1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "InputFiles.h" 19 #include "LinkerScript.h" 20 #include "OutputSections.h" 21 #include "SymbolTable.h" 22 #include "Symbols.h" 23 #include "Target.h" 24 #include "Writer.h" 25 #include "lld/Common/DWARF.h" 26 #include "lld/Common/ErrorHandler.h" 27 #include "lld/Common/Memory.h" 28 #include "lld/Common/Strings.h" 29 #include "lld/Common/Version.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 34 #include "llvm/Object/ELFObjectFile.h" 35 #include "llvm/Support/Compression.h" 36 #include "llvm/Support/Endian.h" 37 #include "llvm/Support/LEB128.h" 38 #include "llvm/Support/MD5.h" 39 #include "llvm/Support/Parallel.h" 40 #include "llvm/Support/TimeProfiler.h" 41 #include <cstdlib> 42 #include <thread> 43 44 using namespace llvm; 45 using namespace llvm::dwarf; 46 using namespace llvm::ELF; 47 using namespace llvm::object; 48 using namespace llvm::support; 49 using namespace lld; 50 using namespace lld::elf; 51 52 using llvm::support::endian::read32le; 53 using llvm::support::endian::write32le; 54 using llvm::support::endian::write64le; 55 56 constexpr size_t MergeNoTailSection::numShards; 57 58 static uint64_t readUint(uint8_t *buf) { 59 return config->is64 ? read64(buf) : read32(buf); 60 } 61 62 static void writeUint(uint8_t *buf, uint64_t val) { 63 if (config->is64) 64 write64(buf, val); 65 else 66 write32(buf, val); 67 } 68 69 // Returns an LLD version string. 70 static ArrayRef<uint8_t> getVersion() { 71 // Check LLD_VERSION first for ease of testing. 72 // You can get consistent output by using the environment variable. 73 // This is only for testing. 74 StringRef s = getenv("LLD_VERSION"); 75 if (s.empty()) 76 s = saver.save(Twine("Linker: ") + getLLDVersion()); 77 78 // +1 to include the terminating '\0'. 79 return {(const uint8_t *)s.data(), s.size() + 1}; 80 } 81 82 // Creates a .comment section containing LLD version info. 83 // With this feature, you can identify LLD-generated binaries easily 84 // by "readelf --string-dump .comment <file>". 85 // The returned object is a mergeable string section. 86 MergeInputSection *elf::createCommentSection() { 87 return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 88 getVersion(), ".comment"); 89 } 90 91 // .MIPS.abiflags section. 92 template <class ELFT> 93 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 94 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 95 flags(flags) { 96 this->entsize = sizeof(Elf_Mips_ABIFlags); 97 } 98 99 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 100 memcpy(buf, &flags, sizeof(flags)); 101 } 102 103 template <class ELFT> 104 MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() { 105 Elf_Mips_ABIFlags flags = {}; 106 bool create = false; 107 108 for (InputSectionBase *sec : inputSections) { 109 if (sec->type != SHT_MIPS_ABIFLAGS) 110 continue; 111 sec->markDead(); 112 create = true; 113 114 std::string filename = toString(sec->file); 115 const size_t size = sec->data().size(); 116 // Older version of BFD (such as the default FreeBSD linker) concatenate 117 // .MIPS.abiflags instead of merging. To allow for this case (or potential 118 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 119 if (size < sizeof(Elf_Mips_ABIFlags)) { 120 error(filename + ": invalid size of .MIPS.abiflags section: got " + 121 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 122 return nullptr; 123 } 124 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data()); 125 if (s->version != 0) { 126 error(filename + ": unexpected .MIPS.abiflags version " + 127 Twine(s->version)); 128 return nullptr; 129 } 130 131 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 132 // select the highest number of ISA/Rev/Ext. 133 flags.isa_level = std::max(flags.isa_level, s->isa_level); 134 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 135 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 136 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 137 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 138 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 139 flags.ases |= s->ases; 140 flags.flags1 |= s->flags1; 141 flags.flags2 |= s->flags2; 142 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 143 }; 144 145 if (create) 146 return make<MipsAbiFlagsSection<ELFT>>(flags); 147 return nullptr; 148 } 149 150 // .MIPS.options section. 151 template <class ELFT> 152 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 153 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 154 reginfo(reginfo) { 155 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 156 } 157 158 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 159 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 160 options->kind = ODK_REGINFO; 161 options->size = getSize(); 162 163 if (!config->relocatable) 164 reginfo.ri_gp_value = in.mipsGot->getGp(); 165 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 166 } 167 168 template <class ELFT> 169 MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() { 170 // N64 ABI only. 171 if (!ELFT::Is64Bits) 172 return nullptr; 173 174 std::vector<InputSectionBase *> sections; 175 for (InputSectionBase *sec : inputSections) 176 if (sec->type == SHT_MIPS_OPTIONS) 177 sections.push_back(sec); 178 179 if (sections.empty()) 180 return nullptr; 181 182 Elf_Mips_RegInfo reginfo = {}; 183 for (InputSectionBase *sec : sections) { 184 sec->markDead(); 185 186 std::string filename = toString(sec->file); 187 ArrayRef<uint8_t> d = sec->data(); 188 189 while (!d.empty()) { 190 if (d.size() < sizeof(Elf_Mips_Options)) { 191 error(filename + ": invalid size of .MIPS.options section"); 192 break; 193 } 194 195 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 196 if (opt->kind == ODK_REGINFO) { 197 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 198 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 199 break; 200 } 201 202 if (!opt->size) 203 fatal(filename + ": zero option descriptor size"); 204 d = d.slice(opt->size); 205 } 206 }; 207 208 return make<MipsOptionsSection<ELFT>>(reginfo); 209 } 210 211 // MIPS .reginfo section. 212 template <class ELFT> 213 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 214 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 215 reginfo(reginfo) { 216 this->entsize = sizeof(Elf_Mips_RegInfo); 217 } 218 219 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 220 if (!config->relocatable) 221 reginfo.ri_gp_value = in.mipsGot->getGp(); 222 memcpy(buf, ®info, sizeof(reginfo)); 223 } 224 225 template <class ELFT> 226 MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() { 227 // Section should be alive for O32 and N32 ABIs only. 228 if (ELFT::Is64Bits) 229 return nullptr; 230 231 std::vector<InputSectionBase *> sections; 232 for (InputSectionBase *sec : inputSections) 233 if (sec->type == SHT_MIPS_REGINFO) 234 sections.push_back(sec); 235 236 if (sections.empty()) 237 return nullptr; 238 239 Elf_Mips_RegInfo reginfo = {}; 240 for (InputSectionBase *sec : sections) { 241 sec->markDead(); 242 243 if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) { 244 error(toString(sec->file) + ": invalid size of .reginfo section"); 245 return nullptr; 246 } 247 248 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data()); 249 reginfo.ri_gprmask |= r->ri_gprmask; 250 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 251 }; 252 253 return make<MipsReginfoSection<ELFT>>(reginfo); 254 } 255 256 InputSection *elf::createInterpSection() { 257 // StringSaver guarantees that the returned string ends with '\0'. 258 StringRef s = saver.save(config->dynamicLinker); 259 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 260 261 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 262 ".interp"); 263 } 264 265 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 266 uint64_t size, InputSectionBase §ion) { 267 auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type, 268 value, size, §ion); 269 if (in.symTab) 270 in.symTab->addSymbol(s); 271 return s; 272 } 273 274 static size_t getHashSize() { 275 switch (config->buildId) { 276 case BuildIdKind::Fast: 277 return 8; 278 case BuildIdKind::Md5: 279 case BuildIdKind::Uuid: 280 return 16; 281 case BuildIdKind::Sha1: 282 return 20; 283 case BuildIdKind::Hexstring: 284 return config->buildIdVector.size(); 285 default: 286 llvm_unreachable("unknown BuildIdKind"); 287 } 288 } 289 290 // This class represents a linker-synthesized .note.gnu.property section. 291 // 292 // In x86 and AArch64, object files may contain feature flags indicating the 293 // features that they have used. The flags are stored in a .note.gnu.property 294 // section. 295 // 296 // lld reads the sections from input files and merges them by computing AND of 297 // the flags. The result is written as a new .note.gnu.property section. 298 // 299 // If the flag is zero (which indicates that the intersection of the feature 300 // sets is empty, or some input files didn't have .note.gnu.property sections), 301 // we don't create this section. 302 GnuPropertySection::GnuPropertySection() 303 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 304 config->wordsize, ".note.gnu.property") {} 305 306 void GnuPropertySection::writeTo(uint8_t *buf) { 307 uint32_t featureAndType = config->emachine == EM_AARCH64 308 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 309 : GNU_PROPERTY_X86_FEATURE_1_AND; 310 311 write32(buf, 4); // Name size 312 write32(buf + 4, config->is64 ? 16 : 12); // Content size 313 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 314 memcpy(buf + 12, "GNU", 4); // Name string 315 write32(buf + 16, featureAndType); // Feature type 316 write32(buf + 20, 4); // Feature size 317 write32(buf + 24, config->andFeatures); // Feature flags 318 if (config->is64) 319 write32(buf + 28, 0); // Padding 320 } 321 322 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 323 324 BuildIdSection::BuildIdSection() 325 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 326 hashSize(getHashSize()) {} 327 328 void BuildIdSection::writeTo(uint8_t *buf) { 329 write32(buf, 4); // Name size 330 write32(buf + 4, hashSize); // Content size 331 write32(buf + 8, NT_GNU_BUILD_ID); // Type 332 memcpy(buf + 12, "GNU", 4); // Name string 333 hashBuf = buf + 16; 334 } 335 336 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 337 assert(buf.size() == hashSize); 338 memcpy(hashBuf, buf.data(), hashSize); 339 } 340 341 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 342 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 343 this->bss = true; 344 this->size = size; 345 } 346 347 EhFrameSection::EhFrameSection() 348 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 349 350 // Search for an existing CIE record or create a new one. 351 // CIE records from input object files are uniquified by their contents 352 // and where their relocations point to. 353 template <class ELFT, class RelTy> 354 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 355 Symbol *personality = nullptr; 356 unsigned firstRelI = cie.firstRelocation; 357 if (firstRelI != (unsigned)-1) 358 personality = 359 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 360 361 // Search for an existing CIE by CIE contents/relocation target pair. 362 CieRecord *&rec = cieMap[{cie.data(), personality}]; 363 364 // If not found, create a new one. 365 if (!rec) { 366 rec = make<CieRecord>(); 367 rec->cie = &cie; 368 cieRecords.push_back(rec); 369 } 370 return rec; 371 } 372 373 // There is one FDE per function. Returns a non-null pointer to the function 374 // symbol if the given FDE points to a live function. 375 template <class ELFT, class RelTy> 376 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 377 auto *sec = cast<EhInputSection>(fde.sec); 378 unsigned firstRelI = fde.firstRelocation; 379 380 // An FDE should point to some function because FDEs are to describe 381 // functions. That's however not always the case due to an issue of 382 // ld.gold with -r. ld.gold may discard only functions and leave their 383 // corresponding FDEs, which results in creating bad .eh_frame sections. 384 // To deal with that, we ignore such FDEs. 385 if (firstRelI == (unsigned)-1) 386 return nullptr; 387 388 const RelTy &rel = rels[firstRelI]; 389 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 390 391 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 392 // another partition, are dead. 393 if (auto *d = dyn_cast<Defined>(&b)) 394 if (d->section && d->section->partition == partition) 395 return d; 396 return nullptr; 397 } 398 399 // .eh_frame is a sequence of CIE or FDE records. In general, there 400 // is one CIE record per input object file which is followed by 401 // a list of FDEs. This function searches an existing CIE or create a new 402 // one and associates FDEs to the CIE. 403 template <class ELFT, class RelTy> 404 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 405 offsetToCie.clear(); 406 for (EhSectionPiece &piece : sec->pieces) { 407 // The empty record is the end marker. 408 if (piece.size == 4) 409 return; 410 411 size_t offset = piece.inputOff; 412 uint32_t id = read32(piece.data().data() + 4); 413 if (id == 0) { 414 offsetToCie[offset] = addCie<ELFT>(piece, rels); 415 continue; 416 } 417 418 uint32_t cieOffset = offset + 4 - id; 419 CieRecord *rec = offsetToCie[cieOffset]; 420 if (!rec) 421 fatal(toString(sec) + ": invalid CIE reference"); 422 423 if (!isFdeLive<ELFT>(piece, rels)) 424 continue; 425 rec->fdes.push_back(&piece); 426 numFdes++; 427 } 428 } 429 430 template <class ELFT> 431 void EhFrameSection::addSectionAux(EhInputSection *sec) { 432 if (!sec->isLive()) 433 return; 434 if (sec->areRelocsRela) 435 addRecords<ELFT>(sec, sec->template relas<ELFT>()); 436 else 437 addRecords<ELFT>(sec, sec->template rels<ELFT>()); 438 } 439 440 void EhFrameSection::addSection(EhInputSection *sec) { 441 sec->parent = this; 442 443 alignment = std::max(alignment, sec->alignment); 444 sections.push_back(sec); 445 446 for (auto *ds : sec->dependentSections) 447 dependentSections.push_back(ds); 448 } 449 450 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 451 // EhFrameSection::addRecords(). 452 template <class ELFT, class RelTy> 453 void EhFrameSection::iterateFDEWithLSDAAux( 454 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 455 llvm::function_ref<void(InputSection &)> fn) { 456 for (EhSectionPiece &piece : sec.pieces) { 457 // Skip ZERO terminator. 458 if (piece.size == 4) 459 continue; 460 461 size_t offset = piece.inputOff; 462 uint32_t id = 463 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 464 if (id == 0) { 465 if (hasLSDA(piece)) 466 ciesWithLSDA.insert(offset); 467 continue; 468 } 469 uint32_t cieOffset = offset + 4 - id; 470 if (ciesWithLSDA.count(cieOffset) == 0) 471 continue; 472 473 // The CIE has a LSDA argument. Call fn with d's section. 474 if (Defined *d = isFdeLive<ELFT>(piece, rels)) 475 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 476 fn(*s); 477 } 478 } 479 480 template <class ELFT> 481 void EhFrameSection::iterateFDEWithLSDA( 482 llvm::function_ref<void(InputSection &)> fn) { 483 DenseSet<size_t> ciesWithLSDA; 484 for (EhInputSection *sec : sections) { 485 ciesWithLSDA.clear(); 486 if (sec->areRelocsRela) 487 iterateFDEWithLSDAAux<ELFT>(*sec, sec->template relas<ELFT>(), 488 ciesWithLSDA, fn); 489 else 490 iterateFDEWithLSDAAux<ELFT>(*sec, sec->template rels<ELFT>(), 491 ciesWithLSDA, fn); 492 } 493 } 494 495 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 496 memcpy(buf, d.data(), d.size()); 497 498 size_t aligned = alignTo(d.size(), config->wordsize); 499 500 // Zero-clear trailing padding if it exists. 501 memset(buf + d.size(), 0, aligned - d.size()); 502 503 // Fix the size field. -4 since size does not include the size field itself. 504 write32(buf, aligned - 4); 505 } 506 507 void EhFrameSection::finalizeContents() { 508 assert(!this->size); // Not finalized. 509 510 switch (config->ekind) { 511 case ELFNoneKind: 512 llvm_unreachable("invalid ekind"); 513 case ELF32LEKind: 514 for (EhInputSection *sec : sections) 515 addSectionAux<ELF32LE>(sec); 516 break; 517 case ELF32BEKind: 518 for (EhInputSection *sec : sections) 519 addSectionAux<ELF32BE>(sec); 520 break; 521 case ELF64LEKind: 522 for (EhInputSection *sec : sections) 523 addSectionAux<ELF64LE>(sec); 524 break; 525 case ELF64BEKind: 526 for (EhInputSection *sec : sections) 527 addSectionAux<ELF64BE>(sec); 528 break; 529 } 530 531 size_t off = 0; 532 for (CieRecord *rec : cieRecords) { 533 rec->cie->outputOff = off; 534 off += alignTo(rec->cie->size, config->wordsize); 535 536 for (EhSectionPiece *fde : rec->fdes) { 537 fde->outputOff = off; 538 off += alignTo(fde->size, config->wordsize); 539 } 540 } 541 542 // The LSB standard does not allow a .eh_frame section with zero 543 // Call Frame Information records. glibc unwind-dw2-fde.c 544 // classify_object_over_fdes expects there is a CIE record length 0 as a 545 // terminator. Thus we add one unconditionally. 546 off += 4; 547 548 this->size = off; 549 } 550 551 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 552 // to get an FDE from an address to which FDE is applied. This function 553 // returns a list of such pairs. 554 std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const { 555 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 556 std::vector<FdeData> ret; 557 558 uint64_t va = getPartition().ehFrameHdr->getVA(); 559 for (CieRecord *rec : cieRecords) { 560 uint8_t enc = getFdeEncoding(rec->cie); 561 for (EhSectionPiece *fde : rec->fdes) { 562 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 563 uint64_t fdeVA = getParent()->addr + fde->outputOff; 564 if (!isInt<32>(pc - va)) 565 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 566 Twine::utohexstr(pc - va)); 567 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 568 } 569 } 570 571 // Sort the FDE list by their PC and uniqueify. Usually there is only 572 // one FDE for a PC (i.e. function), but if ICF merges two functions 573 // into one, there can be more than one FDEs pointing to the address. 574 auto less = [](const FdeData &a, const FdeData &b) { 575 return a.pcRel < b.pcRel; 576 }; 577 llvm::stable_sort(ret, less); 578 auto eq = [](const FdeData &a, const FdeData &b) { 579 return a.pcRel == b.pcRel; 580 }; 581 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 582 583 return ret; 584 } 585 586 static uint64_t readFdeAddr(uint8_t *buf, int size) { 587 switch (size) { 588 case DW_EH_PE_udata2: 589 return read16(buf); 590 case DW_EH_PE_sdata2: 591 return (int16_t)read16(buf); 592 case DW_EH_PE_udata4: 593 return read32(buf); 594 case DW_EH_PE_sdata4: 595 return (int32_t)read32(buf); 596 case DW_EH_PE_udata8: 597 case DW_EH_PE_sdata8: 598 return read64(buf); 599 case DW_EH_PE_absptr: 600 return readUint(buf); 601 } 602 fatal("unknown FDE size encoding"); 603 } 604 605 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 606 // We need it to create .eh_frame_hdr section. 607 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 608 uint8_t enc) const { 609 // The starting address to which this FDE applies is 610 // stored at FDE + 8 byte. 611 size_t off = fdeOff + 8; 612 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 613 if ((enc & 0x70) == DW_EH_PE_absptr) 614 return addr; 615 if ((enc & 0x70) == DW_EH_PE_pcrel) 616 return addr + getParent()->addr + off; 617 fatal("unknown FDE size relative encoding"); 618 } 619 620 void EhFrameSection::writeTo(uint8_t *buf) { 621 // Write CIE and FDE records. 622 for (CieRecord *rec : cieRecords) { 623 size_t cieOffset = rec->cie->outputOff; 624 writeCieFde(buf + cieOffset, rec->cie->data()); 625 626 for (EhSectionPiece *fde : rec->fdes) { 627 size_t off = fde->outputOff; 628 writeCieFde(buf + off, fde->data()); 629 630 // FDE's second word should have the offset to an associated CIE. 631 // Write it. 632 write32(buf + off + 4, off + 4 - cieOffset); 633 } 634 } 635 636 // Apply relocations. .eh_frame section contents are not contiguous 637 // in the output buffer, but relocateAlloc() still works because 638 // getOffset() takes care of discontiguous section pieces. 639 for (EhInputSection *s : sections) 640 s->relocateAlloc(buf, nullptr); 641 642 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 643 getPartition().ehFrameHdr->write(); 644 } 645 646 GotSection::GotSection() 647 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 648 ".got") { 649 // If ElfSym::globalOffsetTable is relative to .got and is referenced, 650 // increase numEntries by the number of entries used to emit 651 // ElfSym::globalOffsetTable. 652 if (ElfSym::globalOffsetTable && !target->gotBaseSymInGotPlt) 653 numEntries += target->gotHeaderEntriesNum; 654 } 655 656 void GotSection::addEntry(Symbol &sym) { 657 sym.gotIndex = numEntries; 658 ++numEntries; 659 } 660 661 bool GotSection::addDynTlsEntry(Symbol &sym) { 662 if (sym.globalDynIndex != -1U) 663 return false; 664 sym.globalDynIndex = numEntries; 665 // Global Dynamic TLS entries take two GOT slots. 666 numEntries += 2; 667 return true; 668 } 669 670 // Reserves TLS entries for a TLS module ID and a TLS block offset. 671 // In total it takes two GOT slots. 672 bool GotSection::addTlsIndex() { 673 if (tlsIndexOff != uint32_t(-1)) 674 return false; 675 tlsIndexOff = numEntries * config->wordsize; 676 numEntries += 2; 677 return true; 678 } 679 680 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 681 return this->getVA() + b.globalDynIndex * config->wordsize; 682 } 683 684 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 685 return b.globalDynIndex * config->wordsize; 686 } 687 688 void GotSection::finalizeContents() { 689 size = numEntries * config->wordsize; 690 } 691 692 bool GotSection::isNeeded() const { 693 // We need to emit a GOT even if it's empty if there's a relocation that is 694 // relative to GOT(such as GOTOFFREL). 695 return numEntries || hasGotOffRel; 696 } 697 698 void GotSection::writeTo(uint8_t *buf) { 699 target->writeGotHeader(buf); 700 relocateAlloc(buf, buf + size); 701 } 702 703 static uint64_t getMipsPageAddr(uint64_t addr) { 704 return (addr + 0x8000) & ~0xffff; 705 } 706 707 static uint64_t getMipsPageCount(uint64_t size) { 708 return (size + 0xfffe) / 0xffff + 1; 709 } 710 711 MipsGotSection::MipsGotSection() 712 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 713 ".got") {} 714 715 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 716 RelExpr expr) { 717 FileGot &g = getGot(file); 718 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 719 if (const OutputSection *os = sym.getOutputSection()) 720 g.pagesMap.insert({os, {}}); 721 else 722 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 723 } else if (sym.isTls()) 724 g.tls.insert({&sym, 0}); 725 else if (sym.isPreemptible && expr == R_ABS) 726 g.relocs.insert({&sym, 0}); 727 else if (sym.isPreemptible) 728 g.global.insert({&sym, 0}); 729 else if (expr == R_MIPS_GOT_OFF32) 730 g.local32.insert({{&sym, addend}, 0}); 731 else 732 g.local16.insert({{&sym, addend}, 0}); 733 } 734 735 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 736 getGot(file).dynTlsSymbols.insert({&sym, 0}); 737 } 738 739 void MipsGotSection::addTlsIndex(InputFile &file) { 740 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 741 } 742 743 size_t MipsGotSection::FileGot::getEntriesNum() const { 744 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 745 tls.size() + dynTlsSymbols.size() * 2; 746 } 747 748 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 749 size_t num = 0; 750 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 751 num += p.second.count; 752 return num; 753 } 754 755 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 756 size_t count = getPageEntriesNum() + local16.size() + global.size(); 757 // If there are relocation-only entries in the GOT, TLS entries 758 // are allocated after them. TLS entries should be addressable 759 // by 16-bit index so count both reloc-only and TLS entries. 760 if (!tls.empty() || !dynTlsSymbols.empty()) 761 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 762 return count; 763 } 764 765 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 766 if (!f.mipsGotIndex.hasValue()) { 767 gots.emplace_back(); 768 gots.back().file = &f; 769 f.mipsGotIndex = gots.size() - 1; 770 } 771 return gots[*f.mipsGotIndex]; 772 } 773 774 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 775 const Symbol &sym, 776 int64_t addend) const { 777 const FileGot &g = gots[*f->mipsGotIndex]; 778 uint64_t index = 0; 779 if (const OutputSection *outSec = sym.getOutputSection()) { 780 uint64_t secAddr = getMipsPageAddr(outSec->addr); 781 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 782 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 783 } else { 784 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 785 } 786 return index * config->wordsize; 787 } 788 789 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 790 int64_t addend) const { 791 const FileGot &g = gots[*f->mipsGotIndex]; 792 Symbol *sym = const_cast<Symbol *>(&s); 793 if (sym->isTls()) 794 return g.tls.lookup(sym) * config->wordsize; 795 if (sym->isPreemptible) 796 return g.global.lookup(sym) * config->wordsize; 797 return g.local16.lookup({sym, addend}) * config->wordsize; 798 } 799 800 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 801 const FileGot &g = gots[*f->mipsGotIndex]; 802 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 803 } 804 805 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 806 const Symbol &s) const { 807 const FileGot &g = gots[*f->mipsGotIndex]; 808 Symbol *sym = const_cast<Symbol *>(&s); 809 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 810 } 811 812 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 813 if (gots.empty()) 814 return nullptr; 815 const FileGot &primGot = gots.front(); 816 if (!primGot.global.empty()) 817 return primGot.global.front().first; 818 if (!primGot.relocs.empty()) 819 return primGot.relocs.front().first; 820 return nullptr; 821 } 822 823 unsigned MipsGotSection::getLocalEntriesNum() const { 824 if (gots.empty()) 825 return headerEntriesNum; 826 return headerEntriesNum + gots.front().getPageEntriesNum() + 827 gots.front().local16.size(); 828 } 829 830 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 831 FileGot tmp = dst; 832 set_union(tmp.pagesMap, src.pagesMap); 833 set_union(tmp.local16, src.local16); 834 set_union(tmp.global, src.global); 835 set_union(tmp.relocs, src.relocs); 836 set_union(tmp.tls, src.tls); 837 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 838 839 size_t count = isPrimary ? headerEntriesNum : 0; 840 count += tmp.getIndexedEntriesNum(); 841 842 if (count * config->wordsize > config->mipsGotSize) 843 return false; 844 845 std::swap(tmp, dst); 846 return true; 847 } 848 849 void MipsGotSection::finalizeContents() { updateAllocSize(); } 850 851 bool MipsGotSection::updateAllocSize() { 852 size = headerEntriesNum * config->wordsize; 853 for (const FileGot &g : gots) 854 size += g.getEntriesNum() * config->wordsize; 855 return false; 856 } 857 858 void MipsGotSection::build() { 859 if (gots.empty()) 860 return; 861 862 std::vector<FileGot> mergedGots(1); 863 864 // For each GOT move non-preemptible symbols from the `Global` 865 // to `Local16` list. Preemptible symbol might become non-preemptible 866 // one if, for example, it gets a related copy relocation. 867 for (FileGot &got : gots) { 868 for (auto &p: got.global) 869 if (!p.first->isPreemptible) 870 got.local16.insert({{p.first, 0}, 0}); 871 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 872 return !p.first->isPreemptible; 873 }); 874 } 875 876 // For each GOT remove "reloc-only" entry if there is "global" 877 // entry for the same symbol. And add local entries which indexed 878 // using 32-bit value at the end of 16-bit entries. 879 for (FileGot &got : gots) { 880 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 881 return got.global.count(p.first); 882 }); 883 set_union(got.local16, got.local32); 884 got.local32.clear(); 885 } 886 887 // Evaluate number of "reloc-only" entries in the resulting GOT. 888 // To do that put all unique "reloc-only" and "global" entries 889 // from all GOTs to the future primary GOT. 890 FileGot *primGot = &mergedGots.front(); 891 for (FileGot &got : gots) { 892 set_union(primGot->relocs, got.global); 893 set_union(primGot->relocs, got.relocs); 894 got.relocs.clear(); 895 } 896 897 // Evaluate number of "page" entries in each GOT. 898 for (FileGot &got : gots) { 899 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 900 got.pagesMap) { 901 const OutputSection *os = p.first; 902 uint64_t secSize = 0; 903 for (BaseCommand *cmd : os->sectionCommands) { 904 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 905 for (InputSection *isec : isd->sections) { 906 uint64_t off = alignTo(secSize, isec->alignment); 907 secSize = off + isec->getSize(); 908 } 909 } 910 p.second.count = getMipsPageCount(secSize); 911 } 912 } 913 914 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 915 // maximum GOT size. At first, try to fill the primary GOT because 916 // the primary GOT can be accessed in the most effective way. If it 917 // is not possible, try to fill the last GOT in the list, and finally 918 // create a new GOT if both attempts failed. 919 for (FileGot &srcGot : gots) { 920 InputFile *file = srcGot.file; 921 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 922 file->mipsGotIndex = 0; 923 } else { 924 // If this is the first time we failed to merge with the primary GOT, 925 // MergedGots.back() will also be the primary GOT. We must make sure not 926 // to try to merge again with isPrimary=false, as otherwise, if the 927 // inputs are just right, we could allow the primary GOT to become 1 or 2 928 // words bigger due to ignoring the header size. 929 if (mergedGots.size() == 1 || 930 !tryMergeGots(mergedGots.back(), srcGot, false)) { 931 mergedGots.emplace_back(); 932 std::swap(mergedGots.back(), srcGot); 933 } 934 file->mipsGotIndex = mergedGots.size() - 1; 935 } 936 } 937 std::swap(gots, mergedGots); 938 939 // Reduce number of "reloc-only" entries in the primary GOT 940 // by subtracting "global" entries in the primary GOT. 941 primGot = &gots.front(); 942 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 943 return primGot->global.count(p.first); 944 }); 945 946 // Calculate indexes for each GOT entry. 947 size_t index = headerEntriesNum; 948 for (FileGot &got : gots) { 949 got.startIndex = &got == primGot ? 0 : index; 950 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 951 got.pagesMap) { 952 // For each output section referenced by GOT page relocations calculate 953 // and save into pagesMap an upper bound of MIPS GOT entries required 954 // to store page addresses of local symbols. We assume the worst case - 955 // each 64kb page of the output section has at least one GOT relocation 956 // against it. And take in account the case when the section intersects 957 // page boundaries. 958 p.second.firstIndex = index; 959 index += p.second.count; 960 } 961 for (auto &p: got.local16) 962 p.second = index++; 963 for (auto &p: got.global) 964 p.second = index++; 965 for (auto &p: got.relocs) 966 p.second = index++; 967 for (auto &p: got.tls) 968 p.second = index++; 969 for (auto &p: got.dynTlsSymbols) { 970 p.second = index; 971 index += 2; 972 } 973 } 974 975 // Update Symbol::gotIndex field to use this 976 // value later in the `sortMipsSymbols` function. 977 for (auto &p : primGot->global) 978 p.first->gotIndex = p.second; 979 for (auto &p : primGot->relocs) 980 p.first->gotIndex = p.second; 981 982 // Create dynamic relocations. 983 for (FileGot &got : gots) { 984 // Create dynamic relocations for TLS entries. 985 for (std::pair<Symbol *, size_t> &p : got.tls) { 986 Symbol *s = p.first; 987 uint64_t offset = p.second * config->wordsize; 988 if (s->isPreemptible) 989 mainPart->relaDyn->addReloc(target->tlsGotRel, this, offset, s); 990 } 991 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 992 Symbol *s = p.first; 993 uint64_t offset = p.second * config->wordsize; 994 if (s == nullptr) { 995 if (!config->isPic) 996 continue; 997 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s); 998 } else { 999 // When building a shared library we still need a dynamic relocation 1000 // for the module index. Therefore only checking for 1001 // S->isPreemptible is not sufficient (this happens e.g. for 1002 // thread-locals that have been marked as local through a linker script) 1003 if (!s->isPreemptible && !config->isPic) 1004 continue; 1005 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s); 1006 // However, we can skip writing the TLS offset reloc for non-preemptible 1007 // symbols since it is known even in shared libraries 1008 if (!s->isPreemptible) 1009 continue; 1010 offset += config->wordsize; 1011 mainPart->relaDyn->addReloc(target->tlsOffsetRel, this, offset, s); 1012 } 1013 } 1014 1015 // Do not create dynamic relocations for non-TLS 1016 // entries in the primary GOT. 1017 if (&got == primGot) 1018 continue; 1019 1020 // Dynamic relocations for "global" entries. 1021 for (const std::pair<Symbol *, size_t> &p : got.global) { 1022 uint64_t offset = p.second * config->wordsize; 1023 mainPart->relaDyn->addReloc(target->relativeRel, this, offset, p.first); 1024 } 1025 if (!config->isPic) 1026 continue; 1027 // Dynamic relocations for "local" entries in case of PIC. 1028 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1029 got.pagesMap) { 1030 size_t pageCount = l.second.count; 1031 for (size_t pi = 0; pi < pageCount; ++pi) { 1032 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1033 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1034 int64_t(pi * 0x10000)}); 1035 } 1036 } 1037 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1038 uint64_t offset = p.second * config->wordsize; 1039 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, true, 1040 p.first.first, p.first.second}); 1041 } 1042 } 1043 } 1044 1045 bool MipsGotSection::isNeeded() const { 1046 // We add the .got section to the result for dynamic MIPS target because 1047 // its address and properties are mentioned in the .dynamic section. 1048 return !config->relocatable; 1049 } 1050 1051 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1052 // For files without related GOT or files refer a primary GOT 1053 // returns "common" _gp value. For secondary GOTs calculate 1054 // individual _gp values. 1055 if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0) 1056 return ElfSym::mipsGp->getVA(0); 1057 return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize + 1058 0x7ff0; 1059 } 1060 1061 void MipsGotSection::writeTo(uint8_t *buf) { 1062 // Set the MSB of the second GOT slot. This is not required by any 1063 // MIPS ABI documentation, though. 1064 // 1065 // There is a comment in glibc saying that "The MSB of got[1] of a 1066 // gnu object is set to identify gnu objects," and in GNU gold it 1067 // says "the second entry will be used by some runtime loaders". 1068 // But how this field is being used is unclear. 1069 // 1070 // We are not really willing to mimic other linkers behaviors 1071 // without understanding why they do that, but because all files 1072 // generated by GNU tools have this special GOT value, and because 1073 // we've been doing this for years, it is probably a safe bet to 1074 // keep doing this for now. We really need to revisit this to see 1075 // if we had to do this. 1076 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1077 for (const FileGot &g : gots) { 1078 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1079 uint64_t va = a; 1080 if (s) 1081 va = s->getVA(a); 1082 writeUint(buf + i * config->wordsize, va); 1083 }; 1084 // Write 'page address' entries to the local part of the GOT. 1085 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1086 g.pagesMap) { 1087 size_t pageCount = l.second.count; 1088 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1089 for (size_t pi = 0; pi < pageCount; ++pi) 1090 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1091 } 1092 // Local, global, TLS, reloc-only entries. 1093 // If TLS entry has a corresponding dynamic relocations, leave it 1094 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1095 // To calculate the adjustments use offsets for thread-local storage. 1096 // https://www.linux-mips.org/wiki/NPTL 1097 for (const std::pair<GotEntry, size_t> &p : g.local16) 1098 write(p.second, p.first.first, p.first.second); 1099 // Write VA to the primary GOT only. For secondary GOTs that 1100 // will be done by REL32 dynamic relocations. 1101 if (&g == &gots.front()) 1102 for (const std::pair<Symbol *, size_t> &p : g.global) 1103 write(p.second, p.first, 0); 1104 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1105 write(p.second, p.first, 0); 1106 for (const std::pair<Symbol *, size_t> &p : g.tls) 1107 write(p.second, p.first, p.first->isPreemptible ? 0 : -0x7000); 1108 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1109 if (p.first == nullptr && !config->isPic) 1110 write(p.second, nullptr, 1); 1111 else if (p.first && !p.first->isPreemptible) { 1112 // If we are emitting PIC code with relocations we mustn't write 1113 // anything to the GOT here. When using Elf_Rel relocations the value 1114 // one will be treated as an addend and will cause crashes at runtime 1115 if (!config->isPic) 1116 write(p.second, nullptr, 1); 1117 write(p.second + 1, p.first, -0x8000); 1118 } 1119 } 1120 } 1121 } 1122 1123 // On PowerPC the .plt section is used to hold the table of function addresses 1124 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1125 // section. I don't know why we have a BSS style type for the section but it is 1126 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1127 GotPltSection::GotPltSection() 1128 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1129 ".got.plt") { 1130 if (config->emachine == EM_PPC) { 1131 name = ".plt"; 1132 } else if (config->emachine == EM_PPC64) { 1133 type = SHT_NOBITS; 1134 name = ".plt"; 1135 } 1136 } 1137 1138 void GotPltSection::addEntry(Symbol &sym) { 1139 assert(sym.pltIndex == entries.size()); 1140 entries.push_back(&sym); 1141 } 1142 1143 size_t GotPltSection::getSize() const { 1144 return (target->gotPltHeaderEntriesNum + entries.size()) * config->wordsize; 1145 } 1146 1147 void GotPltSection::writeTo(uint8_t *buf) { 1148 target->writeGotPltHeader(buf); 1149 buf += target->gotPltHeaderEntriesNum * config->wordsize; 1150 for (const Symbol *b : entries) { 1151 target->writeGotPlt(buf, *b); 1152 buf += config->wordsize; 1153 } 1154 } 1155 1156 bool GotPltSection::isNeeded() const { 1157 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1158 // to it. 1159 return !entries.empty() || hasGotPltOffRel; 1160 } 1161 1162 static StringRef getIgotPltName() { 1163 // On ARM the IgotPltSection is part of the GotSection. 1164 if (config->emachine == EM_ARM) 1165 return ".got"; 1166 1167 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1168 // needs to be named the same. 1169 if (config->emachine == EM_PPC64) 1170 return ".plt"; 1171 1172 return ".got.plt"; 1173 } 1174 1175 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1176 // with the IgotPltSection. 1177 IgotPltSection::IgotPltSection() 1178 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1179 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1180 config->wordsize, getIgotPltName()) {} 1181 1182 void IgotPltSection::addEntry(Symbol &sym) { 1183 assert(sym.pltIndex == entries.size()); 1184 entries.push_back(&sym); 1185 } 1186 1187 size_t IgotPltSection::getSize() const { 1188 return entries.size() * config->wordsize; 1189 } 1190 1191 void IgotPltSection::writeTo(uint8_t *buf) { 1192 for (const Symbol *b : entries) { 1193 target->writeIgotPlt(buf, *b); 1194 buf += config->wordsize; 1195 } 1196 } 1197 1198 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1199 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1200 dynamic(dynamic) { 1201 // ELF string tables start with a NUL byte. 1202 addString(""); 1203 } 1204 1205 // Adds a string to the string table. If `hashIt` is true we hash and check for 1206 // duplicates. It is optional because the name of global symbols are already 1207 // uniqued and hashing them again has a big cost for a small value: uniquing 1208 // them with some other string that happens to be the same. 1209 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1210 if (hashIt) { 1211 auto r = stringMap.insert(std::make_pair(s, this->size)); 1212 if (!r.second) 1213 return r.first->second; 1214 } 1215 unsigned ret = this->size; 1216 this->size = this->size + s.size() + 1; 1217 strings.push_back(s); 1218 return ret; 1219 } 1220 1221 void StringTableSection::writeTo(uint8_t *buf) { 1222 for (StringRef s : strings) { 1223 memcpy(buf, s.data(), s.size()); 1224 buf[s.size()] = '\0'; 1225 buf += s.size() + 1; 1226 } 1227 } 1228 1229 // Returns the number of entries in .gnu.version_d: the number of 1230 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1231 // Note that we don't support vd_cnt > 1 yet. 1232 static unsigned getVerDefNum() { 1233 return namedVersionDefs().size() + 1; 1234 } 1235 1236 template <class ELFT> 1237 DynamicSection<ELFT>::DynamicSection() 1238 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1239 ".dynamic") { 1240 this->entsize = ELFT::Is64Bits ? 16 : 8; 1241 1242 // .dynamic section is not writable on MIPS and on Fuchsia OS 1243 // which passes -z rodynamic. 1244 // See "Special Section" in Chapter 4 in the following document: 1245 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1246 if (config->emachine == EM_MIPS || config->zRodynamic) 1247 this->flags = SHF_ALLOC; 1248 } 1249 1250 template <class ELFT> 1251 void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) { 1252 entries.push_back({tag, fn}); 1253 } 1254 1255 template <class ELFT> 1256 void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) { 1257 entries.push_back({tag, [=] { return val; }}); 1258 } 1259 1260 template <class ELFT> 1261 void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) { 1262 entries.push_back({tag, [=] { return sec->getVA(0); }}); 1263 } 1264 1265 template <class ELFT> 1266 void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) { 1267 size_t tagOffset = entries.size() * entsize; 1268 entries.push_back( 1269 {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }}); 1270 } 1271 1272 template <class ELFT> 1273 void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) { 1274 entries.push_back({tag, [=] { return sec->addr; }}); 1275 } 1276 1277 template <class ELFT> 1278 void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) { 1279 entries.push_back({tag, [=] { return sec->size; }}); 1280 } 1281 1282 template <class ELFT> 1283 void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) { 1284 entries.push_back({tag, [=] { return sym->getVA(); }}); 1285 } 1286 1287 // The output section .rela.dyn may include these synthetic sections: 1288 // 1289 // - part.relaDyn 1290 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1291 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1292 // .rela.dyn 1293 // 1294 // DT_RELASZ is the total size of the included sections. 1295 static std::function<uint64_t()> addRelaSz(RelocationBaseSection *relaDyn) { 1296 return [=]() { 1297 size_t size = relaDyn->getSize(); 1298 if (in.relaIplt->getParent() == relaDyn->getParent()) 1299 size += in.relaIplt->getSize(); 1300 if (in.relaPlt->getParent() == relaDyn->getParent()) 1301 size += in.relaPlt->getSize(); 1302 return size; 1303 }; 1304 } 1305 1306 // A Linker script may assign the RELA relocation sections to the same 1307 // output section. When this occurs we cannot just use the OutputSection 1308 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1309 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1310 static uint64_t addPltRelSz() { 1311 size_t size = in.relaPlt->getSize(); 1312 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1313 in.relaIplt->name == in.relaPlt->name) 1314 size += in.relaIplt->getSize(); 1315 return size; 1316 } 1317 1318 // Add remaining entries to complete .dynamic contents. 1319 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1320 elf::Partition &part = getPartition(); 1321 bool isMain = part.name.empty(); 1322 1323 for (StringRef s : config->filterList) 1324 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1325 for (StringRef s : config->auxiliaryList) 1326 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1327 1328 if (!config->rpath.empty()) 1329 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1330 part.dynStrTab->addString(config->rpath)); 1331 1332 for (SharedFile *file : sharedFiles) 1333 if (file->isNeeded) 1334 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1335 1336 if (isMain) { 1337 if (!config->soName.empty()) 1338 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1339 } else { 1340 if (!config->soName.empty()) 1341 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1342 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1343 } 1344 1345 // Set DT_FLAGS and DT_FLAGS_1. 1346 uint32_t dtFlags = 0; 1347 uint32_t dtFlags1 = 0; 1348 if (config->bsymbolic) 1349 dtFlags |= DF_SYMBOLIC; 1350 if (config->zGlobal) 1351 dtFlags1 |= DF_1_GLOBAL; 1352 if (config->zInitfirst) 1353 dtFlags1 |= DF_1_INITFIRST; 1354 if (config->zInterpose) 1355 dtFlags1 |= DF_1_INTERPOSE; 1356 if (config->zNodefaultlib) 1357 dtFlags1 |= DF_1_NODEFLIB; 1358 if (config->zNodelete) 1359 dtFlags1 |= DF_1_NODELETE; 1360 if (config->zNodlopen) 1361 dtFlags1 |= DF_1_NOOPEN; 1362 if (config->pie) 1363 dtFlags1 |= DF_1_PIE; 1364 if (config->zNow) { 1365 dtFlags |= DF_BIND_NOW; 1366 dtFlags1 |= DF_1_NOW; 1367 } 1368 if (config->zOrigin) { 1369 dtFlags |= DF_ORIGIN; 1370 dtFlags1 |= DF_1_ORIGIN; 1371 } 1372 if (!config->zText) 1373 dtFlags |= DF_TEXTREL; 1374 if (config->hasStaticTlsModel) 1375 dtFlags |= DF_STATIC_TLS; 1376 1377 if (dtFlags) 1378 addInt(DT_FLAGS, dtFlags); 1379 if (dtFlags1) 1380 addInt(DT_FLAGS_1, dtFlags1); 1381 1382 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1383 // need it for each process, so we don't write it for DSOs. The loader writes 1384 // the pointer into this entry. 1385 // 1386 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1387 // systems (currently only Fuchsia OS) provide other means to give the 1388 // debugger this information. Such systems may choose make .dynamic read-only. 1389 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1390 if (!config->shared && !config->relocatable && !config->zRodynamic) 1391 addInt(DT_DEBUG, 0); 1392 1393 if (OutputSection *sec = part.dynStrTab->getParent()) 1394 this->link = sec->sectionIndex; 1395 1396 if (part.relaDyn->isNeeded() || 1397 (in.relaIplt->isNeeded() && 1398 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1399 addInSec(part.relaDyn->dynamicTag, part.relaDyn); 1400 entries.push_back({part.relaDyn->sizeDynamicTag, addRelaSz(part.relaDyn)}); 1401 1402 bool isRela = config->isRela; 1403 addInt(isRela ? DT_RELAENT : DT_RELENT, 1404 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1405 1406 // MIPS dynamic loader does not support RELCOUNT tag. 1407 // The problem is in the tight relation between dynamic 1408 // relocations and GOT. So do not emit this tag on MIPS. 1409 if (config->emachine != EM_MIPS) { 1410 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1411 if (config->zCombreloc && numRelativeRels) 1412 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1413 } 1414 } 1415 if (part.relrDyn && !part.relrDyn->relocs.empty()) { 1416 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1417 part.relrDyn); 1418 addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1419 part.relrDyn->getParent()); 1420 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1421 sizeof(Elf_Relr)); 1422 } 1423 // .rel[a].plt section usually consists of two parts, containing plt and 1424 // iplt relocations. It is possible to have only iplt relocations in the 1425 // output. In that case relaPlt is empty and have zero offset, the same offset 1426 // as relaIplt has. And we still want to emit proper dynamic tags for that 1427 // case, so here we always use relaPlt as marker for the beginning of 1428 // .rel[a].plt section. 1429 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1430 addInSec(DT_JMPREL, in.relaPlt); 1431 entries.push_back({DT_PLTRELSZ, addPltRelSz}); 1432 switch (config->emachine) { 1433 case EM_MIPS: 1434 addInSec(DT_MIPS_PLTGOT, in.gotPlt); 1435 break; 1436 case EM_SPARCV9: 1437 addInSec(DT_PLTGOT, in.plt); 1438 break; 1439 case EM_AARCH64: 1440 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1441 return r.type == target->pltRel && 1442 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1443 }) != in.relaPlt->relocs.end()) 1444 addInt(DT_AARCH64_VARIANT_PCS, 0); 1445 LLVM_FALLTHROUGH; 1446 default: 1447 addInSec(DT_PLTGOT, in.gotPlt); 1448 break; 1449 } 1450 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1451 } 1452 1453 if (config->emachine == EM_AARCH64) { 1454 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1455 addInt(DT_AARCH64_BTI_PLT, 0); 1456 if (config->zPacPlt) 1457 addInt(DT_AARCH64_PAC_PLT, 0); 1458 } 1459 1460 addInSec(DT_SYMTAB, part.dynSymTab); 1461 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1462 addInSec(DT_STRTAB, part.dynStrTab); 1463 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1464 if (!config->zText) 1465 addInt(DT_TEXTREL, 0); 1466 if (part.gnuHashTab) 1467 addInSec(DT_GNU_HASH, part.gnuHashTab); 1468 if (part.hashTab) 1469 addInSec(DT_HASH, part.hashTab); 1470 1471 if (isMain) { 1472 if (Out::preinitArray) { 1473 addOutSec(DT_PREINIT_ARRAY, Out::preinitArray); 1474 addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray); 1475 } 1476 if (Out::initArray) { 1477 addOutSec(DT_INIT_ARRAY, Out::initArray); 1478 addSize(DT_INIT_ARRAYSZ, Out::initArray); 1479 } 1480 if (Out::finiArray) { 1481 addOutSec(DT_FINI_ARRAY, Out::finiArray); 1482 addSize(DT_FINI_ARRAYSZ, Out::finiArray); 1483 } 1484 1485 if (Symbol *b = symtab->find(config->init)) 1486 if (b->isDefined()) 1487 addSym(DT_INIT, b); 1488 if (Symbol *b = symtab->find(config->fini)) 1489 if (b->isDefined()) 1490 addSym(DT_FINI, b); 1491 } 1492 1493 if (part.verSym && part.verSym->isNeeded()) 1494 addInSec(DT_VERSYM, part.verSym); 1495 if (part.verDef && part.verDef->isLive()) { 1496 addInSec(DT_VERDEF, part.verDef); 1497 addInt(DT_VERDEFNUM, getVerDefNum()); 1498 } 1499 if (part.verNeed && part.verNeed->isNeeded()) { 1500 addInSec(DT_VERNEED, part.verNeed); 1501 unsigned needNum = 0; 1502 for (SharedFile *f : sharedFiles) 1503 if (!f->vernauxs.empty()) 1504 ++needNum; 1505 addInt(DT_VERNEEDNUM, needNum); 1506 } 1507 1508 if (config->emachine == EM_MIPS) { 1509 addInt(DT_MIPS_RLD_VERSION, 1); 1510 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1511 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1512 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1513 1514 add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); }); 1515 1516 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1517 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1518 else 1519 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1520 addInSec(DT_PLTGOT, in.mipsGot); 1521 if (in.mipsRldMap) { 1522 if (!config->pie) 1523 addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap); 1524 // Store the offset to the .rld_map section 1525 // relative to the address of the tag. 1526 addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap); 1527 } 1528 } 1529 1530 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1531 // glibc assumes the old-style BSS PLT layout which we don't support. 1532 if (config->emachine == EM_PPC) 1533 add(DT_PPC_GOT, [] { return in.got->getVA(); }); 1534 1535 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1536 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1537 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1538 // stub, which starts directly after the header. 1539 entries.push_back({DT_PPC64_GLINK, [=] { 1540 unsigned offset = target->pltHeaderSize - 32; 1541 return in.plt->getVA(0) + offset; 1542 }}); 1543 } 1544 1545 addInt(DT_NULL, 0); 1546 1547 getParent()->link = this->link; 1548 this->size = entries.size() * this->entsize; 1549 } 1550 1551 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1552 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1553 1554 for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) { 1555 p->d_tag = kv.first; 1556 p->d_un.d_val = kv.second(); 1557 ++p; 1558 } 1559 } 1560 1561 uint64_t DynamicReloc::getOffset() const { 1562 return inputSec->getVA(offsetInSec); 1563 } 1564 1565 int64_t DynamicReloc::computeAddend() const { 1566 if (useSymVA) 1567 return sym->getVA(addend); 1568 if (!outputSec) 1569 return addend; 1570 // See the comment in the DynamicReloc ctor. 1571 return getMipsPageAddr(outputSec->addr) + addend; 1572 } 1573 1574 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1575 if (sym && !useSymVA) 1576 return symTab->getSymbolIndex(sym); 1577 return 0; 1578 } 1579 1580 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1581 int32_t dynamicTag, 1582 int32_t sizeDynamicTag) 1583 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1584 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {} 1585 1586 void RelocationBaseSection::addReloc(RelType dynType, InputSectionBase *isec, 1587 uint64_t offsetInSec, Symbol *sym) { 1588 addReloc({dynType, isec, offsetInSec, false, sym, 0}); 1589 } 1590 1591 void RelocationBaseSection::addReloc(RelType dynType, 1592 InputSectionBase *inputSec, 1593 uint64_t offsetInSec, Symbol *sym, 1594 int64_t addend, RelExpr expr, 1595 RelType type) { 1596 // Write the addends to the relocated address if required. We skip 1597 // it if the written value would be zero. 1598 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1599 inputSec->relocations.push_back({expr, type, offsetInSec, addend, sym}); 1600 addReloc({dynType, inputSec, offsetInSec, expr != R_ADDEND, sym, addend}); 1601 } 1602 1603 void RelocationBaseSection::addReloc(const DynamicReloc &reloc) { 1604 if (reloc.type == target->relativeRel) 1605 ++numRelativeRelocs; 1606 relocs.push_back(reloc); 1607 } 1608 1609 void RelocationBaseSection::finalizeContents() { 1610 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 1611 1612 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1613 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1614 // case. 1615 if (symTab && symTab->getParent()) 1616 getParent()->link = symTab->getParent()->sectionIndex; 1617 else 1618 getParent()->link = 0; 1619 1620 if (in.relaPlt == this) { 1621 getParent()->flags |= ELF::SHF_INFO_LINK; 1622 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1623 } 1624 if (in.relaIplt == this) { 1625 getParent()->flags |= ELF::SHF_INFO_LINK; 1626 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1627 } 1628 } 1629 1630 RelrBaseSection::RelrBaseSection() 1631 : SyntheticSection(SHF_ALLOC, 1632 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1633 config->wordsize, ".relr.dyn") {} 1634 1635 template <class ELFT> 1636 static void encodeDynamicReloc(SymbolTableBaseSection *symTab, 1637 typename ELFT::Rela *p, 1638 const DynamicReloc &rel) { 1639 if (config->isRela) 1640 p->r_addend = rel.computeAddend(); 1641 p->r_offset = rel.getOffset(); 1642 p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL); 1643 } 1644 1645 template <class ELFT> 1646 RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort) 1647 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1648 config->isRela ? DT_RELA : DT_REL, 1649 config->isRela ? DT_RELASZ : DT_RELSZ), 1650 sort(sort) { 1651 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1652 } 1653 1654 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1655 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 1656 1657 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1658 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1659 // is to make results easier to read. 1660 if (sort) 1661 llvm::stable_sort( 1662 relocs, [&](const DynamicReloc &a, const DynamicReloc &b) { 1663 return std::make_tuple(a.type != target->relativeRel, 1664 a.getSymIndex(symTab), a.getOffset()) < 1665 std::make_tuple(b.type != target->relativeRel, 1666 b.getSymIndex(symTab), b.getOffset()); 1667 }); 1668 1669 for (const DynamicReloc &rel : relocs) { 1670 encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel); 1671 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1672 } 1673 } 1674 1675 template <class ELFT> 1676 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1677 StringRef name) 1678 : RelocationBaseSection( 1679 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1680 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1681 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) { 1682 this->entsize = 1; 1683 } 1684 1685 template <class ELFT> 1686 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1687 // This function computes the contents of an Android-format packed relocation 1688 // section. 1689 // 1690 // This format compresses relocations by using relocation groups to factor out 1691 // fields that are common between relocations and storing deltas from previous 1692 // relocations in SLEB128 format (which has a short representation for small 1693 // numbers). A good example of a relocation type with common fields is 1694 // R_*_RELATIVE, which is normally used to represent function pointers in 1695 // vtables. In the REL format, each relative relocation has the same r_info 1696 // field, and is only different from other relative relocations in terms of 1697 // the r_offset field. By sorting relocations by offset, grouping them by 1698 // r_info and representing each relocation with only the delta from the 1699 // previous offset, each 8-byte relocation can be compressed to as little as 1 1700 // byte (or less with run-length encoding). This relocation packer was able to 1701 // reduce the size of the relocation section in an Android Chromium DSO from 1702 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1703 // 1704 // A relocation section consists of a header containing the literal bytes 1705 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1706 // elements are the total number of relocations in the section and an initial 1707 // r_offset value. The remaining elements define a sequence of relocation 1708 // groups. Each relocation group starts with a header consisting of the 1709 // following elements: 1710 // 1711 // - the number of relocations in the relocation group 1712 // - flags for the relocation group 1713 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1714 // for each relocation in the group. 1715 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1716 // field for each relocation in the group. 1717 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1718 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1719 // each relocation in the group. 1720 // 1721 // Following the relocation group header are descriptions of each of the 1722 // relocations in the group. They consist of the following elements: 1723 // 1724 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1725 // delta for this relocation. 1726 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1727 // field for this relocation. 1728 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1729 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1730 // this relocation. 1731 1732 size_t oldSize = relocData.size(); 1733 1734 relocData = {'A', 'P', 'S', '2'}; 1735 raw_svector_ostream os(relocData); 1736 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1737 1738 // The format header includes the number of relocations and the initial 1739 // offset (we set this to zero because the first relocation group will 1740 // perform the initial adjustment). 1741 add(relocs.size()); 1742 add(0); 1743 1744 std::vector<Elf_Rela> relatives, nonRelatives; 1745 1746 for (const DynamicReloc &rel : relocs) { 1747 Elf_Rela r; 1748 encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel); 1749 1750 if (r.getType(config->isMips64EL) == target->relativeRel) 1751 relatives.push_back(r); 1752 else 1753 nonRelatives.push_back(r); 1754 } 1755 1756 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1757 return a.r_offset < b.r_offset; 1758 }); 1759 1760 // Try to find groups of relative relocations which are spaced one word 1761 // apart from one another. These generally correspond to vtable entries. The 1762 // format allows these groups to be encoded using a sort of run-length 1763 // encoding, but each group will cost 7 bytes in addition to the offset from 1764 // the previous group, so it is only profitable to do this for groups of 1765 // size 8 or larger. 1766 std::vector<Elf_Rela> ungroupedRelatives; 1767 std::vector<std::vector<Elf_Rela>> relativeGroups; 1768 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1769 std::vector<Elf_Rela> group; 1770 do { 1771 group.push_back(*i++); 1772 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1773 1774 if (group.size() < 8) 1775 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1776 group.end()); 1777 else 1778 relativeGroups.emplace_back(std::move(group)); 1779 } 1780 1781 // For non-relative relocations, we would like to: 1782 // 1. Have relocations with the same symbol offset to be consecutive, so 1783 // that the runtime linker can speed-up symbol lookup by implementing an 1784 // 1-entry cache. 1785 // 2. Group relocations by r_info to reduce the size of the relocation 1786 // section. 1787 // Since the symbol offset is the high bits in r_info, sorting by r_info 1788 // allows us to do both. 1789 // 1790 // For Rela, we also want to sort by r_addend when r_info is the same. This 1791 // enables us to group by r_addend as well. 1792 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1793 if (a.r_info != b.r_info) 1794 return a.r_info < b.r_info; 1795 if (config->isRela) 1796 return a.r_addend < b.r_addend; 1797 return false; 1798 }); 1799 1800 // Group relocations with the same r_info. Note that each group emits a group 1801 // header and that may make the relocation section larger. It is hard to 1802 // estimate the size of a group header as the encoded size of that varies 1803 // based on r_info. However, we can approximate this trade-off by the number 1804 // of values encoded. Each group header contains 3 values, and each relocation 1805 // in a group encodes one less value, as compared to when it is not grouped. 1806 // Therefore, we only group relocations if there are 3 or more of them with 1807 // the same r_info. 1808 // 1809 // For Rela, the addend for most non-relative relocations is zero, and thus we 1810 // can usually get a smaller relocation section if we group relocations with 0 1811 // addend as well. 1812 std::vector<Elf_Rela> ungroupedNonRelatives; 1813 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1814 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1815 auto j = i + 1; 1816 while (j != e && i->r_info == j->r_info && 1817 (!config->isRela || i->r_addend == j->r_addend)) 1818 ++j; 1819 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1820 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1821 else 1822 nonRelativeGroups.emplace_back(i, j); 1823 i = j; 1824 } 1825 1826 // Sort ungrouped relocations by offset to minimize the encoded length. 1827 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1828 return a.r_offset < b.r_offset; 1829 }); 1830 1831 unsigned hasAddendIfRela = 1832 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1833 1834 uint64_t offset = 0; 1835 uint64_t addend = 0; 1836 1837 // Emit the run-length encoding for the groups of adjacent relative 1838 // relocations. Each group is represented using two groups in the packed 1839 // format. The first is used to set the current offset to the start of the 1840 // group (and also encodes the first relocation), and the second encodes the 1841 // remaining relocations. 1842 for (std::vector<Elf_Rela> &g : relativeGroups) { 1843 // The first relocation in the group. 1844 add(1); 1845 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1846 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1847 add(g[0].r_offset - offset); 1848 add(target->relativeRel); 1849 if (config->isRela) { 1850 add(g[0].r_addend - addend); 1851 addend = g[0].r_addend; 1852 } 1853 1854 // The remaining relocations. 1855 add(g.size() - 1); 1856 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1857 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1858 add(config->wordsize); 1859 add(target->relativeRel); 1860 if (config->isRela) { 1861 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1862 add(i->r_addend - addend); 1863 addend = i->r_addend; 1864 } 1865 } 1866 1867 offset = g.back().r_offset; 1868 } 1869 1870 // Now the ungrouped relatives. 1871 if (!ungroupedRelatives.empty()) { 1872 add(ungroupedRelatives.size()); 1873 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1874 add(target->relativeRel); 1875 for (Elf_Rela &r : ungroupedRelatives) { 1876 add(r.r_offset - offset); 1877 offset = r.r_offset; 1878 if (config->isRela) { 1879 add(r.r_addend - addend); 1880 addend = r.r_addend; 1881 } 1882 } 1883 } 1884 1885 // Grouped non-relatives. 1886 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1887 add(g.size()); 1888 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1889 add(g[0].r_info); 1890 for (const Elf_Rela &r : g) { 1891 add(r.r_offset - offset); 1892 offset = r.r_offset; 1893 } 1894 addend = 0; 1895 } 1896 1897 // Finally the ungrouped non-relative relocations. 1898 if (!ungroupedNonRelatives.empty()) { 1899 add(ungroupedNonRelatives.size()); 1900 add(hasAddendIfRela); 1901 for (Elf_Rela &r : ungroupedNonRelatives) { 1902 add(r.r_offset - offset); 1903 offset = r.r_offset; 1904 add(r.r_info); 1905 if (config->isRela) { 1906 add(r.r_addend - addend); 1907 addend = r.r_addend; 1908 } 1909 } 1910 } 1911 1912 // Don't allow the section to shrink; otherwise the size of the section can 1913 // oscillate infinitely. 1914 if (relocData.size() < oldSize) 1915 relocData.append(oldSize - relocData.size(), 0); 1916 1917 // Returns whether the section size changed. We need to keep recomputing both 1918 // section layout and the contents of this section until the size converges 1919 // because changing this section's size can affect section layout, which in 1920 // turn can affect the sizes of the LEB-encoded integers stored in this 1921 // section. 1922 return relocData.size() != oldSize; 1923 } 1924 1925 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1926 this->entsize = config->wordsize; 1927 } 1928 1929 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1930 // This function computes the contents of an SHT_RELR packed relocation 1931 // section. 1932 // 1933 // Proposal for adding SHT_RELR sections to generic-abi is here: 1934 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1935 // 1936 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 1937 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 1938 // 1939 // i.e. start with an address, followed by any number of bitmaps. The address 1940 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 1941 // relocations each, at subsequent offsets following the last address entry. 1942 // 1943 // The bitmap entries must have 1 in the least significant bit. The assumption 1944 // here is that an address cannot have 1 in lsb. Odd addresses are not 1945 // supported. 1946 // 1947 // Excluding the least significant bit in the bitmap, each non-zero bit in 1948 // the bitmap represents a relocation to be applied to a corresponding machine 1949 // word that follows the base address word. The second least significant bit 1950 // represents the machine word immediately following the initial address, and 1951 // each bit that follows represents the next word, in linear order. As such, 1952 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 1953 // 63 relocations in a 64-bit object. 1954 // 1955 // This encoding has a couple of interesting properties: 1956 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 1957 // even means address, odd means bitmap. 1958 // 2. Just a simple list of addresses is a valid encoding. 1959 1960 size_t oldSize = relrRelocs.size(); 1961 relrRelocs.clear(); 1962 1963 // Same as Config->Wordsize but faster because this is a compile-time 1964 // constant. 1965 const size_t wordsize = sizeof(typename ELFT::uint); 1966 1967 // Number of bits to use for the relocation offsets bitmap. 1968 // Must be either 63 or 31. 1969 const size_t nBits = wordsize * 8 - 1; 1970 1971 // Get offsets for all relative relocations and sort them. 1972 std::vector<uint64_t> offsets; 1973 for (const RelativeReloc &rel : relocs) 1974 offsets.push_back(rel.getOffset()); 1975 llvm::sort(offsets); 1976 1977 // For each leading relocation, find following ones that can be folded 1978 // as a bitmap and fold them. 1979 for (size_t i = 0, e = offsets.size(); i < e;) { 1980 // Add a leading relocation. 1981 relrRelocs.push_back(Elf_Relr(offsets[i])); 1982 uint64_t base = offsets[i] + wordsize; 1983 ++i; 1984 1985 // Find foldable relocations to construct bitmaps. 1986 while (i < e) { 1987 uint64_t bitmap = 0; 1988 1989 while (i < e) { 1990 uint64_t delta = offsets[i] - base; 1991 1992 // If it is too far, it cannot be folded. 1993 if (delta >= nBits * wordsize) 1994 break; 1995 1996 // If it is not a multiple of wordsize away, it cannot be folded. 1997 if (delta % wordsize) 1998 break; 1999 2000 // Fold it. 2001 bitmap |= 1ULL << (delta / wordsize); 2002 ++i; 2003 } 2004 2005 if (!bitmap) 2006 break; 2007 2008 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2009 base += nBits * wordsize; 2010 } 2011 } 2012 2013 // Don't allow the section to shrink; otherwise the size of the section can 2014 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2015 if (relrRelocs.size() < oldSize) { 2016 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2017 " padding word(s)"); 2018 relrRelocs.resize(oldSize, Elf_Relr(1)); 2019 } 2020 2021 return relrRelocs.size() != oldSize; 2022 } 2023 2024 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2025 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2026 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2027 config->wordsize, 2028 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2029 strTabSec(strTabSec) {} 2030 2031 // Orders symbols according to their positions in the GOT, 2032 // in compliance with MIPS ABI rules. 2033 // See "Global Offset Table" in Chapter 5 in the following document 2034 // for detailed description: 2035 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2036 static bool sortMipsSymbols(const SymbolTableEntry &l, 2037 const SymbolTableEntry &r) { 2038 // Sort entries related to non-local preemptible symbols by GOT indexes. 2039 // All other entries go to the beginning of a dynsym in arbitrary order. 2040 if (l.sym->isInGot() && r.sym->isInGot()) 2041 return l.sym->gotIndex < r.sym->gotIndex; 2042 if (!l.sym->isInGot() && !r.sym->isInGot()) 2043 return false; 2044 return !l.sym->isInGot(); 2045 } 2046 2047 void SymbolTableBaseSection::finalizeContents() { 2048 if (OutputSection *sec = strTabSec.getParent()) 2049 getParent()->link = sec->sectionIndex; 2050 2051 if (this->type != SHT_DYNSYM) { 2052 sortSymTabSymbols(); 2053 return; 2054 } 2055 2056 // If it is a .dynsym, there should be no local symbols, but we need 2057 // to do a few things for the dynamic linker. 2058 2059 // Section's Info field has the index of the first non-local symbol. 2060 // Because the first symbol entry is a null entry, 1 is the first. 2061 getParent()->info = 1; 2062 2063 if (getPartition().gnuHashTab) { 2064 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2065 getPartition().gnuHashTab->addSymbols(symbols); 2066 } else if (config->emachine == EM_MIPS) { 2067 llvm::stable_sort(symbols, sortMipsSymbols); 2068 } 2069 2070 // Only the main partition's dynsym indexes are stored in the symbols 2071 // themselves. All other partitions use a lookup table. 2072 if (this == mainPart->dynSymTab) { 2073 size_t i = 0; 2074 for (const SymbolTableEntry &s : symbols) 2075 s.sym->dynsymIndex = ++i; 2076 } 2077 } 2078 2079 // The ELF spec requires that all local symbols precede global symbols, so we 2080 // sort symbol entries in this function. (For .dynsym, we don't do that because 2081 // symbols for dynamic linking are inherently all globals.) 2082 // 2083 // Aside from above, we put local symbols in groups starting with the STT_FILE 2084 // symbol. That is convenient for purpose of identifying where are local symbols 2085 // coming from. 2086 void SymbolTableBaseSection::sortSymTabSymbols() { 2087 // Move all local symbols before global symbols. 2088 auto e = std::stable_partition( 2089 symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) { 2090 return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL; 2091 }); 2092 size_t numLocals = e - symbols.begin(); 2093 getParent()->info = numLocals + 1; 2094 2095 // We want to group the local symbols by file. For that we rebuild the local 2096 // part of the symbols vector. We do not need to care about the STT_FILE 2097 // symbols, they are already naturally placed first in each group. That 2098 // happens because STT_FILE is always the first symbol in the object and hence 2099 // precede all other local symbols we add for a file. 2100 MapVector<InputFile *, std::vector<SymbolTableEntry>> arr; 2101 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2102 arr[s.sym->file].push_back(s); 2103 2104 auto i = symbols.begin(); 2105 for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr) 2106 for (SymbolTableEntry &entry : p.second) 2107 *i++ = entry; 2108 } 2109 2110 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2111 // Adding a local symbol to a .dynsym is a bug. 2112 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2113 2114 bool hashIt = b->isLocal(); 2115 symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)}); 2116 } 2117 2118 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2119 if (this == mainPart->dynSymTab) 2120 return sym->dynsymIndex; 2121 2122 // Initializes symbol lookup tables lazily. This is used only for -r, 2123 // -emit-relocs and dynsyms in partitions other than the main one. 2124 llvm::call_once(onceFlag, [&] { 2125 symbolIndexMap.reserve(symbols.size()); 2126 size_t i = 0; 2127 for (const SymbolTableEntry &e : symbols) { 2128 if (e.sym->type == STT_SECTION) 2129 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2130 else 2131 symbolIndexMap[e.sym] = ++i; 2132 } 2133 }); 2134 2135 // Section symbols are mapped based on their output sections 2136 // to maintain their semantics. 2137 if (sym->type == STT_SECTION) 2138 return sectionIndexMap.lookup(sym->getOutputSection()); 2139 return symbolIndexMap.lookup(sym); 2140 } 2141 2142 template <class ELFT> 2143 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2144 : SymbolTableBaseSection(strTabSec) { 2145 this->entsize = sizeof(Elf_Sym); 2146 } 2147 2148 static BssSection *getCommonSec(Symbol *sym) { 2149 if (!config->defineCommon) 2150 if (auto *d = dyn_cast<Defined>(sym)) 2151 return dyn_cast_or_null<BssSection>(d->section); 2152 return nullptr; 2153 } 2154 2155 static uint32_t getSymSectionIndex(Symbol *sym) { 2156 if (getCommonSec(sym)) 2157 return SHN_COMMON; 2158 if (!isa<Defined>(sym) || sym->needsPltAddr) 2159 return SHN_UNDEF; 2160 if (const OutputSection *os = sym->getOutputSection()) 2161 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2162 : os->sectionIndex; 2163 return SHN_ABS; 2164 } 2165 2166 // Write the internal symbol table contents to the output symbol table. 2167 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2168 // The first entry is a null entry as per the ELF spec. 2169 memset(buf, 0, sizeof(Elf_Sym)); 2170 buf += sizeof(Elf_Sym); 2171 2172 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2173 2174 for (SymbolTableEntry &ent : symbols) { 2175 Symbol *sym = ent.sym; 2176 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2177 2178 // Set st_info and st_other. 2179 eSym->st_other = 0; 2180 if (sym->isLocal()) { 2181 eSym->setBindingAndType(STB_LOCAL, sym->type); 2182 } else { 2183 eSym->setBindingAndType(sym->computeBinding(), sym->type); 2184 eSym->setVisibility(sym->visibility); 2185 } 2186 2187 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2188 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2189 if (config->emachine == EM_PPC64) 2190 eSym->st_other |= sym->stOther & 0xe0; 2191 // The most significant bit of st_other is used by AArch64 ABI for the 2192 // variant PCS. 2193 else if (config->emachine == EM_AARCH64) 2194 eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS; 2195 2196 eSym->st_name = ent.strTabOffset; 2197 if (isDefinedHere) 2198 eSym->st_shndx = getSymSectionIndex(ent.sym); 2199 else 2200 eSym->st_shndx = 0; 2201 2202 // Copy symbol size if it is a defined symbol. st_size is not significant 2203 // for undefined symbols, so whether copying it or not is up to us if that's 2204 // the case. We'll leave it as zero because by not setting a value, we can 2205 // get the exact same outputs for two sets of input files that differ only 2206 // in undefined symbol size in DSOs. 2207 if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere) 2208 eSym->st_size = 0; 2209 else 2210 eSym->st_size = sym->getSize(); 2211 2212 // st_value is usually an address of a symbol, but that has a special 2213 // meaning for uninstantiated common symbols (--no-define-common). 2214 if (BssSection *commonSec = getCommonSec(ent.sym)) 2215 eSym->st_value = commonSec->alignment; 2216 else if (isDefinedHere) 2217 eSym->st_value = sym->getVA(); 2218 else 2219 eSym->st_value = 0; 2220 2221 ++eSym; 2222 } 2223 2224 // On MIPS we need to mark symbol which has a PLT entry and requires 2225 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2226 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2227 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2228 if (config->emachine == EM_MIPS) { 2229 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2230 2231 for (SymbolTableEntry &ent : symbols) { 2232 Symbol *sym = ent.sym; 2233 if (sym->isInPlt() && sym->needsPltAddr) 2234 eSym->st_other |= STO_MIPS_PLT; 2235 if (isMicroMips()) { 2236 // We already set the less-significant bit for symbols 2237 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2238 // records. That allows us to distinguish such symbols in 2239 // the `MIPS<ELFT>::relocate()` routine. Now we should 2240 // clear that bit for non-dynamic symbol table, so tools 2241 // like `objdump` will be able to deal with a correct 2242 // symbol position. 2243 if (sym->isDefined() && 2244 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) { 2245 if (!strTabSec.isDynamic()) 2246 eSym->st_value &= ~1; 2247 eSym->st_other |= STO_MIPS_MICROMIPS; 2248 } 2249 } 2250 if (config->relocatable) 2251 if (auto *d = dyn_cast<Defined>(sym)) 2252 if (isMipsPIC<ELFT>(d)) 2253 eSym->st_other |= STO_MIPS_PIC; 2254 ++eSym; 2255 } 2256 } 2257 } 2258 2259 SymtabShndxSection::SymtabShndxSection() 2260 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2261 this->entsize = 4; 2262 } 2263 2264 void SymtabShndxSection::writeTo(uint8_t *buf) { 2265 // We write an array of 32 bit values, where each value has 1:1 association 2266 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2267 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2268 buf += 4; // Ignore .symtab[0] entry. 2269 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2270 if (getSymSectionIndex(entry.sym) == SHN_XINDEX) 2271 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2272 buf += 4; 2273 } 2274 } 2275 2276 bool SymtabShndxSection::isNeeded() const { 2277 // SHT_SYMTAB can hold symbols with section indices values up to 2278 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2279 // section. Problem is that we reveal the final section indices a bit too 2280 // late, and we do not know them here. For simplicity, we just always create 2281 // a .symtab_shndx section when the amount of output sections is huge. 2282 size_t size = 0; 2283 for (BaseCommand *base : script->sectionCommands) 2284 if (isa<OutputSection>(base)) 2285 ++size; 2286 return size >= SHN_LORESERVE; 2287 } 2288 2289 void SymtabShndxSection::finalizeContents() { 2290 getParent()->link = in.symTab->getParent()->sectionIndex; 2291 } 2292 2293 size_t SymtabShndxSection::getSize() const { 2294 return in.symTab->getNumSymbols() * 4; 2295 } 2296 2297 // .hash and .gnu.hash sections contain on-disk hash tables that map 2298 // symbol names to their dynamic symbol table indices. Their purpose 2299 // is to help the dynamic linker resolve symbols quickly. If ELF files 2300 // don't have them, the dynamic linker has to do linear search on all 2301 // dynamic symbols, which makes programs slower. Therefore, a .hash 2302 // section is added to a DSO by default. A .gnu.hash is added if you 2303 // give the -hash-style=gnu or -hash-style=both option. 2304 // 2305 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2306 // Each ELF file has a list of DSOs that the ELF file depends on and a 2307 // list of dynamic symbols that need to be resolved from any of the 2308 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2309 // where m is the number of DSOs and n is the number of dynamic 2310 // symbols. For modern large programs, both m and n are large. So 2311 // making each step faster by using hash tables substantially 2312 // improves time to load programs. 2313 // 2314 // (Note that this is not the only way to design the shared library. 2315 // For instance, the Windows DLL takes a different approach. On 2316 // Windows, each dynamic symbol has a name of DLL from which the symbol 2317 // has to be resolved. That makes the cost of symbol resolution O(n). 2318 // This disables some hacky techniques you can use on Unix such as 2319 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2320 // 2321 // Due to historical reasons, we have two different hash tables, .hash 2322 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2323 // and better version of .hash. .hash is just an on-disk hash table, but 2324 // .gnu.hash has a bloom filter in addition to a hash table to skip 2325 // DSOs very quickly. If you are sure that your dynamic linker knows 2326 // about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a 2327 // safe bet is to specify -hash-style=both for backward compatibility. 2328 GnuHashTableSection::GnuHashTableSection() 2329 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2330 } 2331 2332 void GnuHashTableSection::finalizeContents() { 2333 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2334 getParent()->link = sec->sectionIndex; 2335 2336 // Computes bloom filter size in word size. We want to allocate 12 2337 // bits for each symbol. It must be a power of two. 2338 if (symbols.empty()) { 2339 maskWords = 1; 2340 } else { 2341 uint64_t numBits = symbols.size() * 12; 2342 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2343 } 2344 2345 size = 16; // Header 2346 size += config->wordsize * maskWords; // Bloom filter 2347 size += nBuckets * 4; // Hash buckets 2348 size += symbols.size() * 4; // Hash values 2349 } 2350 2351 void GnuHashTableSection::writeTo(uint8_t *buf) { 2352 // The output buffer is not guaranteed to be zero-cleared because we pre- 2353 // fill executable sections with trap instructions. This is a precaution 2354 // for that case, which happens only when -no-rosegment is given. 2355 memset(buf, 0, size); 2356 2357 // Write a header. 2358 write32(buf, nBuckets); 2359 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2360 write32(buf + 8, maskWords); 2361 write32(buf + 12, Shift2); 2362 buf += 16; 2363 2364 // Write a bloom filter and a hash table. 2365 writeBloomFilter(buf); 2366 buf += config->wordsize * maskWords; 2367 writeHashTable(buf); 2368 } 2369 2370 // This function writes a 2-bit bloom filter. This bloom filter alone 2371 // usually filters out 80% or more of all symbol lookups [1]. 2372 // The dynamic linker uses the hash table only when a symbol is not 2373 // filtered out by a bloom filter. 2374 // 2375 // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2), 2376 // p.9, https://www.akkadia.org/drepper/dsohowto.pdf 2377 void GnuHashTableSection::writeBloomFilter(uint8_t *buf) { 2378 unsigned c = config->is64 ? 64 : 32; 2379 for (const Entry &sym : symbols) { 2380 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2381 // the word using bits [0:5] and [26:31]. 2382 size_t i = (sym.hash / c) & (maskWords - 1); 2383 uint64_t val = readUint(buf + i * config->wordsize); 2384 val |= uint64_t(1) << (sym.hash % c); 2385 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2386 writeUint(buf + i * config->wordsize, val); 2387 } 2388 } 2389 2390 void GnuHashTableSection::writeHashTable(uint8_t *buf) { 2391 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2392 uint32_t oldBucket = -1; 2393 uint32_t *values = buckets + nBuckets; 2394 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2395 // Write a hash value. It represents a sequence of chains that share the 2396 // same hash modulo value. The last element of each chain is terminated by 2397 // LSB 1. 2398 uint32_t hash = i->hash; 2399 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2400 hash = isLastInChain ? hash | 1 : hash & ~1; 2401 write32(values++, hash); 2402 2403 if (i->bucketIdx == oldBucket) 2404 continue; 2405 // Write a hash bucket. Hash buckets contain indices in the following hash 2406 // value table. 2407 write32(buckets + i->bucketIdx, 2408 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2409 oldBucket = i->bucketIdx; 2410 } 2411 } 2412 2413 static uint32_t hashGnu(StringRef name) { 2414 uint32_t h = 5381; 2415 for (uint8_t c : name) 2416 h = (h << 5) + h + c; 2417 return h; 2418 } 2419 2420 // Add symbols to this symbol hash table. Note that this function 2421 // destructively sort a given vector -- which is needed because 2422 // GNU-style hash table places some sorting requirements. 2423 void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) { 2424 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2425 // its type correctly. 2426 std::vector<SymbolTableEntry>::iterator mid = 2427 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2428 return !s.sym->isDefined() || s.sym->partition != partition; 2429 }); 2430 2431 // We chose load factor 4 for the on-disk hash table. For each hash 2432 // collision, the dynamic linker will compare a uint32_t hash value. 2433 // Since the integer comparison is quite fast, we believe we can 2434 // make the load factor even larger. 4 is just a conservative choice. 2435 // 2436 // Note that we don't want to create a zero-sized hash table because 2437 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2438 // table. If that's the case, we create a hash table with one unused 2439 // dummy slot. 2440 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2441 2442 if (mid == v.end()) 2443 return; 2444 2445 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2446 Symbol *b = ent.sym; 2447 uint32_t hash = hashGnu(b->getName()); 2448 uint32_t bucketIdx = hash % nBuckets; 2449 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2450 } 2451 2452 llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) { 2453 return l.bucketIdx < r.bucketIdx; 2454 }); 2455 2456 v.erase(mid, v.end()); 2457 for (const Entry &ent : symbols) 2458 v.push_back({ent.sym, ent.strTabOffset}); 2459 } 2460 2461 HashTableSection::HashTableSection() 2462 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2463 this->entsize = 4; 2464 } 2465 2466 void HashTableSection::finalizeContents() { 2467 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 2468 2469 if (OutputSection *sec = symTab->getParent()) 2470 getParent()->link = sec->sectionIndex; 2471 2472 unsigned numEntries = 2; // nbucket and nchain. 2473 numEntries += symTab->getNumSymbols(); // The chain entries. 2474 2475 // Create as many buckets as there are symbols. 2476 numEntries += symTab->getNumSymbols(); 2477 this->size = numEntries * 4; 2478 } 2479 2480 void HashTableSection::writeTo(uint8_t *buf) { 2481 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 2482 2483 // See comment in GnuHashTableSection::writeTo. 2484 memset(buf, 0, size); 2485 2486 unsigned numSymbols = symTab->getNumSymbols(); 2487 2488 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2489 write32(p++, numSymbols); // nbucket 2490 write32(p++, numSymbols); // nchain 2491 2492 uint32_t *buckets = p; 2493 uint32_t *chains = p + numSymbols; 2494 2495 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2496 Symbol *sym = s.sym; 2497 StringRef name = sym->getName(); 2498 unsigned i = sym->dynsymIndex; 2499 uint32_t hash = hashSysV(name) % numSymbols; 2500 chains[i] = buckets[hash]; 2501 write32(buckets + hash, i); 2502 } 2503 } 2504 2505 PltSection::PltSection() 2506 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2507 headerSize(target->pltHeaderSize) { 2508 // On PowerPC, this section contains lazy symbol resolvers. 2509 if (config->emachine == EM_PPC64) { 2510 name = ".glink"; 2511 alignment = 4; 2512 } 2513 2514 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2515 // symbol resolvers). 2516 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2517 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2518 name = ".plt.sec"; 2519 2520 // The PLT needs to be writable on SPARC as the dynamic linker will 2521 // modify the instructions in the PLT entries. 2522 if (config->emachine == EM_SPARCV9) 2523 this->flags |= SHF_WRITE; 2524 } 2525 2526 void PltSection::writeTo(uint8_t *buf) { 2527 // At beginning of PLT, we have code to call the dynamic 2528 // linker to resolve dynsyms at runtime. Write such code. 2529 target->writePltHeader(buf); 2530 size_t off = headerSize; 2531 2532 for (const Symbol *sym : entries) { 2533 target->writePlt(buf + off, *sym, getVA() + off); 2534 off += target->pltEntrySize; 2535 } 2536 } 2537 2538 void PltSection::addEntry(Symbol &sym) { 2539 sym.pltIndex = entries.size(); 2540 entries.push_back(&sym); 2541 } 2542 2543 size_t PltSection::getSize() const { 2544 return headerSize + entries.size() * target->pltEntrySize; 2545 } 2546 2547 bool PltSection::isNeeded() const { 2548 // For -z retpolineplt, .iplt needs the .plt header. 2549 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2550 } 2551 2552 // Used by ARM to add mapping symbols in the PLT section, which aid 2553 // disassembly. 2554 void PltSection::addSymbols() { 2555 target->addPltHeaderSymbols(*this); 2556 2557 size_t off = headerSize; 2558 for (size_t i = 0; i < entries.size(); ++i) { 2559 target->addPltSymbols(*this, off); 2560 off += target->pltEntrySize; 2561 } 2562 } 2563 2564 IpltSection::IpltSection() 2565 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2566 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2567 name = ".glink"; 2568 alignment = 4; 2569 } 2570 } 2571 2572 void IpltSection::writeTo(uint8_t *buf) { 2573 uint32_t off = 0; 2574 for (const Symbol *sym : entries) { 2575 target->writeIplt(buf + off, *sym, getVA() + off); 2576 off += target->ipltEntrySize; 2577 } 2578 } 2579 2580 size_t IpltSection::getSize() const { 2581 return entries.size() * target->ipltEntrySize; 2582 } 2583 2584 void IpltSection::addEntry(Symbol &sym) { 2585 sym.pltIndex = entries.size(); 2586 entries.push_back(&sym); 2587 } 2588 2589 // ARM uses mapping symbols to aid disassembly. 2590 void IpltSection::addSymbols() { 2591 size_t off = 0; 2592 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2593 target->addPltSymbols(*this, off); 2594 off += target->pltEntrySize; 2595 } 2596 } 2597 2598 PPC32GlinkSection::PPC32GlinkSection() { 2599 name = ".glink"; 2600 alignment = 4; 2601 } 2602 2603 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2604 writePPC32GlinkSection(buf, entries.size()); 2605 } 2606 2607 size_t PPC32GlinkSection::getSize() const { 2608 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2609 } 2610 2611 // This is an x86-only extra PLT section and used only when a security 2612 // enhancement feature called CET is enabled. In this comment, I'll explain what 2613 // the feature is and why we have two PLT sections if CET is enabled. 2614 // 2615 // So, what does CET do? CET introduces a new restriction to indirect jump 2616 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2617 // execute an indirect jump instruction, the processor verifies that a special 2618 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2619 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2620 // does not start with that instruction, the processor raises an exception 2621 // instead of continuing executing code. 2622 // 2623 // If CET is enabled, the compiler emits endbr to all locations where indirect 2624 // jumps may jump to. 2625 // 2626 // This mechanism makes it extremely hard to transfer the control to a middle of 2627 // a function that is not supporsed to be a indirect jump target, preventing 2628 // certain types of attacks such as ROP or JOP. 2629 // 2630 // Note that the processors in the market as of 2019 don't actually support the 2631 // feature. Only the spec is available at the moment. 2632 // 2633 // Now, I'll explain why we have this extra PLT section for CET. 2634 // 2635 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2636 // start with endbr. The problem is there's no extra space for endbr (which is 4 2637 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2638 // used. 2639 // 2640 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2641 // Remember that each PLT entry contains code to jump to an address read from 2642 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2643 // the former code is written to .plt.sec, and the latter code is written to 2644 // .plt. 2645 // 2646 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2647 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2648 // contain only code for lazy symbol resolution. 2649 // 2650 // In other words, this is how the 2-PLT scheme works. Application code is 2651 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2652 // entry contains code to read an address from a corresponding .got.plt entry 2653 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2654 // when an application calls an external function for the first time, the 2655 // control is transferred to a function that resolves a symbol name from 2656 // external shared object files. That function then rewrites a .got.plt entry 2657 // with a resolved address, so that the subsequent function calls directly jump 2658 // to a desired location from .plt.sec. 2659 // 2660 // There is an open question as to whether the 2-PLT scheme was desirable or 2661 // not. We could have simply extended the PLT entry size to 32-bytes to 2662 // accommodate endbr, and that scheme would have been much simpler than the 2663 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2664 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2665 // that the optimization actually makes a difference. 2666 // 2667 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2668 // depend on it, so we implement the ABI. 2669 IBTPltSection::IBTPltSection() 2670 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2671 2672 void IBTPltSection::writeTo(uint8_t *buf) { 2673 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2674 } 2675 2676 size_t IBTPltSection::getSize() const { 2677 // 16 is the header size of .plt. 2678 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2679 } 2680 2681 // The string hash function for .gdb_index. 2682 static uint32_t computeGdbHash(StringRef s) { 2683 uint32_t h = 0; 2684 for (uint8_t c : s) 2685 h = h * 67 + toLower(c) - 113; 2686 return h; 2687 } 2688 2689 GdbIndexSection::GdbIndexSection() 2690 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2691 2692 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2693 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2694 size_t GdbIndexSection::computeSymtabSize() const { 2695 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2696 } 2697 2698 // Compute the output section size. 2699 void GdbIndexSection::initOutputSize() { 2700 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2701 2702 for (GdbChunk &chunk : chunks) 2703 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2704 2705 // Add the constant pool size if exists. 2706 if (!symbols.empty()) { 2707 GdbSymbol &sym = symbols.back(); 2708 size += sym.nameOff + sym.name.size() + 1; 2709 } 2710 } 2711 2712 static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) { 2713 std::vector<GdbIndexSection::CuEntry> ret; 2714 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2715 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2716 return ret; 2717 } 2718 2719 static std::vector<GdbIndexSection::AddressEntry> 2720 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2721 std::vector<GdbIndexSection::AddressEntry> ret; 2722 2723 uint32_t cuIdx = 0; 2724 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2725 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2726 warn(toString(sec) + ": " + toString(std::move(e))); 2727 return {}; 2728 } 2729 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2730 if (!ranges) { 2731 warn(toString(sec) + ": " + toString(ranges.takeError())); 2732 return {}; 2733 } 2734 2735 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2736 for (DWARFAddressRange &r : *ranges) { 2737 if (r.SectionIndex == -1ULL) 2738 continue; 2739 // Range list with zero size has no effect. 2740 InputSectionBase *s = sections[r.SectionIndex]; 2741 if (s && s != &InputSection::discarded && s->isLive()) 2742 if (r.LowPC != r.HighPC) 2743 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2744 } 2745 ++cuIdx; 2746 } 2747 2748 return ret; 2749 } 2750 2751 template <class ELFT> 2752 static std::vector<GdbIndexSection::NameAttrEntry> 2753 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2754 const std::vector<GdbIndexSection::CuEntry> &cus) { 2755 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2756 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2757 2758 std::vector<GdbIndexSection::NameAttrEntry> ret; 2759 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2760 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2761 DWARFDebugPubTable table; 2762 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2763 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2764 }); 2765 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2766 // The value written into the constant pool is kind << 24 | cuIndex. As we 2767 // don't know how many compilation units precede this object to compute 2768 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2769 // the number of preceding compilation units later. 2770 uint32_t i = llvm::partition_point(cus, 2771 [&](GdbIndexSection::CuEntry cu) { 2772 return cu.cuOffset < set.Offset; 2773 }) - 2774 cus.begin(); 2775 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2776 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2777 (ent.Descriptor.toBits() << 24) | i}); 2778 } 2779 } 2780 return ret; 2781 } 2782 2783 // Create a list of symbols from a given list of symbol names and types 2784 // by uniquifying them by name. 2785 static std::vector<GdbIndexSection::GdbSymbol> 2786 createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs, 2787 const std::vector<GdbIndexSection::GdbChunk> &chunks) { 2788 using GdbSymbol = GdbIndexSection::GdbSymbol; 2789 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2790 2791 // For each chunk, compute the number of compilation units preceding it. 2792 uint32_t cuIdx = 0; 2793 std::vector<uint32_t> cuIdxs(chunks.size()); 2794 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2795 cuIdxs[i] = cuIdx; 2796 cuIdx += chunks[i].compilationUnits.size(); 2797 } 2798 2799 // The number of symbols we will handle in this function is of the order 2800 // of millions for very large executables, so we use multi-threading to 2801 // speed it up. 2802 constexpr size_t numShards = 32; 2803 size_t concurrency = PowerOf2Floor( 2804 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 2805 .compute_thread_count(), 2806 numShards)); 2807 2808 // A sharded map to uniquify symbols by name. 2809 std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards); 2810 size_t shift = 32 - countTrailingZeros(numShards); 2811 2812 // Instantiate GdbSymbols while uniqufying them by name. 2813 std::vector<std::vector<GdbSymbol>> symbols(numShards); 2814 parallelForEachN(0, concurrency, [&](size_t threadId) { 2815 uint32_t i = 0; 2816 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2817 for (const NameAttrEntry &ent : entries) { 2818 size_t shardId = ent.name.hash() >> shift; 2819 if ((shardId & (concurrency - 1)) != threadId) 2820 continue; 2821 2822 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2823 size_t &idx = map[shardId][ent.name]; 2824 if (idx) { 2825 symbols[shardId][idx - 1].cuVector.push_back(v); 2826 continue; 2827 } 2828 2829 idx = symbols[shardId].size() + 1; 2830 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2831 } 2832 ++i; 2833 } 2834 }); 2835 2836 size_t numSymbols = 0; 2837 for (ArrayRef<GdbSymbol> v : symbols) 2838 numSymbols += v.size(); 2839 2840 // The return type is a flattened vector, so we'll copy each vector 2841 // contents to Ret. 2842 std::vector<GdbSymbol> ret; 2843 ret.reserve(numSymbols); 2844 for (std::vector<GdbSymbol> &vec : symbols) 2845 for (GdbSymbol &sym : vec) 2846 ret.push_back(std::move(sym)); 2847 2848 // CU vectors and symbol names are adjacent in the output file. 2849 // We can compute their offsets in the output file now. 2850 size_t off = 0; 2851 for (GdbSymbol &sym : ret) { 2852 sym.cuVectorOff = off; 2853 off += (sym.cuVector.size() + 1) * 4; 2854 } 2855 for (GdbSymbol &sym : ret) { 2856 sym.nameOff = off; 2857 off += sym.name.size() + 1; 2858 } 2859 2860 return ret; 2861 } 2862 2863 // Returns a newly-created .gdb_index section. 2864 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2865 // Collect InputFiles with .debug_info. See the comment in 2866 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2867 // note that isec->data() may uncompress the full content, which should be 2868 // parallelized. 2869 SetVector<InputFile *> files; 2870 for (InputSectionBase *s : inputSections) { 2871 InputSection *isec = dyn_cast<InputSection>(s); 2872 if (!isec) 2873 continue; 2874 // .debug_gnu_pub{names,types} are useless in executables. 2875 // They are present in input object files solely for creating 2876 // a .gdb_index. So we can remove them from the output. 2877 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2878 s->markDead(); 2879 else if (isec->name == ".debug_info") 2880 files.insert(isec->file); 2881 } 2882 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 2883 llvm::erase_if(inputSections, [](InputSectionBase *s) { 2884 if (auto *isec = dyn_cast<InputSection>(s)) 2885 if (InputSectionBase *rel = isec->getRelocatedSection()) 2886 return !rel->isLive(); 2887 return !s->isLive(); 2888 }); 2889 2890 std::vector<GdbChunk> chunks(files.size()); 2891 std::vector<std::vector<NameAttrEntry>> nameAttrs(files.size()); 2892 2893 parallelForEachN(0, files.size(), [&](size_t i) { 2894 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2895 // avoid getDwarf() here. 2896 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2897 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2898 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2899 2900 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2901 // this only picks the last one. Other address ranges are lost. 2902 chunks[i].sec = dobj.getInfoSection(); 2903 chunks[i].compilationUnits = readCuList(dwarf); 2904 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2905 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2906 }); 2907 2908 auto *ret = make<GdbIndexSection>(); 2909 ret->chunks = std::move(chunks); 2910 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2911 ret->initOutputSize(); 2912 return ret; 2913 } 2914 2915 void GdbIndexSection::writeTo(uint8_t *buf) { 2916 // Write the header. 2917 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2918 uint8_t *start = buf; 2919 hdr->version = 7; 2920 buf += sizeof(*hdr); 2921 2922 // Write the CU list. 2923 hdr->cuListOff = buf - start; 2924 for (GdbChunk &chunk : chunks) { 2925 for (CuEntry &cu : chunk.compilationUnits) { 2926 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2927 write64le(buf + 8, cu.cuLength); 2928 buf += 16; 2929 } 2930 } 2931 2932 // Write the address area. 2933 hdr->cuTypesOff = buf - start; 2934 hdr->addressAreaOff = buf - start; 2935 uint32_t cuOff = 0; 2936 for (GdbChunk &chunk : chunks) { 2937 for (AddressEntry &e : chunk.addressAreas) { 2938 // In the case of ICF there may be duplicate address range entries. 2939 const uint64_t baseAddr = e.section->repl->getVA(0); 2940 write64le(buf, baseAddr + e.lowAddress); 2941 write64le(buf + 8, baseAddr + e.highAddress); 2942 write32le(buf + 16, e.cuIndex + cuOff); 2943 buf += 20; 2944 } 2945 cuOff += chunk.compilationUnits.size(); 2946 } 2947 2948 // Write the on-disk open-addressing hash table containing symbols. 2949 hdr->symtabOff = buf - start; 2950 size_t symtabSize = computeSymtabSize(); 2951 uint32_t mask = symtabSize - 1; 2952 2953 for (GdbSymbol &sym : symbols) { 2954 uint32_t h = sym.name.hash(); 2955 uint32_t i = h & mask; 2956 uint32_t step = ((h * 17) & mask) | 1; 2957 2958 while (read32le(buf + i * 8)) 2959 i = (i + step) & mask; 2960 2961 write32le(buf + i * 8, sym.nameOff); 2962 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2963 } 2964 2965 buf += symtabSize * 8; 2966 2967 // Write the string pool. 2968 hdr->constantPoolOff = buf - start; 2969 parallelForEach(symbols, [&](GdbSymbol &sym) { 2970 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 2971 }); 2972 2973 // Write the CU vectors. 2974 for (GdbSymbol &sym : symbols) { 2975 write32le(buf, sym.cuVector.size()); 2976 buf += 4; 2977 for (uint32_t val : sym.cuVector) { 2978 write32le(buf, val); 2979 buf += 4; 2980 } 2981 } 2982 } 2983 2984 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 2985 2986 EhFrameHeader::EhFrameHeader() 2987 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 2988 2989 void EhFrameHeader::writeTo(uint8_t *buf) { 2990 // Unlike most sections, the EhFrameHeader section is written while writing 2991 // another section, namely EhFrameSection, which calls the write() function 2992 // below from its writeTo() function. This is necessary because the contents 2993 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 2994 // don't know which order the sections will be written in. 2995 } 2996 2997 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 2998 // Each entry of the search table consists of two values, 2999 // the starting PC from where FDEs covers, and the FDE's address. 3000 // It is sorted by PC. 3001 void EhFrameHeader::write() { 3002 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3003 using FdeData = EhFrameSection::FdeData; 3004 3005 std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData(); 3006 3007 buf[0] = 1; 3008 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3009 buf[2] = DW_EH_PE_udata4; 3010 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3011 write32(buf + 4, 3012 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3013 write32(buf + 8, fdes.size()); 3014 buf += 12; 3015 3016 for (FdeData &fde : fdes) { 3017 write32(buf, fde.pcRel); 3018 write32(buf + 4, fde.fdeVARel); 3019 buf += 8; 3020 } 3021 } 3022 3023 size_t EhFrameHeader::getSize() const { 3024 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3025 return 12 + getPartition().ehFrame->numFdes * 8; 3026 } 3027 3028 bool EhFrameHeader::isNeeded() const { 3029 return isLive() && getPartition().ehFrame->isNeeded(); 3030 } 3031 3032 VersionDefinitionSection::VersionDefinitionSection() 3033 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3034 ".gnu.version_d") {} 3035 3036 StringRef VersionDefinitionSection::getFileDefName() { 3037 if (!getPartition().name.empty()) 3038 return getPartition().name; 3039 if (!config->soName.empty()) 3040 return config->soName; 3041 return config->outputFile; 3042 } 3043 3044 void VersionDefinitionSection::finalizeContents() { 3045 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3046 for (const VersionDefinition &v : namedVersionDefs()) 3047 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3048 3049 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3050 getParent()->link = sec->sectionIndex; 3051 3052 // sh_info should be set to the number of definitions. This fact is missed in 3053 // documentation, but confirmed by binutils community: 3054 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3055 getParent()->info = getVerDefNum(); 3056 } 3057 3058 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3059 StringRef name, size_t nameOff) { 3060 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3061 3062 // Write a verdef. 3063 write16(buf, 1); // vd_version 3064 write16(buf + 2, flags); // vd_flags 3065 write16(buf + 4, index); // vd_ndx 3066 write16(buf + 6, 1); // vd_cnt 3067 write32(buf + 8, hashSysV(name)); // vd_hash 3068 write32(buf + 12, 20); // vd_aux 3069 write32(buf + 16, 28); // vd_next 3070 3071 // Write a veraux. 3072 write32(buf + 20, nameOff); // vda_name 3073 write32(buf + 24, 0); // vda_next 3074 } 3075 3076 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3077 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3078 3079 auto nameOffIt = verDefNameOffs.begin(); 3080 for (const VersionDefinition &v : namedVersionDefs()) { 3081 buf += EntrySize; 3082 writeOne(buf, v.id, v.name, *nameOffIt++); 3083 } 3084 3085 // Need to terminate the last version definition. 3086 write32(buf + 16, 0); // vd_next 3087 } 3088 3089 size_t VersionDefinitionSection::getSize() const { 3090 return EntrySize * getVerDefNum(); 3091 } 3092 3093 // .gnu.version is a table where each entry is 2 byte long. 3094 VersionTableSection::VersionTableSection() 3095 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3096 ".gnu.version") { 3097 this->entsize = 2; 3098 } 3099 3100 void VersionTableSection::finalizeContents() { 3101 // At the moment of june 2016 GNU docs does not mention that sh_link field 3102 // should be set, but Sun docs do. Also readelf relies on this field. 3103 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3104 } 3105 3106 size_t VersionTableSection::getSize() const { 3107 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3108 } 3109 3110 void VersionTableSection::writeTo(uint8_t *buf) { 3111 buf += 2; 3112 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3113 // Use the original versionId for an unfetched lazy symbol (undefined weak), 3114 // which must be VER_NDX_GLOBAL (an undefined versioned symbol is an error). 3115 write16(buf, s.sym->isLazy() ? VER_NDX_GLOBAL : s.sym->versionId); 3116 buf += 2; 3117 } 3118 } 3119 3120 bool VersionTableSection::isNeeded() const { 3121 return isLive() && 3122 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3123 } 3124 3125 void elf::addVerneed(Symbol *ss) { 3126 auto &file = cast<SharedFile>(*ss->file); 3127 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3128 ss->versionId = VER_NDX_GLOBAL; 3129 return; 3130 } 3131 3132 if (file.vernauxs.empty()) 3133 file.vernauxs.resize(file.verdefs.size()); 3134 3135 // Select a version identifier for the vernaux data structure, if we haven't 3136 // already allocated one. The verdef identifiers cover the range 3137 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3138 // getVerDefNum()+1. 3139 if (file.vernauxs[ss->verdefIndex] == 0) 3140 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3141 3142 ss->versionId = file.vernauxs[ss->verdefIndex]; 3143 } 3144 3145 template <class ELFT> 3146 VersionNeedSection<ELFT>::VersionNeedSection() 3147 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3148 ".gnu.version_r") {} 3149 3150 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3151 for (SharedFile *f : sharedFiles) { 3152 if (f->vernauxs.empty()) 3153 continue; 3154 verneeds.emplace_back(); 3155 Verneed &vn = verneeds.back(); 3156 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3157 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3158 if (f->vernauxs[i] == 0) 3159 continue; 3160 auto *verdef = 3161 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3162 vn.vernauxs.push_back( 3163 {verdef->vd_hash, f->vernauxs[i], 3164 getPartition().dynStrTab->addString(f->getStringTable().data() + 3165 verdef->getAux()->vda_name)}); 3166 } 3167 } 3168 3169 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3170 getParent()->link = sec->sectionIndex; 3171 getParent()->info = verneeds.size(); 3172 } 3173 3174 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3175 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3176 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3177 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3178 3179 for (auto &vn : verneeds) { 3180 // Create an Elf_Verneed for this DSO. 3181 verneed->vn_version = 1; 3182 verneed->vn_cnt = vn.vernauxs.size(); 3183 verneed->vn_file = vn.nameStrTab; 3184 verneed->vn_aux = 3185 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3186 verneed->vn_next = sizeof(Elf_Verneed); 3187 ++verneed; 3188 3189 // Create the Elf_Vernauxs for this Elf_Verneed. 3190 for (auto &vna : vn.vernauxs) { 3191 vernaux->vna_hash = vna.hash; 3192 vernaux->vna_flags = 0; 3193 vernaux->vna_other = vna.verneedIndex; 3194 vernaux->vna_name = vna.nameStrTab; 3195 vernaux->vna_next = sizeof(Elf_Vernaux); 3196 ++vernaux; 3197 } 3198 3199 vernaux[-1].vna_next = 0; 3200 } 3201 verneed[-1].vn_next = 0; 3202 } 3203 3204 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3205 return verneeds.size() * sizeof(Elf_Verneed) + 3206 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3207 } 3208 3209 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3210 return isLive() && SharedFile::vernauxNum != 0; 3211 } 3212 3213 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3214 ms->parent = this; 3215 sections.push_back(ms); 3216 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3217 alignment = std::max(alignment, ms->alignment); 3218 } 3219 3220 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3221 uint64_t flags, uint32_t alignment) 3222 : MergeSyntheticSection(name, type, flags, alignment), 3223 builder(StringTableBuilder::RAW, alignment) {} 3224 3225 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3226 3227 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3228 3229 void MergeTailSection::finalizeContents() { 3230 // Add all string pieces to the string table builder to create section 3231 // contents. 3232 for (MergeInputSection *sec : sections) 3233 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3234 if (sec->pieces[i].live) 3235 builder.add(sec->getData(i)); 3236 3237 // Fix the string table content. After this, the contents will never change. 3238 builder.finalize(); 3239 3240 // finalize() fixed tail-optimized strings, so we can now get 3241 // offsets of strings. Get an offset for each string and save it 3242 // to a corresponding SectionPiece for easy access. 3243 for (MergeInputSection *sec : sections) 3244 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3245 if (sec->pieces[i].live) 3246 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3247 } 3248 3249 void MergeNoTailSection::writeTo(uint8_t *buf) { 3250 for (size_t i = 0; i < numShards; ++i) 3251 shards[i].write(buf + shardOffsets[i]); 3252 } 3253 3254 // This function is very hot (i.e. it can take several seconds to finish) 3255 // because sometimes the number of inputs is in an order of magnitude of 3256 // millions. So, we use multi-threading. 3257 // 3258 // For any strings S and T, we know S is not mergeable with T if S's hash 3259 // value is different from T's. If that's the case, we can safely put S and 3260 // T into different string builders without worrying about merge misses. 3261 // We do it in parallel. 3262 void MergeNoTailSection::finalizeContents() { 3263 // Initializes string table builders. 3264 for (size_t i = 0; i < numShards; ++i) 3265 shards.emplace_back(StringTableBuilder::RAW, alignment); 3266 3267 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3268 // operations in the following tight loop. 3269 size_t concurrency = PowerOf2Floor( 3270 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 3271 .compute_thread_count(), 3272 numShards)); 3273 3274 // Add section pieces to the builders. 3275 parallelForEachN(0, concurrency, [&](size_t threadId) { 3276 for (MergeInputSection *sec : sections) { 3277 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3278 if (!sec->pieces[i].live) 3279 continue; 3280 size_t shardId = getShardId(sec->pieces[i].hash); 3281 if ((shardId & (concurrency - 1)) == threadId) 3282 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3283 } 3284 } 3285 }); 3286 3287 // Compute an in-section offset for each shard. 3288 size_t off = 0; 3289 for (size_t i = 0; i < numShards; ++i) { 3290 shards[i].finalizeInOrder(); 3291 if (shards[i].getSize() > 0) 3292 off = alignTo(off, alignment); 3293 shardOffsets[i] = off; 3294 off += shards[i].getSize(); 3295 } 3296 size = off; 3297 3298 // So far, section pieces have offsets from beginning of shards, but 3299 // we want offsets from beginning of the whole section. Fix them. 3300 parallelForEach(sections, [&](MergeInputSection *sec) { 3301 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3302 if (sec->pieces[i].live) 3303 sec->pieces[i].outputOff += 3304 shardOffsets[getShardId(sec->pieces[i].hash)]; 3305 }); 3306 } 3307 3308 MergeSyntheticSection *elf::createMergeSynthetic(StringRef name, uint32_t type, 3309 uint64_t flags, 3310 uint32_t alignment) { 3311 bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2; 3312 if (shouldTailMerge) 3313 return make<MergeTailSection>(name, type, flags, alignment); 3314 return make<MergeNoTailSection>(name, type, flags, alignment); 3315 } 3316 3317 template <class ELFT> void elf::splitSections() { 3318 llvm::TimeTraceScope timeScope("Split sections"); 3319 // splitIntoPieces needs to be called on each MergeInputSection 3320 // before calling finalizeContents(). 3321 parallelForEach(inputSections, [](InputSectionBase *sec) { 3322 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3323 s->splitIntoPieces(); 3324 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3325 eh->split<ELFT>(); 3326 }); 3327 } 3328 3329 MipsRldMapSection::MipsRldMapSection() 3330 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3331 ".rld_map") {} 3332 3333 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3334 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3335 config->wordsize, ".ARM.exidx") {} 3336 3337 static InputSection *findExidxSection(InputSection *isec) { 3338 for (InputSection *d : isec->dependentSections) 3339 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3340 return d; 3341 return nullptr; 3342 } 3343 3344 static bool isValidExidxSectionDep(InputSection *isec) { 3345 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3346 isec->getSize() > 0; 3347 } 3348 3349 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3350 if (isec->type == SHT_ARM_EXIDX) { 3351 if (InputSection *dep = isec->getLinkOrderDep()) 3352 if (isValidExidxSectionDep(dep)) { 3353 exidxSections.push_back(isec); 3354 // Every exidxSection is 8 bytes, we need an estimate of 3355 // size before assignAddresses can be called. Final size 3356 // will only be known after finalize is called. 3357 size += 8; 3358 } 3359 return true; 3360 } 3361 3362 if (isValidExidxSectionDep(isec)) { 3363 executableSections.push_back(isec); 3364 return false; 3365 } 3366 3367 // FIXME: we do not output a relocation section when --emit-relocs is used 3368 // as we do not have relocation sections for linker generated table entries 3369 // and we would have to erase at a late stage relocations from merged entries. 3370 // Given that exception tables are already position independent and a binary 3371 // analyzer could derive the relocations we choose to erase the relocations. 3372 if (config->emitRelocs && isec->type == SHT_REL) 3373 if (InputSectionBase *ex = isec->getRelocatedSection()) 3374 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3375 return true; 3376 3377 return false; 3378 } 3379 3380 // References to .ARM.Extab Sections have bit 31 clear and are not the 3381 // special EXIDX_CANTUNWIND bit-pattern. 3382 static bool isExtabRef(uint32_t unwind) { 3383 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3384 } 3385 3386 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3387 // section Prev, where Cur follows Prev in the table. This can be done if the 3388 // unwinding instructions in Cur are identical to Prev. Linker generated 3389 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3390 // InputSection. 3391 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3392 3393 struct ExidxEntry { 3394 ulittle32_t fn; 3395 ulittle32_t unwind; 3396 }; 3397 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3398 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3399 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3400 if (prev) 3401 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3402 if (isExtabRef(prevEntry.unwind)) 3403 return false; 3404 3405 // We consider the unwind instructions of an .ARM.exidx table entry 3406 // a duplicate if the previous unwind instructions if: 3407 // - Both are the special EXIDX_CANTUNWIND. 3408 // - Both are the same inline unwind instructions. 3409 // We do not attempt to follow and check links into .ARM.extab tables as 3410 // consecutive identical entries are rare and the effort to check that they 3411 // are identical is high. 3412 3413 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3414 if (cur == nullptr) 3415 return prevEntry.unwind == 1; 3416 3417 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3418 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3419 return false; 3420 3421 // All table entries in this .ARM.exidx Section can be merged into the 3422 // previous Section. 3423 return true; 3424 } 3425 3426 // The .ARM.exidx table must be sorted in ascending order of the address of the 3427 // functions the table describes. Optionally duplicate adjacent table entries 3428 // can be removed. At the end of the function the executableSections must be 3429 // sorted in ascending order of address, Sentinel is set to the InputSection 3430 // with the highest address and any InputSections that have mergeable 3431 // .ARM.exidx table entries are removed from it. 3432 void ARMExidxSyntheticSection::finalizeContents() { 3433 // The executableSections and exidxSections that we use to derive the final 3434 // contents of this SyntheticSection are populated before 3435 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3436 // ICF may remove executable InputSections and their dependent .ARM.exidx 3437 // section that we recorded earlier. 3438 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3439 llvm::erase_if(exidxSections, isDiscarded); 3440 // We need to remove discarded InputSections and InputSections without 3441 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3442 // of range. 3443 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3444 if (!isec->isLive()) 3445 return true; 3446 if (findExidxSection(isec)) 3447 return false; 3448 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3449 return off != llvm::SignExtend64(off, 31); 3450 }; 3451 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3452 3453 // Sort the executable sections that may or may not have associated 3454 // .ARM.exidx sections by order of ascending address. This requires the 3455 // relative positions of InputSections and OutputSections to be known. 3456 auto compareByFilePosition = [](const InputSection *a, 3457 const InputSection *b) { 3458 OutputSection *aOut = a->getParent(); 3459 OutputSection *bOut = b->getParent(); 3460 3461 if (aOut != bOut) 3462 return aOut->addr < bOut->addr; 3463 return a->outSecOff < b->outSecOff; 3464 }; 3465 llvm::stable_sort(executableSections, compareByFilePosition); 3466 sentinel = executableSections.back(); 3467 // Optionally merge adjacent duplicate entries. 3468 if (config->mergeArmExidx) { 3469 std::vector<InputSection *> selectedSections; 3470 selectedSections.reserve(executableSections.size()); 3471 selectedSections.push_back(executableSections[0]); 3472 size_t prev = 0; 3473 for (size_t i = 1; i < executableSections.size(); ++i) { 3474 InputSection *ex1 = findExidxSection(executableSections[prev]); 3475 InputSection *ex2 = findExidxSection(executableSections[i]); 3476 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3477 selectedSections.push_back(executableSections[i]); 3478 prev = i; 3479 } 3480 } 3481 executableSections = std::move(selectedSections); 3482 } 3483 3484 size_t offset = 0; 3485 size = 0; 3486 for (InputSection *isec : executableSections) { 3487 if (InputSection *d = findExidxSection(isec)) { 3488 d->outSecOff = offset; 3489 d->parent = getParent(); 3490 offset += d->getSize(); 3491 } else { 3492 offset += 8; 3493 } 3494 } 3495 // Size includes Sentinel. 3496 size = offset + 8; 3497 } 3498 3499 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3500 return executableSections.front(); 3501 } 3502 3503 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3504 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3505 // We write the .ARM.exidx section contents and apply its relocations. 3506 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3507 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3508 // start of the InputSection as the purpose of the linker generated 3509 // section is to terminate the address range of the previous entry. 3510 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3511 // the table to terminate the address range of the final entry. 3512 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3513 3514 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3515 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3516 3517 uint64_t offset = 0; 3518 for (InputSection *isec : executableSections) { 3519 assert(isec->getParent() != nullptr); 3520 if (InputSection *d = findExidxSection(isec)) { 3521 memcpy(buf + offset, d->data().data(), d->data().size()); 3522 d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize()); 3523 offset += d->getSize(); 3524 } else { 3525 // A Linker generated CANTUNWIND section. 3526 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3527 uint64_t s = isec->getVA(); 3528 uint64_t p = getVA() + offset; 3529 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3530 offset += 8; 3531 } 3532 } 3533 // Write Sentinel. 3534 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3535 uint64_t s = sentinel->getVA(sentinel->getSize()); 3536 uint64_t p = getVA() + offset; 3537 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3538 assert(size == offset + 8); 3539 } 3540 3541 bool ARMExidxSyntheticSection::isNeeded() const { 3542 return llvm::find_if(exidxSections, [](InputSection *isec) { 3543 return isec->isLive(); 3544 }) != exidxSections.end(); 3545 } 3546 3547 bool ARMExidxSyntheticSection::classof(const SectionBase *d) { 3548 return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX; 3549 } 3550 3551 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3552 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 3553 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 3554 this->parent = os; 3555 this->outSecOff = off; 3556 } 3557 3558 size_t ThunkSection::getSize() const { 3559 if (roundUpSizeForErrata) 3560 return alignTo(size, 4096); 3561 return size; 3562 } 3563 3564 void ThunkSection::addThunk(Thunk *t) { 3565 thunks.push_back(t); 3566 t->addSymbols(*this); 3567 } 3568 3569 void ThunkSection::writeTo(uint8_t *buf) { 3570 for (Thunk *t : thunks) 3571 t->writeTo(buf + t->offset); 3572 } 3573 3574 InputSection *ThunkSection::getTargetInputSection() const { 3575 if (thunks.empty()) 3576 return nullptr; 3577 const Thunk *t = thunks.front(); 3578 return t->getTargetInputSection(); 3579 } 3580 3581 bool ThunkSection::assignOffsets() { 3582 uint64_t off = 0; 3583 for (Thunk *t : thunks) { 3584 off = alignTo(off, t->alignment); 3585 t->setOffset(off); 3586 uint32_t size = t->size(); 3587 t->getThunkTargetSym()->size = size; 3588 off += size; 3589 } 3590 bool changed = off != size; 3591 size = off; 3592 return changed; 3593 } 3594 3595 PPC32Got2Section::PPC32Got2Section() 3596 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3597 3598 bool PPC32Got2Section::isNeeded() const { 3599 // See the comment below. This is not needed if there is no other 3600 // InputSection. 3601 for (BaseCommand *base : getParent()->sectionCommands) 3602 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 3603 for (InputSection *isec : isd->sections) 3604 if (isec != this) 3605 return true; 3606 return false; 3607 } 3608 3609 void PPC32Got2Section::finalizeContents() { 3610 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3611 // .got2 . This function computes outSecOff of each .got2 to be used in 3612 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3613 // to collect input sections named ".got2". 3614 uint32_t offset = 0; 3615 for (BaseCommand *base : getParent()->sectionCommands) 3616 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 3617 for (InputSection *isec : isd->sections) { 3618 if (isec == this) 3619 continue; 3620 isec->file->ppc32Got2OutSecOff = offset; 3621 offset += (uint32_t)isec->getSize(); 3622 } 3623 } 3624 } 3625 3626 // If linking position-dependent code then the table will store the addresses 3627 // directly in the binary so the section has type SHT_PROGBITS. If linking 3628 // position-independent code the section has type SHT_NOBITS since it will be 3629 // allocated and filled in by the dynamic linker. 3630 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3631 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3632 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3633 ".branch_lt") {} 3634 3635 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3636 int64_t addend) { 3637 return getVA() + entry_index.find({sym, addend})->second * 8; 3638 } 3639 3640 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3641 int64_t addend) { 3642 auto res = 3643 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3644 if (!res.second) 3645 return None; 3646 entries.emplace_back(sym, addend); 3647 return res.first->second; 3648 } 3649 3650 size_t PPC64LongBranchTargetSection::getSize() const { 3651 return entries.size() * 8; 3652 } 3653 3654 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3655 // If linking non-pic we have the final addresses of the targets and they get 3656 // written to the table directly. For pic the dynamic linker will allocate 3657 // the section and fill it it. 3658 if (config->isPic) 3659 return; 3660 3661 for (auto entry : entries) { 3662 const Symbol *sym = entry.first; 3663 int64_t addend = entry.second; 3664 assert(sym->getVA()); 3665 // Need calls to branch to the local entry-point since a long-branch 3666 // must be a local-call. 3667 write64(buf, sym->getVA(addend) + 3668 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3669 buf += 8; 3670 } 3671 } 3672 3673 bool PPC64LongBranchTargetSection::isNeeded() const { 3674 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3675 // is too early to determine if this section will be empty or not. We need 3676 // Finalized to keep the section alive until after thunk creation. Finalized 3677 // only gets set to true once `finalizeSections()` is called after thunk 3678 // creation. Because of this, if we don't create any long-branch thunks we end 3679 // up with an empty .branch_lt section in the binary. 3680 return !finalized || !entries.empty(); 3681 } 3682 3683 static uint8_t getAbiVersion() { 3684 // MIPS non-PIC executable gets ABI version 1. 3685 if (config->emachine == EM_MIPS) { 3686 if (!config->isPic && !config->relocatable && 3687 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3688 return 1; 3689 return 0; 3690 } 3691 3692 if (config->emachine == EM_AMDGPU) { 3693 uint8_t ver = objectFiles[0]->abiVersion; 3694 for (InputFile *file : makeArrayRef(objectFiles).slice(1)) 3695 if (file->abiVersion != ver) 3696 error("incompatible ABI version: " + toString(file)); 3697 return ver; 3698 } 3699 3700 return 0; 3701 } 3702 3703 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3704 // For executable segments, the trap instructions are written before writing 3705 // the header. Setting Elf header bytes to zero ensures that any unused bytes 3706 // in header are zero-cleared, instead of having trap instructions. 3707 memset(buf, 0, sizeof(typename ELFT::Ehdr)); 3708 memcpy(buf, "\177ELF", 4); 3709 3710 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3711 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3712 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3713 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3714 eHdr->e_ident[EI_OSABI] = config->osabi; 3715 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3716 eHdr->e_machine = config->emachine; 3717 eHdr->e_version = EV_CURRENT; 3718 eHdr->e_flags = config->eflags; 3719 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3720 eHdr->e_phnum = part.phdrs.size(); 3721 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3722 3723 if (!config->relocatable) { 3724 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3725 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3726 } 3727 } 3728 3729 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3730 // Write the program header table. 3731 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3732 for (PhdrEntry *p : part.phdrs) { 3733 hBuf->p_type = p->p_type; 3734 hBuf->p_flags = p->p_flags; 3735 hBuf->p_offset = p->p_offset; 3736 hBuf->p_vaddr = p->p_vaddr; 3737 hBuf->p_paddr = p->p_paddr; 3738 hBuf->p_filesz = p->p_filesz; 3739 hBuf->p_memsz = p->p_memsz; 3740 hBuf->p_align = p->p_align; 3741 ++hBuf; 3742 } 3743 } 3744 3745 template <typename ELFT> 3746 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3747 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3748 3749 template <typename ELFT> 3750 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3751 return sizeof(typename ELFT::Ehdr); 3752 } 3753 3754 template <typename ELFT> 3755 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3756 writeEhdr<ELFT>(buf, getPartition()); 3757 3758 // Loadable partitions are always ET_DYN. 3759 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3760 eHdr->e_type = ET_DYN; 3761 } 3762 3763 template <typename ELFT> 3764 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3765 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3766 3767 template <typename ELFT> 3768 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3769 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3770 } 3771 3772 template <typename ELFT> 3773 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3774 writePhdrs<ELFT>(buf, getPartition()); 3775 } 3776 3777 PartitionIndexSection::PartitionIndexSection() 3778 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3779 3780 size_t PartitionIndexSection::getSize() const { 3781 return 12 * (partitions.size() - 1); 3782 } 3783 3784 void PartitionIndexSection::finalizeContents() { 3785 for (size_t i = 1; i != partitions.size(); ++i) 3786 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3787 } 3788 3789 void PartitionIndexSection::writeTo(uint8_t *buf) { 3790 uint64_t va = getVA(); 3791 for (size_t i = 1; i != partitions.size(); ++i) { 3792 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3793 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3794 3795 SyntheticSection *next = 3796 i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader; 3797 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3798 3799 va += 12; 3800 buf += 12; 3801 } 3802 } 3803 3804 InStruct elf::in; 3805 3806 std::vector<Partition> elf::partitions; 3807 Partition *elf::mainPart; 3808 3809 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3810 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3811 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3812 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3813 3814 template void elf::splitSections<ELF32LE>(); 3815 template void elf::splitSections<ELF32BE>(); 3816 template void elf::splitSections<ELF64LE>(); 3817 template void elf::splitSections<ELF64BE>(); 3818 3819 template class elf::MipsAbiFlagsSection<ELF32LE>; 3820 template class elf::MipsAbiFlagsSection<ELF32BE>; 3821 template class elf::MipsAbiFlagsSection<ELF64LE>; 3822 template class elf::MipsAbiFlagsSection<ELF64BE>; 3823 3824 template class elf::MipsOptionsSection<ELF32LE>; 3825 template class elf::MipsOptionsSection<ELF32BE>; 3826 template class elf::MipsOptionsSection<ELF64LE>; 3827 template class elf::MipsOptionsSection<ELF64BE>; 3828 3829 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 3830 function_ref<void(InputSection &)>); 3831 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 3832 function_ref<void(InputSection &)>); 3833 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 3834 function_ref<void(InputSection &)>); 3835 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 3836 function_ref<void(InputSection &)>); 3837 3838 template class elf::MipsReginfoSection<ELF32LE>; 3839 template class elf::MipsReginfoSection<ELF32BE>; 3840 template class elf::MipsReginfoSection<ELF64LE>; 3841 template class elf::MipsReginfoSection<ELF64BE>; 3842 3843 template class elf::DynamicSection<ELF32LE>; 3844 template class elf::DynamicSection<ELF32BE>; 3845 template class elf::DynamicSection<ELF64LE>; 3846 template class elf::DynamicSection<ELF64BE>; 3847 3848 template class elf::RelocationSection<ELF32LE>; 3849 template class elf::RelocationSection<ELF32BE>; 3850 template class elf::RelocationSection<ELF64LE>; 3851 template class elf::RelocationSection<ELF64BE>; 3852 3853 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3854 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3855 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3856 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3857 3858 template class elf::RelrSection<ELF32LE>; 3859 template class elf::RelrSection<ELF32BE>; 3860 template class elf::RelrSection<ELF64LE>; 3861 template class elf::RelrSection<ELF64BE>; 3862 3863 template class elf::SymbolTableSection<ELF32LE>; 3864 template class elf::SymbolTableSection<ELF32BE>; 3865 template class elf::SymbolTableSection<ELF64LE>; 3866 template class elf::SymbolTableSection<ELF64BE>; 3867 3868 template class elf::VersionNeedSection<ELF32LE>; 3869 template class elf::VersionNeedSection<ELF32BE>; 3870 template class elf::VersionNeedSection<ELF64LE>; 3871 template class elf::VersionNeedSection<ELF64BE>; 3872 3873 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3874 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3875 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3876 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3877 3878 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3879 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3880 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3881 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3882 3883 template class elf::PartitionElfHeaderSection<ELF32LE>; 3884 template class elf::PartitionElfHeaderSection<ELF32BE>; 3885 template class elf::PartitionElfHeaderSection<ELF64LE>; 3886 template class elf::PartitionElfHeaderSection<ELF64BE>; 3887 3888 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3889 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3890 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3891 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3892