Elf_Vernaux);
3131       ++vernaux;
3132     }
3133 
3134     vernaux[-1].vna_next = 0;
3135   }
3136   verneed[-1].vn_next = 0;
3137 }
3138 
3139 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3140   return verneeds.size() * sizeof(Elf_Verneed) +
3141          SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3142 }
3143 
3144 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3145   return isLive() && SharedFile::vernauxNum != 0;
3146 }
3147 
3148 void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3149   ms->parent = this;
3150   sections.push_back(ms);
3151   assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS));
3152   alignment = std::max(alignment, ms->alignment);
3153 }
3154 
3155 MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3156                                    uint64_t flags, uint32_t alignment)
3157     : MergeSyntheticSection(name, type, flags, alignment),
3158       builder(StringTableBuilder::RAW, alignment) {}
3159 
3160 size_t MergeTailSection::getSize() const { return builder.getSize(); }
3161 
3162 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3163 
3164 void MergeTailSection::finalizeContents() {
3165   // Add all string pieces to the string table builder to create section
3166   // contents.
3167   for (MergeInputSection *sec : sections)
3168     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3169       if (sec->pieces[i].live)
3170         builder.add(sec->getData(i));
3171 
3172   // Fix the string table content. After this, the contents will never change.
3173   builder.finalize();
3174 
3175   // finalize() fixed tail-optimized strings, so we can now get
3176   // offsets of strings. Get an offset for each string and save it
3177   // to a corresponding SectionPiece for easy access.
3178   for (MergeInputSection *sec : sections)
3179     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3180       if (sec->pieces[i].live)
3181         sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3182 }
3183 
3184 void MergeNoTailSection::writeTo(uint8_t *buf) {
3185   for (size_t i = 0; i < numShards; ++i)
3186     shards[i].write(buf + shardOffsets[i]);
3187 }
3188 
3189 // This function is very hot (i.e. it can take several seconds to finish)
3190 // because sometimes the number of inputs is in an order of magnitude of
3191 // millions. So, we use multi-threading.
3192 //
3193 // For any strings S and T, we know S is not mergeable with T if S's hash
3194 // value is different from T's. If that's the case, we can safely put S and
3195 // T into different string builders without worrying about merge misses.
3196 // We do it in parallel.
3197 void MergeNoTailSection::finalizeContents() {
3198   // Initializes string table builders.
3199   for (size_t i = 0; i < numShards; ++i)
3200     shards.emplace_back(StringTableBuilder::RAW, alignment);
3201 
3202   // Concurrency level. Must be a power of 2 to avoid expensive modulo
3203   // operations in the following tight loop.
3204   size_t concurrency = PowerOf2Floor(
3205       std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
3206                            .compute_thread_count(),
3207                        numShards));
3208 
3209   // Add section pieces to the builders.
3210   parallelForEachN(0, concurrency, [&](size_t threadId) {
3211     for (MergeInputSection *sec : sections) {
3212       for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3213         if (!sec->pieces[i].live)
3214           continue;
3215         size_t shardId = getShardId(sec->pieces[i].hash);
3216         if ((shardId & (concurrency - 1)) == threadId)
3217           sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3218       }
3219     }
3220   });
3221 
3222   // Compute an in-section offset for each shard.
3223   size_t off = 0;
3224   for (size_t i = 0; i < numShards; ++i) {
3225     shards[i].finalizeInOrder();
3226     if (shards[i].getSize() > 0)
3227       off = alignTo(off, alignment);
3228     shardOffsets[i] = off;
3229     off += shards[i].getSize();
3230   }
3231   size = off;
3232 
3233   // So far, section pieces have offsets from beginning of shards, but
3234   // we want offsets from beginning of the whole section. Fix them.
3235   parallelForEach(sections, [&](MergeInputSection *sec) {
3236     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3237       if (sec->pieces[i].live)
3238         sec->pieces[i].outputOff +=
3239             shardOffsets[getShardId(sec->pieces[i].hash)];
3240   });
3241 }
3242 
3243 MergeSyntheticSection *elf::createMergeSynthetic(StringRef name, uint32_t type,
3244                                                  uint64_t flags,
3245                                                  uint32_t alignment) {
3246   bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2;
3247   if (shouldTailMerge)
3248     return make<MergeTailSection>(name, type, flags, alignment);
3249   return make<MergeNoTailSection>(name, type, flags, alignment);
3250 }
3251 
3252 template <class ELFT> void elf::splitSections() {
3253   llvm::TimeTraceScope timeScope("Split sections");
3254   // splitIntoPieces needs to be called on each MergeInputSection
3255   // before calling finalizeContents().
3256   parallelForEach(inputSections, [](InputSectionBase *sec) {
3257     if (auto *s = dyn_cast<MergeInputSection>(sec))
3258       s->splitIntoPieces();
3259     else if (auto *eh = dyn_cast<EhInputSection>(sec))
3260       eh->split<ELFT>();
3261   });
3262 }
3263 
3264 MipsRldMapSection::MipsRldMapSection()
3265     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3266                        ".rld_map") {}
3267 
3268 ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3269     : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3270                        config->wordsize, ".ARM.exidx") {}
3271 
3272 static InputSection *findExidxSection(InputSection *isec) {
3273   for (InputSection *d : isec->dependentSections)
3274     if (d->type == SHT_ARM_EXIDX && d->isLive())
3275       return d;
3276   return nullptr;
3277 }
3278 
3279 static bool isValidExidxSectionDep(InputSection *isec) {
3280   return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3281          isec->getSize() > 0;
3282 }
3283 
3284 bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3285   if (isec->type == SHT_ARM_EXIDX) {
3286     if (InputSection *dep = isec->getLinkOrderDep())
3287       if (isValidExidxSectionDep(dep)) {
3288         exidxSections.push_back(isec);
3289         // Every exidxSection is 8 bytes, we need an estimate of
3290         // size before assignAddresses can be called. Final size
3291         // will only be known after finalize is called.
3292         size += 8;
3293       }
3294     return true;
3295   }
3296 
3297   if (isValidExidxSectionDep(isec)) {
3298     executableSections.push_back(isec);
3299     return false;
3300   }
3301 
3302   // FIXME: we do not output a relocation section when --emit-relocs is used
3303   // as we do not have relocation sections for linker generated table entries
3304   // and we would have to erase at a late stage relocations from merged entries.
3305   // Given that exception tables are already position independent and a binary
3306   // analyzer could derive the relocations we choose to erase the relocations.
3307   if (config->emitRelocs && isec->type == SHT_REL)
3308     if (InputSectionBase *ex = isec->getRelocatedSection())
3309       if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3310         return true;
3311 
3312   return false;
3313 }
3314 
3315 // References to .ARM.Extab Sections have bit 31 clear and are not the
3316 // special EXIDX_CANTUNWIND bit-pattern.
3317 static bool isExtabRef(uint32_t unwind) {
3318   return (unwind & 0x80000000) == 0 && unwind != 0x1;
3319 }
3320 
3321 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3322 // section Prev, where Cur follows Prev in the table. This can be done if the
3323 // unwinding instructions in Cur are identical to Prev. Linker generated
3324 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3325 // InputSection.
3326 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3327 
3328   struct ExidxEntry {
3329     ulittle32_t fn;
3330     ulittle32_t unwind;
3331   };
3332   // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3333   // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3334   ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
3335   if (prev)
3336     prevEntry = prev->getDataAs<ExidxEntry>().back();
3337   if (isExtabRef(prevEntry.unwind))
3338     return false;
3339 
3340   // We consider the unwind instructions of an .ARM.exidx table entry
3341   // a duplicate if the previous unwind instructions if:
3342   // - Both are the special EXIDX_CANTUNWIND.
3343   // - Both are the same inline unwind instructions.
3344   // We do not attempt to follow and check links into .ARM.extab tables as
3345   // consecutive identical entries are rare and the effort to check that they
3346   // are identical is high.
3347 
3348   // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3349   if (cur == nullptr)
3350     return prevEntry.unwind == 1;
3351 
3352   for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
3353     if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
3354       return false;
3355 
3356   // All table entries in this .ARM.exidx Section can be merged into the
3357   // previous Section.
3358   return true;
3359 }
3360 
3361 // The .ARM.exidx table must be sorted in ascending order of the address of the
3362 // functions the table describes. Optionally duplicate adjacent table entries
3363 // can be removed. At the end of the function the executableSections must be
3364 // sorted in ascending order of address, Sentinel is set to the InputSection
3365 // with the highest address and any InputSections that have mergeable
3366 // .ARM.exidx table entries are removed from it.
3367 void ARMExidxSyntheticSection::finalizeContents() {
3368   // The executableSections and exidxSections that we use to derive the final
3369   // contents of this SyntheticSection are populated before
3370   // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3371   // ICF may remove executable InputSections and their dependent .ARM.exidx
3372   // section that we recorded earlier.
3373   auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3374   llvm::erase_if(exidxSections, isDiscarded);
3375   // We need to remove discarded InputSections and InputSections without
3376   // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3377   // of range.
3378   auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3379     if (!isec->isLive())
3380       return true;
3381     if (findExidxSection(isec))
3382       return false;
3383     int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3384     return off != llvm::SignExtend64(off, 31);
3385   };
3386   llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3387 
3388   // Sort the executable sections that may or may not have associated
3389   // .ARM.exidx sections by order of ascending address. This requires the
3390   // relative positions of InputSections and OutputSections to be known.
3391   auto compareByFilePosition = [](const InputSection *a,
3392                                   const InputSection *b) {
3393     OutputSection *aOut = a->getParent();
3394     OutputSection *bOut = b->getParent();
3395 
3396     if (aOut != bOut)
3397       return aOut->addr < bOut->addr;
3398     return a->outSecOff < b->outSecOff;
3399   };
3400   llvm::stable_sort(executableSections, compareByFilePosition);
3401   sentinel = executableSections.back();
3402   // Optionally merge adjacent duplicate entries.
3403   if (config->mergeArmExidx) {
3404     std::vector<InputSection *> selectedSections;
3405     selectedSections.reserve(executableSections.size());
3406     selectedSections.push_back(executableSections[0]);
3407     size_t prev = 0;
3408     for (size_t i = 1; i < executableSections.size(); ++i) {
3409       InputSection *ex1 = findExidxSection(executableSections[prev]);
3410       InputSection *ex2 = findExidxSection(executableSections[i]);
3411       if (!isDuplicateArmExidxSec(ex1, ex2)) {
3412         selectedSections.push_back(executableSections[i]);
3413         prev = i;
3414       }
3415     }
3416     executableSections = std::move(selectedSections);
3417   }
3418 
3419   size_t offset = 0;
3420   size = 0;
3421   for (InputSection *isec : executableSections) {
3422     if (InputSection *d = findExidxSection(isec)) {
3423       d->outSecOff = offset;
3424       d->parent = getParent();
3425       offset += d->getSize();
3426     } else {
3427       offset += 8;
3428     }
3429   }
3430   // Size includes Sentinel.
3431   size = offset + 8;
3432 }
3433 
3434 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3435   return executableSections.front();
3436 }
3437 
3438 // To write the .ARM.exidx table from the ExecutableSections we have three cases
3439 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3440 //     We write the .ARM.exidx section contents and apply its relocations.
3441 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3442 //     must write the contents of an EXIDX_CANTUNWIND directly. We use the
3443 //     start of the InputSection as the purpose of the linker generated
3444 //     section is to terminate the address range of the previous entry.
3445 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3446 //     the table to terminate the address range of the final entry.
3447 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3448 
3449   const uint8_t cantUnwindData[8] = {0, 0, 0, 0,  // PREL31 to target
3450                                      1, 0, 0, 0}; // EXIDX_CANTUNWIND
3451 
3452   uint64_t offset = 0;
3453   for (InputSection *isec : executableSections) {
3454     assert(isec->getParent() != nullptr);
3455     if (InputSection *d = findExidxSection(isec)) {
3456       memcpy(buf + offset, d->data().data(), d->data().size());
3457       d->relocateAlloc(buf, buf + d->getSize());
3458       offset += d->getSize();
3459     } else {
3460       // A Linker generated CANTUNWIND section.
3461       memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3462       uint64_t s = isec->getVA();
3463       uint64_t p = getVA() + offset;
3464       target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3465       offset += 8;
3466     }
3467   }
3468   // Write Sentinel.
3469   memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3470   uint64_t s = sentinel->getVA(sentinel->getSize());
3471   uint64_t p = getVA() + offset;
3472   target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3473   assert(size == offset + 8);
3474 }
3475 
3476 bool ARMExidxSyntheticSection::isNeeded() const {
3477   return llvm::find_if(exidxSections, [](InputSection *isec) {
3478            return isec->isLive();
3479          }) != exidxSections.end();
3480 }
3481 
3482 bool ARMExidxSyntheticSection::classof(const SectionBase *d) {
3483   return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX;
3484 }
3485 
3486 ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3487     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
3488                        ".text.thunk") {
3489   this->parent = os;
3490   this->outSecOff = off;
3491 }
3492 
3493 size_t ThunkSection::getSize() const {
3494   if (roundUpSizeForErrata)
3495     return alignTo(size, 4096);
3496   return size;
3497 }
3498 
3499 void ThunkSection::addThunk(Thunk *t) {
3500   thunks.push_back(t);
3501   t->addSymbols(*this);
3502 }
3503 
3504 void ThunkSection::writeTo(uint8_t *buf) {
3505   for (Thunk *t : thunks)
3506     t->writeTo(buf + t->offset);
3507 }
3508 
3509 InputSection *ThunkSection::getTargetInputSection() const {
3510   if (thunks.empty())
3511     return nullptr;
3512   const Thunk *t = thunks.front();
3513   return t->getTargetInputSection();
3514 }
3515 
3516 bool ThunkSection::assignOffsets() {
3517   uint64_t off = 0;
3518   for (Thunk *t : thunks) {
3519     off = alignTo(off, t->alignment);
3520     t->setOffset(off);
3521     uint32_t size = t->size();
3522     t->getThunkTargetSym()->size = size;
3523     off += size;
3524   }
3525   bool changed = off != size;
3526   size = off;
3527   return changed;
3528 }
3529 
3530 PPC32Got2Section::PPC32Got2Section()
3531     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3532 
3533 bool PPC32Got2Section::isNeeded() const {
3534   // See the comment below. This is not needed if there is no other
3535   // InputSection.
3536   for (BaseCommand *base : getParent()->sectionCommands)
3537     if (auto *isd = dyn_cast<InputSectionDescription>(base))
3538       for (InputSection *isec : isd->sections)
3539         if (isec != this)
3540           return true;
3541   return false;
3542 }
3543 
3544 void PPC32Got2Section::finalizeContents() {
3545   // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3546   // .got2 . This function computes outSecOff of each .got2 to be used in
3547   // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3548   // to collect input sections named ".got2".
3549   uint32_t offset = 0;
3550   for (BaseCommand *base : getParent()->sectionCommands)
3551     if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
3552       for (InputSection *isec : isd->sections) {
3553         if (isec == this)
3554           continue;
3555         isec->file->ppc32Got2OutSecOff = offset;
3556         offset += (uint32_t)isec->getSize();
3557       }
3558     }
3559 }
3560 
3561 // If linking position-dependent code then the table will store the addresses
3562 // directly in the binary so the section has type SHT_PROGBITS. If linking
3563 // position-independent code the section has type SHT_NOBITS since it will be
3564 // allocated and filled in by the dynamic linker.
3565 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3566     : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3567                        config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3568                        ".branch_lt") {}
3569 
3570 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3571                                                   int64_t addend) {
3572   return getVA() + entry_index.find({sym, addend})->second * 8;
3573 }
3574 
3575 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym,
3576                                                           int64_t addend) {
3577   auto res =
3578       entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3579   if (!res.second)
3580     return None;
3581   entries.emplace_back(sym, addend);
3582   return res.first->second;
3583 }
3584 
3585 size_t PPC64LongBranchTargetSection::getSize() const {
3586   return entries.size() * 8;
3587 }
3588 
3589 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3590   // If linking non-pic we have the final addresses of the targets and they get
3591   // written to the table directly. For pic the dynamic linker will allocate
3592   // the section and fill it it.
3593   if (config->isPic)
3594     return;
3595 
3596   for (auto entry : entries) {
3597     const Symbol *sym = entry.first;
3598     int64_t addend = entry.second;
3599     assert(sym->getVA());
3600     // Need calls to branch to the local entry-point since a long-branch
3601     // must be a local-call.
3602     write64(buf, sym->getVA(addend) +
3603                      getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3604     buf += 8;
3605   }
3606 }
3607 
3608 bool PPC64LongBranchTargetSection::isNeeded() const {
3609   // `removeUnusedSyntheticSections()` is called before thunk allocation which
3610   // is too early to determine if this section will be empty or not. We need
3611   // Finalized to keep the section alive until after thunk creation. Finalized
3612   // only gets set to true once `finalizeSections()` is called after thunk
3613   // creation. Because of this, if we don't create any long-branch thunks we end
3614   // up with an empty .branch_lt section in the binary.
3615   return !finalized || !entries.empty();
3616 }
3617 
3618 static uint8_t getAbiVersion() {
3619   // MIPS non-PIC executable gets ABI version 1.
3620   if (config->emachine == EM_MIPS) {
3621     if (!config->isPic && !config->relocatable &&
3622         (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3623       return 1;
3624     return 0;
3625   }
3626 
3627   if (config->emachine == EM_AMDGPU) {
3628     uint8_t ver = objectFiles[0]->abiVersion;
3629     for (InputFile *file : makeArrayRef(objectFiles).slice(1))
3630       if (file->abiVersion != ver)
3631         error("incompatible ABI version: " + toString(file));
3632     return ver;
3633   }
3634 
3635   return 0;
3636 }
3637 
3638 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3639   // For executable segments, the trap instructions are written before writing
3640   // the header. Setting Elf header bytes to zero ensures that any unused bytes
3641   // in header are zero-cleared, instead of having trap instructions.
3642   memset(buf, 0, sizeof(typename ELFT::Ehdr));
3643   memcpy(buf, "\177ELF", 4);
3644 
3645   auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3646   eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3647   eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3648   eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3649   eHdr->e_ident[EI_OSABI] = config->osabi;
3650   eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3651   eHdr->e_machine = config->emachine;
3652   eHdr->e_version = EV_CURRENT;
3653   eHdr->e_flags = config->eflags;
3654   eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3655   eHdr->e_phnum = part.phdrs.size();
3656   eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3657 
3658   if (!config->relocatable) {
3659     eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3660     eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3661   }
3662 }
3663 
3664 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3665   // Write the program header table.
3666   auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3667   for (PhdrEntry *p : part.phdrs) {
3668     hBuf->p_type = p->p_type;
3669     hBuf->p_flags = p->p_flags;
3670     hBuf->p_offset = p->p_offset;
3671     hBuf->p_vaddr = p->p_vaddr;
3672     hBuf->p_paddr = p->p_paddr;
3673     hBuf->p_filesz = p->p_filesz;
3674     hBuf->p_memsz = p->p_memsz;
3675     hBuf->p_align = p->p_align;
3676     ++hBuf;
3677   }
3678 }
3679 
3680 template <typename ELFT>
3681 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3682     : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3683 
3684 template <typename ELFT>
3685 size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3686   return sizeof(typename ELFT::Ehdr);
3687 }
3688 
3689 template <typename ELFT>
3690 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3691   writeEhdr<ELFT>(buf, getPartition());
3692 
3693   // Loadable partitions are always ET_DYN.
3694   auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3695   eHdr->e_type = ET_DYN;
3696 }
3697 
3698 template <typename ELFT>
3699 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3700     : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3701 
3702 template <typename ELFT>
3703 size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3704   return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3705 }
3706 
3707 template <typename ELFT>
3708 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3709   writePhdrs<ELFT>(buf, getPartition());
3710 }
3711 
3712 PartitionIndexSection::PartitionIndexSection()
3713     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3714 
3715 size_t PartitionIndexSection::getSize() const {
3716   return 12 * (partitions.size() - 1);
3717 }
3718 
3719 void PartitionIndexSection::finalizeContents() {
3720   for (size_t i = 1; i != partitions.size(); ++i)
3721     partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3722 }
3723 
3724 void PartitionIndexSection::writeTo(uint8_t *buf) {
3725   uint64_t va = getVA();
3726   for (size_t i = 1; i != partitions.size(); ++i) {
3727     write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3728     write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3729 
3730     SyntheticSection *next =
3731         i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader;
3732     write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3733 
3734     va += 12;
3735     buf += 12;
3736   }
3737 }
3738 
3739 InStruct elf::in;
3740 
3741 std::vector<Partition> elf::partitions;
3742 Partition *elf::mainPart;
3743 
3744 template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3745 template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3746 template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3747 template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3748 
3749 template void elf::splitSections<ELF32LE>();
3750 template void elf::splitSections<ELF32BE>();
3751 template void elf::splitSections<ELF64LE>();
3752 template void elf::splitSections<ELF64BE>();
3753 
3754 template class elf::MipsAbiFlagsSection<ELF32LE>;
3755 template class elf::MipsAbiFlagsSection<ELF32BE>;
3756 template class elf::MipsAbiFlagsSection<ELF64LE>;
3757 template class elf::MipsAbiFlagsSection<ELF64BE>;
3758 
3759 template class elf::MipsOptionsSection<ELF32LE>;
3760 template class elf::MipsOptionsSection<ELF32BE>;
3761 template class elf::MipsOptionsSection<ELF64LE>;
3762 template class elf::MipsOptionsSection<ELF64BE>;
3763 
3764 template class elf::MipsReginfoSection<ELF32LE>;
3765 template class elf::MipsReginfoSection<ELF32BE>;
3766 template class elf::MipsReginfoSection<ELF64LE>;
3767 template class elf::MipsReginfoSection<ELF64BE>;
3768 
3769 template class elf::DynamicSection<ELF32LE>;
3770 template class elf::DynamicSection<ELF32BE>;
3771 template class elf::DynamicSection<ELF64LE>;
3772 template class elf::DynamicSection<ELF64BE>;
3773 
3774 template class elf::RelocationSection<ELF32LE>;
3775 template class elf::RelocationSection<ELF32BE>;
3776 template class elf::RelocationSection<ELF64LE>;
3777 template class elf::RelocationSection<ELF64BE>;
3778 
3779 template class elf::AndroidPackedRelocationSection<ELF32LE>;
3780 template class elf::AndroidPackedRelocationSection<ELF32BE>;
3781 template class elf::AndroidPackedRelocationSection<ELF64LE>;
3782 template class elf::AndroidPackedRelocationSection<ELF64BE>;
3783 
3784 template class elf::RelrSection<ELF32LE>;
3785 template class elf::RelrSection<ELF32BE>;
3786 template class elf::RelrSection<ELF64LE>;
3787 template class elf::RelrSection<ELF64BE>;
3788 
3789 template class elf::SymbolTableSection<ELF32LE>;
3790 template class elf::SymbolTableSection<ELF32BE>;
3791 template class elf::SymbolTableSection<ELF64LE>;
3792 template class elf::SymbolTableSection<ELF64BE>;
3793 
3794 template class elf::VersionNeedSection<ELF32LE>;
3795 template class elf::VersionNeedSection<ELF32BE>;
3796 template class elf::VersionNeedSection<ELF64LE>;
3797 template class elf::VersionNeedSection<ELF64BE>;
3798 
3799 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
3800 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
3801 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
3802 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
3803 
3804 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
3805 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
3806 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
3807 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
3808 
3809 template class elf::PartitionElfHeaderSection<ELF32LE>;
3810 template class elf::PartitionElfHeaderSection<ELF32BE>;
3811 template class elf::PartitionElfHeaderSection<ELF64LE>;
3812 template class elf::PartitionElfHeaderSection<ELF64BE>;
3813 
3814 template class elf::PartitionProgramHeadersSection<ELF32LE>;
3815 template class elf::PartitionProgramHeadersSection<ELF32BE>;
3816 template class elf::PartitionProgramHeadersSection<ELF64LE>;
3817 template class elf::PartitionProgramHeadersSection<ELF64BE>;
3818