1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "InputFiles.h" 19 #include "LinkerScript.h" 20 #include "OutputSections.h" 21 #include "SymbolTable.h" 22 #include "Symbols.h" 23 #include "Target.h" 24 #include "Writer.h" 25 #include "lld/Common/ErrorHandler.h" 26 #include "lld/Common/Memory.h" 27 #include "lld/Common/Strings.h" 28 #include "lld/Common/Threads.h" 29 #include "lld/Common/Version.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 34 #include "llvm/Object/ELFObjectFile.h" 35 #include "llvm/Support/Compression.h" 36 #include "llvm/Support/Endian.h" 37 #include "llvm/Support/LEB128.h" 38 #include "llvm/Support/MD5.h" 39 #include <cstdlib> 40 #include <thread> 41 42 using namespace llvm; 43 using namespace llvm::dwarf; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support; 47 48 using llvm::support::endian::read32le; 49 using llvm::support::endian::write32le; 50 using llvm::support::endian::write64le; 51 52 namespace lld { 53 namespace elf { 54 constexpr size_t MergeNoTailSection::numShards; 55 56 static uint64_t readUint(uint8_t *buf) { 57 return config->is64 ? read64(buf) : read32(buf); 58 } 59 60 static void writeUint(uint8_t *buf, uint64_t val) { 61 if (config->is64) 62 write64(buf, val); 63 else 64 write32(buf, val); 65 } 66 67 // Returns an LLD version string. 68 static ArrayRef<uint8_t> getVersion() { 69 // Check LLD_VERSION first for ease of testing. 70 // You can get consistent output by using the environment variable. 71 // This is only for testing. 72 StringRef s = getenv("LLD_VERSION"); 73 if (s.empty()) 74 s = saver.save(Twine("Linker: ") + getLLDVersion()); 75 76 // +1 to include the terminating '\0'. 77 return {(const uint8_t *)s.data(), s.size() + 1}; 78 } 79 80 // Creates a .comment section containing LLD version info. 81 // With this feature, you can identify LLD-generated binaries easily 82 // by "readelf --string-dump .comment <file>". 83 // The returned object is a mergeable string section. 84 MergeInputSection *createCommentSection() { 85 return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 86 getVersion(), ".comment"); 87 } 88 89 // .MIPS.abiflags section. 90 template <class ELFT> 91 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 92 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 93 flags(flags) { 94 this->entsize = sizeof(Elf_Mips_ABIFlags); 95 } 96 97 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 98 memcpy(buf, &flags, sizeof(flags)); 99 } 100 101 template <class ELFT> 102 MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() { 103 Elf_Mips_ABIFlags flags = {}; 104 bool create = false; 105 106 for (InputSectionBase *sec : inputSections) { 107 if (sec->type != SHT_MIPS_ABIFLAGS) 108 continue; 109 sec->markDead(); 110 create = true; 111 112 std::string filename = toString(sec->file); 113 const size_t size = sec->data().size(); 114 // Older version of BFD (such as the default FreeBSD linker) concatenate 115 // .MIPS.abiflags instead of merging. To allow for this case (or potential 116 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 117 if (size < sizeof(Elf_Mips_ABIFlags)) { 118 error(filename + ": invalid size of .MIPS.abiflags section: got " + 119 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 120 return nullptr; 121 } 122 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data()); 123 if (s->version != 0) { 124 error(filename + ": unexpected .MIPS.abiflags version " + 125 Twine(s->version)); 126 return nullptr; 127 } 128 129 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 130 // select the highest number of ISA/Rev/Ext. 131 flags.isa_level = std::max(flags.isa_level, s->isa_level); 132 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 133 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 134 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 135 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 136 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 137 flags.ases |= s->ases; 138 flags.flags1 |= s->flags1; 139 flags.flags2 |= s->flags2; 140 flags.fp_abi = getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 141 }; 142 143 if (create) 144 return make<MipsAbiFlagsSection<ELFT>>(flags); 145 return nullptr; 146 } 147 148 // .MIPS.options section. 149 template <class ELFT> 150 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 151 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 152 reginfo(reginfo) { 153 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 154 } 155 156 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 157 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 158 options->kind = ODK_REGINFO; 159 options->size = getSize(); 160 161 if (!config->relocatable) 162 reginfo.ri_gp_value = in.mipsGot->getGp(); 163 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 164 } 165 166 template <class ELFT> 167 MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() { 168 // N64 ABI only. 169 if (!ELFT::Is64Bits) 170 return nullptr; 171 172 std::vector<InputSectionBase *> sections; 173 for (InputSectionBase *sec : inputSections) 174 if (sec->type == SHT_MIPS_OPTIONS) 175 sections.push_back(sec); 176 177 if (sections.empty()) 178 return nullptr; 179 180 Elf_Mips_RegInfo reginfo = {}; 181 for (InputSectionBase *sec : sections) { 182 sec->markDead(); 183 184 std::string filename = toString(sec->file); 185 ArrayRef<uint8_t> d = sec->data(); 186 187 while (!d.empty()) { 188 if (d.size() < sizeof(Elf_Mips_Options)) { 189 error(filename + ": invalid size of .MIPS.options section"); 190 break; 191 } 192 193 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 194 if (opt->kind == ODK_REGINFO) { 195 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 196 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 197 break; 198 } 199 200 if (!opt->size) 201 fatal(filename + ": zero option descriptor size"); 202 d = d.slice(opt->size); 203 } 204 }; 205 206 return make<MipsOptionsSection<ELFT>>(reginfo); 207 } 208 209 // MIPS .reginfo section. 210 template <class ELFT> 211 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 212 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 213 reginfo(reginfo) { 214 this->entsize = sizeof(Elf_Mips_RegInfo); 215 } 216 217 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 218 if (!config->relocatable) 219 reginfo.ri_gp_value = in.mipsGot->getGp(); 220 memcpy(buf, ®info, sizeof(reginfo)); 221 } 222 223 template <class ELFT> 224 MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() { 225 // Section should be alive for O32 and N32 ABIs only. 226 if (ELFT::Is64Bits) 227 return nullptr; 228 229 std::vector<InputSectionBase *> sections; 230 for (InputSectionBase *sec : inputSections) 231 if (sec->type == SHT_MIPS_REGINFO) 232 sections.push_back(sec); 233 234 if (sections.empty()) 235 return nullptr; 236 237 Elf_Mips_RegInfo reginfo = {}; 238 for (InputSectionBase *sec : sections) { 239 sec->markDead(); 240 241 if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) { 242 error(toString(sec->file) + ": invalid size of .reginfo section"); 243 return nullptr; 244 } 245 246 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data()); 247 reginfo.ri_gprmask |= r->ri_gprmask; 248 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 249 }; 250 251 return make<MipsReginfoSection<ELFT>>(reginfo); 252 } 253 254 InputSection *createInterpSection() { 255 // StringSaver guarantees that the returned string ends with '\0'. 256 StringRef s = saver.save(config->dynamicLinker); 257 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 258 259 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 260 ".interp"); 261 } 262 263 Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 264 uint64_t size, InputSectionBase §ion) { 265 auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type, 266 value, size, §ion); 267 if (in.symTab) 268 in.symTab->addSymbol(s); 269 return s; 270 } 271 272 static size_t getHashSize() { 273 switch (config->buildId) { 274 case BuildIdKind::Fast: 275 return 8; 276 case BuildIdKind::Md5: 277 case BuildIdKind::Uuid: 278 return 16; 279 case BuildIdKind::Sha1: 280 return 20; 281 case BuildIdKind::Hexstring: 282 return config->buildIdVector.size(); 283 default: 284 llvm_unreachable("unknown BuildIdKind"); 285 } 286 } 287 288 // This class represents a linker-synthesized .note.gnu.property section. 289 // 290 // In x86 and AArch64, object files may contain feature flags indicating the 291 // features that they have used. The flags are stored in a .note.gnu.property 292 // section. 293 // 294 // lld reads the sections from input files and merges them by computing AND of 295 // the flags. The result is written as a new .note.gnu.property section. 296 // 297 // If the flag is zero (which indicates that the intersection of the feature 298 // sets is empty, or some input files didn't have .note.gnu.property sections), 299 // we don't create this section. 300 GnuPropertySection::GnuPropertySection() 301 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 302 config->wordsize, ".note.gnu.property") {} 303 304 void GnuPropertySection::writeTo(uint8_t *buf) { 305 uint32_t featureAndType = config->emachine == EM_AARCH64 306 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 307 : GNU_PROPERTY_X86_FEATURE_1_AND; 308 309 write32(buf, 4); // Name size 310 write32(buf + 4, config->is64 ? 16 : 12); // Content size 311 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 312 memcpy(buf + 12, "GNU", 4); // Name string 313 write32(buf + 16, featureAndType); // Feature type 314 write32(buf + 20, 4); // Feature size 315 write32(buf + 24, config->andFeatures); // Feature flags 316 if (config->is64) 317 write32(buf + 28, 0); // Padding 318 } 319 320 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 321 322 BuildIdSection::BuildIdSection() 323 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 324 hashSize(getHashSize()) {} 325 326 void BuildIdSection::writeTo(uint8_t *buf) { 327 write32(buf, 4); // Name size 328 write32(buf + 4, hashSize); // Content size 329 write32(buf + 8, NT_GNU_BUILD_ID); // Type 330 memcpy(buf + 12, "GNU", 4); // Name string 331 hashBuf = buf + 16; 332 } 333 334 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 335 assert(buf.size() == hashSize); 336 memcpy(hashBuf, buf.data(), hashSize); 337 } 338 339 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 340 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 341 this->bss = true; 342 this->size = size; 343 } 344 345 EhFrameSection::EhFrameSection() 346 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 347 348 // Search for an existing CIE record or create a new one. 349 // CIE records from input object files are uniquified by their contents 350 // and where their relocations point to. 351 template <class ELFT, class RelTy> 352 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 353 Symbol *personality = nullptr; 354 unsigned firstRelI = cie.firstRelocation; 355 if (firstRelI != (unsigned)-1) 356 personality = 357 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 358 359 // Search for an existing CIE by CIE contents/relocation target pair. 360 CieRecord *&rec = cieMap[{cie.data(), personality}]; 361 362 // If not found, create a new one. 363 if (!rec) { 364 rec = make<CieRecord>(); 365 rec->cie = &cie; 366 cieRecords.push_back(rec); 367 } 368 return rec; 369 } 370 371 // There is one FDE per function. Returns true if a given FDE 372 // points to a live function. 373 template <class ELFT, class RelTy> 374 bool EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 375 auto *sec = cast<EhInputSection>(fde.sec); 376 unsigned firstRelI = fde.firstRelocation; 377 378 // An FDE should point to some function because FDEs are to describe 379 // functions. That's however not always the case due to an issue of 380 // ld.gold with -r. ld.gold may discard only functions and leave their 381 // corresponding FDEs, which results in creating bad .eh_frame sections. 382 // To deal with that, we ignore such FDEs. 383 if (firstRelI == (unsigned)-1) 384 return false; 385 386 const RelTy &rel = rels[firstRelI]; 387 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 388 389 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 390 // another partition, are dead. 391 if (auto *d = dyn_cast<Defined>(&b)) 392 if (SectionBase *sec = d->section) 393 return sec->partition == partition; 394 return false; 395 } 396 397 // .eh_frame is a sequence of CIE or FDE records. In general, there 398 // is one CIE record per input object file which is followed by 399 // a list of FDEs. This function searches an existing CIE or create a new 400 // one and associates FDEs to the CIE. 401 template <class ELFT, class RelTy> 402 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 403 offsetToCie.clear(); 404 for (EhSectionPiece &piece : sec->pieces) { 405 // The empty record is the end marker. 406 if (piece.size == 4) 407 return; 408 409 size_t offset = piece.inputOff; 410 uint32_t id = read32(piece.data().data() + 4); 411 if (id == 0) { 412 offsetToCie[offset] = addCie<ELFT>(piece, rels); 413 continue; 414 } 415 416 uint32_t cieOffset = offset + 4 - id; 417 CieRecord *rec = offsetToCie[cieOffset]; 418 if (!rec) 419 fatal(toString(sec) + ": invalid CIE reference"); 420 421 if (!isFdeLive<ELFT>(piece, rels)) 422 continue; 423 rec->fdes.push_back(&piece); 424 numFdes++; 425 } 426 } 427 428 template <class ELFT> 429 void EhFrameSection::addSectionAux(EhInputSection *sec) { 430 if (!sec->isLive()) 431 return; 432 if (sec->areRelocsRela) 433 addRecords<ELFT>(sec, sec->template relas<ELFT>()); 434 else 435 addRecords<ELFT>(sec, sec->template rels<ELFT>()); 436 } 437 438 void EhFrameSection::addSection(EhInputSection *sec) { 439 sec->parent = this; 440 441 alignment = std::max(alignment, sec->alignment); 442 sections.push_back(sec); 443 444 for (auto *ds : sec->dependentSections) 445 dependentSections.push_back(ds); 446 } 447 448 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 449 memcpy(buf, d.data(), d.size()); 450 451 size_t aligned = alignTo(d.size(), config->wordsize); 452 453 // Zero-clear trailing padding if it exists. 454 memset(buf + d.size(), 0, aligned - d.size()); 455 456 // Fix the size field. -4 since size does not include the size field itself. 457 write32(buf, aligned - 4); 458 } 459 460 void EhFrameSection::finalizeContents() { 461 assert(!this->size); // Not finalized. 462 463 switch (config->ekind) { 464 case ELFNoneKind: 465 llvm_unreachable("invalid ekind"); 466 case ELF32LEKind: 467 for (EhInputSection *sec : sections) 468 addSectionAux<ELF32LE>(sec); 469 break; 470 case ELF32BEKind: 471 for (EhInputSection *sec : sections) 472 addSectionAux<ELF32BE>(sec); 473 break; 474 case ELF64LEKind: 475 for (EhInputSection *sec : sections) 476 addSectionAux<ELF64LE>(sec); 477 break; 478 case ELF64BEKind: 479 for (EhInputSection *sec : sections) 480 addSectionAux<ELF64BE>(sec); 481 break; 482 } 483 484 size_t off = 0; 485 for (CieRecord *rec : cieRecords) { 486 rec->cie->outputOff = off; 487 off += alignTo(rec->cie->size, config->wordsize); 488 489 for (EhSectionPiece *fde : rec->fdes) { 490 fde->outputOff = off; 491 off += alignTo(fde->size, config->wordsize); 492 } 493 } 494 495 // The LSB standard does not allow a .eh_frame section with zero 496 // Call Frame Information records. glibc unwind-dw2-fde.c 497 // classify_object_over_fdes expects there is a CIE record length 0 as a 498 // terminator. Thus we add one unconditionally. 499 off += 4; 500 501 this->size = off; 502 } 503 504 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 505 // to get an FDE from an address to which FDE is applied. This function 506 // returns a list of such pairs. 507 std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const { 508 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 509 std::vector<FdeData> ret; 510 511 uint64_t va = getPartition().ehFrameHdr->getVA(); 512 for (CieRecord *rec : cieRecords) { 513 uint8_t enc = getFdeEncoding(rec->cie); 514 for (EhSectionPiece *fde : rec->fdes) { 515 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 516 uint64_t fdeVA = getParent()->addr + fde->outputOff; 517 if (!isInt<32>(pc - va)) 518 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 519 Twine::utohexstr(pc - va)); 520 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 521 } 522 } 523 524 // Sort the FDE list by their PC and uniqueify. Usually there is only 525 // one FDE for a PC (i.e. function), but if ICF merges two functions 526 // into one, there can be more than one FDEs pointing to the address. 527 auto less = [](const FdeData &a, const FdeData &b) { 528 return a.pcRel < b.pcRel; 529 }; 530 llvm::stable_sort(ret, less); 531 auto eq = [](const FdeData &a, const FdeData &b) { 532 return a.pcRel == b.pcRel; 533 }; 534 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 535 536 return ret; 537 } 538 539 static uint64_t readFdeAddr(uint8_t *buf, int size) { 540 switch (size) { 541 case DW_EH_PE_udata2: 542 return read16(buf); 543 case DW_EH_PE_sdata2: 544 return (int16_t)read16(buf); 545 case DW_EH_PE_udata4: 546 return read32(buf); 547 case DW_EH_PE_sdata4: 548 return (int32_t)read32(buf); 549 case DW_EH_PE_udata8: 550 case DW_EH_PE_sdata8: 551 return read64(buf); 552 case DW_EH_PE_absptr: 553 return readUint(buf); 554 } 555 fatal("unknown FDE size encoding"); 556 } 557 558 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 559 // We need it to create .eh_frame_hdr section. 560 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 561 uint8_t enc) const { 562 // The starting address to which this FDE applies is 563 // stored at FDE + 8 byte. 564 size_t off = fdeOff + 8; 565 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 566 if ((enc & 0x70) == DW_EH_PE_absptr) 567 return addr; 568 if ((enc & 0x70) == DW_EH_PE_pcrel) 569 return addr + getParent()->addr + off; 570 fatal("unknown FDE size relative encoding"); 571 } 572 573 void EhFrameSection::writeTo(uint8_t *buf) { 574 // Write CIE and FDE records. 575 for (CieRecord *rec : cieRecords) { 576 size_t cieOffset = rec->cie->outputOff; 577 writeCieFde(buf + cieOffset, rec->cie->data()); 578 579 for (EhSectionPiece *fde : rec->fdes) { 580 size_t off = fde->outputOff; 581 writeCieFde(buf + off, fde->data()); 582 583 // FDE's second word should have the offset to an associated CIE. 584 // Write it. 585 write32(buf + off + 4, off + 4 - cieOffset); 586 } 587 } 588 589 // Apply relocations. .eh_frame section contents are not contiguous 590 // in the output buffer, but relocateAlloc() still works because 591 // getOffset() takes care of discontiguous section pieces. 592 for (EhInputSection *s : sections) 593 s->relocateAlloc(buf, nullptr); 594 595 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 596 getPartition().ehFrameHdr->write(); 597 } 598 599 GotSection::GotSection() 600 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 601 ".got") { 602 // If ElfSym::globalOffsetTable is relative to .got and is referenced, 603 // increase numEntries by the number of entries used to emit 604 // ElfSym::globalOffsetTable. 605 if (ElfSym::globalOffsetTable && !target->gotBaseSymInGotPlt) 606 numEntries += target->gotHeaderEntriesNum; 607 } 608 609 void GotSection::addEntry(Symbol &sym) { 610 sym.gotIndex = numEntries; 611 ++numEntries; 612 } 613 614 bool GotSection::addDynTlsEntry(Symbol &sym) { 615 if (sym.globalDynIndex != -1U) 616 return false; 617 sym.globalDynIndex = numEntries; 618 // Global Dynamic TLS entries take two GOT slots. 619 numEntries += 2; 620 return true; 621 } 622 623 // Reserves TLS entries for a TLS module ID and a TLS block offset. 624 // In total it takes two GOT slots. 625 bool GotSection::addTlsIndex() { 626 if (tlsIndexOff != uint32_t(-1)) 627 return false; 628 tlsIndexOff = numEntries * config->wordsize; 629 numEntries += 2; 630 return true; 631 } 632 633 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 634 return this->getVA() + b.globalDynIndex * config->wordsize; 635 } 636 637 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 638 return b.globalDynIndex * config->wordsize; 639 } 640 641 void GotSection::finalizeContents() { 642 size = numEntries * config->wordsize; 643 } 644 645 bool GotSection::isNeeded() const { 646 // We need to emit a GOT even if it's empty if there's a relocation that is 647 // relative to GOT(such as GOTOFFREL). 648 return numEntries || hasGotOffRel; 649 } 650 651 void GotSection::writeTo(uint8_t *buf) { 652 // Buf points to the start of this section's buffer, 653 // whereas InputSectionBase::relocateAlloc() expects its argument 654 // to point to the start of the output section. 655 target->writeGotHeader(buf); 656 relocateAlloc(buf - outSecOff, buf - outSecOff + size); 657 } 658 659 static uint64_t getMipsPageAddr(uint64_t addr) { 660 return (addr + 0x8000) & ~0xffff; 661 } 662 663 static uint64_t getMipsPageCount(uint64_t size) { 664 return (size + 0xfffe) / 0xffff + 1; 665 } 666 667 MipsGotSection::MipsGotSection() 668 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 669 ".got") {} 670 671 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 672 RelExpr expr) { 673 FileGot &g = getGot(file); 674 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 675 if (const OutputSection *os = sym.getOutputSection()) 676 g.pagesMap.insert({os, {}}); 677 else 678 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 679 } else if (sym.isTls()) 680 g.tls.insert({&sym, 0}); 681 else if (sym.isPreemptible && expr == R_ABS) 682 g.relocs.insert({&sym, 0}); 683 else if (sym.isPreemptible) 684 g.global.insert({&sym, 0}); 685 else if (expr == R_MIPS_GOT_OFF32) 686 g.local32.insert({{&sym, addend}, 0}); 687 else 688 g.local16.insert({{&sym, addend}, 0}); 689 } 690 691 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 692 getGot(file).dynTlsSymbols.insert({&sym, 0}); 693 } 694 695 void MipsGotSection::addTlsIndex(InputFile &file) { 696 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 697 } 698 699 size_t MipsGotSection::FileGot::getEntriesNum() const { 700 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 701 tls.size() + dynTlsSymbols.size() * 2; 702 } 703 704 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 705 size_t num = 0; 706 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 707 num += p.second.count; 708 return num; 709 } 710 711 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 712 size_t count = getPageEntriesNum() + local16.size() + global.size(); 713 // If there are relocation-only entries in the GOT, TLS entries 714 // are allocated after them. TLS entries should be addressable 715 // by 16-bit index so count both reloc-only and TLS entries. 716 if (!tls.empty() || !dynTlsSymbols.empty()) 717 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 718 return count; 719 } 720 721 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 722 if (!f.mipsGotIndex.hasValue()) { 723 gots.emplace_back(); 724 gots.back().file = &f; 725 f.mipsGotIndex = gots.size() - 1; 726 } 727 return gots[*f.mipsGotIndex]; 728 } 729 730 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 731 const Symbol &sym, 732 int64_t addend) const { 733 const FileGot &g = gots[*f->mipsGotIndex]; 734 uint64_t index = 0; 735 if (const OutputSection *outSec = sym.getOutputSection()) { 736 uint64_t secAddr = getMipsPageAddr(outSec->addr); 737 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 738 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 739 } else { 740 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 741 } 742 return index * config->wordsize; 743 } 744 745 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 746 int64_t addend) const { 747 const FileGot &g = gots[*f->mipsGotIndex]; 748 Symbol *sym = const_cast<Symbol *>(&s); 749 if (sym->isTls()) 750 return g.tls.lookup(sym) * config->wordsize; 751 if (sym->isPreemptible) 752 return g.global.lookup(sym) * config->wordsize; 753 return g.local16.lookup({sym, addend}) * config->wordsize; 754 } 755 756 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 757 const FileGot &g = gots[*f->mipsGotIndex]; 758 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 759 } 760 761 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 762 const Symbol &s) const { 763 const FileGot &g = gots[*f->mipsGotIndex]; 764 Symbol *sym = const_cast<Symbol *>(&s); 765 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 766 } 767 768 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 769 if (gots.empty()) 770 return nullptr; 771 const FileGot &primGot = gots.front(); 772 if (!primGot.global.empty()) 773 return primGot.global.front().first; 774 if (!primGot.relocs.empty()) 775 return primGot.relocs.front().first; 776 return nullptr; 777 } 778 779 unsigned MipsGotSection::getLocalEntriesNum() const { 780 if (gots.empty()) 781 return headerEntriesNum; 782 return headerEntriesNum + gots.front().getPageEntriesNum() + 783 gots.front().local16.size(); 784 } 785 786 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 787 FileGot tmp = dst; 788 set_union(tmp.pagesMap, src.pagesMap); 789 set_union(tmp.local16, src.local16); 790 set_union(tmp.global, src.global); 791 set_union(tmp.relocs, src.relocs); 792 set_union(tmp.tls, src.tls); 793 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 794 795 size_t count = isPrimary ? headerEntriesNum : 0; 796 count += tmp.getIndexedEntriesNum(); 797 798 if (count * config->wordsize > config->mipsGotSize) 799 return false; 800 801 std::swap(tmp, dst); 802 return true; 803 } 804 805 void MipsGotSection::finalizeContents() { updateAllocSize(); } 806 807 bool MipsGotSection::updateAllocSize() { 808 size = headerEntriesNum * config->wordsize; 809 for (const FileGot &g : gots) 810 size += g.getEntriesNum() * config->wordsize; 811 return false; 812 } 813 814 void MipsGotSection::build() { 815 if (gots.empty()) 816 return; 817 818 std::vector<FileGot> mergedGots(1); 819 820 // For each GOT move non-preemptible symbols from the `Global` 821 // to `Local16` list. Preemptible symbol might become non-preemptible 822 // one if, for example, it gets a related copy relocation. 823 for (FileGot &got : gots) { 824 for (auto &p: got.global) 825 if (!p.first->isPreemptible) 826 got.local16.insert({{p.first, 0}, 0}); 827 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 828 return !p.first->isPreemptible; 829 }); 830 } 831 832 // For each GOT remove "reloc-only" entry if there is "global" 833 // entry for the same symbol. And add local entries which indexed 834 // using 32-bit value at the end of 16-bit entries. 835 for (FileGot &got : gots) { 836 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 837 return got.global.count(p.first); 838 }); 839 set_union(got.local16, got.local32); 840 got.local32.clear(); 841 } 842 843 // Evaluate number of "reloc-only" entries in the resulting GOT. 844 // To do that put all unique "reloc-only" and "global" entries 845 // from all GOTs to the future primary GOT. 846 FileGot *primGot = &mergedGots.front(); 847 for (FileGot &got : gots) { 848 set_union(primGot->relocs, got.global); 849 set_union(primGot->relocs, got.relocs); 850 got.relocs.clear(); 851 } 852 853 // Evaluate number of "page" entries in each GOT. 854 for (FileGot &got : gots) { 855 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 856 got.pagesMap) { 857 const OutputSection *os = p.first; 858 uint64_t secSize = 0; 859 for (BaseCommand *cmd : os->sectionCommands) { 860 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 861 for (InputSection *isec : isd->sections) { 862 uint64_t off = alignTo(secSize, isec->alignment); 863 secSize = off + isec->getSize(); 864 } 865 } 866 p.second.count = getMipsPageCount(secSize); 867 } 868 } 869 870 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 871 // maximum GOT size. At first, try to fill the primary GOT because 872 // the primary GOT can be accessed in the most effective way. If it 873 // is not possible, try to fill the last GOT in the list, and finally 874 // create a new GOT if both attempts failed. 875 for (FileGot &srcGot : gots) { 876 InputFile *file = srcGot.file; 877 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 878 file->mipsGotIndex = 0; 879 } else { 880 // If this is the first time we failed to merge with the primary GOT, 881 // MergedGots.back() will also be the primary GOT. We must make sure not 882 // to try to merge again with isPrimary=false, as otherwise, if the 883 // inputs are just right, we could allow the primary GOT to become 1 or 2 884 // words bigger due to ignoring the header size. 885 if (mergedGots.size() == 1 || 886 !tryMergeGots(mergedGots.back(), srcGot, false)) { 887 mergedGots.emplace_back(); 888 std::swap(mergedGots.back(), srcGot); 889 } 890 file->mipsGotIndex = mergedGots.size() - 1; 891 } 892 } 893 std::swap(gots, mergedGots); 894 895 // Reduce number of "reloc-only" entries in the primary GOT 896 // by subtracting "global" entries in the primary GOT. 897 primGot = &gots.front(); 898 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 899 return primGot->global.count(p.first); 900 }); 901 902 // Calculate indexes for each GOT entry. 903 size_t index = headerEntriesNum; 904 for (FileGot &got : gots) { 905 got.startIndex = &got == primGot ? 0 : index; 906 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 907 got.pagesMap) { 908 // For each output section referenced by GOT page relocations calculate 909 // and save into pagesMap an upper bound of MIPS GOT entries required 910 // to store page addresses of local symbols. We assume the worst case - 911 // each 64kb page of the output section has at least one GOT relocation 912 // against it. And take in account the case when the section intersects 913 // page boundaries. 914 p.second.firstIndex = index; 915 index += p.second.count; 916 } 917 for (auto &p: got.local16) 918 p.second = index++; 919 for (auto &p: got.global) 920 p.second = index++; 921 for (auto &p: got.relocs) 922 p.second = index++; 923 for (auto &p: got.tls) 924 p.second = index++; 925 for (auto &p: got.dynTlsSymbols) { 926 p.second = index; 927 index += 2; 928 } 929 } 930 931 // Update Symbol::gotIndex field to use this 932 // value later in the `sortMipsSymbols` function. 933 for (auto &p : primGot->global) 934 p.first->gotIndex = p.second; 935 for (auto &p : primGot->relocs) 936 p.first->gotIndex = p.second; 937 938 // Create dynamic relocations. 939 for (FileGot &got : gots) { 940 // Create dynamic relocations for TLS entries. 941 for (std::pair<Symbol *, size_t> &p : got.tls) { 942 Symbol *s = p.first; 943 uint64_t offset = p.second * config->wordsize; 944 if (s->isPreemptible) 945 mainPart->relaDyn->addReloc(target->tlsGotRel, this, offset, s); 946 } 947 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 948 Symbol *s = p.first; 949 uint64_t offset = p.second * config->wordsize; 950 if (s == nullptr) { 951 if (!config->isPic) 952 continue; 953 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s); 954 } else { 955 // When building a shared library we still need a dynamic relocation 956 // for the module index. Therefore only checking for 957 // S->isPreemptible is not sufficient (this happens e.g. for 958 // thread-locals that have been marked as local through a linker script) 959 if (!s->isPreemptible && !config->isPic) 960 continue; 961 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s); 962 // However, we can skip writing the TLS offset reloc for non-preemptible 963 // symbols since it is known even in shared libraries 964 if (!s->isPreemptible) 965 continue; 966 offset += config->wordsize; 967 mainPart->relaDyn->addReloc(target->tlsOffsetRel, this, offset, s); 968 } 969 } 970 971 // Do not create dynamic relocations for non-TLS 972 // entries in the primary GOT. 973 if (&got == primGot) 974 continue; 975 976 // Dynamic relocations for "global" entries. 977 for (const std::pair<Symbol *, size_t> &p : got.global) { 978 uint64_t offset = p.second * config->wordsize; 979 mainPart->relaDyn->addReloc(target->relativeRel, this, offset, p.first); 980 } 981 if (!config->isPic) 982 continue; 983 // Dynamic relocations for "local" entries in case of PIC. 984 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 985 got.pagesMap) { 986 size_t pageCount = l.second.count; 987 for (size_t pi = 0; pi < pageCount; ++pi) { 988 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 989 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 990 int64_t(pi * 0x10000)}); 991 } 992 } 993 for (const std::pair<GotEntry, size_t> &p : got.local16) { 994 uint64_t offset = p.second * config->wordsize; 995 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, true, 996 p.first.first, p.first.second}); 997 } 998 } 999 } 1000 1001 bool MipsGotSection::isNeeded() const { 1002 // We add the .got section to the result for dynamic MIPS target because 1003 // its address and properties are mentioned in the .dynamic section. 1004 return !config->relocatable; 1005 } 1006 1007 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1008 // For files without related GOT or files refer a primary GOT 1009 // returns "common" _gp value. For secondary GOTs calculate 1010 // individual _gp values. 1011 if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0) 1012 return ElfSym::mipsGp->getVA(0); 1013 return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize + 1014 0x7ff0; 1015 } 1016 1017 void MipsGotSection::writeTo(uint8_t *buf) { 1018 // Set the MSB of the second GOT slot. This is not required by any 1019 // MIPS ABI documentation, though. 1020 // 1021 // There is a comment in glibc saying that "The MSB of got[1] of a 1022 // gnu object is set to identify gnu objects," and in GNU gold it 1023 // says "the second entry will be used by some runtime loaders". 1024 // But how this field is being used is unclear. 1025 // 1026 // We are not really willing to mimic other linkers behaviors 1027 // without understanding why they do that, but because all files 1028 // generated by GNU tools have this special GOT value, and because 1029 // we've been doing this for years, it is probably a safe bet to 1030 // keep doing this for now. We really need to revisit this to see 1031 // if we had to do this. 1032 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1033 for (const FileGot &g : gots) { 1034 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1035 uint64_t va = a; 1036 if (s) 1037 va = s->getVA(a); 1038 writeUint(buf + i * config->wordsize, va); 1039 }; 1040 // Write 'page address' entries to the local part of the GOT. 1041 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1042 g.pagesMap) { 1043 size_t pageCount = l.second.count; 1044 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1045 for (size_t pi = 0; pi < pageCount; ++pi) 1046 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1047 } 1048 // Local, global, TLS, reloc-only entries. 1049 // If TLS entry has a corresponding dynamic relocations, leave it 1050 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1051 // To calculate the adjustments use offsets for thread-local storage. 1052 // https://www.linux-mips.org/wiki/NPTL 1053 for (const std::pair<GotEntry, size_t> &p : g.local16) 1054 write(p.second, p.first.first, p.first.second); 1055 // Write VA to the primary GOT only. For secondary GOTs that 1056 // will be done by REL32 dynamic relocations. 1057 if (&g == &gots.front()) 1058 for (const std::pair<Symbol *, size_t> &p : g.global) 1059 write(p.second, p.first, 0); 1060 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1061 write(p.second, p.first, 0); 1062 for (const std::pair<Symbol *, size_t> &p : g.tls) 1063 write(p.second, p.first, p.first->isPreemptible ? 0 : -0x7000); 1064 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1065 if (p.first == nullptr && !config->isPic) 1066 write(p.second, nullptr, 1); 1067 else if (p.first && !p.first->isPreemptible) { 1068 // If we are emitting PIC code with relocations we mustn't write 1069 // anything to the GOT here. When using Elf_Rel relocations the value 1070 // one will be treated as an addend and will cause crashes at runtime 1071 if (!config->isPic) 1072 write(p.second, nullptr, 1); 1073 write(p.second + 1, p.first, -0x8000); 1074 } 1075 } 1076 } 1077 } 1078 1079 // On PowerPC the .plt section is used to hold the table of function addresses 1080 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1081 // section. I don't know why we have a BSS style type for the section but it is 1082 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1083 GotPltSection::GotPltSection() 1084 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1085 ".got.plt") { 1086 if (config->emachine == EM_PPC) { 1087 name = ".plt"; 1088 } else if (config->emachine == EM_PPC64) { 1089 type = SHT_NOBITS; 1090 name = ".plt"; 1091 } 1092 } 1093 1094 void GotPltSection::addEntry(Symbol &sym) { 1095 assert(sym.pltIndex == entries.size()); 1096 entries.push_back(&sym); 1097 } 1098 1099 size_t GotPltSection::getSize() const { 1100 return (target->gotPltHeaderEntriesNum + entries.size()) * config->wordsize; 1101 } 1102 1103 void GotPltSection::writeTo(uint8_t *buf) { 1104 target->writeGotPltHeader(buf); 1105 buf += target->gotPltHeaderEntriesNum * config->wordsize; 1106 for (const Symbol *b : entries) { 1107 target->writeGotPlt(buf, *b); 1108 buf += config->wordsize; 1109 } 1110 } 1111 1112 bool GotPltSection::isNeeded() const { 1113 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1114 // to it. 1115 return !entries.empty() || hasGotPltOffRel; 1116 } 1117 1118 static StringRef getIgotPltName() { 1119 // On ARM the IgotPltSection is part of the GotSection. 1120 if (config->emachine == EM_ARM) 1121 return ".got"; 1122 1123 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1124 // needs to be named the same. 1125 if (config->emachine == EM_PPC64) 1126 return ".plt"; 1127 1128 return ".got.plt"; 1129 } 1130 1131 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1132 // with the IgotPltSection. 1133 IgotPltSection::IgotPltSection() 1134 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1135 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1136 config->wordsize, getIgotPltName()) {} 1137 1138 void IgotPltSection::addEntry(Symbol &sym) { 1139 assert(sym.pltIndex == entries.size()); 1140 entries.push_back(&sym); 1141 } 1142 1143 size_t IgotPltSection::getSize() const { 1144 return entries.size() * config->wordsize; 1145 } 1146 1147 void IgotPltSection::writeTo(uint8_t *buf) { 1148 for (const Symbol *b : entries) { 1149 target->writeIgotPlt(buf, *b); 1150 buf += config->wordsize; 1151 } 1152 } 1153 1154 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1155 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1156 dynamic(dynamic) { 1157 // ELF string tables start with a NUL byte. 1158 addString(""); 1159 } 1160 1161 // Adds a string to the string table. If `hashIt` is true we hash and check for 1162 // duplicates. It is optional because the name of global symbols are already 1163 // uniqued and hashing them again has a big cost for a small value: uniquing 1164 // them with some other string that happens to be the same. 1165 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1166 if (hashIt) { 1167 auto r = stringMap.insert(std::make_pair(s, this->size)); 1168 if (!r.second) 1169 return r.first->second; 1170 } 1171 unsigned ret = this->size; 1172 this->size = this->size + s.size() + 1; 1173 strings.push_back(s); 1174 return ret; 1175 } 1176 1177 void StringTableSection::writeTo(uint8_t *buf) { 1178 for (StringRef s : strings) { 1179 memcpy(buf, s.data(), s.size()); 1180 buf[s.size()] = '\0'; 1181 buf += s.size() + 1; 1182 } 1183 } 1184 1185 // Returns the number of entries in .gnu.version_d: the number of 1186 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1187 // Note that we don't support vd_cnt > 1 yet. 1188 static unsigned getVerDefNum() { 1189 return namedVersionDefs().size() + 1; 1190 } 1191 1192 template <class ELFT> 1193 DynamicSection<ELFT>::DynamicSection() 1194 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1195 ".dynamic") { 1196 this->entsize = ELFT::Is64Bits ? 16 : 8; 1197 1198 // .dynamic section is not writable on MIPS and on Fuchsia OS 1199 // which passes -z rodynamic. 1200 // See "Special Section" in Chapter 4 in the following document: 1201 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1202 if (config->emachine == EM_MIPS || config->zRodynamic) 1203 this->flags = SHF_ALLOC; 1204 } 1205 1206 template <class ELFT> 1207 void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) { 1208 entries.push_back({tag, fn}); 1209 } 1210 1211 template <class ELFT> 1212 void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) { 1213 entries.push_back({tag, [=] { return val; }}); 1214 } 1215 1216 template <class ELFT> 1217 void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) { 1218 entries.push_back({tag, [=] { return sec->getVA(0); }}); 1219 } 1220 1221 template <class ELFT> 1222 void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) { 1223 size_t tagOffset = entries.size() * entsize; 1224 entries.push_back( 1225 {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }}); 1226 } 1227 1228 template <class ELFT> 1229 void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) { 1230 entries.push_back({tag, [=] { return sec->addr; }}); 1231 } 1232 1233 template <class ELFT> 1234 void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) { 1235 entries.push_back({tag, [=] { return sec->size; }}); 1236 } 1237 1238 template <class ELFT> 1239 void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) { 1240 entries.push_back({tag, [=] { return sym->getVA(); }}); 1241 } 1242 1243 // The output section .rela.dyn may include these synthetic sections: 1244 // 1245 // - part.relaDyn 1246 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1247 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1248 // .rela.dyn 1249 // 1250 // DT_RELASZ is the total size of the included sections. 1251 static std::function<uint64_t()> addRelaSz(RelocationBaseSection *relaDyn) { 1252 return [=]() { 1253 size_t size = relaDyn->getSize(); 1254 if (in.relaIplt->getParent() == relaDyn->getParent()) 1255 size += in.relaIplt->getSize(); 1256 if (in.relaPlt->getParent() == relaDyn->getParent()) 1257 size += in.relaPlt->getSize(); 1258 return size; 1259 }; 1260 } 1261 1262 // A Linker script may assign the RELA relocation sections to the same 1263 // output section. When this occurs we cannot just use the OutputSection 1264 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1265 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1266 static uint64_t addPltRelSz() { 1267 size_t size = in.relaPlt->getSize(); 1268 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1269 in.relaIplt->name == in.relaPlt->name) 1270 size += in.relaIplt->getSize(); 1271 return size; 1272 } 1273 1274 // Add remaining entries to complete .dynamic contents. 1275 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1276 Partition &part = getPartition(); 1277 bool isMain = part.name.empty(); 1278 1279 for (StringRef s : config->filterList) 1280 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1281 for (StringRef s : config->auxiliaryList) 1282 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1283 1284 if (!config->rpath.empty()) 1285 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1286 part.dynStrTab->addString(config->rpath)); 1287 1288 for (SharedFile *file : sharedFiles) 1289 if (file->isNeeded) 1290 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1291 1292 if (isMain) { 1293 if (!config->soName.empty()) 1294 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1295 } else { 1296 if (!config->soName.empty()) 1297 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1298 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1299 } 1300 1301 // Set DT_FLAGS and DT_FLAGS_1. 1302 uint32_t dtFlags = 0; 1303 uint32_t dtFlags1 = 0; 1304 if (config->bsymbolic) 1305 dtFlags |= DF_SYMBOLIC; 1306 if (config->zGlobal) 1307 dtFlags1 |= DF_1_GLOBAL; 1308 if (config->zInitfirst) 1309 dtFlags1 |= DF_1_INITFIRST; 1310 if (config->zInterpose) 1311 dtFlags1 |= DF_1_INTERPOSE; 1312 if (config->zNodefaultlib) 1313 dtFlags1 |= DF_1_NODEFLIB; 1314 if (config->zNodelete) 1315 dtFlags1 |= DF_1_NODELETE; 1316 if (config->zNodlopen) 1317 dtFlags1 |= DF_1_NOOPEN; 1318 if (config->pie) 1319 dtFlags1 |= DF_1_PIE; 1320 if (config->zNow) { 1321 dtFlags |= DF_BIND_NOW; 1322 dtFlags1 |= DF_1_NOW; 1323 } 1324 if (config->zOrigin) { 1325 dtFlags |= DF_ORIGIN; 1326 dtFlags1 |= DF_1_ORIGIN; 1327 } 1328 if (!config->zText) 1329 dtFlags |= DF_TEXTREL; 1330 if (config->hasStaticTlsModel) 1331 dtFlags |= DF_STATIC_TLS; 1332 1333 if (dtFlags) 1334 addInt(DT_FLAGS, dtFlags); 1335 if (dtFlags1) 1336 addInt(DT_FLAGS_1, dtFlags1); 1337 1338 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1339 // need it for each process, so we don't write it for DSOs. The loader writes 1340 // the pointer into this entry. 1341 // 1342 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1343 // systems (currently only Fuchsia OS) provide other means to give the 1344 // debugger this information. Such systems may choose make .dynamic read-only. 1345 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1346 if (!config->shared && !config->relocatable && !config->zRodynamic) 1347 addInt(DT_DEBUG, 0); 1348 1349 if (OutputSection *sec = part.dynStrTab->getParent()) 1350 this->link = sec->sectionIndex; 1351 1352 if (part.relaDyn->isNeeded() || 1353 (in.relaIplt->isNeeded() && 1354 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1355 addInSec(part.relaDyn->dynamicTag, part.relaDyn); 1356 entries.push_back({part.relaDyn->sizeDynamicTag, addRelaSz(part.relaDyn)}); 1357 1358 bool isRela = config->isRela; 1359 addInt(isRela ? DT_RELAENT : DT_RELENT, 1360 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1361 1362 // MIPS dynamic loader does not support RELCOUNT tag. 1363 // The problem is in the tight relation between dynamic 1364 // relocations and GOT. So do not emit this tag on MIPS. 1365 if (config->emachine != EM_MIPS) { 1366 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1367 if (config->zCombreloc && numRelativeRels) 1368 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1369 } 1370 } 1371 if (part.relrDyn && !part.relrDyn->relocs.empty()) { 1372 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1373 part.relrDyn); 1374 addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1375 part.relrDyn->getParent()); 1376 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1377 sizeof(Elf_Relr)); 1378 } 1379 // .rel[a].plt section usually consists of two parts, containing plt and 1380 // iplt relocations. It is possible to have only iplt relocations in the 1381 // output. In that case relaPlt is empty and have zero offset, the same offset 1382 // as relaIplt has. And we still want to emit proper dynamic tags for that 1383 // case, so here we always use relaPlt as marker for the beginning of 1384 // .rel[a].plt section. 1385 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1386 addInSec(DT_JMPREL, in.relaPlt); 1387 entries.push_back({DT_PLTRELSZ, addPltRelSz}); 1388 switch (config->emachine) { 1389 case EM_MIPS: 1390 addInSec(DT_MIPS_PLTGOT, in.gotPlt); 1391 break; 1392 case EM_SPARCV9: 1393 addInSec(DT_PLTGOT, in.plt); 1394 break; 1395 default: 1396 addInSec(DT_PLTGOT, in.gotPlt); 1397 break; 1398 } 1399 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1400 } 1401 1402 if (config->emachine == EM_AARCH64) { 1403 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1404 addInt(DT_AARCH64_BTI_PLT, 0); 1405 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_PAC) 1406 addInt(DT_AARCH64_PAC_PLT, 0); 1407 } 1408 1409 addInSec(DT_SYMTAB, part.dynSymTab); 1410 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1411 addInSec(DT_STRTAB, part.dynStrTab); 1412 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1413 if (!config->zText) 1414 addInt(DT_TEXTREL, 0); 1415 if (part.gnuHashTab) 1416 addInSec(DT_GNU_HASH, part.gnuHashTab); 1417 if (part.hashTab) 1418 addInSec(DT_HASH, part.hashTab); 1419 1420 if (isMain) { 1421 if (Out::preinitArray) { 1422 addOutSec(DT_PREINIT_ARRAY, Out::preinitArray); 1423 addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray); 1424 } 1425 if (Out::initArray) { 1426 addOutSec(DT_INIT_ARRAY, Out::initArray); 1427 addSize(DT_INIT_ARRAYSZ, Out::initArray); 1428 } 1429 if (Out::finiArray) { 1430 addOutSec(DT_FINI_ARRAY, Out::finiArray); 1431 addSize(DT_FINI_ARRAYSZ, Out::finiArray); 1432 } 1433 1434 if (Symbol *b = symtab->find(config->init)) 1435 if (b->isDefined()) 1436 addSym(DT_INIT, b); 1437 if (Symbol *b = symtab->find(config->fini)) 1438 if (b->isDefined()) 1439 addSym(DT_FINI, b); 1440 } 1441 1442 if (part.verSym && part.verSym->isNeeded()) 1443 addInSec(DT_VERSYM, part.verSym); 1444 if (part.verDef && part.verDef->isLive()) { 1445 addInSec(DT_VERDEF, part.verDef); 1446 addInt(DT_VERDEFNUM, getVerDefNum()); 1447 } 1448 if (part.verNeed && part.verNeed->isNeeded()) { 1449 addInSec(DT_VERNEED, part.verNeed); 1450 unsigned needNum = 0; 1451 for (SharedFile *f : sharedFiles) 1452 if (!f->vernauxs.empty()) 1453 ++needNum; 1454 addInt(DT_VERNEEDNUM, needNum); 1455 } 1456 1457 if (config->emachine == EM_MIPS) { 1458 addInt(DT_MIPS_RLD_VERSION, 1); 1459 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1460 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1461 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1462 1463 add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); }); 1464 1465 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1466 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1467 else 1468 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1469 addInSec(DT_PLTGOT, in.mipsGot); 1470 if (in.mipsRldMap) { 1471 if (!config->pie) 1472 addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap); 1473 // Store the offset to the .rld_map section 1474 // relative to the address of the tag. 1475 addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap); 1476 } 1477 } 1478 1479 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1480 // glibc assumes the old-style BSS PLT layout which we don't support. 1481 if (config->emachine == EM_PPC) 1482 add(DT_PPC_GOT, [] { return in.got->getVA(); }); 1483 1484 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1485 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1486 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1487 // stub, which starts directly after the header. 1488 entries.push_back({DT_PPC64_GLINK, [=] { 1489 unsigned offset = target->pltHeaderSize - 32; 1490 return in.plt->getVA(0) + offset; 1491 }}); 1492 } 1493 1494 addInt(DT_NULL, 0); 1495 1496 getParent()->link = this->link; 1497 this->size = entries.size() * this->entsize; 1498 } 1499 1500 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1501 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1502 1503 for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) { 1504 p->d_tag = kv.first; 1505 p->d_un.d_val = kv.second(); 1506 ++p; 1507 } 1508 } 1509 1510 uint64_t DynamicReloc::getOffset() const { 1511 return inputSec->getVA(offsetInSec); 1512 } 1513 1514 int64_t DynamicReloc::computeAddend() const { 1515 if (useSymVA) 1516 return sym->getVA(addend); 1517 if (!outputSec) 1518 return addend; 1519 // See the comment in the DynamicReloc ctor. 1520 return getMipsPageAddr(outputSec->addr) + addend; 1521 } 1522 1523 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1524 if (sym && !useSymVA) 1525 return symTab->getSymbolIndex(sym); 1526 return 0; 1527 } 1528 1529 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1530 int32_t dynamicTag, 1531 int32_t sizeDynamicTag) 1532 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1533 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {} 1534 1535 void RelocationBaseSection::addReloc(RelType dynType, InputSectionBase *isec, 1536 uint64_t offsetInSec, Symbol *sym) { 1537 addReloc({dynType, isec, offsetInSec, false, sym, 0}); 1538 } 1539 1540 void RelocationBaseSection::addReloc(RelType dynType, 1541 InputSectionBase *inputSec, 1542 uint64_t offsetInSec, Symbol *sym, 1543 int64_t addend, RelExpr expr, 1544 RelType type) { 1545 // Write the addends to the relocated address if required. We skip 1546 // it if the written value would be zero. 1547 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1548 inputSec->relocations.push_back({expr, type, offsetInSec, addend, sym}); 1549 addReloc({dynType, inputSec, offsetInSec, expr != R_ADDEND, sym, addend}); 1550 } 1551 1552 void RelocationBaseSection::addReloc(const DynamicReloc &reloc) { 1553 if (reloc.type == target->relativeRel) 1554 ++numRelativeRelocs; 1555 relocs.push_back(reloc); 1556 } 1557 1558 void RelocationBaseSection::finalizeContents() { 1559 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 1560 1561 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1562 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1563 // case. 1564 if (symTab && symTab->getParent()) 1565 getParent()->link = symTab->getParent()->sectionIndex; 1566 else 1567 getParent()->link = 0; 1568 1569 if (in.relaPlt == this) 1570 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1571 if (in.relaIplt == this) 1572 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1573 } 1574 1575 RelrBaseSection::RelrBaseSection() 1576 : SyntheticSection(SHF_ALLOC, 1577 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1578 config->wordsize, ".relr.dyn") {} 1579 1580 template <class ELFT> 1581 static void encodeDynamicReloc(SymbolTableBaseSection *symTab, 1582 typename ELFT::Rela *p, 1583 const DynamicReloc &rel) { 1584 if (config->isRela) 1585 p->r_addend = rel.computeAddend(); 1586 p->r_offset = rel.getOffset(); 1587 p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL); 1588 } 1589 1590 template <class ELFT> 1591 RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort) 1592 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1593 config->isRela ? DT_RELA : DT_REL, 1594 config->isRela ? DT_RELASZ : DT_RELSZ), 1595 sort(sort) { 1596 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1597 } 1598 1599 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1600 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 1601 1602 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1603 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1604 // is to make results easier to read. 1605 if (sort) 1606 llvm::stable_sort( 1607 relocs, [&](const DynamicReloc &a, const DynamicReloc &b) { 1608 return std::make_tuple(a.type != target->relativeRel, 1609 a.getSymIndex(symTab), a.getOffset()) < 1610 std::make_tuple(b.type != target->relativeRel, 1611 b.getSymIndex(symTab), b.getOffset()); 1612 }); 1613 1614 for (const DynamicReloc &rel : relocs) { 1615 encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel); 1616 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1617 } 1618 } 1619 1620 template <class ELFT> 1621 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1622 StringRef name) 1623 : RelocationBaseSection( 1624 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1625 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1626 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) { 1627 this->entsize = 1; 1628 } 1629 1630 template <class ELFT> 1631 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1632 // This function computes the contents of an Android-format packed relocation 1633 // section. 1634 // 1635 // This format compresses relocations by using relocation groups to factor out 1636 // fields that are common between relocations and storing deltas from previous 1637 // relocations in SLEB128 format (which has a short representation for small 1638 // numbers). A good example of a relocation type with common fields is 1639 // R_*_RELATIVE, which is normally used to represent function pointers in 1640 // vtables. In the REL format, each relative relocation has the same r_info 1641 // field, and is only different from other relative relocations in terms of 1642 // the r_offset field. By sorting relocations by offset, grouping them by 1643 // r_info and representing each relocation with only the delta from the 1644 // previous offset, each 8-byte relocation can be compressed to as little as 1 1645 // byte (or less with run-length encoding). This relocation packer was able to 1646 // reduce the size of the relocation section in an Android Chromium DSO from 1647 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1648 // 1649 // A relocation section consists of a header containing the literal bytes 1650 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1651 // elements are the total number of relocations in the section and an initial 1652 // r_offset value. The remaining elements define a sequence of relocation 1653 // groups. Each relocation group starts with a header consisting of the 1654 // following elements: 1655 // 1656 // - the number of relocations in the relocation group 1657 // - flags for the relocation group 1658 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1659 // for each relocation in the group. 1660 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1661 // field for each relocation in the group. 1662 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1663 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1664 // each relocation in the group. 1665 // 1666 // Following the relocation group header are descriptions of each of the 1667 // relocations in the group. They consist of the following elements: 1668 // 1669 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1670 // delta for this relocation. 1671 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1672 // field for this relocation. 1673 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1674 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1675 // this relocation. 1676 1677 size_t oldSize = relocData.size(); 1678 1679 relocData = {'A', 'P', 'S', '2'}; 1680 raw_svector_ostream os(relocData); 1681 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1682 1683 // The format header includes the number of relocations and the initial 1684 // offset (we set this to zero because the first relocation group will 1685 // perform the initial adjustment). 1686 add(relocs.size()); 1687 add(0); 1688 1689 std::vector<Elf_Rela> relatives, nonRelatives; 1690 1691 for (const DynamicReloc &rel : relocs) { 1692 Elf_Rela r; 1693 encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel); 1694 1695 if (r.getType(config->isMips64EL) == target->relativeRel) 1696 relatives.push_back(r); 1697 else 1698 nonRelatives.push_back(r); 1699 } 1700 1701 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1702 return a.r_offset < b.r_offset; 1703 }); 1704 1705 // Try to find groups of relative relocations which are spaced one word 1706 // apart from one another. These generally correspond to vtable entries. The 1707 // format allows these groups to be encoded using a sort of run-length 1708 // encoding, but each group will cost 7 bytes in addition to the offset from 1709 // the previous group, so it is only profitable to do this for groups of 1710 // size 8 or larger. 1711 std::vector<Elf_Rela> ungroupedRelatives; 1712 std::vector<std::vector<Elf_Rela>> relativeGroups; 1713 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1714 std::vector<Elf_Rela> group; 1715 do { 1716 group.push_back(*i++); 1717 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1718 1719 if (group.size() < 8) 1720 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1721 group.end()); 1722 else 1723 relativeGroups.emplace_back(std::move(group)); 1724 } 1725 1726 // For non-relative relocations, we would like to: 1727 // 1. Have relocations with the same symbol offset to be consecutive, so 1728 // that the runtime linker can speed-up symbol lookup by implementing an 1729 // 1-entry cache. 1730 // 2. Group relocations by r_info to reduce the size of the relocation 1731 // section. 1732 // Since the symbol offset is the high bits in r_info, sorting by r_info 1733 // allows us to do both. 1734 // 1735 // For Rela, we also want to sort by r_addend when r_info is the same. This 1736 // enables us to group by r_addend as well. 1737 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1738 if (a.r_info != b.r_info) 1739 return a.r_info < b.r_info; 1740 if (config->isRela) 1741 return a.r_addend < b.r_addend; 1742 return false; 1743 }); 1744 1745 // Group relocations with the same r_info. Note that each group emits a group 1746 // header and that may make the relocation section larger. It is hard to 1747 // estimate the size of a group header as the encoded size of that varies 1748 // based on r_info. However, we can approximate this trade-off by the number 1749 // of values encoded. Each group header contains 3 values, and each relocation 1750 // in a group encodes one less value, as compared to when it is not grouped. 1751 // Therefore, we only group relocations if there are 3 or more of them with 1752 // the same r_info. 1753 // 1754 // For Rela, the addend for most non-relative relocations is zero, and thus we 1755 // can usually get a smaller relocation section if we group relocations with 0 1756 // addend as well. 1757 std::vector<Elf_Rela> ungroupedNonRelatives; 1758 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1759 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1760 auto j = i + 1; 1761 while (j != e && i->r_info == j->r_info && 1762 (!config->isRela || i->r_addend == j->r_addend)) 1763 ++j; 1764 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1765 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1766 else 1767 nonRelativeGroups.emplace_back(i, j); 1768 i = j; 1769 } 1770 1771 // Sort ungrouped relocations by offset to minimize the encoded length. 1772 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1773 return a.r_offset < b.r_offset; 1774 }); 1775 1776 unsigned hasAddendIfRela = 1777 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1778 1779 uint64_t offset = 0; 1780 uint64_t addend = 0; 1781 1782 // Emit the run-length encoding for the groups of adjacent relative 1783 // relocations. Each group is represented using two groups in the packed 1784 // format. The first is used to set the current offset to the start of the 1785 // group (and also encodes the first relocation), and the second encodes the 1786 // remaining relocations. 1787 for (std::vector<Elf_Rela> &g : relativeGroups) { 1788 // The first relocation in the group. 1789 add(1); 1790 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1791 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1792 add(g[0].r_offset - offset); 1793 add(target->relativeRel); 1794 if (config->isRela) { 1795 add(g[0].r_addend - addend); 1796 addend = g[0].r_addend; 1797 } 1798 1799 // The remaining relocations. 1800 add(g.size() - 1); 1801 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1802 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1803 add(config->wordsize); 1804 add(target->relativeRel); 1805 if (config->isRela) { 1806 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1807 add(i->r_addend - addend); 1808 addend = i->r_addend; 1809 } 1810 } 1811 1812 offset = g.back().r_offset; 1813 } 1814 1815 // Now the ungrouped relatives. 1816 if (!ungroupedRelatives.empty()) { 1817 add(ungroupedRelatives.size()); 1818 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1819 add(target->relativeRel); 1820 for (Elf_Rela &r : ungroupedRelatives) { 1821 add(r.r_offset - offset); 1822 offset = r.r_offset; 1823 if (config->isRela) { 1824 add(r.r_addend - addend); 1825 addend = r.r_addend; 1826 } 1827 } 1828 } 1829 1830 // Grouped non-relatives. 1831 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1832 add(g.size()); 1833 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1834 add(g[0].r_info); 1835 for (const Elf_Rela &r : g) { 1836 add(r.r_offset - offset); 1837 offset = r.r_offset; 1838 } 1839 addend = 0; 1840 } 1841 1842 // Finally the ungrouped non-relative relocations. 1843 if (!ungroupedNonRelatives.empty()) { 1844 add(ungroupedNonRelatives.size()); 1845 add(hasAddendIfRela); 1846 for (Elf_Rela &r : ungroupedNonRelatives) { 1847 add(r.r_offset - offset); 1848 offset = r.r_offset; 1849 add(r.r_info); 1850 if (config->isRela) { 1851 add(r.r_addend - addend); 1852 addend = r.r_addend; 1853 } 1854 } 1855 } 1856 1857 // Don't allow the section to shrink; otherwise the size of the section can 1858 // oscillate infinitely. 1859 if (relocData.size() < oldSize) 1860 relocData.append(oldSize - relocData.size(), 0); 1861 1862 // Returns whether the section size changed. We need to keep recomputing both 1863 // section layout and the contents of this section until the size converges 1864 // because changing this section's size can affect section layout, which in 1865 // turn can affect the sizes of the LEB-encoded integers stored in this 1866 // section. 1867 return relocData.size() != oldSize; 1868 } 1869 1870 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1871 this->entsize = config->wordsize; 1872 } 1873 1874 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1875 // This function computes the contents of an SHT_RELR packed relocation 1876 // section. 1877 // 1878 // Proposal for adding SHT_RELR sections to generic-abi is here: 1879 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1880 // 1881 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 1882 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 1883 // 1884 // i.e. start with an address, followed by any number of bitmaps. The address 1885 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 1886 // relocations each, at subsequent offsets following the last address entry. 1887 // 1888 // The bitmap entries must have 1 in the least significant bit. The assumption 1889 // here is that an address cannot have 1 in lsb. Odd addresses are not 1890 // supported. 1891 // 1892 // Excluding the least significant bit in the bitmap, each non-zero bit in 1893 // the bitmap represents a relocation to be applied to a corresponding machine 1894 // word that follows the base address word. The second least significant bit 1895 // represents the machine word immediately following the initial address, and 1896 // each bit that follows represents the next word, in linear order. As such, 1897 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 1898 // 63 relocations in a 64-bit object. 1899 // 1900 // This encoding has a couple of interesting properties: 1901 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 1902 // even means address, odd means bitmap. 1903 // 2. Just a simple list of addresses is a valid encoding. 1904 1905 size_t oldSize = relrRelocs.size(); 1906 relrRelocs.clear(); 1907 1908 // Same as Config->Wordsize but faster because this is a compile-time 1909 // constant. 1910 const size_t wordsize = sizeof(typename ELFT::uint); 1911 1912 // Number of bits to use for the relocation offsets bitmap. 1913 // Must be either 63 or 31. 1914 const size_t nBits = wordsize * 8 - 1; 1915 1916 // Get offsets for all relative relocations and sort them. 1917 std::vector<uint64_t> offsets; 1918 for (const RelativeReloc &rel : relocs) 1919 offsets.push_back(rel.getOffset()); 1920 llvm::sort(offsets); 1921 1922 // For each leading relocation, find following ones that can be folded 1923 // as a bitmap and fold them. 1924 for (size_t i = 0, e = offsets.size(); i < e;) { 1925 // Add a leading relocation. 1926 relrRelocs.push_back(Elf_Relr(offsets[i])); 1927 uint64_t base = offsets[i] + wordsize; 1928 ++i; 1929 1930 // Find foldable relocations to construct bitmaps. 1931 while (i < e) { 1932 uint64_t bitmap = 0; 1933 1934 while (i < e) { 1935 uint64_t delta = offsets[i] - base; 1936 1937 // If it is too far, it cannot be folded. 1938 if (delta >= nBits * wordsize) 1939 break; 1940 1941 // If it is not a multiple of wordsize away, it cannot be folded. 1942 if (delta % wordsize) 1943 break; 1944 1945 // Fold it. 1946 bitmap |= 1ULL << (delta / wordsize); 1947 ++i; 1948 } 1949 1950 if (!bitmap) 1951 break; 1952 1953 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 1954 base += nBits * wordsize; 1955 } 1956 } 1957 1958 // Don't allow the section to shrink; otherwise the size of the section can 1959 // oscillate infinitely. Trailing 1s do not decode to more relocations. 1960 if (relrRelocs.size() < oldSize) { 1961 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 1962 " padding word(s)"); 1963 relrRelocs.resize(oldSize, Elf_Relr(1)); 1964 } 1965 1966 return relrRelocs.size() != oldSize; 1967 } 1968 1969 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 1970 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 1971 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 1972 config->wordsize, 1973 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 1974 strTabSec(strTabSec) {} 1975 1976 // Orders symbols according to their positions in the GOT, 1977 // in compliance with MIPS ABI rules. 1978 // See "Global Offset Table" in Chapter 5 in the following document 1979 // for detailed description: 1980 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1981 static bool sortMipsSymbols(const SymbolTableEntry &l, 1982 const SymbolTableEntry &r) { 1983 // Sort entries related to non-local preemptible symbols by GOT indexes. 1984 // All other entries go to the beginning of a dynsym in arbitrary order. 1985 if (l.sym->isInGot() && r.sym->isInGot()) 1986 return l.sym->gotIndex < r.sym->gotIndex; 1987 if (!l.sym->isInGot() && !r.sym->isInGot()) 1988 return false; 1989 return !l.sym->isInGot(); 1990 } 1991 1992 void SymbolTableBaseSection::finalizeContents() { 1993 if (OutputSection *sec = strTabSec.getParent()) 1994 getParent()->link = sec->sectionIndex; 1995 1996 if (this->type != SHT_DYNSYM) { 1997 sortSymTabSymbols(); 1998 return; 1999 } 2000 2001 // If it is a .dynsym, there should be no local symbols, but we need 2002 // to do a few things for the dynamic linker. 2003 2004 // Section's Info field has the index of the first non-local symbol. 2005 // Because the first symbol entry is a null entry, 1 is the first. 2006 getParent()->info = 1; 2007 2008 if (getPartition().gnuHashTab) { 2009 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2010 getPartition().gnuHashTab->addSymbols(symbols); 2011 } else if (config->emachine == EM_MIPS) { 2012 llvm::stable_sort(symbols, sortMipsSymbols); 2013 } 2014 2015 // Only the main partition's dynsym indexes are stored in the symbols 2016 // themselves. All other partitions use a lookup table. 2017 if (this == mainPart->dynSymTab) { 2018 size_t i = 0; 2019 for (const SymbolTableEntry &s : symbols) 2020 s.sym->dynsymIndex = ++i; 2021 } 2022 } 2023 2024 // The ELF spec requires that all local symbols precede global symbols, so we 2025 // sort symbol entries in this function. (For .dynsym, we don't do that because 2026 // symbols for dynamic linking are inherently all globals.) 2027 // 2028 // Aside from above, we put local symbols in groups starting with the STT_FILE 2029 // symbol. That is convenient for purpose of identifying where are local symbols 2030 // coming from. 2031 void SymbolTableBaseSection::sortSymTabSymbols() { 2032 // Move all local symbols before global symbols. 2033 auto e = std::stable_partition( 2034 symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) { 2035 return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL; 2036 }); 2037 size_t numLocals = e - symbols.begin(); 2038 getParent()->info = numLocals + 1; 2039 2040 // We want to group the local symbols by file. For that we rebuild the local 2041 // part of the symbols vector. We do not need to care about the STT_FILE 2042 // symbols, they are already naturally placed first in each group. That 2043 // happens because STT_FILE is always the first symbol in the object and hence 2044 // precede all other local symbols we add for a file. 2045 MapVector<InputFile *, std::vector<SymbolTableEntry>> arr; 2046 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2047 arr[s.sym->file].push_back(s); 2048 2049 auto i = symbols.begin(); 2050 for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr) 2051 for (SymbolTableEntry &entry : p.second) 2052 *i++ = entry; 2053 } 2054 2055 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2056 // Adding a local symbol to a .dynsym is a bug. 2057 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2058 2059 bool hashIt = b->isLocal(); 2060 symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)}); 2061 } 2062 2063 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2064 if (this == mainPart->dynSymTab) 2065 return sym->dynsymIndex; 2066 2067 // Initializes symbol lookup tables lazily. This is used only for -r, 2068 // -emit-relocs and dynsyms in partitions other than the main one. 2069 llvm::call_once(onceFlag, [&] { 2070 symbolIndexMap.reserve(symbols.size()); 2071 size_t i = 0; 2072 for (const SymbolTableEntry &e : symbols) { 2073 if (e.sym->type == STT_SECTION) 2074 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2075 else 2076 symbolIndexMap[e.sym] = ++i; 2077 } 2078 }); 2079 2080 // Section symbols are mapped based on their output sections 2081 // to maintain their semantics. 2082 if (sym->type == STT_SECTION) 2083 return sectionIndexMap.lookup(sym->getOutputSection()); 2084 return symbolIndexMap.lookup(sym); 2085 } 2086 2087 template <class ELFT> 2088 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2089 : SymbolTableBaseSection(strTabSec) { 2090 this->entsize = sizeof(Elf_Sym); 2091 } 2092 2093 static BssSection *getCommonSec(Symbol *sym) { 2094 if (!config->defineCommon) 2095 if (auto *d = dyn_cast<Defined>(sym)) 2096 return dyn_cast_or_null<BssSection>(d->section); 2097 return nullptr; 2098 } 2099 2100 static uint32_t getSymSectionIndex(Symbol *sym) { 2101 if (getCommonSec(sym)) 2102 return SHN_COMMON; 2103 if (!isa<Defined>(sym) || sym->needsPltAddr) 2104 return SHN_UNDEF; 2105 if (const OutputSection *os = sym->getOutputSection()) 2106 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2107 : os->sectionIndex; 2108 return SHN_ABS; 2109 } 2110 2111 // Write the internal symbol table contents to the output symbol table. 2112 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2113 // The first entry is a null entry as per the ELF spec. 2114 memset(buf, 0, sizeof(Elf_Sym)); 2115 buf += sizeof(Elf_Sym); 2116 2117 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2118 2119 for (SymbolTableEntry &ent : symbols) { 2120 Symbol *sym = ent.sym; 2121 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2122 2123 // Set st_info and st_other. 2124 eSym->st_other = 0; 2125 if (sym->isLocal()) { 2126 eSym->setBindingAndType(STB_LOCAL, sym->type); 2127 } else { 2128 eSym->setBindingAndType(sym->computeBinding(), sym->type); 2129 eSym->setVisibility(sym->visibility); 2130 } 2131 2132 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2133 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2134 if (config->emachine == EM_PPC64) 2135 eSym->st_other |= sym->stOther & 0xe0; 2136 2137 eSym->st_name = ent.strTabOffset; 2138 if (isDefinedHere) 2139 eSym->st_shndx = getSymSectionIndex(ent.sym); 2140 else 2141 eSym->st_shndx = 0; 2142 2143 // Copy symbol size if it is a defined symbol. st_size is not significant 2144 // for undefined symbols, so whether copying it or not is up to us if that's 2145 // the case. We'll leave it as zero because by not setting a value, we can 2146 // get the exact same outputs for two sets of input files that differ only 2147 // in undefined symbol size in DSOs. 2148 if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere) 2149 eSym->st_size = 0; 2150 else 2151 eSym->st_size = sym->getSize(); 2152 2153 // st_value is usually an address of a symbol, but that has a 2154 // special meaining for uninstantiated common symbols (this can 2155 // occur if -r is given). 2156 if (BssSection *commonSec = getCommonSec(ent.sym)) 2157 eSym->st_value = commonSec->alignment; 2158 else if (isDefinedHere) 2159 eSym->st_value = sym->getVA(); 2160 else 2161 eSym->st_value = 0; 2162 2163 ++eSym; 2164 } 2165 2166 // On MIPS we need to mark symbol which has a PLT entry and requires 2167 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2168 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2169 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2170 if (config->emachine == EM_MIPS) { 2171 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2172 2173 for (SymbolTableEntry &ent : symbols) { 2174 Symbol *sym = ent.sym; 2175 if (sym->isInPlt() && sym->needsPltAddr) 2176 eSym->st_other |= STO_MIPS_PLT; 2177 if (isMicroMips()) { 2178 // We already set the less-significant bit for symbols 2179 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2180 // records. That allows us to distinguish such symbols in 2181 // the `MIPS<ELFT>::relocateOne()` routine. Now we should 2182 // clear that bit for non-dynamic symbol table, so tools 2183 // like `objdump` will be able to deal with a correct 2184 // symbol position. 2185 if (sym->isDefined() && 2186 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) { 2187 if (!strTabSec.isDynamic()) 2188 eSym->st_value &= ~1; 2189 eSym->st_other |= STO_MIPS_MICROMIPS; 2190 } 2191 } 2192 if (config->relocatable) 2193 if (auto *d = dyn_cast<Defined>(sym)) 2194 if (isMipsPIC<ELFT>(d)) 2195 eSym->st_other |= STO_MIPS_PIC; 2196 ++eSym; 2197 } 2198 } 2199 } 2200 2201 SymtabShndxSection::SymtabShndxSection() 2202 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2203 this->entsize = 4; 2204 } 2205 2206 void SymtabShndxSection::writeTo(uint8_t *buf) { 2207 // We write an array of 32 bit values, where each value has 1:1 association 2208 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2209 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2210 buf += 4; // Ignore .symtab[0] entry. 2211 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2212 if (getSymSectionIndex(entry.sym) == SHN_XINDEX) 2213 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2214 buf += 4; 2215 } 2216 } 2217 2218 bool SymtabShndxSection::isNeeded() const { 2219 // SHT_SYMTAB can hold symbols with section indices values up to 2220 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2221 // section. Problem is that we reveal the final section indices a bit too 2222 // late, and we do not know them here. For simplicity, we just always create 2223 // a .symtab_shndx section when the amount of output sections is huge. 2224 size_t size = 0; 2225 for (BaseCommand *base : script->sectionCommands) 2226 if (isa<OutputSection>(base)) 2227 ++size; 2228 return size >= SHN_LORESERVE; 2229 } 2230 2231 void SymtabShndxSection::finalizeContents() { 2232 getParent()->link = in.symTab->getParent()->sectionIndex; 2233 } 2234 2235 size_t SymtabShndxSection::getSize() const { 2236 return in.symTab->getNumSymbols() * 4; 2237 } 2238 2239 // .hash and .gnu.hash sections contain on-disk hash tables that map 2240 // symbol names to their dynamic symbol table indices. Their purpose 2241 // is to help the dynamic linker resolve symbols quickly. If ELF files 2242 // don't have them, the dynamic linker has to do linear search on all 2243 // dynamic symbols, which makes programs slower. Therefore, a .hash 2244 // section is added to a DSO by default. A .gnu.hash is added if you 2245 // give the -hash-style=gnu or -hash-style=both option. 2246 // 2247 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2248 // Each ELF file has a list of DSOs that the ELF file depends on and a 2249 // list of dynamic symbols that need to be resolved from any of the 2250 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2251 // where m is the number of DSOs and n is the number of dynamic 2252 // symbols. For modern large programs, both m and n are large. So 2253 // making each step faster by using hash tables substiantially 2254 // improves time to load programs. 2255 // 2256 // (Note that this is not the only way to design the shared library. 2257 // For instance, the Windows DLL takes a different approach. On 2258 // Windows, each dynamic symbol has a name of DLL from which the symbol 2259 // has to be resolved. That makes the cost of symbol resolution O(n). 2260 // This disables some hacky techniques you can use on Unix such as 2261 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2262 // 2263 // Due to historical reasons, we have two different hash tables, .hash 2264 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2265 // and better version of .hash. .hash is just an on-disk hash table, but 2266 // .gnu.hash has a bloom filter in addition to a hash table to skip 2267 // DSOs very quickly. If you are sure that your dynamic linker knows 2268 // about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a 2269 // safe bet is to specify -hash-style=both for backward compatibility. 2270 GnuHashTableSection::GnuHashTableSection() 2271 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2272 } 2273 2274 void GnuHashTableSection::finalizeContents() { 2275 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2276 getParent()->link = sec->sectionIndex; 2277 2278 // Computes bloom filter size in word size. We want to allocate 12 2279 // bits for each symbol. It must be a power of two. 2280 if (symbols.empty()) { 2281 maskWords = 1; 2282 } else { 2283 uint64_t numBits = symbols.size() * 12; 2284 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2285 } 2286 2287 size = 16; // Header 2288 size += config->wordsize * maskWords; // Bloom filter 2289 size += nBuckets * 4; // Hash buckets 2290 size += symbols.size() * 4; // Hash values 2291 } 2292 2293 void GnuHashTableSection::writeTo(uint8_t *buf) { 2294 // The output buffer is not guaranteed to be zero-cleared because we pre- 2295 // fill executable sections with trap instructions. This is a precaution 2296 // for that case, which happens only when -no-rosegment is given. 2297 memset(buf, 0, size); 2298 2299 // Write a header. 2300 write32(buf, nBuckets); 2301 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2302 write32(buf + 8, maskWords); 2303 write32(buf + 12, Shift2); 2304 buf += 16; 2305 2306 // Write a bloom filter and a hash table. 2307 writeBloomFilter(buf); 2308 buf += config->wordsize * maskWords; 2309 writeHashTable(buf); 2310 } 2311 2312 // This function writes a 2-bit bloom filter. This bloom filter alone 2313 // usually filters out 80% or more of all symbol lookups [1]. 2314 // The dynamic linker uses the hash table only when a symbol is not 2315 // filtered out by a bloom filter. 2316 // 2317 // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2), 2318 // p.9, https://www.akkadia.org/drepper/dsohowto.pdf 2319 void GnuHashTableSection::writeBloomFilter(uint8_t *buf) { 2320 unsigned c = config->is64 ? 64 : 32; 2321 for (const Entry &sym : symbols) { 2322 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2323 // the word using bits [0:5] and [26:31]. 2324 size_t i = (sym.hash / c) & (maskWords - 1); 2325 uint64_t val = readUint(buf + i * config->wordsize); 2326 val |= uint64_t(1) << (sym.hash % c); 2327 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2328 writeUint(buf + i * config->wordsize, val); 2329 } 2330 } 2331 2332 void GnuHashTableSection::writeHashTable(uint8_t *buf) { 2333 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2334 uint32_t oldBucket = -1; 2335 uint32_t *values = buckets + nBuckets; 2336 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2337 // Write a hash value. It represents a sequence of chains that share the 2338 // same hash modulo value. The last element of each chain is terminated by 2339 // LSB 1. 2340 uint32_t hash = i->hash; 2341 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2342 hash = isLastInChain ? hash | 1 : hash & ~1; 2343 write32(values++, hash); 2344 2345 if (i->bucketIdx == oldBucket) 2346 continue; 2347 // Write a hash bucket. Hash buckets contain indices in the following hash 2348 // value table. 2349 write32(buckets + i->bucketIdx, 2350 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2351 oldBucket = i->bucketIdx; 2352 } 2353 } 2354 2355 static uint32_t hashGnu(StringRef name) { 2356 uint32_t h = 5381; 2357 for (uint8_t c : name) 2358 h = (h << 5) + h + c; 2359 return h; 2360 } 2361 2362 // Add symbols to this symbol hash table. Note that this function 2363 // destructively sort a given vector -- which is needed because 2364 // GNU-style hash table places some sorting requirements. 2365 void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) { 2366 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2367 // its type correctly. 2368 std::vector<SymbolTableEntry>::iterator mid = 2369 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2370 return !s.sym->isDefined() || s.sym->partition != partition; 2371 }); 2372 2373 // We chose load factor 4 for the on-disk hash table. For each hash 2374 // collision, the dynamic linker will compare a uint32_t hash value. 2375 // Since the integer comparison is quite fast, we believe we can 2376 // make the load factor even larger. 4 is just a conservative choice. 2377 // 2378 // Note that we don't want to create a zero-sized hash table because 2379 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2380 // table. If that's the case, we create a hash table with one unused 2381 // dummy slot. 2382 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2383 2384 if (mid == v.end()) 2385 return; 2386 2387 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2388 Symbol *b = ent.sym; 2389 uint32_t hash = hashGnu(b->getName()); 2390 uint32_t bucketIdx = hash % nBuckets; 2391 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2392 } 2393 2394 llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) { 2395 return l.bucketIdx < r.bucketIdx; 2396 }); 2397 2398 v.erase(mid, v.end()); 2399 for (const Entry &ent : symbols) 2400 v.push_back({ent.sym, ent.strTabOffset}); 2401 } 2402 2403 HashTableSection::HashTableSection() 2404 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2405 this->entsize = 4; 2406 } 2407 2408 void HashTableSection::finalizeContents() { 2409 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 2410 2411 if (OutputSection *sec = symTab->getParent()) 2412 getParent()->link = sec->sectionIndex; 2413 2414 unsigned numEntries = 2; // nbucket and nchain. 2415 numEntries += symTab->getNumSymbols(); // The chain entries. 2416 2417 // Create as many buckets as there are symbols. 2418 numEntries += symTab->getNumSymbols(); 2419 this->size = numEntries * 4; 2420 } 2421 2422 void HashTableSection::writeTo(uint8_t *buf) { 2423 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 2424 2425 // See comment in GnuHashTableSection::writeTo. 2426 memset(buf, 0, size); 2427 2428 unsigned numSymbols = symTab->getNumSymbols(); 2429 2430 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2431 write32(p++, numSymbols); // nbucket 2432 write32(p++, numSymbols); // nchain 2433 2434 uint32_t *buckets = p; 2435 uint32_t *chains = p + numSymbols; 2436 2437 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2438 Symbol *sym = s.sym; 2439 StringRef name = sym->getName(); 2440 unsigned i = sym->dynsymIndex; 2441 uint32_t hash = hashSysV(name) % numSymbols; 2442 chains[i] = buckets[hash]; 2443 write32(buckets + hash, i); 2444 } 2445 } 2446 2447 PltSection::PltSection() 2448 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2449 headerSize(target->pltHeaderSize) { 2450 // On PowerPC, this section contains lazy symbol resolvers. 2451 if (config->emachine == EM_PPC64) { 2452 name = ".glink"; 2453 alignment = 4; 2454 } 2455 2456 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2457 // symbol resolvers). 2458 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2459 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2460 name = ".plt.sec"; 2461 2462 // The PLT needs to be writable on SPARC as the dynamic linker will 2463 // modify the instructions in the PLT entries. 2464 if (config->emachine == EM_SPARCV9) 2465 this->flags |= SHF_WRITE; 2466 } 2467 2468 void PltSection::writeTo(uint8_t *buf) { 2469 // At beginning of PLT, we have code to call the dynamic 2470 // linker to resolve dynsyms at runtime. Write such code. 2471 target->writePltHeader(buf); 2472 size_t off = headerSize; 2473 2474 for (const Symbol *sym : entries) { 2475 target->writePlt(buf + off, *sym, getVA() + off); 2476 off += target->pltEntrySize; 2477 } 2478 } 2479 2480 void PltSection::addEntry(Symbol &sym) { 2481 sym.pltIndex = entries.size(); 2482 entries.push_back(&sym); 2483 } 2484 2485 size_t PltSection::getSize() const { 2486 return headerSize + entries.size() * target->pltEntrySize; 2487 } 2488 2489 bool PltSection::isNeeded() const { 2490 // For -z retpolineplt, .iplt needs the .plt header. 2491 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2492 } 2493 2494 // Used by ARM to add mapping symbols in the PLT section, which aid 2495 // disassembly. 2496 void PltSection::addSymbols() { 2497 target->addPltHeaderSymbols(*this); 2498 2499 size_t off = headerSize; 2500 for (size_t i = 0; i < entries.size(); ++i) { 2501 target->addPltSymbols(*this, off); 2502 off += target->pltEntrySize; 2503 } 2504 } 2505 2506 IpltSection::IpltSection() 2507 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2508 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2509 name = ".glink"; 2510 alignment = 4; 2511 } 2512 } 2513 2514 void IpltSection::writeTo(uint8_t *buf) { 2515 uint32_t off = 0; 2516 for (const Symbol *sym : entries) { 2517 target->writeIplt(buf + off, *sym, getVA() + off); 2518 off += target->ipltEntrySize; 2519 } 2520 } 2521 2522 size_t IpltSection::getSize() const { 2523 return entries.size() * target->ipltEntrySize; 2524 } 2525 2526 void IpltSection::addEntry(Symbol &sym) { 2527 sym.pltIndex = entries.size(); 2528 entries.push_back(&sym); 2529 } 2530 2531 // ARM uses mapping symbols to aid disassembly. 2532 void IpltSection::addSymbols() { 2533 size_t off = 0; 2534 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2535 target->addPltSymbols(*this, off); 2536 off += target->pltEntrySize; 2537 } 2538 } 2539 2540 PPC32GlinkSection::PPC32GlinkSection() { 2541 name = ".glink"; 2542 alignment = 4; 2543 } 2544 2545 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2546 writePPC32GlinkSection(buf, entries.size()); 2547 } 2548 2549 size_t PPC32GlinkSection::getSize() const { 2550 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2551 } 2552 2553 // This is an x86-only extra PLT section and used only when a security 2554 // enhancement feature called CET is enabled. In this comment, I'll explain what 2555 // the feature is and why we have two PLT sections if CET is enabled. 2556 // 2557 // So, what does CET do? CET introduces a new restriction to indirect jump 2558 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2559 // execute an indirect jump instruction, the processor verifies that a special 2560 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2561 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2562 // does not start with that instruction, the processor raises an exception 2563 // instead of continuing executing code. 2564 // 2565 // If CET is enabled, the compiler emits endbr to all locations where indirect 2566 // jumps may jump to. 2567 // 2568 // This mechanism makes it extremely hard to transfer the control to a middle of 2569 // a function that is not supporsed to be a indirect jump target, preventing 2570 // certain types of attacks such as ROP or JOP. 2571 // 2572 // Note that the processors in the market as of 2019 don't actually support the 2573 // feature. Only the spec is available at the moment. 2574 // 2575 // Now, I'll explain why we have this extra PLT section for CET. 2576 // 2577 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2578 // start with endbr. The problem is there's no extra space for endbr (which is 4 2579 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2580 // used. 2581 // 2582 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2583 // Remember that each PLT entry contains code to jump to an address read from 2584 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2585 // the former code is written to .plt.sec, and the latter code is written to 2586 // .plt. 2587 // 2588 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2589 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2590 // contain only code for lazy symbol resolution. 2591 // 2592 // In other words, this is how the 2-PLT scheme works. Application code is 2593 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2594 // entry contains code to read an address from a corresponding .got.plt entry 2595 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2596 // when an application calls an external function for the first time, the 2597 // control is transferred to a function that resolves a symbol name from 2598 // external shared object files. That function then rewrites a .got.plt entry 2599 // with a resolved address, so that the subsequent function calls directly jump 2600 // to a desired location from .plt.sec. 2601 // 2602 // There is an open question as to whether the 2-PLT scheme was desirable or 2603 // not. We could have simply extended the PLT entry size to 32-bytes to 2604 // accommodate endbr, and that scheme would have been much simpler than the 2605 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2606 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2607 // that the optimization actually makes a difference. 2608 // 2609 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2610 // depend on it, so we implement the ABI. 2611 IBTPltSection::IBTPltSection() 2612 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2613 2614 void IBTPltSection::writeTo(uint8_t *buf) { 2615 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2616 } 2617 2618 size_t IBTPltSection::getSize() const { 2619 // 16 is the header size of .plt. 2620 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2621 } 2622 2623 // The string hash function for .gdb_index. 2624 static uint32_t computeGdbHash(StringRef s) { 2625 uint32_t h = 0; 2626 for (uint8_t c : s) 2627 h = h * 67 + toLower(c) - 113; 2628 return h; 2629 } 2630 2631 GdbIndexSection::GdbIndexSection() 2632 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2633 2634 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2635 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2636 size_t GdbIndexSection::computeSymtabSize() const { 2637 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2638 } 2639 2640 // Compute the output section size. 2641 void GdbIndexSection::initOutputSize() { 2642 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2643 2644 for (GdbChunk &chunk : chunks) 2645 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2646 2647 // Add the constant pool size if exists. 2648 if (!symbols.empty()) { 2649 GdbSymbol &sym = symbols.back(); 2650 size += sym.nameOff + sym.name.size() + 1; 2651 } 2652 } 2653 2654 static std::vector<InputSection *> getDebugInfoSections() { 2655 std::vector<InputSection *> ret; 2656 for (InputSectionBase *s : inputSections) 2657 if (InputSection *isec = dyn_cast<InputSection>(s)) 2658 if (isec->name == ".debug_info") 2659 ret.push_back(isec); 2660 return ret; 2661 } 2662 2663 static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) { 2664 std::vector<GdbIndexSection::CuEntry> ret; 2665 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2666 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2667 return ret; 2668 } 2669 2670 static std::vector<GdbIndexSection::AddressEntry> 2671 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2672 std::vector<GdbIndexSection::AddressEntry> ret; 2673 2674 uint32_t cuIdx = 0; 2675 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2676 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2677 error(toString(sec) + ": " + toString(std::move(e))); 2678 return {}; 2679 } 2680 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2681 if (!ranges) { 2682 error(toString(sec) + ": " + toString(ranges.takeError())); 2683 return {}; 2684 } 2685 2686 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2687 for (DWARFAddressRange &r : *ranges) { 2688 if (r.SectionIndex == -1ULL) 2689 continue; 2690 InputSectionBase *s = sections[r.SectionIndex]; 2691 if (!s || s == &InputSection::discarded || !s->isLive()) 2692 continue; 2693 // Range list with zero size has no effect. 2694 if (r.LowPC == r.HighPC) 2695 continue; 2696 auto *isec = cast<InputSection>(s); 2697 uint64_t offset = isec->getOffsetInFile(); 2698 ret.push_back({isec, r.LowPC - offset, r.HighPC - offset, cuIdx}); 2699 } 2700 ++cuIdx; 2701 } 2702 2703 return ret; 2704 } 2705 2706 template <class ELFT> 2707 static std::vector<GdbIndexSection::NameAttrEntry> 2708 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2709 const std::vector<GdbIndexSection::CuEntry> &cus) { 2710 const DWARFSection &pubNames = obj.getGnuPubnamesSection(); 2711 const DWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2712 2713 std::vector<GdbIndexSection::NameAttrEntry> ret; 2714 for (const DWARFSection *pub : {&pubNames, &pubTypes}) { 2715 DWARFDebugPubTable table(obj, *pub, config->isLE, true); 2716 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2717 // The value written into the constant pool is kind << 24 | cuIndex. As we 2718 // don't know how many compilation units precede this object to compute 2719 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2720 // the number of preceding compilation units later. 2721 uint32_t i = llvm::partition_point(cus, 2722 [&](GdbIndexSection::CuEntry cu) { 2723 return cu.cuOffset < set.Offset; 2724 }) - 2725 cus.begin(); 2726 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2727 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2728 (ent.Descriptor.toBits() << 24) | i}); 2729 } 2730 } 2731 return ret; 2732 } 2733 2734 // Create a list of symbols from a given list of symbol names and types 2735 // by uniquifying them by name. 2736 static std::vector<GdbIndexSection::GdbSymbol> 2737 createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs, 2738 const std::vector<GdbIndexSection::GdbChunk> &chunks) { 2739 using GdbSymbol = GdbIndexSection::GdbSymbol; 2740 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2741 2742 // For each chunk, compute the number of compilation units preceding it. 2743 uint32_t cuIdx = 0; 2744 std::vector<uint32_t> cuIdxs(chunks.size()); 2745 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2746 cuIdxs[i] = cuIdx; 2747 cuIdx += chunks[i].compilationUnits.size(); 2748 } 2749 2750 // The number of symbols we will handle in this function is of the order 2751 // of millions for very large executables, so we use multi-threading to 2752 // speed it up. 2753 size_t numShards = 32; 2754 size_t concurrency = 1; 2755 if (threadsEnabled) 2756 concurrency = 2757 std::min<size_t>(PowerOf2Floor(hardware_concurrency()), numShards); 2758 2759 // A sharded map to uniquify symbols by name. 2760 std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards); 2761 size_t shift = 32 - countTrailingZeros(numShards); 2762 2763 // Instantiate GdbSymbols while uniqufying them by name. 2764 std::vector<std::vector<GdbSymbol>> symbols(numShards); 2765 parallelForEachN(0, concurrency, [&](size_t threadId) { 2766 uint32_t i = 0; 2767 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2768 for (const NameAttrEntry &ent : entries) { 2769 size_t shardId = ent.name.hash() >> shift; 2770 if ((shardId & (concurrency - 1)) != threadId) 2771 continue; 2772 2773 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2774 size_t &idx = map[shardId][ent.name]; 2775 if (idx) { 2776 symbols[shardId][idx - 1].cuVector.push_back(v); 2777 continue; 2778 } 2779 2780 idx = symbols[shardId].size() + 1; 2781 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2782 } 2783 ++i; 2784 } 2785 }); 2786 2787 size_t numSymbols = 0; 2788 for (ArrayRef<GdbSymbol> v : symbols) 2789 numSymbols += v.size(); 2790 2791 // The return type is a flattened vector, so we'll copy each vector 2792 // contents to Ret. 2793 std::vector<GdbSymbol> ret; 2794 ret.reserve(numSymbols); 2795 for (std::vector<GdbSymbol> &vec : symbols) 2796 for (GdbSymbol &sym : vec) 2797 ret.push_back(std::move(sym)); 2798 2799 // CU vectors and symbol names are adjacent in the output file. 2800 // We can compute their offsets in the output file now. 2801 size_t off = 0; 2802 for (GdbSymbol &sym : ret) { 2803 sym.cuVectorOff = off; 2804 off += (sym.cuVector.size() + 1) * 4; 2805 } 2806 for (GdbSymbol &sym : ret) { 2807 sym.nameOff = off; 2808 off += sym.name.size() + 1; 2809 } 2810 2811 return ret; 2812 } 2813 2814 // Returns a newly-created .gdb_index section. 2815 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2816 std::vector<InputSection *> sections = getDebugInfoSections(); 2817 2818 // .debug_gnu_pub{names,types} are useless in executables. 2819 // They are present in input object files solely for creating 2820 // a .gdb_index. So we can remove them from the output. 2821 for (InputSectionBase *s : inputSections) 2822 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2823 s->markDead(); 2824 2825 std::vector<GdbChunk> chunks(sections.size()); 2826 std::vector<std::vector<NameAttrEntry>> nameAttrs(sections.size()); 2827 2828 parallelForEachN(0, sections.size(), [&](size_t i) { 2829 ObjFile<ELFT> *file = sections[i]->getFile<ELFT>(); 2830 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2831 2832 chunks[i].sec = sections[i]; 2833 chunks[i].compilationUnits = readCuList(dwarf); 2834 chunks[i].addressAreas = readAddressAreas(dwarf, sections[i]); 2835 nameAttrs[i] = readPubNamesAndTypes<ELFT>( 2836 static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()), 2837 chunks[i].compilationUnits); 2838 }); 2839 2840 auto *ret = make<GdbIndexSection>(); 2841 ret->chunks = std::move(chunks); 2842 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2843 ret->initOutputSize(); 2844 return ret; 2845 } 2846 2847 void GdbIndexSection::writeTo(uint8_t *buf) { 2848 // Write the header. 2849 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2850 uint8_t *start = buf; 2851 hdr->version = 7; 2852 buf += sizeof(*hdr); 2853 2854 // Write the CU list. 2855 hdr->cuListOff = buf - start; 2856 for (GdbChunk &chunk : chunks) { 2857 for (CuEntry &cu : chunk.compilationUnits) { 2858 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2859 write64le(buf + 8, cu.cuLength); 2860 buf += 16; 2861 } 2862 } 2863 2864 // Write the address area. 2865 hdr->cuTypesOff = buf - start; 2866 hdr->addressAreaOff = buf - start; 2867 uint32_t cuOff = 0; 2868 for (GdbChunk &chunk : chunks) { 2869 for (AddressEntry &e : chunk.addressAreas) { 2870 uint64_t baseAddr = e.section->getVA(0); 2871 write64le(buf, baseAddr + e.lowAddress); 2872 write64le(buf + 8, baseAddr + e.highAddress); 2873 write32le(buf + 16, e.cuIndex + cuOff); 2874 buf += 20; 2875 } 2876 cuOff += chunk.compilationUnits.size(); 2877 } 2878 2879 // Write the on-disk open-addressing hash table containing symbols. 2880 hdr->symtabOff = buf - start; 2881 size_t symtabSize = computeSymtabSize(); 2882 uint32_t mask = symtabSize - 1; 2883 2884 for (GdbSymbol &sym : symbols) { 2885 uint32_t h = sym.name.hash(); 2886 uint32_t i = h & mask; 2887 uint32_t step = ((h * 17) & mask) | 1; 2888 2889 while (read32le(buf + i * 8)) 2890 i = (i + step) & mask; 2891 2892 write32le(buf + i * 8, sym.nameOff); 2893 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2894 } 2895 2896 buf += symtabSize * 8; 2897 2898 // Write the string pool. 2899 hdr->constantPoolOff = buf - start; 2900 parallelForEach(symbols, [&](GdbSymbol &sym) { 2901 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 2902 }); 2903 2904 // Write the CU vectors. 2905 for (GdbSymbol &sym : symbols) { 2906 write32le(buf, sym.cuVector.size()); 2907 buf += 4; 2908 for (uint32_t val : sym.cuVector) { 2909 write32le(buf, val); 2910 buf += 4; 2911 } 2912 } 2913 } 2914 2915 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 2916 2917 EhFrameHeader::EhFrameHeader() 2918 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 2919 2920 void EhFrameHeader::writeTo(uint8_t *buf) { 2921 // Unlike most sections, the EhFrameHeader section is written while writing 2922 // another section, namely EhFrameSection, which calls the write() function 2923 // below from its writeTo() function. This is necessary because the contents 2924 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 2925 // don't know which order the sections will be written in. 2926 } 2927 2928 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 2929 // Each entry of the search table consists of two values, 2930 // the starting PC from where FDEs covers, and the FDE's address. 2931 // It is sorted by PC. 2932 void EhFrameHeader::write() { 2933 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 2934 using FdeData = EhFrameSection::FdeData; 2935 2936 std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData(); 2937 2938 buf[0] = 1; 2939 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 2940 buf[2] = DW_EH_PE_udata4; 2941 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 2942 write32(buf + 4, 2943 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 2944 write32(buf + 8, fdes.size()); 2945 buf += 12; 2946 2947 for (FdeData &fde : fdes) { 2948 write32(buf, fde.pcRel); 2949 write32(buf + 4, fde.fdeVARel); 2950 buf += 8; 2951 } 2952 } 2953 2954 size_t EhFrameHeader::getSize() const { 2955 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 2956 return 12 + getPartition().ehFrame->numFdes * 8; 2957 } 2958 2959 bool EhFrameHeader::isNeeded() const { 2960 return isLive() && getPartition().ehFrame->isNeeded(); 2961 } 2962 2963 VersionDefinitionSection::VersionDefinitionSection() 2964 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 2965 ".gnu.version_d") {} 2966 2967 StringRef VersionDefinitionSection::getFileDefName() { 2968 if (!getPartition().name.empty()) 2969 return getPartition().name; 2970 if (!config->soName.empty()) 2971 return config->soName; 2972 return config->outputFile; 2973 } 2974 2975 void VersionDefinitionSection::finalizeContents() { 2976 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 2977 for (const VersionDefinition &v : namedVersionDefs()) 2978 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 2979 2980 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 2981 getParent()->link = sec->sectionIndex; 2982 2983 // sh_info should be set to the number of definitions. This fact is missed in 2984 // documentation, but confirmed by binutils community: 2985 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 2986 getParent()->info = getVerDefNum(); 2987 } 2988 2989 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 2990 StringRef name, size_t nameOff) { 2991 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 2992 2993 // Write a verdef. 2994 write16(buf, 1); // vd_version 2995 write16(buf + 2, flags); // vd_flags 2996 write16(buf + 4, index); // vd_ndx 2997 write16(buf + 6, 1); // vd_cnt 2998 write32(buf + 8, hashSysV(name)); // vd_hash 2999 write32(buf + 12, 20); // vd_aux 3000 write32(buf + 16, 28); // vd_next 3001 3002 // Write a veraux. 3003 write32(buf + 20, nameOff); // vda_name 3004 write32(buf + 24, 0); // vda_next 3005 } 3006 3007 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3008 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3009 3010 auto nameOffIt = verDefNameOffs.begin(); 3011 for (const VersionDefinition &v : namedVersionDefs()) { 3012 buf += EntrySize; 3013 writeOne(buf, v.id, v.name, *nameOffIt++); 3014 } 3015 3016 // Need to terminate the last version definition. 3017 write32(buf + 16, 0); // vd_next 3018 } 3019 3020 size_t VersionDefinitionSection::getSize() const { 3021 return EntrySize * getVerDefNum(); 3022 } 3023 3024 // .gnu.version is a table where each entry is 2 byte long. 3025 VersionTableSection::VersionTableSection() 3026 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3027 ".gnu.version") { 3028 this->entsize = 2; 3029 } 3030 3031 void VersionTableSection::finalizeContents() { 3032 // At the moment of june 2016 GNU docs does not mention that sh_link field 3033 // should be set, but Sun docs do. Also readelf relies on this field. 3034 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3035 } 3036 3037 size_t VersionTableSection::getSize() const { 3038 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3039 } 3040 3041 void VersionTableSection::writeTo(uint8_t *buf) { 3042 buf += 2; 3043 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3044 write16(buf, s.sym->versionId); 3045 buf += 2; 3046 } 3047 } 3048 3049 bool VersionTableSection::isNeeded() const { 3050 return isLive() && 3051 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3052 } 3053 3054 void addVerneed(Symbol *ss) { 3055 auto &file = cast<SharedFile>(*ss->file); 3056 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3057 ss->versionId = VER_NDX_GLOBAL; 3058 return; 3059 } 3060 3061 if (file.vernauxs.empty()) 3062 file.vernauxs.resize(file.verdefs.size()); 3063 3064 // Select a version identifier for the vernaux data structure, if we haven't 3065 // already allocated one. The verdef identifiers cover the range 3066 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3067 // getVerDefNum()+1. 3068 if (file.vernauxs[ss->verdefIndex] == 0) 3069 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3070 3071 ss->versionId = file.vernauxs[ss->verdefIndex]; 3072 } 3073 3074 template <class ELFT> 3075 VersionNeedSection<ELFT>::VersionNeedSection() 3076 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3077 ".gnu.version_r") {} 3078 3079 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3080 for (SharedFile *f : sharedFiles) { 3081 if (f->vernauxs.empty()) 3082 continue; 3083 verneeds.emplace_back(); 3084 Verneed &vn = verneeds.back(); 3085 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3086 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3087 if (f->vernauxs[i] == 0) 3088 continue; 3089 auto *verdef = 3090 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3091 vn.vernauxs.push_back( 3092 {verdef->vd_hash, f->vernauxs[i], 3093 getPartition().dynStrTab->addString(f->getStringTable().data() + 3094 verdef->getAux()->vda_name)}); 3095 } 3096 } 3097 3098 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3099 getParent()->link = sec->sectionIndex; 3100 getParent()->info = verneeds.size(); 3101 } 3102 3103 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3104 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3105 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3106 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3107 3108 for (auto &vn : verneeds) { 3109 // Create an Elf_Verneed for this DSO. 3110 verneed->vn_version = 1; 3111 verneed->vn_cnt = vn.vernauxs.size(); 3112 verneed->vn_file = vn.nameStrTab; 3113 verneed->vn_aux = 3114 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3115 verneed->vn_next = sizeof(Elf_Verneed); 3116 ++verneed; 3117 3118 // Create the Elf_Vernauxs for this Elf_Verneed. 3119 for (auto &vna : vn.vernauxs) { 3120 vernaux->vna_hash = vna.hash; 3121 vernaux->vna_flags = 0; 3122 vernaux->vna_other = vna.verneedIndex; 3123 vernaux->vna_name = vna.nameStrTab; 3124 vernaux->vna_next = sizeof(Elf_Vernaux); 3125 ++vernaux; 3126 } 3127 3128 vernaux[-1].vna_next = 0; 3129 } 3130 verneed[-1].vn_next = 0; 3131 } 3132 3133 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3134 return verneeds.size() * sizeof(Elf_Verneed) + 3135 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3136 } 3137 3138 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3139 return isLive() && SharedFile::vernauxNum != 0; 3140 } 3141 3142 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3143 ms->parent = this; 3144 sections.push_back(ms); 3145 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3146 alignment = std::max(alignment, ms->alignment); 3147 } 3148 3149 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3150 uint64_t flags, uint32_t alignment) 3151 : MergeSyntheticSection(name, type, flags, alignment), 3152 builder(StringTableBuilder::RAW, alignment) {} 3153 3154 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3155 3156 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3157 3158 void MergeTailSection::finalizeContents() { 3159 // Add all string pieces to the string table builder to create section 3160 // contents. 3161 for (MergeInputSection *sec : sections) 3162 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3163 if (sec->pieces[i].live) 3164 builder.add(sec->getData(i)); 3165 3166 // Fix the string table content. After this, the contents will never change. 3167 builder.finalize(); 3168 3169 // finalize() fixed tail-optimized strings, so we can now get 3170 // offsets of strings. Get an offset for each string and save it 3171 // to a corresponding SectionPiece for easy access. 3172 for (MergeInputSection *sec : sections) 3173 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3174 if (sec->pieces[i].live) 3175 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3176 } 3177 3178 void MergeNoTailSection::writeTo(uint8_t *buf) { 3179 for (size_t i = 0; i < numShards; ++i) 3180 shards[i].write(buf + shardOffsets[i]); 3181 } 3182 3183 // This function is very hot (i.e. it can take several seconds to finish) 3184 // because sometimes the number of inputs is in an order of magnitude of 3185 // millions. So, we use multi-threading. 3186 // 3187 // For any strings S and T, we know S is not mergeable with T if S's hash 3188 // value is different from T's. If that's the case, we can safely put S and 3189 // T into different string builders without worrying about merge misses. 3190 // We do it in parallel. 3191 void MergeNoTailSection::finalizeContents() { 3192 // Initializes string table builders. 3193 for (size_t i = 0; i < numShards; ++i) 3194 shards.emplace_back(StringTableBuilder::RAW, alignment); 3195 3196 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3197 // operations in the following tight loop. 3198 size_t concurrency = 1; 3199 if (threadsEnabled) 3200 concurrency = 3201 std::min<size_t>(PowerOf2Floor(hardware_concurrency()), numShards); 3202 3203 // Add section pieces to the builders. 3204 parallelForEachN(0, concurrency, [&](size_t threadId) { 3205 for (MergeInputSection *sec : sections) { 3206 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3207 if (!sec->pieces[i].live) 3208 continue; 3209 size_t shardId = getShardId(sec->pieces[i].hash); 3210 if ((shardId & (concurrency - 1)) == threadId) 3211 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3212 } 3213 } 3214 }); 3215 3216 // Compute an in-section offset for each shard. 3217 size_t off = 0; 3218 for (size_t i = 0; i < numShards; ++i) { 3219 shards[i].finalizeInOrder(); 3220 if (shards[i].getSize() > 0) 3221 off = alignTo(off, alignment); 3222 shardOffsets[i] = off; 3223 off += shards[i].getSize(); 3224 } 3225 size = off; 3226 3227 // So far, section pieces have offsets from beginning of shards, but 3228 // we want offsets from beginning of the whole section. Fix them. 3229 parallelForEach(sections, [&](MergeInputSection *sec) { 3230 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3231 if (sec->pieces[i].live) 3232 sec->pieces[i].outputOff += 3233 shardOffsets[getShardId(sec->pieces[i].hash)]; 3234 }); 3235 } 3236 3237 MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type, 3238 uint64_t flags, 3239 uint32_t alignment) { 3240 bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2; 3241 if (shouldTailMerge) 3242 return make<MergeTailSection>(name, type, flags, alignment); 3243 return make<MergeNoTailSection>(name, type, flags, alignment); 3244 } 3245 3246 template <class ELFT> void splitSections() { 3247 // splitIntoPieces needs to be called on each MergeInputSection 3248 // before calling finalizeContents(). 3249 parallelForEach(inputSections, [](InputSectionBase *sec) { 3250 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3251 s->splitIntoPieces(); 3252 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3253 eh->split<ELFT>(); 3254 }); 3255 } 3256 3257 MipsRldMapSection::MipsRldMapSection() 3258 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3259 ".rld_map") {} 3260 3261 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3262 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3263 config->wordsize, ".ARM.exidx") {} 3264 3265 static InputSection *findExidxSection(InputSection *isec) { 3266 for (InputSection *d : isec->dependentSections) 3267 if (d->type == SHT_ARM_EXIDX) 3268 return d; 3269 return nullptr; 3270 } 3271 3272 static bool isValidExidxSectionDep(InputSection *isec) { 3273 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3274 isec->getSize() > 0; 3275 } 3276 3277 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3278 if (isec->type == SHT_ARM_EXIDX) { 3279 if (InputSection *dep = isec->getLinkOrderDep()) 3280 if (isValidExidxSectionDep(dep)) 3281 exidxSections.push_back(isec); 3282 return true; 3283 } 3284 3285 if (isValidExidxSectionDep(isec)) { 3286 executableSections.push_back(isec); 3287 return false; 3288 } 3289 3290 // FIXME: we do not output a relocation section when --emit-relocs is used 3291 // as we do not have relocation sections for linker generated table entries 3292 // and we would have to erase at a late stage relocations from merged entries. 3293 // Given that exception tables are already position independent and a binary 3294 // analyzer could derive the relocations we choose to erase the relocations. 3295 if (config->emitRelocs && isec->type == SHT_REL) 3296 if (InputSectionBase *ex = isec->getRelocatedSection()) 3297 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3298 return true; 3299 3300 return false; 3301 } 3302 3303 // References to .ARM.Extab Sections have bit 31 clear and are not the 3304 // special EXIDX_CANTUNWIND bit-pattern. 3305 static bool isExtabRef(uint32_t unwind) { 3306 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3307 } 3308 3309 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3310 // section Prev, where Cur follows Prev in the table. This can be done if the 3311 // unwinding instructions in Cur are identical to Prev. Linker generated 3312 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3313 // InputSection. 3314 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3315 3316 struct ExidxEntry { 3317 ulittle32_t fn; 3318 ulittle32_t unwind; 3319 }; 3320 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3321 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3322 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3323 if (prev) 3324 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3325 if (isExtabRef(prevEntry.unwind)) 3326 return false; 3327 3328 // We consider the unwind instructions of an .ARM.exidx table entry 3329 // a duplicate if the previous unwind instructions if: 3330 // - Both are the special EXIDX_CANTUNWIND. 3331 // - Both are the same inline unwind instructions. 3332 // We do not attempt to follow and check links into .ARM.extab tables as 3333 // consecutive identical entries are rare and the effort to check that they 3334 // are identical is high. 3335 3336 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3337 if (cur == nullptr) 3338 return prevEntry.unwind == 1; 3339 3340 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3341 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3342 return false; 3343 3344 // All table entries in this .ARM.exidx Section can be merged into the 3345 // previous Section. 3346 return true; 3347 } 3348 3349 // The .ARM.exidx table must be sorted in ascending order of the address of the 3350 // functions the table describes. Optionally duplicate adjacent table entries 3351 // can be removed. At the end of the function the executableSections must be 3352 // sorted in ascending order of address, Sentinel is set to the InputSection 3353 // with the highest address and any InputSections that have mergeable 3354 // .ARM.exidx table entries are removed from it. 3355 void ARMExidxSyntheticSection::finalizeContents() { 3356 // The executableSections and exidxSections that we use to derive the final 3357 // contents of this SyntheticSection are populated before 3358 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3359 // ICF may remove executable InputSections and their dependent .ARM.exidx 3360 // section that we recorded earlier. 3361 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3362 llvm::erase_if(executableSections, isDiscarded); 3363 llvm::erase_if(exidxSections, isDiscarded); 3364 3365 // Sort the executable sections that may or may not have associated 3366 // .ARM.exidx sections by order of ascending address. This requires the 3367 // relative positions of InputSections to be known. 3368 auto compareByFilePosition = [](const InputSection *a, 3369 const InputSection *b) { 3370 OutputSection *aOut = a->getParent(); 3371 OutputSection *bOut = b->getParent(); 3372 3373 if (aOut != bOut) 3374 return aOut->sectionIndex < bOut->sectionIndex; 3375 return a->outSecOff < b->outSecOff; 3376 }; 3377 llvm::stable_sort(executableSections, compareByFilePosition); 3378 sentinel = executableSections.back(); 3379 // Optionally merge adjacent duplicate entries. 3380 if (config->mergeArmExidx) { 3381 std::vector<InputSection *> selectedSections; 3382 selectedSections.reserve(executableSections.size()); 3383 selectedSections.push_back(executableSections[0]); 3384 size_t prev = 0; 3385 for (size_t i = 1; i < executableSections.size(); ++i) { 3386 InputSection *ex1 = findExidxSection(executableSections[prev]); 3387 InputSection *ex2 = findExidxSection(executableSections[i]); 3388 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3389 selectedSections.push_back(executableSections[i]); 3390 prev = i; 3391 } 3392 } 3393 executableSections = std::move(selectedSections); 3394 } 3395 3396 size_t offset = 0; 3397 size = 0; 3398 for (InputSection *isec : executableSections) { 3399 if (InputSection *d = findExidxSection(isec)) { 3400 d->outSecOff = offset; 3401 d->parent = getParent(); 3402 offset += d->getSize(); 3403 } else { 3404 offset += 8; 3405 } 3406 } 3407 // Size includes Sentinel. 3408 size = offset + 8; 3409 } 3410 3411 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3412 return executableSections.front(); 3413 } 3414 3415 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3416 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3417 // We write the .ARM.exidx section contents and apply its relocations. 3418 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3419 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3420 // start of the InputSection as the purpose of the linker generated 3421 // section is to terminate the address range of the previous entry. 3422 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3423 // the table to terminate the address range of the final entry. 3424 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3425 3426 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3427 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3428 3429 uint64_t offset = 0; 3430 for (InputSection *isec : executableSections) { 3431 assert(isec->getParent() != nullptr); 3432 if (InputSection *d = findExidxSection(isec)) { 3433 memcpy(buf + offset, d->data().data(), d->data().size()); 3434 d->relocateAlloc(buf, buf + d->getSize()); 3435 offset += d->getSize(); 3436 } else { 3437 // A Linker generated CANTUNWIND section. 3438 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3439 uint64_t s = isec->getVA(); 3440 uint64_t p = getVA() + offset; 3441 target->relocateOne(buf + offset, R_ARM_PREL31, s - p); 3442 offset += 8; 3443 } 3444 } 3445 // Write Sentinel. 3446 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3447 uint64_t s = sentinel->getVA(sentinel->getSize()); 3448 uint64_t p = getVA() + offset; 3449 target->relocateOne(buf + offset, R_ARM_PREL31, s - p); 3450 assert(size == offset + 8); 3451 } 3452 3453 bool ARMExidxSyntheticSection::isNeeded() const { 3454 return llvm::find_if(exidxSections, [](InputSection *isec) { 3455 return isec->isLive(); 3456 }) != exidxSections.end(); 3457 } 3458 3459 bool ARMExidxSyntheticSection::classof(const SectionBase *d) { 3460 return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX; 3461 } 3462 3463 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3464 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, 3465 ".text.thunk") { 3466 this->parent = os; 3467 this->outSecOff = off; 3468 } 3469 3470 size_t ThunkSection::getSize() const { 3471 if (roundUpSizeForErrata) 3472 return alignTo(size, 4096); 3473 return size; 3474 } 3475 3476 void ThunkSection::addThunk(Thunk *t) { 3477 thunks.push_back(t); 3478 t->addSymbols(*this); 3479 } 3480 3481 void ThunkSection::writeTo(uint8_t *buf) { 3482 for (Thunk *t : thunks) 3483 t->writeTo(buf + t->offset); 3484 } 3485 3486 InputSection *ThunkSection::getTargetInputSection() const { 3487 if (thunks.empty()) 3488 return nullptr; 3489 const Thunk *t = thunks.front(); 3490 return t->getTargetInputSection(); 3491 } 3492 3493 bool ThunkSection::assignOffsets() { 3494 uint64_t off = 0; 3495 for (Thunk *t : thunks) { 3496 off = alignTo(off, t->alignment); 3497 t->setOffset(off); 3498 uint32_t size = t->size(); 3499 t->getThunkTargetSym()->size = size; 3500 off += size; 3501 } 3502 bool changed = off != size; 3503 size = off; 3504 return changed; 3505 } 3506 3507 PPC32Got2Section::PPC32Got2Section() 3508 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3509 3510 bool PPC32Got2Section::isNeeded() const { 3511 // See the comment below. This is not needed if there is no other 3512 // InputSection. 3513 for (BaseCommand *base : getParent()->sectionCommands) 3514 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 3515 for (InputSection *isec : isd->sections) 3516 if (isec != this) 3517 return true; 3518 return false; 3519 } 3520 3521 void PPC32Got2Section::finalizeContents() { 3522 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3523 // .got2 . This function computes outSecOff of each .got2 to be used in 3524 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3525 // to collect input sections named ".got2". 3526 uint32_t offset = 0; 3527 for (BaseCommand *base : getParent()->sectionCommands) 3528 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 3529 for (InputSection *isec : isd->sections) { 3530 if (isec == this) 3531 continue; 3532 isec->file->ppc32Got2OutSecOff = offset; 3533 offset += (uint32_t)isec->getSize(); 3534 } 3535 } 3536 } 3537 3538 // If linking position-dependent code then the table will store the addresses 3539 // directly in the binary so the section has type SHT_PROGBITS. If linking 3540 // position-independent code the section has type SHT_NOBITS since it will be 3541 // allocated and filled in by the dynamic linker. 3542 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3543 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3544 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3545 ".branch_lt") {} 3546 3547 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3548 int64_t addend) { 3549 return getVA() + entry_index.find({sym, addend})->second * 8; 3550 } 3551 3552 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3553 int64_t addend) { 3554 auto res = 3555 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3556 if (!res.second) 3557 return None; 3558 entries.emplace_back(sym, addend); 3559 return res.first->second; 3560 } 3561 3562 size_t PPC64LongBranchTargetSection::getSize() const { 3563 return entries.size() * 8; 3564 } 3565 3566 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3567 // If linking non-pic we have the final addresses of the targets and they get 3568 // written to the table directly. For pic the dynamic linker will allocate 3569 // the section and fill it it. 3570 if (config->isPic) 3571 return; 3572 3573 for (auto entry : entries) { 3574 const Symbol *sym = entry.first; 3575 int64_t addend = entry.second; 3576 assert(sym->getVA()); 3577 // Need calls to branch to the local entry-point since a long-branch 3578 // must be a local-call. 3579 write64(buf, sym->getVA(addend) + 3580 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3581 buf += 8; 3582 } 3583 } 3584 3585 bool PPC64LongBranchTargetSection::isNeeded() const { 3586 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3587 // is too early to determine if this section will be empty or not. We need 3588 // Finalized to keep the section alive until after thunk creation. Finalized 3589 // only gets set to true once `finalizeSections()` is called after thunk 3590 // creation. Because of this, if we don't create any long-branch thunks we end 3591 // up with an empty .branch_lt section in the binary. 3592 return !finalized || !entries.empty(); 3593 } 3594 3595 static uint8_t getAbiVersion() { 3596 // MIPS non-PIC executable gets ABI version 1. 3597 if (config->emachine == EM_MIPS) { 3598 if (!config->isPic && !config->relocatable && 3599 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3600 return 1; 3601 return 0; 3602 } 3603 3604 if (config->emachine == EM_AMDGPU) { 3605 uint8_t ver = objectFiles[0]->abiVersion; 3606 for (InputFile *file : makeArrayRef(objectFiles).slice(1)) 3607 if (file->abiVersion != ver) 3608 error("incompatible ABI version: " + toString(file)); 3609 return ver; 3610 } 3611 3612 return 0; 3613 } 3614 3615 template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part) { 3616 // For executable segments, the trap instructions are written before writing 3617 // the header. Setting Elf header bytes to zero ensures that any unused bytes 3618 // in header are zero-cleared, instead of having trap instructions. 3619 memset(buf, 0, sizeof(typename ELFT::Ehdr)); 3620 memcpy(buf, "\177ELF", 4); 3621 3622 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3623 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3624 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3625 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3626 eHdr->e_ident[EI_OSABI] = config->osabi; 3627 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3628 eHdr->e_machine = config->emachine; 3629 eHdr->e_version = EV_CURRENT; 3630 eHdr->e_flags = config->eflags; 3631 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3632 eHdr->e_phnum = part.phdrs.size(); 3633 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3634 3635 if (!config->relocatable) { 3636 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3637 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3638 } 3639 } 3640 3641 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part) { 3642 // Write the program header table. 3643 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3644 for (PhdrEntry *p : part.phdrs) { 3645 hBuf->p_type = p->p_type; 3646 hBuf->p_flags = p->p_flags; 3647 hBuf->p_offset = p->p_offset; 3648 hBuf->p_vaddr = p->p_vaddr; 3649 hBuf->p_paddr = p->p_paddr; 3650 hBuf->p_filesz = p->p_filesz; 3651 hBuf->p_memsz = p->p_memsz; 3652 hBuf->p_align = p->p_align; 3653 ++hBuf; 3654 } 3655 } 3656 3657 template <typename ELFT> 3658 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3659 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3660 3661 template <typename ELFT> 3662 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3663 return sizeof(typename ELFT::Ehdr); 3664 } 3665 3666 template <typename ELFT> 3667 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3668 writeEhdr<ELFT>(buf, getPartition()); 3669 3670 // Loadable partitions are always ET_DYN. 3671 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3672 eHdr->e_type = ET_DYN; 3673 } 3674 3675 template <typename ELFT> 3676 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3677 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3678 3679 template <typename ELFT> 3680 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3681 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3682 } 3683 3684 template <typename ELFT> 3685 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3686 writePhdrs<ELFT>(buf, getPartition()); 3687 } 3688 3689 PartitionIndexSection::PartitionIndexSection() 3690 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3691 3692 size_t PartitionIndexSection::getSize() const { 3693 return 12 * (partitions.size() - 1); 3694 } 3695 3696 void PartitionIndexSection::finalizeContents() { 3697 for (size_t i = 1; i != partitions.size(); ++i) 3698 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3699 } 3700 3701 void PartitionIndexSection::writeTo(uint8_t *buf) { 3702 uint64_t va = getVA(); 3703 for (size_t i = 1; i != partitions.size(); ++i) { 3704 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3705 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3706 3707 SyntheticSection *next = 3708 i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader; 3709 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3710 3711 va += 12; 3712 buf += 12; 3713 } 3714 } 3715 3716 InStruct in; 3717 3718 std::vector<Partition> partitions; 3719 Partition *mainPart; 3720 3721 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3722 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3723 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3724 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3725 3726 template void splitSections<ELF32LE>(); 3727 template void splitSections<ELF32BE>(); 3728 template void splitSections<ELF64LE>(); 3729 template void splitSections<ELF64BE>(); 3730 3731 template class MipsAbiFlagsSection<ELF32LE>; 3732 template class MipsAbiFlagsSection<ELF32BE>; 3733 template class MipsAbiFlagsSection<ELF64LE>; 3734 template class MipsAbiFlagsSection<ELF64BE>; 3735 3736 template class MipsOptionsSection<ELF32LE>; 3737 template class MipsOptionsSection<ELF32BE>; 3738 template class MipsOptionsSection<ELF64LE>; 3739 template class MipsOptionsSection<ELF64BE>; 3740 3741 template class MipsReginfoSection<ELF32LE>; 3742 template class MipsReginfoSection<ELF32BE>; 3743 template class MipsReginfoSection<ELF64LE>; 3744 template class MipsReginfoSection<ELF64BE>; 3745 3746 template class DynamicSection<ELF32LE>; 3747 template class DynamicSection<ELF32BE>; 3748 template class DynamicSection<ELF64LE>; 3749 template class DynamicSection<ELF64BE>; 3750 3751 template class RelocationSection<ELF32LE>; 3752 template class RelocationSection<ELF32BE>; 3753 template class RelocationSection<ELF64LE>; 3754 template class RelocationSection<ELF64BE>; 3755 3756 template class AndroidPackedRelocationSection<ELF32LE>; 3757 template class AndroidPackedRelocationSection<ELF32BE>; 3758 template class AndroidPackedRelocationSection<ELF64LE>; 3759 template class AndroidPackedRelocationSection<ELF64BE>; 3760 3761 template class RelrSection<ELF32LE>; 3762 template class RelrSection<ELF32BE>; 3763 template class RelrSection<ELF64LE>; 3764 template class RelrSection<ELF64BE>; 3765 3766 template class SymbolTableSection<ELF32LE>; 3767 template class SymbolTableSection<ELF32BE>; 3768 template class SymbolTableSection<ELF64LE>; 3769 template class SymbolTableSection<ELF64BE>; 3770 3771 template class VersionNeedSection<ELF32LE>; 3772 template class VersionNeedSection<ELF32BE>; 3773 template class VersionNeedSection<ELF64LE>; 3774 template class VersionNeedSection<ELF64BE>; 3775 3776 template void writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3777 template void writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3778 template void writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3779 template void writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3780 3781 template void writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3782 template void writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3783 template void writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3784 template void writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3785 3786 template class PartitionElfHeaderSection<ELF32LE>; 3787 template class PartitionElfHeaderSection<ELF32BE>; 3788 template class PartitionElfHeaderSection<ELF64LE>; 3789 template class PartitionElfHeaderSection<ELF64BE>; 3790 3791 template class PartitionProgramHeadersSection<ELF32LE>; 3792 template class PartitionProgramHeadersSection<ELF32BE>; 3793 template class PartitionProgramHeadersSection<ELF64LE>; 3794 template class PartitionProgramHeadersSection<ELF64BE>; 3795 3796 } // namespace elf 3797 } // namespace lld 3798