xref: /freebsd/contrib/llvm-project/lld/ELF/SyntheticSections.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- SyntheticSections.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains linker-synthesized sections. Currently,
10 // synthetic sections are created either output sections or input sections,
11 // but we are rewriting code so that all synthetic sections are created as
12 // input sections.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "SyntheticSections.h"
17 #include "Config.h"
18 #include "InputFiles.h"
19 #include "LinkerScript.h"
20 #include "OutputSections.h"
21 #include "SymbolTable.h"
22 #include "Symbols.h"
23 #include "Target.h"
24 #include "Writer.h"
25 #include "lld/Common/DWARF.h"
26 #include "lld/Common/ErrorHandler.h"
27 #include "lld/Common/Memory.h"
28 #include "lld/Common/Strings.h"
29 #include "lld/Common/Version.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
34 #include "llvm/Object/ELFObjectFile.h"
35 #include "llvm/Support/Compression.h"
36 #include "llvm/Support/Endian.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/MD5.h"
39 #include "llvm/Support/Parallel.h"
40 #include "llvm/Support/TimeProfiler.h"
41 #include <cstdlib>
42 #include <thread>
43 
44 using namespace llvm;
45 using namespace llvm::dwarf;
46 using namespace llvm::ELF;
47 using namespace llvm::object;
48 using namespace llvm::support;
49 using namespace lld;
50 using namespace lld::elf;
51 
52 using llvm::support::endian::read32le;
53 using llvm::support::endian::write32le;
54 using llvm::support::endian::write64le;
55 
56 constexpr size_t MergeNoTailSection::numShards;
57 
58 static uint64_t readUint(uint8_t *buf) {
59   return config->is64 ? read64(buf) : read32(buf);
60 }
61 
62 static void writeUint(uint8_t *buf, uint64_t val) {
63   if (config->is64)
64     write64(buf, val);
65   else
66     write32(buf, val);
67 }
68 
69 // Returns an LLD version string.
70 static ArrayRef<uint8_t> getVersion() {
71   // Check LLD_VERSION first for ease of testing.
72   // You can get consistent output by using the environment variable.
73   // This is only for testing.
74   StringRef s = getenv("LLD_VERSION");
75   if (s.empty())
76     s = saver.save(Twine("Linker: ") + getLLDVersion());
77 
78   // +1 to include the terminating '\0'.
79   return {(const uint8_t *)s.data(), s.size() + 1};
80 }
81 
82 // Creates a .comment section containing LLD version info.
83 // With this feature, you can identify LLD-generated binaries easily
84 // by "readelf --string-dump .comment <file>".
85 // The returned object is a mergeable string section.
86 MergeInputSection *elf::createCommentSection() {
87   return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
88                                  getVersion(), ".comment");
89 }
90 
91 // .MIPS.abiflags section.
92 template <class ELFT>
93 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
94     : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
95       flags(flags) {
96   this->entsize = sizeof(Elf_Mips_ABIFlags);
97 }
98 
99 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
100   memcpy(buf, &flags, sizeof(flags));
101 }
102 
103 template <class ELFT>
104 MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() {
105   Elf_Mips_ABIFlags flags = {};
106   bool create = false;
107 
108   for (InputSectionBase *sec : inputSections) {
109     if (sec->type != SHT_MIPS_ABIFLAGS)
110       continue;
111     sec->markDead();
112     create = true;
113 
114     std::string filename = toString(sec->file);
115     const size_t size = sec->data().size();
116     // Older version of BFD (such as the default FreeBSD linker) concatenate
117     // .MIPS.abiflags instead of merging. To allow for this case (or potential
118     // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
119     if (size < sizeof(Elf_Mips_ABIFlags)) {
120       error(filename + ": invalid size of .MIPS.abiflags section: got " +
121             Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
122       return nullptr;
123     }
124     auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data());
125     if (s->version != 0) {
126       error(filename + ": unexpected .MIPS.abiflags version " +
127             Twine(s->version));
128       return nullptr;
129     }
130 
131     // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
132     // select the highest number of ISA/Rev/Ext.
133     flags.isa_level = std::max(flags.isa_level, s->isa_level);
134     flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
135     flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
136     flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
137     flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
138     flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
139     flags.ases |= s->ases;
140     flags.flags1 |= s->flags1;
141     flags.flags2 |= s->flags2;
142     flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
143   };
144 
145   if (create)
146     return make<MipsAbiFlagsSection<ELFT>>(flags);
147   return nullptr;
148 }
149 
150 // .MIPS.options section.
151 template <class ELFT>
152 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
153     : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
154       reginfo(reginfo) {
155   this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
156 }
157 
158 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
159   auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
160   options->kind = ODK_REGINFO;
161   options->size = getSize();
162 
163   if (!config->relocatable)
164     reginfo.ri_gp_value = in.mipsGot->getGp();
165   memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
166 }
167 
168 template <class ELFT>
169 MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() {
170   // N64 ABI only.
171   if (!ELFT::Is64Bits)
172     return nullptr;
173 
174   std::vector<InputSectionBase *> sections;
175   for (InputSectionBase *sec : inputSections)
176     if (sec->type == SHT_MIPS_OPTIONS)
177       sections.push_back(sec);
178 
179   if (sections.empty())
180     return nullptr;
181 
182   Elf_Mips_RegInfo reginfo = {};
183   for (InputSectionBase *sec : sections) {
184     sec->markDead();
185 
186     std::string filename = toString(sec->file);
187     ArrayRef<uint8_t> d = sec->data();
188 
189     while (!d.empty()) {
190       if (d.size() < sizeof(Elf_Mips_Options)) {
191         error(filename + ": invalid size of .MIPS.options section");
192         break;
193       }
194 
195       auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
196       if (opt->kind == ODK_REGINFO) {
197         reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
198         sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
199         break;
200       }
201 
202       if (!opt->size)
203         fatal(filename + ": zero option descriptor size");
204       d = d.slice(opt->size);
205     }
206   };
207 
208   return make<MipsOptionsSection<ELFT>>(reginfo);
209 }
210 
211 // MIPS .reginfo section.
212 template <class ELFT>
213 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
214     : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
215       reginfo(reginfo) {
216   this->entsize = sizeof(Elf_Mips_RegInfo);
217 }
218 
219 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
220   if (!config->relocatable)
221     reginfo.ri_gp_value = in.mipsGot->getGp();
222   memcpy(buf, &reginfo, sizeof(reginfo));
223 }
224 
225 template <class ELFT>
226 MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() {
227   // Section should be alive for O32 and N32 ABIs only.
228   if (ELFT::Is64Bits)
229     return nullptr;
230 
231   std::vector<InputSectionBase *> sections;
232   for (InputSectionBase *sec : inputSections)
233     if (sec->type == SHT_MIPS_REGINFO)
234       sections.push_back(sec);
235 
236   if (sections.empty())
237     return nullptr;
238 
239   Elf_Mips_RegInfo reginfo = {};
240   for (InputSectionBase *sec : sections) {
241     sec->markDead();
242 
243     if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) {
244       error(toString(sec->file) + ": invalid size of .reginfo section");
245       return nullptr;
246     }
247 
248     auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data());
249     reginfo.ri_gprmask |= r->ri_gprmask;
250     sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
251   };
252 
253   return make<MipsReginfoSection<ELFT>>(reginfo);
254 }
255 
256 InputSection *elf::createInterpSection() {
257   // StringSaver guarantees that the returned string ends with '\0'.
258   StringRef s = saver.save(config->dynamicLinker);
259   ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
260 
261   return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
262                             ".interp");
263 }
264 
265 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
266                                 uint64_t size, InputSectionBase &section) {
267   auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type,
268                           value, size, &section);
269   if (in.symTab)
270     in.symTab->addSymbol(s);
271   return s;
272 }
273 
274 static size_t getHashSize() {
275   switch (config->buildId) {
276   case BuildIdKind::Fast:
277     return 8;
278   case BuildIdKind::Md5:
279   case BuildIdKind::Uuid:
280     return 16;
281   case BuildIdKind::Sha1:
282     return 20;
283   case BuildIdKind::Hexstring:
284     return config->buildIdVector.size();
285   default:
286     llvm_unreachable("unknown BuildIdKind");
287   }
288 }
289 
290 // This class represents a linker-synthesized .note.gnu.property section.
291 //
292 // In x86 and AArch64, object files may contain feature flags indicating the
293 // features that they have used. The flags are stored in a .note.gnu.property
294 // section.
295 //
296 // lld reads the sections from input files and merges them by computing AND of
297 // the flags. The result is written as a new .note.gnu.property section.
298 //
299 // If the flag is zero (which indicates that the intersection of the feature
300 // sets is empty, or some input files didn't have .note.gnu.property sections),
301 // we don't create this section.
302 GnuPropertySection::GnuPropertySection()
303     : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
304                        config->wordsize, ".note.gnu.property") {}
305 
306 void GnuPropertySection::writeTo(uint8_t *buf) {
307   uint32_t featureAndType = config->emachine == EM_AARCH64
308                                 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
309                                 : GNU_PROPERTY_X86_FEATURE_1_AND;
310 
311   write32(buf, 4);                                   // Name size
312   write32(buf + 4, config->is64 ? 16 : 12);          // Content size
313   write32(buf + 8, NT_GNU_PROPERTY_TYPE_0);          // Type
314   memcpy(buf + 12, "GNU", 4);                        // Name string
315   write32(buf + 16, featureAndType);                 // Feature type
316   write32(buf + 20, 4);                              // Feature size
317   write32(buf + 24, config->andFeatures);            // Feature flags
318   if (config->is64)
319     write32(buf + 28, 0); // Padding
320 }
321 
322 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
323 
324 BuildIdSection::BuildIdSection()
325     : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
326       hashSize(getHashSize()) {}
327 
328 void BuildIdSection::writeTo(uint8_t *buf) {
329   write32(buf, 4);                      // Name size
330   write32(buf + 4, hashSize);           // Content size
331   write32(buf + 8, NT_GNU_BUILD_ID);    // Type
332   memcpy(buf + 12, "GNU", 4);           // Name string
333   hashBuf = buf + 16;
334 }
335 
336 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
337   assert(buf.size() == hashSize);
338   memcpy(hashBuf, buf.data(), hashSize);
339 }
340 
341 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
342     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
343   this->bss = true;
344   this->size = size;
345 }
346 
347 EhFrameSection::EhFrameSection()
348     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
349 
350 // Search for an existing CIE record or create a new one.
351 // CIE records from input object files are uniquified by their contents
352 // and where their relocations point to.
353 template <class ELFT, class RelTy>
354 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
355   Symbol *personality = nullptr;
356   unsigned firstRelI = cie.firstRelocation;
357   if (firstRelI != (unsigned)-1)
358     personality =
359         &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
360 
361   // Search for an existing CIE by CIE contents/relocation target pair.
362   CieRecord *&rec = cieMap[{cie.data(), personality}];
363 
364   // If not found, create a new one.
365   if (!rec) {
366     rec = make<CieRecord>();
367     rec->cie = &cie;
368     cieRecords.push_back(rec);
369   }
370   return rec;
371 }
372 
373 // There is one FDE per function. Returns a non-null pointer to the function
374 // symbol if the given FDE points to a live function.
375 template <class ELFT, class RelTy>
376 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
377   auto *sec = cast<EhInputSection>(fde.sec);
378   unsigned firstRelI = fde.firstRelocation;
379 
380   // An FDE should point to some function because FDEs are to describe
381   // functions. That's however not always the case due to an issue of
382   // ld.gold with -r. ld.gold may discard only functions and leave their
383   // corresponding FDEs, which results in creating bad .eh_frame sections.
384   // To deal with that, we ignore such FDEs.
385   if (firstRelI == (unsigned)-1)
386     return nullptr;
387 
388   const RelTy &rel = rels[firstRelI];
389   Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
390 
391   // FDEs for garbage-collected or merged-by-ICF sections, or sections in
392   // another partition, are dead.
393   if (auto *d = dyn_cast<Defined>(&b))
394     if (d->section && d->section->partition == partition)
395       return d;
396   return nullptr;
397 }
398 
399 // .eh_frame is a sequence of CIE or FDE records. In general, there
400 // is one CIE record per input object file which is followed by
401 // a list of FDEs. This function searches an existing CIE or create a new
402 // one and associates FDEs to the CIE.
403 template <class ELFT, class RelTy>
404 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
405   offsetToCie.clear();
406   for (EhSectionPiece &piece : sec->pieces) {
407     // The empty record is the end marker.
408     if (piece.size == 4)
409       return;
410 
411     size_t offset = piece.inputOff;
412     uint32_t id = read32(piece.data().data() + 4);
413     if (id == 0) {
414       offsetToCie[offset] = addCie<ELFT>(piece, rels);
415       continue;
416     }
417 
418     uint32_t cieOffset = offset + 4 - id;
419     CieRecord *rec = offsetToCie[cieOffset];
420     if (!rec)
421       fatal(toString(sec) + ": invalid CIE reference");
422 
423     if (!isFdeLive<ELFT>(piece, rels))
424       continue;
425     rec->fdes.push_back(&piece);
426     numFdes++;
427   }
428 }
429 
430 template <class ELFT>
431 void EhFrameSection::addSectionAux(EhInputSection *sec) {
432   if (!sec->isLive())
433     return;
434   const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
435   if (rels.areRelocsRel())
436     addRecords<ELFT>(sec, rels.rels);
437   else
438     addRecords<ELFT>(sec, rels.relas);
439 }
440 
441 void EhFrameSection::addSection(EhInputSection *sec) {
442   sec->parent = this;
443 
444   alignment = std::max(alignment, sec->alignment);
445   sections.push_back(sec);
446 
447   for (auto *ds : sec->dependentSections)
448     dependentSections.push_back(ds);
449 }
450 
451 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to
452 // EhFrameSection::addRecords().
453 template <class ELFT, class RelTy>
454 void EhFrameSection::iterateFDEWithLSDAAux(
455     EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
456     llvm::function_ref<void(InputSection &)> fn) {
457   for (EhSectionPiece &piece : sec.pieces) {
458     // Skip ZERO terminator.
459     if (piece.size == 4)
460       continue;
461 
462     size_t offset = piece.inputOff;
463     uint32_t id =
464         endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4);
465     if (id == 0) {
466       if (hasLSDA(piece))
467         ciesWithLSDA.insert(offset);
468       continue;
469     }
470     uint32_t cieOffset = offset + 4 - id;
471     if (ciesWithLSDA.count(cieOffset) == 0)
472       continue;
473 
474     // The CIE has a LSDA argument. Call fn with d's section.
475     if (Defined *d = isFdeLive<ELFT>(piece, rels))
476       if (auto *s = dyn_cast_or_null<InputSection>(d->section))
477         fn(*s);
478   }
479 }
480 
481 template <class ELFT>
482 void EhFrameSection::iterateFDEWithLSDA(
483     llvm::function_ref<void(InputSection &)> fn) {
484   DenseSet<size_t> ciesWithLSDA;
485   for (EhInputSection *sec : sections) {
486     ciesWithLSDA.clear();
487     const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
488     if (rels.areRelocsRel())
489       iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
490     else
491       iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
492   }
493 }
494 
495 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
496   memcpy(buf, d.data(), d.size());
497 
498   size_t aligned = alignTo(d.size(), config->wordsize);
499 
500   // Zero-clear trailing padding if it exists.
501   memset(buf + d.size(), 0, aligned - d.size());
502 
503   // Fix the size field. -4 since size does not include the size field itself.
504   write32(buf, aligned - 4);
505 }
506 
507 void EhFrameSection::finalizeContents() {
508   assert(!this->size); // Not finalized.
509 
510   switch (config->ekind) {
511   case ELFNoneKind:
512     llvm_unreachable("invalid ekind");
513   case ELF32LEKind:
514     for (EhInputSection *sec : sections)
515       addSectionAux<ELF32LE>(sec);
516     break;
517   case ELF32BEKind:
518     for (EhInputSection *sec : sections)
519       addSectionAux<ELF32BE>(sec);
520     break;
521   case ELF64LEKind:
522     for (EhInputSection *sec : sections)
523       addSectionAux<ELF64LE>(sec);
524     break;
525   case ELF64BEKind:
526     for (EhInputSection *sec : sections)
527       addSectionAux<ELF64BE>(sec);
528     break;
529   }
530 
531   size_t off = 0;
532   for (CieRecord *rec : cieRecords) {
533     rec->cie->outputOff = off;
534     off += alignTo(rec->cie->size, config->wordsize);
535 
536     for (EhSectionPiece *fde : rec->fdes) {
537       fde->outputOff = off;
538       off += alignTo(fde->size, config->wordsize);
539     }
540   }
541 
542   // The LSB standard does not allow a .eh_frame section with zero
543   // Call Frame Information records. glibc unwind-dw2-fde.c
544   // classify_object_over_fdes expects there is a CIE record length 0 as a
545   // terminator. Thus we add one unconditionally.
546   off += 4;
547 
548   this->size = off;
549 }
550 
551 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
552 // to get an FDE from an address to which FDE is applied. This function
553 // returns a list of such pairs.
554 std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const {
555   uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
556   std::vector<FdeData> ret;
557 
558   uint64_t va = getPartition().ehFrameHdr->getVA();
559   for (CieRecord *rec : cieRecords) {
560     uint8_t enc = getFdeEncoding(rec->cie);
561     for (EhSectionPiece *fde : rec->fdes) {
562       uint64_t pc = getFdePc(buf, fde->outputOff, enc);
563       uint64_t fdeVA = getParent()->addr + fde->outputOff;
564       if (!isInt<32>(pc - va))
565         fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
566               Twine::utohexstr(pc - va));
567       ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
568     }
569   }
570 
571   // Sort the FDE list by their PC and uniqueify. Usually there is only
572   // one FDE for a PC (i.e. function), but if ICF merges two functions
573   // into one, there can be more than one FDEs pointing to the address.
574   auto less = [](const FdeData &a, const FdeData &b) {
575     return a.pcRel < b.pcRel;
576   };
577   llvm::stable_sort(ret, less);
578   auto eq = [](const FdeData &a, const FdeData &b) {
579     return a.pcRel == b.pcRel;
580   };
581   ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
582 
583   return ret;
584 }
585 
586 static uint64_t readFdeAddr(uint8_t *buf, int size) {
587   switch (size) {
588   case DW_EH_PE_udata2:
589     return read16(buf);
590   case DW_EH_PE_sdata2:
591     return (int16_t)read16(buf);
592   case DW_EH_PE_udata4:
593     return read32(buf);
594   case DW_EH_PE_sdata4:
595     return (int32_t)read32(buf);
596   case DW_EH_PE_udata8:
597   case DW_EH_PE_sdata8:
598     return read64(buf);
599   case DW_EH_PE_absptr:
600     return readUint(buf);
601   }
602   fatal("unknown FDE size encoding");
603 }
604 
605 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
606 // We need it to create .eh_frame_hdr section.
607 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
608                                   uint8_t enc) const {
609   // The starting address to which this FDE applies is
610   // stored at FDE + 8 byte.
611   size_t off = fdeOff + 8;
612   uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
613   if ((enc & 0x70) == DW_EH_PE_absptr)
614     return addr;
615   if ((enc & 0x70) == DW_EH_PE_pcrel)
616     return addr + getParent()->addr + off;
617   fatal("unknown FDE size relative encoding");
618 }
619 
620 void EhFrameSection::writeTo(uint8_t *buf) {
621   // Write CIE and FDE records.
622   for (CieRecord *rec : cieRecords) {
623     size_t cieOffset = rec->cie->outputOff;
624     writeCieFde(buf + cieOffset, rec->cie->data());
625 
626     for (EhSectionPiece *fde : rec->fdes) {
627       size_t off = fde->outputOff;
628       writeCieFde(buf + off, fde->data());
629 
630       // FDE's second word should have the offset to an associated CIE.
631       // Write it.
632       write32(buf + off + 4, off + 4 - cieOffset);
633     }
634   }
635 
636   // Apply relocations. .eh_frame section contents are not contiguous
637   // in the output buffer, but relocateAlloc() still works because
638   // getOffset() takes care of discontiguous section pieces.
639   for (EhInputSection *s : sections)
640     s->relocateAlloc(buf, nullptr);
641 
642   if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
643     getPartition().ehFrameHdr->write();
644 }
645 
646 GotSection::GotSection()
647     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
648                        target->gotEntrySize, ".got") {
649   numEntries = target->gotHeaderEntriesNum;
650 }
651 
652 void GotSection::addEntry(Symbol &sym) {
653   sym.gotIndex = numEntries;
654   ++numEntries;
655 }
656 
657 bool GotSection::addDynTlsEntry(Symbol &sym) {
658   if (sym.globalDynIndex != -1U)
659     return false;
660   sym.globalDynIndex = numEntries;
661   // Global Dynamic TLS entries take two GOT slots.
662   numEntries += 2;
663   return true;
664 }
665 
666 // Reserves TLS entries for a TLS module ID and a TLS block offset.
667 // In total it takes two GOT slots.
668 bool GotSection::addTlsIndex() {
669   if (tlsIndexOff != uint32_t(-1))
670     return false;
671   tlsIndexOff = numEntries * config->wordsize;
672   numEntries += 2;
673   return true;
674 }
675 
676 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
677   return this->getVA() + b.globalDynIndex * config->wordsize;
678 }
679 
680 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
681   return b.globalDynIndex * config->wordsize;
682 }
683 
684 void GotSection::finalizeContents() {
685   if (config->emachine == EM_PPC64 &&
686       numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable)
687     size = 0;
688   else
689     size = numEntries * config->wordsize;
690 }
691 
692 bool GotSection::isNeeded() const {
693   // Needed if the GOT symbol is used or the number of entries is more than just
694   // the header. A GOT with just the header may not be needed.
695   return hasGotOffRel || numEntries > target->gotHeaderEntriesNum;
696 }
697 
698 void GotSection::writeTo(uint8_t *buf) {
699   target->writeGotHeader(buf);
700   relocateAlloc(buf, buf + size);
701 }
702 
703 static uint64_t getMipsPageAddr(uint64_t addr) {
704   return (addr + 0x8000) & ~0xffff;
705 }
706 
707 static uint64_t getMipsPageCount(uint64_t size) {
708   return (size + 0xfffe) / 0xffff + 1;
709 }
710 
711 MipsGotSection::MipsGotSection()
712     : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
713                        ".got") {}
714 
715 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
716                               RelExpr expr) {
717   FileGot &g = getGot(file);
718   if (expr == R_MIPS_GOT_LOCAL_PAGE) {
719     if (const OutputSection *os = sym.getOutputSection())
720       g.pagesMap.insert({os, {}});
721     else
722       g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
723   } else if (sym.isTls())
724     g.tls.insert({&sym, 0});
725   else if (sym.isPreemptible && expr == R_ABS)
726     g.relocs.insert({&sym, 0});
727   else if (sym.isPreemptible)
728     g.global.insert({&sym, 0});
729   else if (expr == R_MIPS_GOT_OFF32)
730     g.local32.insert({{&sym, addend}, 0});
731   else
732     g.local16.insert({{&sym, addend}, 0});
733 }
734 
735 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
736   getGot(file).dynTlsSymbols.insert({&sym, 0});
737 }
738 
739 void MipsGotSection::addTlsIndex(InputFile &file) {
740   getGot(file).dynTlsSymbols.insert({nullptr, 0});
741 }
742 
743 size_t MipsGotSection::FileGot::getEntriesNum() const {
744   return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
745          tls.size() + dynTlsSymbols.size() * 2;
746 }
747 
748 size_t MipsGotSection::FileGot::getPageEntriesNum() const {
749   size_t num = 0;
750   for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
751     num += p.second.count;
752   return num;
753 }
754 
755 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
756   size_t count = getPageEntriesNum() + local16.size() + global.size();
757   // If there are relocation-only entries in the GOT, TLS entries
758   // are allocated after them. TLS entries should be addressable
759   // by 16-bit index so count both reloc-only and TLS entries.
760   if (!tls.empty() || !dynTlsSymbols.empty())
761     count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
762   return count;
763 }
764 
765 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
766   if (!f.mipsGotIndex.hasValue()) {
767     gots.emplace_back();
768     gots.back().file = &f;
769     f.mipsGotIndex = gots.size() - 1;
770   }
771   return gots[*f.mipsGotIndex];
772 }
773 
774 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
775                                             const Symbol &sym,
776                                             int64_t addend) const {
777   const FileGot &g = gots[*f->mipsGotIndex];
778   uint64_t index = 0;
779   if (const OutputSection *outSec = sym.getOutputSection()) {
780     uint64_t secAddr = getMipsPageAddr(outSec->addr);
781     uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
782     index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
783   } else {
784     index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
785   }
786   return index * config->wordsize;
787 }
788 
789 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
790                                            int64_t addend) const {
791   const FileGot &g = gots[*f->mipsGotIndex];
792   Symbol *sym = const_cast<Symbol *>(&s);
793   if (sym->isTls())
794     return g.tls.lookup(sym) * config->wordsize;
795   if (sym->isPreemptible)
796     return g.global.lookup(sym) * config->wordsize;
797   return g.local16.lookup({sym, addend}) * config->wordsize;
798 }
799 
800 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
801   const FileGot &g = gots[*f->mipsGotIndex];
802   return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
803 }
804 
805 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
806                                             const Symbol &s) const {
807   const FileGot &g = gots[*f->mipsGotIndex];
808   Symbol *sym = const_cast<Symbol *>(&s);
809   return g.dynTlsSymbols.lookup(sym) * config->wordsize;
810 }
811 
812 const Symbol *MipsGotSection::getFirstGlobalEntry() const {
813   if (gots.empty())
814     return nullptr;
815   const FileGot &primGot = gots.front();
816   if (!primGot.global.empty())
817     return primGot.global.front().first;
818   if (!primGot.relocs.empty())
819     return primGot.relocs.front().first;
820   return nullptr;
821 }
822 
823 unsigned MipsGotSection::getLocalEntriesNum() const {
824   if (gots.empty())
825     return headerEntriesNum;
826   return headerEntriesNum + gots.front().getPageEntriesNum() +
827          gots.front().local16.size();
828 }
829 
830 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
831   FileGot tmp = dst;
832   set_union(tmp.pagesMap, src.pagesMap);
833   set_union(tmp.local16, src.local16);
834   set_union(tmp.global, src.global);
835   set_union(tmp.relocs, src.relocs);
836   set_union(tmp.tls, src.tls);
837   set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
838 
839   size_t count = isPrimary ? headerEntriesNum : 0;
840   count += tmp.getIndexedEntriesNum();
841 
842   if (count * config->wordsize > config->mipsGotSize)
843     return false;
844 
845   std::swap(tmp, dst);
846   return true;
847 }
848 
849 void MipsGotSection::finalizeContents() { updateAllocSize(); }
850 
851 bool MipsGotSection::updateAllocSize() {
852   size = headerEntriesNum * config->wordsize;
853   for (const FileGot &g : gots)
854     size += g.getEntriesNum() * config->wordsize;
855   return false;
856 }
857 
858 void MipsGotSection::build() {
859   if (gots.empty())
860     return;
861 
862   std::vector<FileGot> mergedGots(1);
863 
864   // For each GOT move non-preemptible symbols from the `Global`
865   // to `Local16` list. Preemptible symbol might become non-preemptible
866   // one if, for example, it gets a related copy relocation.
867   for (FileGot &got : gots) {
868     for (auto &p: got.global)
869       if (!p.first->isPreemptible)
870         got.local16.insert({{p.first, 0}, 0});
871     got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
872       return !p.first->isPreemptible;
873     });
874   }
875 
876   // For each GOT remove "reloc-only" entry if there is "global"
877   // entry for the same symbol. And add local entries which indexed
878   // using 32-bit value at the end of 16-bit entries.
879   for (FileGot &got : gots) {
880     got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
881       return got.global.count(p.first);
882     });
883     set_union(got.local16, got.local32);
884     got.local32.clear();
885   }
886 
887   // Evaluate number of "reloc-only" entries in the resulting GOT.
888   // To do that put all unique "reloc-only" and "global" entries
889   // from all GOTs to the future primary GOT.
890   FileGot *primGot = &mergedGots.front();
891   for (FileGot &got : gots) {
892     set_union(primGot->relocs, got.global);
893     set_union(primGot->relocs, got.relocs);
894     got.relocs.clear();
895   }
896 
897   // Evaluate number of "page" entries in each GOT.
898   for (FileGot &got : gots) {
899     for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
900          got.pagesMap) {
901       const OutputSection *os = p.first;
902       uint64_t secSize = 0;
903       for (BaseCommand *cmd : os->sectionCommands) {
904         if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
905           for (InputSection *isec : isd->sections) {
906             uint64_t off = alignTo(secSize, isec->alignment);
907             secSize = off + isec->getSize();
908           }
909       }
910       p.second.count = getMipsPageCount(secSize);
911     }
912   }
913 
914   // Merge GOTs. Try to join as much as possible GOTs but do not exceed
915   // maximum GOT size. At first, try to fill the primary GOT because
916   // the primary GOT can be accessed in the most effective way. If it
917   // is not possible, try to fill the last GOT in the list, and finally
918   // create a new GOT if both attempts failed.
919   for (FileGot &srcGot : gots) {
920     InputFile *file = srcGot.file;
921     if (tryMergeGots(mergedGots.front(), srcGot, true)) {
922       file->mipsGotIndex = 0;
923     } else {
924       // If this is the first time we failed to merge with the primary GOT,
925       // MergedGots.back() will also be the primary GOT. We must make sure not
926       // to try to merge again with isPrimary=false, as otherwise, if the
927       // inputs are just right, we could allow the primary GOT to become 1 or 2
928       // words bigger due to ignoring the header size.
929       if (mergedGots.size() == 1 ||
930           !tryMergeGots(mergedGots.back(), srcGot, false)) {
931         mergedGots.emplace_back();
932         std::swap(mergedGots.back(), srcGot);
933       }
934       file->mipsGotIndex = mergedGots.size() - 1;
935     }
936   }
937   std::swap(gots, mergedGots);
938 
939   // Reduce number of "reloc-only" entries in the primary GOT
940   // by subtracting "global" entries in the primary GOT.
941   primGot = &gots.front();
942   primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
943     return primGot->global.count(p.first);
944   });
945 
946   // Calculate indexes for each GOT entry.
947   size_t index = headerEntriesNum;
948   for (FileGot &got : gots) {
949     got.startIndex = &got == primGot ? 0 : index;
950     for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
951          got.pagesMap) {
952       // For each output section referenced by GOT page relocations calculate
953       // and save into pagesMap an upper bound of MIPS GOT entries required
954       // to store page addresses of local symbols. We assume the worst case -
955       // each 64kb page of the output section has at least one GOT relocation
956       // against it. And take in account the case when the section intersects
957       // page boundaries.
958       p.second.firstIndex = index;
959       index += p.second.count;
960     }
961     for (auto &p: got.local16)
962       p.second = index++;
963     for (auto &p: got.global)
964       p.second = index++;
965     for (auto &p: got.relocs)
966       p.second = index++;
967     for (auto &p: got.tls)
968       p.second = index++;
969     for (auto &p: got.dynTlsSymbols) {
970       p.second = index;
971       index += 2;
972     }
973   }
974 
975   // Update Symbol::gotIndex field to use this
976   // value later in the `sortMipsSymbols` function.
977   for (auto &p : primGot->global)
978     p.first->gotIndex = p.second;
979   for (auto &p : primGot->relocs)
980     p.first->gotIndex = p.second;
981 
982   // Create dynamic relocations.
983   for (FileGot &got : gots) {
984     // Create dynamic relocations for TLS entries.
985     for (std::pair<Symbol *, size_t> &p : got.tls) {
986       Symbol *s = p.first;
987       uint64_t offset = p.second * config->wordsize;
988       // When building a shared library we still need a dynamic relocation
989       // for the TP-relative offset as we don't know how much other data will
990       // be allocated before us in the static TLS block.
991       if (s->isPreemptible || config->shared)
992         mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset,
993                                      DynamicReloc::AgainstSymbolWithTargetVA,
994                                      *s, 0, R_ABS});
995     }
996     for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
997       Symbol *s = p.first;
998       uint64_t offset = p.second * config->wordsize;
999       if (s == nullptr) {
1000         if (!config->shared)
1001           continue;
1002         mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset});
1003       } else {
1004         // When building a shared library we still need a dynamic relocation
1005         // for the module index. Therefore only checking for
1006         // S->isPreemptible is not sufficient (this happens e.g. for
1007         // thread-locals that have been marked as local through a linker script)
1008         if (!s->isPreemptible && !config->shared)
1009           continue;
1010         mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, this,
1011                                           offset, *s);
1012         // However, we can skip writing the TLS offset reloc for non-preemptible
1013         // symbols since it is known even in shared libraries
1014         if (!s->isPreemptible)
1015           continue;
1016         offset += config->wordsize;
1017         mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, this, offset,
1018                                           *s);
1019       }
1020     }
1021 
1022     // Do not create dynamic relocations for non-TLS
1023     // entries in the primary GOT.
1024     if (&got == primGot)
1025       continue;
1026 
1027     // Dynamic relocations for "global" entries.
1028     for (const std::pair<Symbol *, size_t> &p : got.global) {
1029       uint64_t offset = p.second * config->wordsize;
1030       mainPart->relaDyn->addSymbolReloc(target->relativeRel, this, offset,
1031                                         *p.first);
1032     }
1033     if (!config->isPic)
1034       continue;
1035     // Dynamic relocations for "local" entries in case of PIC.
1036     for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1037          got.pagesMap) {
1038       size_t pageCount = l.second.count;
1039       for (size_t pi = 0; pi < pageCount; ++pi) {
1040         uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
1041         mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
1042                                      int64_t(pi * 0x10000)});
1043       }
1044     }
1045     for (const std::pair<GotEntry, size_t> &p : got.local16) {
1046       uint64_t offset = p.second * config->wordsize;
1047       mainPart->relaDyn->addReloc({target->relativeRel, this, offset,
1048                                    DynamicReloc::AddendOnlyWithTargetVA,
1049                                    *p.first.first, p.first.second, R_ABS});
1050     }
1051   }
1052 }
1053 
1054 bool MipsGotSection::isNeeded() const {
1055   // We add the .got section to the result for dynamic MIPS target because
1056   // its address and properties are mentioned in the .dynamic section.
1057   return !config->relocatable;
1058 }
1059 
1060 uint64_t MipsGotSection::getGp(const InputFile *f) const {
1061   // For files without related GOT or files refer a primary GOT
1062   // returns "common" _gp value. For secondary GOTs calculate
1063   // individual _gp values.
1064   if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0)
1065     return ElfSym::mipsGp->getVA(0);
1066   return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize +
1067          0x7ff0;
1068 }
1069 
1070 void MipsGotSection::writeTo(uint8_t *buf) {
1071   // Set the MSB of the second GOT slot. This is not required by any
1072   // MIPS ABI documentation, though.
1073   //
1074   // There is a comment in glibc saying that "The MSB of got[1] of a
1075   // gnu object is set to identify gnu objects," and in GNU gold it
1076   // says "the second entry will be used by some runtime loaders".
1077   // But how this field is being used is unclear.
1078   //
1079   // We are not really willing to mimic other linkers behaviors
1080   // without understanding why they do that, but because all files
1081   // generated by GNU tools have this special GOT value, and because
1082   // we've been doing this for years, it is probably a safe bet to
1083   // keep doing this for now. We really need to revisit this to see
1084   // if we had to do this.
1085   writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1086   for (const FileGot &g : gots) {
1087     auto write = [&](size_t i, const Symbol *s, int64_t a) {
1088       uint64_t va = a;
1089       if (s)
1090         va = s->getVA(a);
1091       writeUint(buf + i * config->wordsize, va);
1092     };
1093     // Write 'page address' entries to the local part of the GOT.
1094     for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1095          g.pagesMap) {
1096       size_t pageCount = l.second.count;
1097       uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1098       for (size_t pi = 0; pi < pageCount; ++pi)
1099         write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1100     }
1101     // Local, global, TLS, reloc-only  entries.
1102     // If TLS entry has a corresponding dynamic relocations, leave it
1103     // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1104     // To calculate the adjustments use offsets for thread-local storage.
1105     // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1106     for (const std::pair<GotEntry, size_t> &p : g.local16)
1107       write(p.second, p.first.first, p.first.second);
1108     // Write VA to the primary GOT only. For secondary GOTs that
1109     // will be done by REL32 dynamic relocations.
1110     if (&g == &gots.front())
1111       for (const std::pair<Symbol *, size_t> &p : g.global)
1112         write(p.second, p.first, 0);
1113     for (const std::pair<Symbol *, size_t> &p : g.relocs)
1114       write(p.second, p.first, 0);
1115     for (const std::pair<Symbol *, size_t> &p : g.tls)
1116       write(p.second, p.first,
1117             p.first->isPreemptible || config->shared ? 0 : -0x7000);
1118     for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1119       if (p.first == nullptr && !config->shared)
1120         write(p.second, nullptr, 1);
1121       else if (p.first && !p.first->isPreemptible) {
1122         // If we are emitting a shared library with relocations we mustn't write
1123         // anything to the GOT here. When using Elf_Rel relocations the value
1124         // one will be treated as an addend and will cause crashes at runtime
1125         if (!config->shared)
1126           write(p.second, nullptr, 1);
1127         write(p.second + 1, p.first, -0x8000);
1128       }
1129     }
1130   }
1131 }
1132 
1133 // On PowerPC the .plt section is used to hold the table of function addresses
1134 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1135 // section. I don't know why we have a BSS style type for the section but it is
1136 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1137 GotPltSection::GotPltSection()
1138     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1139                        ".got.plt") {
1140   if (config->emachine == EM_PPC) {
1141     name = ".plt";
1142   } else if (config->emachine == EM_PPC64) {
1143     type = SHT_NOBITS;
1144     name = ".plt";
1145   }
1146 }
1147 
1148 void GotPltSection::addEntry(Symbol &sym) {
1149   assert(sym.pltIndex == entries.size());
1150   entries.push_back(&sym);
1151 }
1152 
1153 size_t GotPltSection::getSize() const {
1154   return (target->gotPltHeaderEntriesNum + entries.size()) *
1155          target->gotEntrySize;
1156 }
1157 
1158 void GotPltSection::writeTo(uint8_t *buf) {
1159   target->writeGotPltHeader(buf);
1160   buf += target->gotPltHeaderEntriesNum * target->gotEntrySize;
1161   for (const Symbol *b : entries) {
1162     target->writeGotPlt(buf, *b);
1163     buf += target->gotEntrySize;
1164   }
1165 }
1166 
1167 bool GotPltSection::isNeeded() const {
1168   // We need to emit GOTPLT even if it's empty if there's a relocation relative
1169   // to it.
1170   return !entries.empty() || hasGotPltOffRel;
1171 }
1172 
1173 static StringRef getIgotPltName() {
1174   // On ARM the IgotPltSection is part of the GotSection.
1175   if (config->emachine == EM_ARM)
1176     return ".got";
1177 
1178   // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1179   // needs to be named the same.
1180   if (config->emachine == EM_PPC64)
1181     return ".plt";
1182 
1183   return ".got.plt";
1184 }
1185 
1186 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1187 // with the IgotPltSection.
1188 IgotPltSection::IgotPltSection()
1189     : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1190                        config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1191                        target->gotEntrySize, getIgotPltName()) {}
1192 
1193 void IgotPltSection::addEntry(Symbol &sym) {
1194   assert(sym.pltIndex == entries.size());
1195   entries.push_back(&sym);
1196 }
1197 
1198 size_t IgotPltSection::getSize() const {
1199   return entries.size() * target->gotEntrySize;
1200 }
1201 
1202 void IgotPltSection::writeTo(uint8_t *buf) {
1203   for (const Symbol *b : entries) {
1204     target->writeIgotPlt(buf, *b);
1205     buf += target->gotEntrySize;
1206   }
1207 }
1208 
1209 StringTableSection::StringTableSection(StringRef name, bool dynamic)
1210     : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1211       dynamic(dynamic) {
1212   // ELF string tables start with a NUL byte.
1213   addString("");
1214 }
1215 
1216 // Adds a string to the string table. If `hashIt` is true we hash and check for
1217 // duplicates. It is optional because the name of global symbols are already
1218 // uniqued and hashing them again has a big cost for a small value: uniquing
1219 // them with some other string that happens to be the same.
1220 unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1221   if (hashIt) {
1222     auto r = stringMap.insert(std::make_pair(s, this->size));
1223     if (!r.second)
1224       return r.first->second;
1225   }
1226   unsigned ret = this->size;
1227   this->size = this->size + s.size() + 1;
1228   strings.push_back(s);
1229   return ret;
1230 }
1231 
1232 void StringTableSection::writeTo(uint8_t *buf) {
1233   for (StringRef s : strings) {
1234     memcpy(buf, s.data(), s.size());
1235     buf[s.size()] = '\0';
1236     buf += s.size() + 1;
1237   }
1238 }
1239 
1240 // Returns the number of entries in .gnu.version_d: the number of
1241 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1242 // Note that we don't support vd_cnt > 1 yet.
1243 static unsigned getVerDefNum() {
1244   return namedVersionDefs().size() + 1;
1245 }
1246 
1247 template <class ELFT>
1248 DynamicSection<ELFT>::DynamicSection()
1249     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1250                        ".dynamic") {
1251   this->entsize = ELFT::Is64Bits ? 16 : 8;
1252 
1253   // .dynamic section is not writable on MIPS and on Fuchsia OS
1254   // which passes -z rodynamic.
1255   // See "Special Section" in Chapter 4 in the following document:
1256   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1257   if (config->emachine == EM_MIPS || config->zRodynamic)
1258     this->flags = SHF_ALLOC;
1259 }
1260 
1261 template <class ELFT>
1262 void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) {
1263   entries.push_back({tag, fn});
1264 }
1265 
1266 template <class ELFT>
1267 void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) {
1268   entries.push_back({tag, [=] { return val; }});
1269 }
1270 
1271 template <class ELFT>
1272 void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) {
1273   entries.push_back({tag, [=] { return sec->getVA(0); }});
1274 }
1275 
1276 template <class ELFT>
1277 void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) {
1278   size_t tagOffset = entries.size() * entsize;
1279   entries.push_back(
1280       {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }});
1281 }
1282 
1283 template <class ELFT>
1284 void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) {
1285   entries.push_back({tag, [=] { return sec->addr; }});
1286 }
1287 
1288 template <class ELFT>
1289 void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) {
1290   entries.push_back({tag, [=] { return sec->size; }});
1291 }
1292 
1293 template <class ELFT>
1294 void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) {
1295   entries.push_back({tag, [=] { return sym->getVA(); }});
1296 }
1297 
1298 // The output section .rela.dyn may include these synthetic sections:
1299 //
1300 // - part.relaDyn
1301 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1302 // - in.relaPlt: this is included if a linker script places .rela.plt inside
1303 //   .rela.dyn
1304 //
1305 // DT_RELASZ is the total size of the included sections.
1306 static std::function<uint64_t()> addRelaSz(RelocationBaseSection *relaDyn) {
1307   return [=]() {
1308     size_t size = relaDyn->getSize();
1309     if (in.relaIplt->getParent() == relaDyn->getParent())
1310       size += in.relaIplt->getSize();
1311     if (in.relaPlt->getParent() == relaDyn->getParent())
1312       size += in.relaPlt->getSize();
1313     return size;
1314   };
1315 }
1316 
1317 // A Linker script may assign the RELA relocation sections to the same
1318 // output section. When this occurs we cannot just use the OutputSection
1319 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1320 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1321 static uint64_t addPltRelSz() {
1322   size_t size = in.relaPlt->getSize();
1323   if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1324       in.relaIplt->name == in.relaPlt->name)
1325     size += in.relaIplt->getSize();
1326   return size;
1327 }
1328 
1329 // Add remaining entries to complete .dynamic contents.
1330 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1331   elf::Partition &part = getPartition();
1332   bool isMain = part.name.empty();
1333 
1334   for (StringRef s : config->filterList)
1335     addInt(DT_FILTER, part.dynStrTab->addString(s));
1336   for (StringRef s : config->auxiliaryList)
1337     addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1338 
1339   if (!config->rpath.empty())
1340     addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1341            part.dynStrTab->addString(config->rpath));
1342 
1343   for (SharedFile *file : sharedFiles)
1344     if (file->isNeeded)
1345       addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1346 
1347   if (isMain) {
1348     if (!config->soName.empty())
1349       addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1350   } else {
1351     if (!config->soName.empty())
1352       addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1353     addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1354   }
1355 
1356   // Set DT_FLAGS and DT_FLAGS_1.
1357   uint32_t dtFlags = 0;
1358   uint32_t dtFlags1 = 0;
1359   if (config->bsymbolic == BsymbolicKind::All)
1360     dtFlags |= DF_SYMBOLIC;
1361   if (config->zGlobal)
1362     dtFlags1 |= DF_1_GLOBAL;
1363   if (config->zInitfirst)
1364     dtFlags1 |= DF_1_INITFIRST;
1365   if (config->zInterpose)
1366     dtFlags1 |= DF_1_INTERPOSE;
1367   if (config->zNodefaultlib)
1368     dtFlags1 |= DF_1_NODEFLIB;
1369   if (config->zNodelete)
1370     dtFlags1 |= DF_1_NODELETE;
1371   if (config->zNodlopen)
1372     dtFlags1 |= DF_1_NOOPEN;
1373   if (config->pie)
1374     dtFlags1 |= DF_1_PIE;
1375   if (config->zNow) {
1376     dtFlags |= DF_BIND_NOW;
1377     dtFlags1 |= DF_1_NOW;
1378   }
1379   if (config->zOrigin) {
1380     dtFlags |= DF_ORIGIN;
1381     dtFlags1 |= DF_1_ORIGIN;
1382   }
1383   if (!config->zText)
1384     dtFlags |= DF_TEXTREL;
1385   if (config->hasStaticTlsModel)
1386     dtFlags |= DF_STATIC_TLS;
1387 
1388   if (dtFlags)
1389     addInt(DT_FLAGS, dtFlags);
1390   if (dtFlags1)
1391     addInt(DT_FLAGS_1, dtFlags1);
1392 
1393   // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1394   // need it for each process, so we don't write it for DSOs. The loader writes
1395   // the pointer into this entry.
1396   //
1397   // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1398   // systems (currently only Fuchsia OS) provide other means to give the
1399   // debugger this information. Such systems may choose make .dynamic read-only.
1400   // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1401   if (!config->shared && !config->relocatable && !config->zRodynamic)
1402     addInt(DT_DEBUG, 0);
1403 
1404   if (OutputSection *sec = part.dynStrTab->getParent())
1405     this->link = sec->sectionIndex;
1406 
1407   if (part.relaDyn->isNeeded() ||
1408       (in.relaIplt->isNeeded() &&
1409        part.relaDyn->getParent() == in.relaIplt->getParent())) {
1410     addInSec(part.relaDyn->dynamicTag, part.relaDyn);
1411     entries.push_back({part.relaDyn->sizeDynamicTag, addRelaSz(part.relaDyn)});
1412 
1413     bool isRela = config->isRela;
1414     addInt(isRela ? DT_RELAENT : DT_RELENT,
1415            isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1416 
1417     // MIPS dynamic loader does not support RELCOUNT tag.
1418     // The problem is in the tight relation between dynamic
1419     // relocations and GOT. So do not emit this tag on MIPS.
1420     if (config->emachine != EM_MIPS) {
1421       size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1422       if (config->zCombreloc && numRelativeRels)
1423         addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1424     }
1425   }
1426   if (part.relrDyn && !part.relrDyn->relocs.empty()) {
1427     addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1428              part.relrDyn);
1429     addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1430             part.relrDyn->getParent());
1431     addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1432            sizeof(Elf_Relr));
1433   }
1434   // .rel[a].plt section usually consists of two parts, containing plt and
1435   // iplt relocations. It is possible to have only iplt relocations in the
1436   // output. In that case relaPlt is empty and have zero offset, the same offset
1437   // as relaIplt has. And we still want to emit proper dynamic tags for that
1438   // case, so here we always use relaPlt as marker for the beginning of
1439   // .rel[a].plt section.
1440   if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1441     addInSec(DT_JMPREL, in.relaPlt);
1442     entries.push_back({DT_PLTRELSZ, addPltRelSz});
1443     switch (config->emachine) {
1444     case EM_MIPS:
1445       addInSec(DT_MIPS_PLTGOT, in.gotPlt);
1446       break;
1447     case EM_SPARCV9:
1448       addInSec(DT_PLTGOT, in.plt);
1449       break;
1450     case EM_AARCH64:
1451       if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) {
1452            return r.type == target->pltRel &&
1453                   r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1454           }) != in.relaPlt->relocs.end())
1455         addInt(DT_AARCH64_VARIANT_PCS, 0);
1456       LLVM_FALLTHROUGH;
1457     default:
1458       addInSec(DT_PLTGOT, in.gotPlt);
1459       break;
1460     }
1461     addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1462   }
1463 
1464   if (config->emachine == EM_AARCH64) {
1465     if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1466       addInt(DT_AARCH64_BTI_PLT, 0);
1467     if (config->zPacPlt)
1468       addInt(DT_AARCH64_PAC_PLT, 0);
1469   }
1470 
1471   addInSec(DT_SYMTAB, part.dynSymTab);
1472   addInt(DT_SYMENT, sizeof(Elf_Sym));
1473   addInSec(DT_STRTAB, part.dynStrTab);
1474   addInt(DT_STRSZ, part.dynStrTab->getSize());
1475   if (!config->zText)
1476     addInt(DT_TEXTREL, 0);
1477   if (part.gnuHashTab)
1478     addInSec(DT_GNU_HASH, part.gnuHashTab);
1479   if (part.hashTab)
1480     addInSec(DT_HASH, part.hashTab);
1481 
1482   if (isMain) {
1483     if (Out::preinitArray) {
1484       addOutSec(DT_PREINIT_ARRAY, Out::preinitArray);
1485       addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray);
1486     }
1487     if (Out::initArray) {
1488       addOutSec(DT_INIT_ARRAY, Out::initArray);
1489       addSize(DT_INIT_ARRAYSZ, Out::initArray);
1490     }
1491     if (Out::finiArray) {
1492       addOutSec(DT_FINI_ARRAY, Out::finiArray);
1493       addSize(DT_FINI_ARRAYSZ, Out::finiArray);
1494     }
1495 
1496     if (Symbol *b = symtab->find(config->init))
1497       if (b->isDefined())
1498         addSym(DT_INIT, b);
1499     if (Symbol *b = symtab->find(config->fini))
1500       if (b->isDefined())
1501         addSym(DT_FINI, b);
1502   }
1503 
1504   if (part.verSym && part.verSym->isNeeded())
1505     addInSec(DT_VERSYM, part.verSym);
1506   if (part.verDef && part.verDef->isLive()) {
1507     addInSec(DT_VERDEF, part.verDef);
1508     addInt(DT_VERDEFNUM, getVerDefNum());
1509   }
1510   if (part.verNeed && part.verNeed->isNeeded()) {
1511     addInSec(DT_VERNEED, part.verNeed);
1512     unsigned needNum = 0;
1513     for (SharedFile *f : sharedFiles)
1514       if (!f->vernauxs.empty())
1515         ++needNum;
1516     addInt(DT_VERNEEDNUM, needNum);
1517   }
1518 
1519   if (config->emachine == EM_MIPS) {
1520     addInt(DT_MIPS_RLD_VERSION, 1);
1521     addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1522     addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1523     addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1524 
1525     add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); });
1526 
1527     if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1528       addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1529     else
1530       addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1531     addInSec(DT_PLTGOT, in.mipsGot);
1532     if (in.mipsRldMap) {
1533       if (!config->pie)
1534         addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap);
1535       // Store the offset to the .rld_map section
1536       // relative to the address of the tag.
1537       addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap);
1538     }
1539   }
1540 
1541   // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1542   // glibc assumes the old-style BSS PLT layout which we don't support.
1543   if (config->emachine == EM_PPC)
1544     add(DT_PPC_GOT, [] { return in.got->getVA(); });
1545 
1546   // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1547   if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1548     // The Glink tag points to 32 bytes before the first lazy symbol resolution
1549     // stub, which starts directly after the header.
1550     entries.push_back({DT_PPC64_GLINK, [=] {
1551                          unsigned offset = target->pltHeaderSize - 32;
1552                          return in.plt->getVA(0) + offset;
1553                        }});
1554   }
1555 
1556   addInt(DT_NULL, 0);
1557 
1558   getParent()->link = this->link;
1559   this->size = entries.size() * this->entsize;
1560 }
1561 
1562 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1563   auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1564 
1565   for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) {
1566     p->d_tag = kv.first;
1567     p->d_un.d_val = kv.second();
1568     ++p;
1569   }
1570 }
1571 
1572 uint64_t DynamicReloc::getOffset() const {
1573   return inputSec->getVA(offsetInSec);
1574 }
1575 
1576 int64_t DynamicReloc::computeAddend() const {
1577   switch (kind) {
1578   case AddendOnly:
1579     assert(sym == nullptr);
1580     return addend;
1581   case AgainstSymbol:
1582     assert(sym != nullptr);
1583     return addend;
1584   case AddendOnlyWithTargetVA:
1585   case AgainstSymbolWithTargetVA:
1586     return InputSection::getRelocTargetVA(inputSec->file, type, addend,
1587                                           getOffset(), *sym, expr);
1588   case MipsMultiGotPage:
1589     assert(sym == nullptr);
1590     return getMipsPageAddr(outputSec->addr) + addend;
1591   }
1592   llvm_unreachable("Unknown DynamicReloc::Kind enum");
1593 }
1594 
1595 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1596   if (needsDynSymIndex())
1597     return symTab->getSymbolIndex(sym);
1598   return 0;
1599 }
1600 
1601 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1602                                              int32_t dynamicTag,
1603                                              int32_t sizeDynamicTag)
1604     : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1605       dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {}
1606 
1607 void RelocationBaseSection::addSymbolReloc(RelType dynType,
1608                                            InputSectionBase *isec,
1609                                            uint64_t offsetInSec, Symbol &sym,
1610                                            int64_t addend,
1611                                            Optional<RelType> addendRelType) {
1612   addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
1613            R_ADDEND, addendRelType ? *addendRelType : target->noneRel);
1614 }
1615 
1616 void RelocationBaseSection::addRelativeReloc(
1617     RelType dynType, InputSectionBase *inputSec, uint64_t offsetInSec,
1618     Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) {
1619   // This function should only be called for non-preemptible symbols or
1620   // RelExpr values that refer to an address inside the output file (e.g. the
1621   // address of the GOT entry for a potentially preemptible symbol).
1622   assert((!sym.isPreemptible || expr == R_GOT) &&
1623          "cannot add relative relocation against preemptible symbol");
1624   assert(expr != R_ADDEND && "expected non-addend relocation expression");
1625   addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec,
1626            sym, addend, expr, addendRelType);
1627 }
1628 
1629 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1630     RelType dynType, InputSectionBase *isec, uint64_t offsetInSec, Symbol &sym,
1631     RelType addendRelType) {
1632   // No need to write an addend to the section for preemptible symbols.
1633   if (sym.isPreemptible)
1634     addReloc({dynType, isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1635               R_ABS});
1636   else
1637     addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec,
1638              sym, 0, R_ABS, addendRelType);
1639 }
1640 
1641 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType,
1642                                      InputSectionBase *inputSec,
1643                                      uint64_t offsetInSec, Symbol &sym,
1644                                      int64_t addend, RelExpr expr,
1645                                      RelType addendRelType) {
1646   // Write the addends to the relocated address if required. We skip
1647   // it if the written value would be zero.
1648   if (config->writeAddends && (expr != R_ADDEND || addend != 0))
1649     inputSec->relocations.push_back(
1650         {expr, addendRelType, offsetInSec, addend, &sym});
1651   addReloc({dynType, inputSec, offsetInSec, kind, sym, addend, expr});
1652 }
1653 
1654 void RelocationBaseSection::addReloc(const DynamicReloc &reloc) {
1655   if (reloc.type == target->relativeRel)
1656     ++numRelativeRelocs;
1657   relocs.push_back(reloc);
1658 }
1659 
1660 void RelocationBaseSection::finalizeContents() {
1661   SymbolTableBaseSection *symTab = getPartition().dynSymTab;
1662 
1663   // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1664   // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1665   // case.
1666   if (symTab && symTab->getParent())
1667     getParent()->link = symTab->getParent()->sectionIndex;
1668   else
1669     getParent()->link = 0;
1670 
1671   if (in.relaPlt == this && in.gotPlt->getParent()) {
1672     getParent()->flags |= ELF::SHF_INFO_LINK;
1673     getParent()->info = in.gotPlt->getParent()->sectionIndex;
1674   }
1675   if (in.relaIplt == this && in.igotPlt->getParent()) {
1676     getParent()->flags |= ELF::SHF_INFO_LINK;
1677     getParent()->info = in.igotPlt->getParent()->sectionIndex;
1678   }
1679 }
1680 
1681 RelrBaseSection::RelrBaseSection()
1682     : SyntheticSection(SHF_ALLOC,
1683                        config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1684                        config->wordsize, ".relr.dyn") {}
1685 
1686 template <class ELFT>
1687 static void encodeDynamicReloc(SymbolTableBaseSection *symTab,
1688                                typename ELFT::Rela *p,
1689                                const DynamicReloc &rel) {
1690   if (config->isRela)
1691     p->r_addend = rel.computeAddend();
1692   p->r_offset = rel.getOffset();
1693   p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL);
1694 }
1695 
1696 template <class ELFT>
1697 RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort)
1698     : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1699                             config->isRela ? DT_RELA : DT_REL,
1700                             config->isRela ? DT_RELASZ : DT_RELSZ),
1701       sort(sort) {
1702   this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1703 }
1704 
1705 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1706   SymbolTableBaseSection *symTab = getPartition().dynSymTab;
1707 
1708   // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1709   // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1710   // is to make results easier to read.
1711   if (sort)
1712     llvm::stable_sort(
1713         relocs, [&](const DynamicReloc &a, const DynamicReloc &b) {
1714           return std::make_tuple(a.type != target->relativeRel,
1715                                  a.getSymIndex(symTab), a.getOffset()) <
1716                  std::make_tuple(b.type != target->relativeRel,
1717                                  b.getSymIndex(symTab), b.getOffset());
1718         });
1719 
1720   for (const DynamicReloc &rel : relocs) {
1721     encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel);
1722     buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1723   }
1724 }
1725 
1726 template <class ELFT>
1727 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1728     StringRef name)
1729     : RelocationBaseSection(
1730           name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1731           config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1732           config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) {
1733   this->entsize = 1;
1734 }
1735 
1736 template <class ELFT>
1737 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1738   // This function computes the contents of an Android-format packed relocation
1739   // section.
1740   //
1741   // This format compresses relocations by using relocation groups to factor out
1742   // fields that are common between relocations and storing deltas from previous
1743   // relocations in SLEB128 format (which has a short representation for small
1744   // numbers). A good example of a relocation type with common fields is
1745   // R_*_RELATIVE, which is normally used to represent function pointers in
1746   // vtables. In the REL format, each relative relocation has the same r_info
1747   // field, and is only different from other relative relocations in terms of
1748   // the r_offset field. By sorting relocations by offset, grouping them by
1749   // r_info and representing each relocation with only the delta from the
1750   // previous offset, each 8-byte relocation can be compressed to as little as 1
1751   // byte (or less with run-length encoding). This relocation packer was able to
1752   // reduce the size of the relocation section in an Android Chromium DSO from
1753   // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1754   //
1755   // A relocation section consists of a header containing the literal bytes
1756   // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1757   // elements are the total number of relocations in the section and an initial
1758   // r_offset value. The remaining elements define a sequence of relocation
1759   // groups. Each relocation group starts with a header consisting of the
1760   // following elements:
1761   //
1762   // - the number of relocations in the relocation group
1763   // - flags for the relocation group
1764   // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1765   //   for each relocation in the group.
1766   // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1767   //   field for each relocation in the group.
1768   // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1769   //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1770   //   each relocation in the group.
1771   //
1772   // Following the relocation group header are descriptions of each of the
1773   // relocations in the group. They consist of the following elements:
1774   //
1775   // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1776   //   delta for this relocation.
1777   // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1778   //   field for this relocation.
1779   // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1780   //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1781   //   this relocation.
1782 
1783   size_t oldSize = relocData.size();
1784 
1785   relocData = {'A', 'P', 'S', '2'};
1786   raw_svector_ostream os(relocData);
1787   auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1788 
1789   // The format header includes the number of relocations and the initial
1790   // offset (we set this to zero because the first relocation group will
1791   // perform the initial adjustment).
1792   add(relocs.size());
1793   add(0);
1794 
1795   std::vector<Elf_Rela> relatives, nonRelatives;
1796 
1797   for (const DynamicReloc &rel : relocs) {
1798     Elf_Rela r;
1799     encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel);
1800 
1801     if (r.getType(config->isMips64EL) == target->relativeRel)
1802       relatives.push_back(r);
1803     else
1804       nonRelatives.push_back(r);
1805   }
1806 
1807   llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1808     return a.r_offset < b.r_offset;
1809   });
1810 
1811   // Try to find groups of relative relocations which are spaced one word
1812   // apart from one another. These generally correspond to vtable entries. The
1813   // format allows these groups to be encoded using a sort of run-length
1814   // encoding, but each group will cost 7 bytes in addition to the offset from
1815   // the previous group, so it is only profitable to do this for groups of
1816   // size 8 or larger.
1817   std::vector<Elf_Rela> ungroupedRelatives;
1818   std::vector<std::vector<Elf_Rela>> relativeGroups;
1819   for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1820     std::vector<Elf_Rela> group;
1821     do {
1822       group.push_back(*i++);
1823     } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1824 
1825     if (group.size() < 8)
1826       ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1827                                 group.end());
1828     else
1829       relativeGroups.emplace_back(std::move(group));
1830   }
1831 
1832   // For non-relative relocations, we would like to:
1833   //   1. Have relocations with the same symbol offset to be consecutive, so
1834   //      that the runtime linker can speed-up symbol lookup by implementing an
1835   //      1-entry cache.
1836   //   2. Group relocations by r_info to reduce the size of the relocation
1837   //      section.
1838   // Since the symbol offset is the high bits in r_info, sorting by r_info
1839   // allows us to do both.
1840   //
1841   // For Rela, we also want to sort by r_addend when r_info is the same. This
1842   // enables us to group by r_addend as well.
1843   llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1844     if (a.r_info != b.r_info)
1845       return a.r_info < b.r_info;
1846     if (config->isRela)
1847       return a.r_addend < b.r_addend;
1848     return false;
1849   });
1850 
1851   // Group relocations with the same r_info. Note that each group emits a group
1852   // header and that may make the relocation section larger. It is hard to
1853   // estimate the size of a group header as the encoded size of that varies
1854   // based on r_info. However, we can approximate this trade-off by the number
1855   // of values encoded. Each group header contains 3 values, and each relocation
1856   // in a group encodes one less value, as compared to when it is not grouped.
1857   // Therefore, we only group relocations if there are 3 or more of them with
1858   // the same r_info.
1859   //
1860   // For Rela, the addend for most non-relative relocations is zero, and thus we
1861   // can usually get a smaller relocation section if we group relocations with 0
1862   // addend as well.
1863   std::vector<Elf_Rela> ungroupedNonRelatives;
1864   std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1865   for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1866     auto j = i + 1;
1867     while (j != e && i->r_info == j->r_info &&
1868            (!config->isRela || i->r_addend == j->r_addend))
1869       ++j;
1870     if (j - i < 3 || (config->isRela && i->r_addend != 0))
1871       ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1872     else
1873       nonRelativeGroups.emplace_back(i, j);
1874     i = j;
1875   }
1876 
1877   // Sort ungrouped relocations by offset to minimize the encoded length.
1878   llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1879     return a.r_offset < b.r_offset;
1880   });
1881 
1882   unsigned hasAddendIfRela =
1883       config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1884 
1885   uint64_t offset = 0;
1886   uint64_t addend = 0;
1887 
1888   // Emit the run-length encoding for the groups of adjacent relative
1889   // relocations. Each group is represented using two groups in the packed
1890   // format. The first is used to set the current offset to the start of the
1891   // group (and also encodes the first relocation), and the second encodes the
1892   // remaining relocations.
1893   for (std::vector<Elf_Rela> &g : relativeGroups) {
1894     // The first relocation in the group.
1895     add(1);
1896     add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1897         RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1898     add(g[0].r_offset - offset);
1899     add(target->relativeRel);
1900     if (config->isRela) {
1901       add(g[0].r_addend - addend);
1902       addend = g[0].r_addend;
1903     }
1904 
1905     // The remaining relocations.
1906     add(g.size() - 1);
1907     add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1908         RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1909     add(config->wordsize);
1910     add(target->relativeRel);
1911     if (config->isRela) {
1912       for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) {
1913         add(i->r_addend - addend);
1914         addend = i->r_addend;
1915       }
1916     }
1917 
1918     offset = g.back().r_offset;
1919   }
1920 
1921   // Now the ungrouped relatives.
1922   if (!ungroupedRelatives.empty()) {
1923     add(ungroupedRelatives.size());
1924     add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1925     add(target->relativeRel);
1926     for (Elf_Rela &r : ungroupedRelatives) {
1927       add(r.r_offset - offset);
1928       offset = r.r_offset;
1929       if (config->isRela) {
1930         add(r.r_addend - addend);
1931         addend = r.r_addend;
1932       }
1933     }
1934   }
1935 
1936   // Grouped non-relatives.
1937   for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1938     add(g.size());
1939     add(RELOCATION_GROUPED_BY_INFO_FLAG);
1940     add(g[0].r_info);
1941     for (const Elf_Rela &r : g) {
1942       add(r.r_offset - offset);
1943       offset = r.r_offset;
1944     }
1945     addend = 0;
1946   }
1947 
1948   // Finally the ungrouped non-relative relocations.
1949   if (!ungroupedNonRelatives.empty()) {
1950     add(ungroupedNonRelatives.size());
1951     add(hasAddendIfRela);
1952     for (Elf_Rela &r : ungroupedNonRelatives) {
1953       add(r.r_offset - offset);
1954       offset = r.r_offset;
1955       add(r.r_info);
1956       if (config->isRela) {
1957         add(r.r_addend - addend);
1958         addend = r.r_addend;
1959       }
1960     }
1961   }
1962 
1963   // Don't allow the section to shrink; otherwise the size of the section can
1964   // oscillate infinitely.
1965   if (relocData.size() < oldSize)
1966     relocData.append(oldSize - relocData.size(), 0);
1967 
1968   // Returns whether the section size changed. We need to keep recomputing both
1969   // section layout and the contents of this section until the size converges
1970   // because changing this section's size can affect section layout, which in
1971   // turn can affect the sizes of the LEB-encoded integers stored in this
1972   // section.
1973   return relocData.size() != oldSize;
1974 }
1975 
1976 template <class ELFT> RelrSection<ELFT>::RelrSection() {
1977   this->entsize = config->wordsize;
1978 }
1979 
1980 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
1981   // This function computes the contents of an SHT_RELR packed relocation
1982   // section.
1983   //
1984   // Proposal for adding SHT_RELR sections to generic-abi is here:
1985   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
1986   //
1987   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
1988   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
1989   //
1990   // i.e. start with an address, followed by any number of bitmaps. The address
1991   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
1992   // relocations each, at subsequent offsets following the last address entry.
1993   //
1994   // The bitmap entries must have 1 in the least significant bit. The assumption
1995   // here is that an address cannot have 1 in lsb. Odd addresses are not
1996   // supported.
1997   //
1998   // Excluding the least significant bit in the bitmap, each non-zero bit in
1999   // the bitmap represents a relocation to be applied to a corresponding machine
2000   // word that follows the base address word. The second least significant bit
2001   // represents the machine word immediately following the initial address, and
2002   // each bit that follows represents the next word, in linear order. As such,
2003   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
2004   // 63 relocations in a 64-bit object.
2005   //
2006   // This encoding has a couple of interesting properties:
2007   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2008   //    even means address, odd means bitmap.
2009   // 2. Just a simple list of addresses is a valid encoding.
2010 
2011   size_t oldSize = relrRelocs.size();
2012   relrRelocs.clear();
2013 
2014   // Same as Config->Wordsize but faster because this is a compile-time
2015   // constant.
2016   const size_t wordsize = sizeof(typename ELFT::uint);
2017 
2018   // Number of bits to use for the relocation offsets bitmap.
2019   // Must be either 63 or 31.
2020   const size_t nBits = wordsize * 8 - 1;
2021 
2022   // Get offsets for all relative relocations and sort them.
2023   std::vector<uint64_t> offsets;
2024   for (const RelativeReloc &rel : relocs)
2025     offsets.push_back(rel.getOffset());
2026   llvm::sort(offsets);
2027 
2028   // For each leading relocation, find following ones that can be folded
2029   // as a bitmap and fold them.
2030   for (size_t i = 0, e = offsets.size(); i < e;) {
2031     // Add a leading relocation.
2032     relrRelocs.push_back(Elf_Relr(offsets[i]));
2033     uint64_t base = offsets[i] + wordsize;
2034     ++i;
2035 
2036     // Find foldable relocations to construct bitmaps.
2037     while (i < e) {
2038       uint64_t bitmap = 0;
2039 
2040       while (i < e) {
2041         uint64_t delta = offsets[i] - base;
2042 
2043         // If it is too far, it cannot be folded.
2044         if (delta >= nBits * wordsize)
2045           break;
2046 
2047         // If it is not a multiple of wordsize away, it cannot be folded.
2048         if (delta % wordsize)
2049           break;
2050 
2051         // Fold it.
2052         bitmap |= 1ULL << (delta / wordsize);
2053         ++i;
2054       }
2055 
2056       if (!bitmap)
2057         break;
2058 
2059       relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2060       base += nBits * wordsize;
2061     }
2062   }
2063 
2064   // Don't allow the section to shrink; otherwise the size of the section can
2065   // oscillate infinitely. Trailing 1s do not decode to more relocations.
2066   if (relrRelocs.size() < oldSize) {
2067     log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
2068         " padding word(s)");
2069     relrRelocs.resize(oldSize, Elf_Relr(1));
2070   }
2071 
2072   return relrRelocs.size() != oldSize;
2073 }
2074 
2075 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
2076     : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2077                        strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2078                        config->wordsize,
2079                        strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
2080       strTabSec(strTabSec) {}
2081 
2082 // Orders symbols according to their positions in the GOT,
2083 // in compliance with MIPS ABI rules.
2084 // See "Global Offset Table" in Chapter 5 in the following document
2085 // for detailed description:
2086 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2087 static bool sortMipsSymbols(const SymbolTableEntry &l,
2088                             const SymbolTableEntry &r) {
2089   // Sort entries related to non-local preemptible symbols by GOT indexes.
2090   // All other entries go to the beginning of a dynsym in arbitrary order.
2091   if (l.sym->isInGot() && r.sym->isInGot())
2092     return l.sym->gotIndex < r.sym->gotIndex;
2093   if (!l.sym->isInGot() && !r.sym->isInGot())
2094     return false;
2095   return !l.sym->isInGot();
2096 }
2097 
2098 void SymbolTableBaseSection::finalizeContents() {
2099   if (OutputSection *sec = strTabSec.getParent())
2100     getParent()->link = sec->sectionIndex;
2101 
2102   if (this->type != SHT_DYNSYM) {
2103     sortSymTabSymbols();
2104     return;
2105   }
2106 
2107   // If it is a .dynsym, there should be no local symbols, but we need
2108   // to do a few things for the dynamic linker.
2109 
2110   // Section's Info field has the index of the first non-local symbol.
2111   // Because the first symbol entry is a null entry, 1 is the first.
2112   getParent()->info = 1;
2113 
2114   if (getPartition().gnuHashTab) {
2115     // NB: It also sorts Symbols to meet the GNU hash table requirements.
2116     getPartition().gnuHashTab->addSymbols(symbols);
2117   } else if (config->emachine == EM_MIPS) {
2118     llvm::stable_sort(symbols, sortMipsSymbols);
2119   }
2120 
2121   // Only the main partition's dynsym indexes are stored in the symbols
2122   // themselves. All other partitions use a lookup table.
2123   if (this == mainPart->dynSymTab) {
2124     size_t i = 0;
2125     for (const SymbolTableEntry &s : symbols)
2126       s.sym->dynsymIndex = ++i;
2127   }
2128 }
2129 
2130 // The ELF spec requires that all local symbols precede global symbols, so we
2131 // sort symbol entries in this function. (For .dynsym, we don't do that because
2132 // symbols for dynamic linking are inherently all globals.)
2133 //
2134 // Aside from above, we put local symbols in groups starting with the STT_FILE
2135 // symbol. That is convenient for purpose of identifying where are local symbols
2136 // coming from.
2137 void SymbolTableBaseSection::sortSymTabSymbols() {
2138   // Move all local symbols before global symbols.
2139   auto e = std::stable_partition(
2140       symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) {
2141         return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL;
2142       });
2143   size_t numLocals = e - symbols.begin();
2144   getParent()->info = numLocals + 1;
2145 
2146   // We want to group the local symbols by file. For that we rebuild the local
2147   // part of the symbols vector. We do not need to care about the STT_FILE
2148   // symbols, they are already naturally placed first in each group. That
2149   // happens because STT_FILE is always the first symbol in the object and hence
2150   // precede all other local symbols we add for a file.
2151   MapVector<InputFile *, std::vector<SymbolTableEntry>> arr;
2152   for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2153     arr[s.sym->file].push_back(s);
2154 
2155   auto i = symbols.begin();
2156   for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr)
2157     for (SymbolTableEntry &entry : p.second)
2158       *i++ = entry;
2159 }
2160 
2161 void SymbolTableBaseSection::addSymbol(Symbol *b) {
2162   // Adding a local symbol to a .dynsym is a bug.
2163   assert(this->type != SHT_DYNSYM || !b->isLocal());
2164 
2165   bool hashIt = b->isLocal();
2166   symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)});
2167 }
2168 
2169 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2170   if (this == mainPart->dynSymTab)
2171     return sym->dynsymIndex;
2172 
2173   // Initializes symbol lookup tables lazily. This is used only for -r,
2174   // --emit-relocs and dynsyms in partitions other than the main one.
2175   llvm::call_once(onceFlag, [&] {
2176     symbolIndexMap.reserve(symbols.size());
2177     size_t i = 0;
2178     for (const SymbolTableEntry &e : symbols) {
2179       if (e.sym->type == STT_SECTION)
2180         sectionIndexMap[e.sym->getOutputSection()] = ++i;
2181       else
2182         symbolIndexMap[e.sym] = ++i;
2183     }
2184   });
2185 
2186   // Section symbols are mapped based on their output sections
2187   // to maintain their semantics.
2188   if (sym->type == STT_SECTION)
2189     return sectionIndexMap.lookup(sym->getOutputSection());
2190   return symbolIndexMap.lookup(sym);
2191 }
2192 
2193 template <class ELFT>
2194 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2195     : SymbolTableBaseSection(strTabSec) {
2196   this->entsize = sizeof(Elf_Sym);
2197 }
2198 
2199 static BssSection *getCommonSec(Symbol *sym) {
2200   if (!config->defineCommon)
2201     if (auto *d = dyn_cast<Defined>(sym))
2202       return dyn_cast_or_null<BssSection>(d->section);
2203   return nullptr;
2204 }
2205 
2206 static uint32_t getSymSectionIndex(Symbol *sym) {
2207   if (getCommonSec(sym))
2208     return SHN_COMMON;
2209   if (!isa<Defined>(sym) || sym->needsPltAddr)
2210     return SHN_UNDEF;
2211   if (const OutputSection *os = sym->getOutputSection())
2212     return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2213                                              : os->sectionIndex;
2214   return SHN_ABS;
2215 }
2216 
2217 // Write the internal symbol table contents to the output symbol table.
2218 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2219   // The first entry is a null entry as per the ELF spec.
2220   memset(buf, 0, sizeof(Elf_Sym));
2221   buf += sizeof(Elf_Sym);
2222 
2223   auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2224 
2225   for (SymbolTableEntry &ent : symbols) {
2226     Symbol *sym = ent.sym;
2227     bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2228 
2229     // Set st_info and st_other.
2230     eSym->st_other = 0;
2231     if (sym->isLocal()) {
2232       eSym->setBindingAndType(STB_LOCAL, sym->type);
2233     } else {
2234       eSym->setBindingAndType(sym->computeBinding(), sym->type);
2235       eSym->setVisibility(sym->visibility);
2236     }
2237 
2238     // The 3 most significant bits of st_other are used by OpenPOWER ABI.
2239     // See getPPC64GlobalEntryToLocalEntryOffset() for more details.
2240     if (config->emachine == EM_PPC64)
2241       eSym->st_other |= sym->stOther & 0xe0;
2242     // The most significant bit of st_other is used by AArch64 ABI for the
2243     // variant PCS.
2244     else if (config->emachine == EM_AARCH64)
2245       eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS;
2246 
2247     eSym->st_name = ent.strTabOffset;
2248     if (isDefinedHere)
2249       eSym->st_shndx = getSymSectionIndex(ent.sym);
2250     else
2251       eSym->st_shndx = 0;
2252 
2253     // Copy symbol size if it is a defined symbol. st_size is not significant
2254     // for undefined symbols, so whether copying it or not is up to us if that's
2255     // the case. We'll leave it as zero because by not setting a value, we can
2256     // get the exact same outputs for two sets of input files that differ only
2257     // in undefined symbol size in DSOs.
2258     if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere)
2259       eSym->st_size = 0;
2260     else
2261       eSym->st_size = sym->getSize();
2262 
2263     // st_value is usually an address of a symbol, but that has a special
2264     // meaning for uninstantiated common symbols (--no-define-common).
2265     if (BssSection *commonSec = getCommonSec(ent.sym))
2266       eSym->st_value = commonSec->alignment;
2267     else if (isDefinedHere)
2268       eSym->st_value = sym->getVA();
2269     else
2270       eSym->st_value = 0;
2271 
2272     ++eSym;
2273   }
2274 
2275   // On MIPS we need to mark symbol which has a PLT entry and requires
2276   // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2277   // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2278   // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2279   if (config->emachine == EM_MIPS) {
2280     auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2281 
2282     for (SymbolTableEntry &ent : symbols) {
2283       Symbol *sym = ent.sym;
2284       if (sym->isInPlt() && sym->needsPltAddr)
2285         eSym->st_other |= STO_MIPS_PLT;
2286       if (isMicroMips()) {
2287         // We already set the less-significant bit for symbols
2288         // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2289         // records. That allows us to distinguish such symbols in
2290         // the `MIPS<ELFT>::relocate()` routine. Now we should
2291         // clear that bit for non-dynamic symbol table, so tools
2292         // like `objdump` will be able to deal with a correct
2293         // symbol position.
2294         if (sym->isDefined() &&
2295             ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) {
2296           if (!strTabSec.isDynamic())
2297             eSym->st_value &= ~1;
2298           eSym->st_other |= STO_MIPS_MICROMIPS;
2299         }
2300       }
2301       if (config->relocatable)
2302         if (auto *d = dyn_cast<Defined>(sym))
2303           if (isMipsPIC<ELFT>(d))
2304             eSym->st_other |= STO_MIPS_PIC;
2305       ++eSym;
2306     }
2307   }
2308 }
2309 
2310 SymtabShndxSection::SymtabShndxSection()
2311     : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2312   this->entsize = 4;
2313 }
2314 
2315 void SymtabShndxSection::writeTo(uint8_t *buf) {
2316   // We write an array of 32 bit values, where each value has 1:1 association
2317   // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2318   // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2319   buf += 4; // Ignore .symtab[0] entry.
2320   for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2321     if (getSymSectionIndex(entry.sym) == SHN_XINDEX)
2322       write32(buf, entry.sym->getOutputSection()->sectionIndex);
2323     buf += 4;
2324   }
2325 }
2326 
2327 bool SymtabShndxSection::isNeeded() const {
2328   // SHT_SYMTAB can hold symbols with section indices values up to
2329   // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2330   // section. Problem is that we reveal the final section indices a bit too
2331   // late, and we do not know them here. For simplicity, we just always create
2332   // a .symtab_shndx section when the amount of output sections is huge.
2333   size_t size = 0;
2334   for (BaseCommand *base : script->sectionCommands)
2335     if (isa<OutputSection>(base))
2336       ++size;
2337   return size >= SHN_LORESERVE;
2338 }
2339 
2340 void SymtabShndxSection::finalizeContents() {
2341   getParent()->link = in.symTab->getParent()->sectionIndex;
2342 }
2343 
2344 size_t SymtabShndxSection::getSize() const {
2345   return in.symTab->getNumSymbols() * 4;
2346 }
2347 
2348 // .hash and .gnu.hash sections contain on-disk hash tables that map
2349 // symbol names to their dynamic symbol table indices. Their purpose
2350 // is to help the dynamic linker resolve symbols quickly. If ELF files
2351 // don't have them, the dynamic linker has to do linear search on all
2352 // dynamic symbols, which makes programs slower. Therefore, a .hash
2353 // section is added to a DSO by default.
2354 //
2355 // The Unix semantics of resolving dynamic symbols is somewhat expensive.
2356 // Each ELF file has a list of DSOs that the ELF file depends on and a
2357 // list of dynamic symbols that need to be resolved from any of the
2358 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2359 // where m is the number of DSOs and n is the number of dynamic
2360 // symbols. For modern large programs, both m and n are large.  So
2361 // making each step faster by using hash tables substantially
2362 // improves time to load programs.
2363 //
2364 // (Note that this is not the only way to design the shared library.
2365 // For instance, the Windows DLL takes a different approach. On
2366 // Windows, each dynamic symbol has a name of DLL from which the symbol
2367 // has to be resolved. That makes the cost of symbol resolution O(n).
2368 // This disables some hacky techniques you can use on Unix such as
2369 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2370 //
2371 // Due to historical reasons, we have two different hash tables, .hash
2372 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2373 // and better version of .hash. .hash is just an on-disk hash table, but
2374 // .gnu.hash has a bloom filter in addition to a hash table to skip
2375 // DSOs very quickly. If you are sure that your dynamic linker knows
2376 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2377 // safe bet is to specify --hash-style=both for backward compatibility.
2378 GnuHashTableSection::GnuHashTableSection()
2379     : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2380 }
2381 
2382 void GnuHashTableSection::finalizeContents() {
2383   if (OutputSection *sec = getPartition().dynSymTab->getParent())
2384     getParent()->link = sec->sectionIndex;
2385 
2386   // Computes bloom filter size in word size. We want to allocate 12
2387   // bits for each symbol. It must be a power of two.
2388   if (symbols.empty()) {
2389     maskWords = 1;
2390   } else {
2391     uint64_t numBits = symbols.size() * 12;
2392     maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2393   }
2394 
2395   size = 16;                            // Header
2396   size += config->wordsize * maskWords; // Bloom filter
2397   size += nBuckets * 4;                 // Hash buckets
2398   size += symbols.size() * 4;           // Hash values
2399 }
2400 
2401 void GnuHashTableSection::writeTo(uint8_t *buf) {
2402   // The output buffer is not guaranteed to be zero-cleared because we pre-
2403   // fill executable sections with trap instructions. This is a precaution
2404   // for that case, which happens only when --no-rosegment is given.
2405   memset(buf, 0, size);
2406 
2407   // Write a header.
2408   write32(buf, nBuckets);
2409   write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2410   write32(buf + 8, maskWords);
2411   write32(buf + 12, Shift2);
2412   buf += 16;
2413 
2414   // Write a bloom filter and a hash table.
2415   writeBloomFilter(buf);
2416   buf += config->wordsize * maskWords;
2417   writeHashTable(buf);
2418 }
2419 
2420 // This function writes a 2-bit bloom filter. This bloom filter alone
2421 // usually filters out 80% or more of all symbol lookups [1].
2422 // The dynamic linker uses the hash table only when a symbol is not
2423 // filtered out by a bloom filter.
2424 //
2425 // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2),
2426 //     p.9, https://www.akkadia.org/drepper/dsohowto.pdf
2427 void GnuHashTableSection::writeBloomFilter(uint8_t *buf) {
2428   unsigned c = config->is64 ? 64 : 32;
2429   for (const Entry &sym : symbols) {
2430     // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2431     // the word using bits [0:5] and [26:31].
2432     size_t i = (sym.hash / c) & (maskWords - 1);
2433     uint64_t val = readUint(buf + i * config->wordsize);
2434     val |= uint64_t(1) << (sym.hash % c);
2435     val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2436     writeUint(buf + i * config->wordsize, val);
2437   }
2438 }
2439 
2440 void GnuHashTableSection::writeHashTable(uint8_t *buf) {
2441   uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2442   uint32_t oldBucket = -1;
2443   uint32_t *values = buckets + nBuckets;
2444   for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2445     // Write a hash value. It represents a sequence of chains that share the
2446     // same hash modulo value. The last element of each chain is terminated by
2447     // LSB 1.
2448     uint32_t hash = i->hash;
2449     bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2450     hash = isLastInChain ? hash | 1 : hash & ~1;
2451     write32(values++, hash);
2452 
2453     if (i->bucketIdx == oldBucket)
2454       continue;
2455     // Write a hash bucket. Hash buckets contain indices in the following hash
2456     // value table.
2457     write32(buckets + i->bucketIdx,
2458             getPartition().dynSymTab->getSymbolIndex(i->sym));
2459     oldBucket = i->bucketIdx;
2460   }
2461 }
2462 
2463 static uint32_t hashGnu(StringRef name) {
2464   uint32_t h = 5381;
2465   for (uint8_t c : name)
2466     h = (h << 5) + h + c;
2467   return h;
2468 }
2469 
2470 // Add symbols to this symbol hash table. Note that this function
2471 // destructively sort a given vector -- which is needed because
2472 // GNU-style hash table places some sorting requirements.
2473 void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) {
2474   // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2475   // its type correctly.
2476   std::vector<SymbolTableEntry>::iterator mid =
2477       std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2478         return !s.sym->isDefined() || s.sym->partition != partition;
2479       });
2480 
2481   // We chose load factor 4 for the on-disk hash table. For each hash
2482   // collision, the dynamic linker will compare a uint32_t hash value.
2483   // Since the integer comparison is quite fast, we believe we can
2484   // make the load factor even larger. 4 is just a conservative choice.
2485   //
2486   // Note that we don't want to create a zero-sized hash table because
2487   // Android loader as of 2018 doesn't like a .gnu.hash containing such
2488   // table. If that's the case, we create a hash table with one unused
2489   // dummy slot.
2490   nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2491 
2492   if (mid == v.end())
2493     return;
2494 
2495   for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2496     Symbol *b = ent.sym;
2497     uint32_t hash = hashGnu(b->getName());
2498     uint32_t bucketIdx = hash % nBuckets;
2499     symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2500   }
2501 
2502   llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) {
2503     return l.bucketIdx < r.bucketIdx;
2504   });
2505 
2506   v.erase(mid, v.end());
2507   for (const Entry &ent : symbols)
2508     v.push_back({ent.sym, ent.strTabOffset});
2509 }
2510 
2511 HashTableSection::HashTableSection()
2512     : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2513   this->entsize = 4;
2514 }
2515 
2516 void HashTableSection::finalizeContents() {
2517   SymbolTableBaseSection *symTab = getPartition().dynSymTab;
2518 
2519   if (OutputSection *sec = symTab->getParent())
2520     getParent()->link = sec->sectionIndex;
2521 
2522   unsigned numEntries = 2;               // nbucket and nchain.
2523   numEntries += symTab->getNumSymbols(); // The chain entries.
2524 
2525   // Create as many buckets as there are symbols.
2526   numEntries += symTab->getNumSymbols();
2527   this->size = numEntries * 4;
2528 }
2529 
2530 void HashTableSection::writeTo(uint8_t *buf) {
2531   SymbolTableBaseSection *symTab = getPartition().dynSymTab;
2532 
2533   // See comment in GnuHashTableSection::writeTo.
2534   memset(buf, 0, size);
2535 
2536   unsigned numSymbols = symTab->getNumSymbols();
2537 
2538   uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2539   write32(p++, numSymbols); // nbucket
2540   write32(p++, numSymbols); // nchain
2541 
2542   uint32_t *buckets = p;
2543   uint32_t *chains = p + numSymbols;
2544 
2545   for (const SymbolTableEntry &s : symTab->getSymbols()) {
2546     Symbol *sym = s.sym;
2547     StringRef name = sym->getName();
2548     unsigned i = sym->dynsymIndex;
2549     uint32_t hash = hashSysV(name) % numSymbols;
2550     chains[i] = buckets[hash];
2551     write32(buckets + hash, i);
2552   }
2553 }
2554 
2555 PltSection::PltSection()
2556     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2557       headerSize(target->pltHeaderSize) {
2558   // On PowerPC, this section contains lazy symbol resolvers.
2559   if (config->emachine == EM_PPC64) {
2560     name = ".glink";
2561     alignment = 4;
2562   }
2563 
2564   // On x86 when IBT is enabled, this section contains the second PLT (lazy
2565   // symbol resolvers).
2566   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2567       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2568     name = ".plt.sec";
2569 
2570   // The PLT needs to be writable on SPARC as the dynamic linker will
2571   // modify the instructions in the PLT entries.
2572   if (config->emachine == EM_SPARCV9)
2573     this->flags |= SHF_WRITE;
2574 }
2575 
2576 void PltSection::writeTo(uint8_t *buf) {
2577   // At beginning of PLT, we have code to call the dynamic
2578   // linker to resolve dynsyms at runtime. Write such code.
2579   target->writePltHeader(buf);
2580   size_t off = headerSize;
2581 
2582   for (const Symbol *sym : entries) {
2583     target->writePlt(buf + off, *sym, getVA() + off);
2584     off += target->pltEntrySize;
2585   }
2586 }
2587 
2588 void PltSection::addEntry(Symbol &sym) {
2589   sym.pltIndex = entries.size();
2590   entries.push_back(&sym);
2591 }
2592 
2593 size_t PltSection::getSize() const {
2594   return headerSize + entries.size() * target->pltEntrySize;
2595 }
2596 
2597 bool PltSection::isNeeded() const {
2598   // For -z retpolineplt, .iplt needs the .plt header.
2599   return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2600 }
2601 
2602 // Used by ARM to add mapping symbols in the PLT section, which aid
2603 // disassembly.
2604 void PltSection::addSymbols() {
2605   target->addPltHeaderSymbols(*this);
2606 
2607   size_t off = headerSize;
2608   for (size_t i = 0; i < entries.size(); ++i) {
2609     target->addPltSymbols(*this, off);
2610     off += target->pltEntrySize;
2611   }
2612 }
2613 
2614 IpltSection::IpltSection()
2615     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2616   if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2617     name = ".glink";
2618     alignment = 4;
2619   }
2620 }
2621 
2622 void IpltSection::writeTo(uint8_t *buf) {
2623   uint32_t off = 0;
2624   for (const Symbol *sym : entries) {
2625     target->writeIplt(buf + off, *sym, getVA() + off);
2626     off += target->ipltEntrySize;
2627   }
2628 }
2629 
2630 size_t IpltSection::getSize() const {
2631   return entries.size() * target->ipltEntrySize;
2632 }
2633 
2634 void IpltSection::addEntry(Symbol &sym) {
2635   sym.pltIndex = entries.size();
2636   entries.push_back(&sym);
2637 }
2638 
2639 // ARM uses mapping symbols to aid disassembly.
2640 void IpltSection::addSymbols() {
2641   size_t off = 0;
2642   for (size_t i = 0, e = entries.size(); i != e; ++i) {
2643     target->addPltSymbols(*this, off);
2644     off += target->pltEntrySize;
2645   }
2646 }
2647 
2648 PPC32GlinkSection::PPC32GlinkSection() {
2649   name = ".glink";
2650   alignment = 4;
2651 }
2652 
2653 void PPC32GlinkSection::writeTo(uint8_t *buf) {
2654   writePPC32GlinkSection(buf, entries.size());
2655 }
2656 
2657 size_t PPC32GlinkSection::getSize() const {
2658   return headerSize + entries.size() * target->pltEntrySize + footerSize;
2659 }
2660 
2661 // This is an x86-only extra PLT section and used only when a security
2662 // enhancement feature called CET is enabled. In this comment, I'll explain what
2663 // the feature is and why we have two PLT sections if CET is enabled.
2664 //
2665 // So, what does CET do? CET introduces a new restriction to indirect jump
2666 // instructions. CET works this way. Assume that CET is enabled. Then, if you
2667 // execute an indirect jump instruction, the processor verifies that a special
2668 // "landing pad" instruction (which is actually a repurposed NOP instruction and
2669 // now called "endbr32" or "endbr64") is at the jump target. If the jump target
2670 // does not start with that instruction, the processor raises an exception
2671 // instead of continuing executing code.
2672 //
2673 // If CET is enabled, the compiler emits endbr to all locations where indirect
2674 // jumps may jump to.
2675 //
2676 // This mechanism makes it extremely hard to transfer the control to a middle of
2677 // a function that is not supporsed to be a indirect jump target, preventing
2678 // certain types of attacks such as ROP or JOP.
2679 //
2680 // Note that the processors in the market as of 2019 don't actually support the
2681 // feature. Only the spec is available at the moment.
2682 //
2683 // Now, I'll explain why we have this extra PLT section for CET.
2684 //
2685 // Since you can indirectly jump to a PLT entry, we have to make PLT entries
2686 // start with endbr. The problem is there's no extra space for endbr (which is 4
2687 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2688 // used.
2689 //
2690 // In order to deal with the issue, we split a PLT entry into two PLT entries.
2691 // Remember that each PLT entry contains code to jump to an address read from
2692 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2693 // the former code is written to .plt.sec, and the latter code is written to
2694 // .plt.
2695 //
2696 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2697 // that the regular .plt is now called .plt.sec and .plt is repurposed to
2698 // contain only code for lazy symbol resolution.
2699 //
2700 // In other words, this is how the 2-PLT scheme works. Application code is
2701 // supposed to jump to .plt.sec to call an external function. Each .plt.sec
2702 // entry contains code to read an address from a corresponding .got.plt entry
2703 // and jump to that address. Addresses in .got.plt initially point to .plt, so
2704 // when an application calls an external function for the first time, the
2705 // control is transferred to a function that resolves a symbol name from
2706 // external shared object files. That function then rewrites a .got.plt entry
2707 // with a resolved address, so that the subsequent function calls directly jump
2708 // to a desired location from .plt.sec.
2709 //
2710 // There is an open question as to whether the 2-PLT scheme was desirable or
2711 // not. We could have simply extended the PLT entry size to 32-bytes to
2712 // accommodate endbr, and that scheme would have been much simpler than the
2713 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2714 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2715 // that the optimization actually makes a difference.
2716 //
2717 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2718 // depend on it, so we implement the ABI.
2719 IBTPltSection::IBTPltSection()
2720     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2721 
2722 void IBTPltSection::writeTo(uint8_t *buf) {
2723   target->writeIBTPlt(buf, in.plt->getNumEntries());
2724 }
2725 
2726 size_t IBTPltSection::getSize() const {
2727   // 16 is the header size of .plt.
2728   return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2729 }
2730 
2731 // The string hash function for .gdb_index.
2732 static uint32_t computeGdbHash(StringRef s) {
2733   uint32_t h = 0;
2734   for (uint8_t c : s)
2735     h = h * 67 + toLower(c) - 113;
2736   return h;
2737 }
2738 
2739 GdbIndexSection::GdbIndexSection()
2740     : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2741 
2742 // Returns the desired size of an on-disk hash table for a .gdb_index section.
2743 // There's a tradeoff between size and collision rate. We aim 75% utilization.
2744 size_t GdbIndexSection::computeSymtabSize() const {
2745   return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2746 }
2747 
2748 // Compute the output section size.
2749 void GdbIndexSection::initOutputSize() {
2750   size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8;
2751 
2752   for (GdbChunk &chunk : chunks)
2753     size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2754 
2755   // Add the constant pool size if exists.
2756   if (!symbols.empty()) {
2757     GdbSymbol &sym = symbols.back();
2758     size += sym.nameOff + sym.name.size() + 1;
2759   }
2760 }
2761 
2762 static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) {
2763   std::vector<GdbIndexSection::CuEntry> ret;
2764   for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2765     ret.push_back({cu->getOffset(), cu->getLength() + 4});
2766   return ret;
2767 }
2768 
2769 static std::vector<GdbIndexSection::AddressEntry>
2770 readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2771   std::vector<GdbIndexSection::AddressEntry> ret;
2772 
2773   uint32_t cuIdx = 0;
2774   for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2775     if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2776       warn(toString(sec) + ": " + toString(std::move(e)));
2777       return {};
2778     }
2779     Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2780     if (!ranges) {
2781       warn(toString(sec) + ": " + toString(ranges.takeError()));
2782       return {};
2783     }
2784 
2785     ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2786     for (DWARFAddressRange &r : *ranges) {
2787       if (r.SectionIndex == -1ULL)
2788         continue;
2789       // Range list with zero size has no effect.
2790       InputSectionBase *s = sections[r.SectionIndex];
2791       if (s && s != &InputSection::discarded && s->isLive())
2792         if (r.LowPC != r.HighPC)
2793           ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2794     }
2795     ++cuIdx;
2796   }
2797 
2798   return ret;
2799 }
2800 
2801 template <class ELFT>
2802 static std::vector<GdbIndexSection::NameAttrEntry>
2803 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2804                      const std::vector<GdbIndexSection::CuEntry> &cus) {
2805   const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2806   const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2807 
2808   std::vector<GdbIndexSection::NameAttrEntry> ret;
2809   for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2810     DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2811     DWARFDebugPubTable table;
2812     table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2813       warn(toString(pub->sec) + ": " + toString(std::move(e)));
2814     });
2815     for (const DWARFDebugPubTable::Set &set : table.getData()) {
2816       // The value written into the constant pool is kind << 24 | cuIndex. As we
2817       // don't know how many compilation units precede this object to compute
2818       // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2819       // the number of preceding compilation units later.
2820       uint32_t i = llvm::partition_point(cus,
2821                                          [&](GdbIndexSection::CuEntry cu) {
2822                                            return cu.cuOffset < set.Offset;
2823                                          }) -
2824                    cus.begin();
2825       for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2826         ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2827                        (ent.Descriptor.toBits() << 24) | i});
2828     }
2829   }
2830   return ret;
2831 }
2832 
2833 // Create a list of symbols from a given list of symbol names and types
2834 // by uniquifying them by name.
2835 static std::vector<GdbIndexSection::GdbSymbol>
2836 createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs,
2837               const std::vector<GdbIndexSection::GdbChunk> &chunks) {
2838   using GdbSymbol = GdbIndexSection::GdbSymbol;
2839   using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2840 
2841   // For each chunk, compute the number of compilation units preceding it.
2842   uint32_t cuIdx = 0;
2843   std::vector<uint32_t> cuIdxs(chunks.size());
2844   for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2845     cuIdxs[i] = cuIdx;
2846     cuIdx += chunks[i].compilationUnits.size();
2847   }
2848 
2849   // The number of symbols we will handle in this function is of the order
2850   // of millions for very large executables, so we use multi-threading to
2851   // speed it up.
2852   constexpr size_t numShards = 32;
2853   size_t concurrency = PowerOf2Floor(
2854       std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
2855                            .compute_thread_count(),
2856                        numShards));
2857 
2858   // A sharded map to uniquify symbols by name.
2859   std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards);
2860   size_t shift = 32 - countTrailingZeros(numShards);
2861 
2862   // Instantiate GdbSymbols while uniqufying them by name.
2863   std::vector<std::vector<GdbSymbol>> symbols(numShards);
2864   parallelForEachN(0, concurrency, [&](size_t threadId) {
2865     uint32_t i = 0;
2866     for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2867       for (const NameAttrEntry &ent : entries) {
2868         size_t shardId = ent.name.hash() >> shift;
2869         if ((shardId & (concurrency - 1)) != threadId)
2870           continue;
2871 
2872         uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2873         size_t &idx = map[shardId][ent.name];
2874         if (idx) {
2875           symbols[shardId][idx - 1].cuVector.push_back(v);
2876           continue;
2877         }
2878 
2879         idx = symbols[shardId].size() + 1;
2880         symbols[shardId].push_back({ent.name, {v}, 0, 0});
2881       }
2882       ++i;
2883     }
2884   });
2885 
2886   size_t numSymbols = 0;
2887   for (ArrayRef<GdbSymbol> v : symbols)
2888     numSymbols += v.size();
2889 
2890   // The return type is a flattened vector, so we'll copy each vector
2891   // contents to Ret.
2892   std::vector<GdbSymbol> ret;
2893   ret.reserve(numSymbols);
2894   for (std::vector<GdbSymbol> &vec : symbols)
2895     for (GdbSymbol &sym : vec)
2896       ret.push_back(std::move(sym));
2897 
2898   // CU vectors and symbol names are adjacent in the output file.
2899   // We can compute their offsets in the output file now.
2900   size_t off = 0;
2901   for (GdbSymbol &sym : ret) {
2902     sym.cuVectorOff = off;
2903     off += (sym.cuVector.size() + 1) * 4;
2904   }
2905   for (GdbSymbol &sym : ret) {
2906     sym.nameOff = off;
2907     off += sym.name.size() + 1;
2908   }
2909 
2910   return ret;
2911 }
2912 
2913 // Returns a newly-created .gdb_index section.
2914 template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2915   // Collect InputFiles with .debug_info. See the comment in
2916   // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2917   // note that isec->data() may uncompress the full content, which should be
2918   // parallelized.
2919   SetVector<InputFile *> files;
2920   for (InputSectionBase *s : inputSections) {
2921     InputSection *isec = dyn_cast<InputSection>(s);
2922     if (!isec)
2923       continue;
2924     // .debug_gnu_pub{names,types} are useless in executables.
2925     // They are present in input object files solely for creating
2926     // a .gdb_index. So we can remove them from the output.
2927     if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2928       s->markDead();
2929     else if (isec->name == ".debug_info")
2930       files.insert(isec->file);
2931   }
2932   // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
2933   llvm::erase_if(inputSections, [](InputSectionBase *s) {
2934     if (auto *isec = dyn_cast<InputSection>(s))
2935       if (InputSectionBase *rel = isec->getRelocatedSection())
2936         return !rel->isLive();
2937     return !s->isLive();
2938   });
2939 
2940   std::vector<GdbChunk> chunks(files.size());
2941   std::vector<std::vector<NameAttrEntry>> nameAttrs(files.size());
2942 
2943   parallelForEachN(0, files.size(), [&](size_t i) {
2944     // To keep memory usage low, we don't want to keep cached DWARFContext, so
2945     // avoid getDwarf() here.
2946     ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2947     DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2948     auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2949 
2950     // If the are multiple compile units .debug_info (very rare ld -r --unique),
2951     // this only picks the last one. Other address ranges are lost.
2952     chunks[i].sec = dobj.getInfoSection();
2953     chunks[i].compilationUnits = readCuList(dwarf);
2954     chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2955     nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2956   });
2957 
2958   auto *ret = make<GdbIndexSection>();
2959   ret->chunks = std::move(chunks);
2960   ret->symbols = createSymbols(nameAttrs, ret->chunks);
2961   ret->initOutputSize();
2962   return ret;
2963 }
2964 
2965 void GdbIndexSection::writeTo(uint8_t *buf) {
2966   // Write the header.
2967   auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2968   uint8_t *start = buf;
2969   hdr->version = 7;
2970   buf += sizeof(*hdr);
2971 
2972   // Write the CU list.
2973   hdr->cuListOff = buf - start;
2974   for (GdbChunk &chunk : chunks) {
2975     for (CuEntry &cu : chunk.compilationUnits) {
2976       write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2977       write64le(buf + 8, cu.cuLength);
2978       buf += 16;
2979     }
2980   }
2981 
2982   // Write the address area.
2983   hdr->cuTypesOff = buf - start;
2984   hdr->addressAreaOff = buf - start;
2985   uint32_t cuOff = 0;
2986   for (GdbChunk &chunk : chunks) {
2987     for (AddressEntry &e : chunk.addressAreas) {
2988       // In the case of ICF there may be duplicate address range entries.
2989       const uint64_t baseAddr = e.section->repl->getVA(0);
2990       write64le(buf, baseAddr + e.lowAddress);
2991       write64le(buf + 8, baseAddr + e.highAddress);
2992       write32le(buf + 16, e.cuIndex + cuOff);
2993       buf += 20;
2994     }
2995     cuOff += chunk.compilationUnits.size();
2996   }
2997 
2998   // Write the on-disk open-addressing hash table containing symbols.
2999   hdr->symtabOff = buf - start;
3000   size_t symtabSize = computeSymtabSize();
3001   uint32_t mask = symtabSize - 1;
3002 
3003   for (GdbSymbol &sym : symbols) {
3004     uint32_t h = sym.name.hash();
3005     uint32_t i = h & mask;
3006     uint32_t step = ((h * 17) & mask) | 1;
3007 
3008     while (read32le(buf + i * 8))
3009       i = (i + step) & mask;
3010 
3011     write32le(buf + i * 8, sym.nameOff);
3012     write32le(buf + i * 8 + 4, sym.cuVectorOff);
3013   }
3014 
3015   buf += symtabSize * 8;
3016 
3017   // Write the string pool.
3018   hdr->constantPoolOff = buf - start;
3019   parallelForEach(symbols, [&](GdbSymbol &sym) {
3020     memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
3021   });
3022 
3023   // Write the CU vectors.
3024   for (GdbSymbol &sym : symbols) {
3025     write32le(buf, sym.cuVector.size());
3026     buf += 4;
3027     for (uint32_t val : sym.cuVector) {
3028       write32le(buf, val);
3029       buf += 4;
3030     }
3031   }
3032 }
3033 
3034 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
3035 
3036 EhFrameHeader::EhFrameHeader()
3037     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
3038 
3039 void EhFrameHeader::writeTo(uint8_t *buf) {
3040   // Unlike most sections, the EhFrameHeader section is written while writing
3041   // another section, namely EhFrameSection, which calls the write() function
3042   // below from its writeTo() function. This is necessary because the contents
3043   // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
3044   // don't know which order the sections will be written in.
3045 }
3046 
3047 // .eh_frame_hdr contains a binary search table of pointers to FDEs.
3048 // Each entry of the search table consists of two values,
3049 // the starting PC from where FDEs covers, and the FDE's address.
3050 // It is sorted by PC.
3051 void EhFrameHeader::write() {
3052   uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
3053   using FdeData = EhFrameSection::FdeData;
3054 
3055   std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData();
3056 
3057   buf[0] = 1;
3058   buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3059   buf[2] = DW_EH_PE_udata4;
3060   buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3061   write32(buf + 4,
3062           getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
3063   write32(buf + 8, fdes.size());
3064   buf += 12;
3065 
3066   for (FdeData &fde : fdes) {
3067     write32(buf, fde.pcRel);
3068     write32(buf + 4, fde.fdeVARel);
3069     buf += 8;
3070   }
3071 }
3072 
3073 size_t EhFrameHeader::getSize() const {
3074   // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3075   return 12 + getPartition().ehFrame->numFdes * 8;
3076 }
3077 
3078 bool EhFrameHeader::isNeeded() const {
3079   return isLive() && getPartition().ehFrame->isNeeded();
3080 }
3081 
3082 VersionDefinitionSection::VersionDefinitionSection()
3083     : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
3084                        ".gnu.version_d") {}
3085 
3086 StringRef VersionDefinitionSection::getFileDefName() {
3087   if (!getPartition().name.empty())
3088     return getPartition().name;
3089   if (!config->soName.empty())
3090     return config->soName;
3091   return config->outputFile;
3092 }
3093 
3094 void VersionDefinitionSection::finalizeContents() {
3095   fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
3096   for (const VersionDefinition &v : namedVersionDefs())
3097     verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
3098 
3099   if (OutputSection *sec = getPartition().dynStrTab->getParent())
3100     getParent()->link = sec->sectionIndex;
3101 
3102   // sh_info should be set to the number of definitions. This fact is missed in
3103   // documentation, but confirmed by binutils community:
3104   // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3105   getParent()->info = getVerDefNum();
3106 }
3107 
3108 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3109                                         StringRef name, size_t nameOff) {
3110   uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3111 
3112   // Write a verdef.
3113   write16(buf, 1);                  // vd_version
3114   write16(buf + 2, flags);          // vd_flags
3115   write16(buf + 4, index);          // vd_ndx
3116   write16(buf + 6, 1);              // vd_cnt
3117   write32(buf + 8, hashSysV(name)); // vd_hash
3118   write32(buf + 12, 20);            // vd_aux
3119   write32(buf + 16, 28);            // vd_next
3120 
3121   // Write a veraux.
3122   write32(buf + 20, nameOff); // vda_name
3123   write32(buf + 24, 0);       // vda_next
3124 }
3125 
3126 void VersionDefinitionSection::writeTo(uint8_t *buf) {
3127   writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3128 
3129   auto nameOffIt = verDefNameOffs.begin();
3130   for (const VersionDefinition &v : namedVersionDefs()) {
3131     buf += EntrySize;
3132     writeOne(buf, v.id, v.name, *nameOffIt++);
3133   }
3134 
3135   // Need to terminate the last version definition.
3136   write32(buf + 16, 0); // vd_next
3137 }
3138 
3139 size_t VersionDefinitionSection::getSize() const {
3140   return EntrySize * getVerDefNum();
3141 }
3142 
3143 // .gnu.version is a table where each entry is 2 byte long.
3144 VersionTableSection::VersionTableSection()
3145     : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3146                        ".gnu.version") {
3147   this->entsize = 2;
3148 }
3149 
3150 void VersionTableSection::finalizeContents() {
3151   // At the moment of june 2016 GNU docs does not mention that sh_link field
3152   // should be set, but Sun docs do. Also readelf relies on this field.
3153   getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3154 }
3155 
3156 size_t VersionTableSection::getSize() const {
3157   return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3158 }
3159 
3160 void VersionTableSection::writeTo(uint8_t *buf) {
3161   buf += 2;
3162   for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3163     // For an unfetched lazy symbol (undefined weak), it must have been
3164     // converted to Undefined and have VER_NDX_GLOBAL version here.
3165     assert(!s.sym->isLazy());
3166     write16(buf, s.sym->versionId);
3167     buf += 2;
3168   }
3169 }
3170 
3171 bool VersionTableSection::isNeeded() const {
3172   return isLive() &&
3173          (getPartition().verDef || getPartition().verNeed->isNeeded());
3174 }
3175 
3176 void elf::addVerneed(Symbol *ss) {
3177   auto &file = cast<SharedFile>(*ss->file);
3178   if (ss->verdefIndex == VER_NDX_GLOBAL) {
3179     ss->versionId = VER_NDX_GLOBAL;
3180     return;
3181   }
3182 
3183   if (file.vernauxs.empty())
3184     file.vernauxs.resize(file.verdefs.size());
3185 
3186   // Select a version identifier for the vernaux data structure, if we haven't
3187   // already allocated one. The verdef identifiers cover the range
3188   // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3189   // getVerDefNum()+1.
3190   if (file.vernauxs[ss->verdefIndex] == 0)
3191     file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3192 
3193   ss->versionId = file.vernauxs[ss->verdefIndex];
3194 }
3195 
3196 template <class ELFT>
3197 VersionNeedSection<ELFT>::VersionNeedSection()
3198     : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3199                        ".gnu.version_r") {}
3200 
3201 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3202   for (SharedFile *f : sharedFiles) {
3203     if (f->vernauxs.empty())
3204       continue;
3205     verneeds.emplace_back();
3206     Verneed &vn = verneeds.back();
3207     vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3208     for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3209       if (f->vernauxs[i] == 0)
3210         continue;
3211       auto *verdef =
3212           reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3213       vn.vernauxs.push_back(
3214           {verdef->vd_hash, f->vernauxs[i],
3215            getPartition().dynStrTab->addString(f->getStringTable().data() +
3216                                                verdef->getAux()->vda_name)});
3217     }
3218   }
3219 
3220   if (OutputSection *sec = getPartition().dynStrTab->getParent())
3221     getParent()->link = sec->sectionIndex;
3222   getParent()->info = verneeds.size();
3223 }
3224 
3225 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3226   // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3227   auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3228   auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3229 
3230   for (auto &vn : verneeds) {
3231     // Create an Elf_Verneed for this DSO.
3232     verneed->vn_version = 1;
3233     verneed->vn_cnt = vn.vernauxs.size();
3234     verneed->vn_file = vn.nameStrTab;
3235     verneed->vn_aux =
3236         reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3237     verneed->vn_next = sizeof(Elf_Verneed);
3238     ++verneed;
3239 
3240     // Create the Elf_Vernauxs for this Elf_Verneed.
3241     for (auto &vna : vn.vernauxs) {
3242       vernaux->vna_hash = vna.hash;
3243       vernaux->vna_flags = 0;
3244       vernaux->vna_other = vna.verneedIndex;
3245       vernaux->vna_name = vna.nameStrTab;
3246       vernaux->vna_next = sizeof(Elf_Vernaux);
3247       ++vernaux;
3248     }
3249 
3250     vernaux[-1].vna_next = 0;
3251   }
3252   verneed[-1].vn_next = 0;
3253 }
3254 
3255 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3256   return verneeds.size() * sizeof(Elf_Verneed) +
3257          SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3258 }
3259 
3260 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3261   return isLive() && SharedFile::vernauxNum != 0;
3262 }
3263 
3264 void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3265   ms->parent = this;
3266   sections.push_back(ms);
3267   assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS));
3268   alignment = std::max(alignment, ms->alignment);
3269 }
3270 
3271 MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3272                                    uint64_t flags, uint32_t alignment)
3273     : MergeSyntheticSection(name, type, flags, alignment),
3274       builder(StringTableBuilder::RAW, alignment) {}
3275 
3276 size_t MergeTailSection::getSize() const { return builder.getSize(); }
3277 
3278 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3279 
3280 void MergeTailSection::finalizeContents() {
3281   // Add all string pieces to the string table builder to create section
3282   // contents.
3283   for (MergeInputSection *sec : sections)
3284     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3285       if (sec->pieces[i].live)
3286         builder.add(sec->getData(i));
3287 
3288   // Fix the string table content. After this, the contents will never change.
3289   builder.finalize();
3290 
3291   // finalize() fixed tail-optimized strings, so we can now get
3292   // offsets of strings. Get an offset for each string and save it
3293   // to a corresponding SectionPiece for easy access.
3294   for (MergeInputSection *sec : sections)
3295     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3296       if (sec->pieces[i].live)
3297         sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3298 }
3299 
3300 void MergeNoTailSection::writeTo(uint8_t *buf) {
3301   for (size_t i = 0; i < numShards; ++i)
3302     shards[i].write(buf + shardOffsets[i]);
3303 }
3304 
3305 // This function is very hot (i.e. it can take several seconds to finish)
3306 // because sometimes the number of inputs is in an order of magnitude of
3307 // millions. So, we use multi-threading.
3308 //
3309 // For any strings S and T, we know S is not mergeable with T if S's hash
3310 // value is different from T's. If that's the case, we can safely put S and
3311 // T into different string builders without worrying about merge misses.
3312 // We do it in parallel.
3313 void MergeNoTailSection::finalizeContents() {
3314   // Initializes string table builders.
3315   for (size_t i = 0; i < numShards; ++i)
3316     shards.emplace_back(StringTableBuilder::RAW, alignment);
3317 
3318   // Concurrency level. Must be a power of 2 to avoid expensive modulo
3319   // operations in the following tight loop.
3320   size_t concurrency = PowerOf2Floor(
3321       std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
3322                            .compute_thread_count(),
3323                        numShards));
3324 
3325   // Add section pieces to the builders.
3326   parallelForEachN(0, concurrency, [&](size_t threadId) {
3327     for (MergeInputSection *sec : sections) {
3328       for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3329         if (!sec->pieces[i].live)
3330           continue;
3331         size_t shardId = getShardId(sec->pieces[i].hash);
3332         if ((shardId & (concurrency - 1)) == threadId)
3333           sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3334       }
3335     }
3336   });
3337 
3338   // Compute an in-section offset for each shard.
3339   size_t off = 0;
3340   for (size_t i = 0; i < numShards; ++i) {
3341     shards[i].finalizeInOrder();
3342     if (shards[i].getSize() > 0)
3343       off = alignTo(off, alignment);
3344     shardOffsets[i] = off;
3345     off += shards[i].getSize();
3346   }
3347   size = off;
3348 
3349   // So far, section pieces have offsets from beginning of shards, but
3350   // we want offsets from beginning of the whole section. Fix them.
3351   parallelForEach(sections, [&](MergeInputSection *sec) {
3352     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3353       if (sec->pieces[i].live)
3354         sec->pieces[i].outputOff +=
3355             shardOffsets[getShardId(sec->pieces[i].hash)];
3356   });
3357 }
3358 
3359 MergeSyntheticSection *elf::createMergeSynthetic(StringRef name, uint32_t type,
3360                                                  uint64_t flags,
3361                                                  uint32_t alignment) {
3362   bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2;
3363   if (shouldTailMerge)
3364     return make<MergeTailSection>(name, type, flags, alignment);
3365   return make<MergeNoTailSection>(name, type, flags, alignment);
3366 }
3367 
3368 template <class ELFT> void elf::splitSections() {
3369   llvm::TimeTraceScope timeScope("Split sections");
3370   // splitIntoPieces needs to be called on each MergeInputSection
3371   // before calling finalizeContents().
3372   parallelForEach(inputSections, [](InputSectionBase *sec) {
3373     if (auto *s = dyn_cast<MergeInputSection>(sec))
3374       s->splitIntoPieces();
3375     else if (auto *eh = dyn_cast<EhInputSection>(sec))
3376       eh->split<ELFT>();
3377   });
3378 }
3379 
3380 MipsRldMapSection::MipsRldMapSection()
3381     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3382                        ".rld_map") {}
3383 
3384 ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3385     : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3386                        config->wordsize, ".ARM.exidx") {}
3387 
3388 static InputSection *findExidxSection(InputSection *isec) {
3389   for (InputSection *d : isec->dependentSections)
3390     if (d->type == SHT_ARM_EXIDX && d->isLive())
3391       return d;
3392   return nullptr;
3393 }
3394 
3395 static bool isValidExidxSectionDep(InputSection *isec) {
3396   return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3397          isec->getSize() > 0;
3398 }
3399 
3400 bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3401   if (isec->type == SHT_ARM_EXIDX) {
3402     if (InputSection *dep = isec->getLinkOrderDep())
3403       if (isValidExidxSectionDep(dep)) {
3404         exidxSections.push_back(isec);
3405         // Every exidxSection is 8 bytes, we need an estimate of
3406         // size before assignAddresses can be called. Final size
3407         // will only be known after finalize is called.
3408         size += 8;
3409       }
3410     return true;
3411   }
3412 
3413   if (isValidExidxSectionDep(isec)) {
3414     executableSections.push_back(isec);
3415     return false;
3416   }
3417 
3418   // FIXME: we do not output a relocation section when --emit-relocs is used
3419   // as we do not have relocation sections for linker generated table entries
3420   // and we would have to erase at a late stage relocations from merged entries.
3421   // Given that exception tables are already position independent and a binary
3422   // analyzer could derive the relocations we choose to erase the relocations.
3423   if (config->emitRelocs && isec->type == SHT_REL)
3424     if (InputSectionBase *ex = isec->getRelocatedSection())
3425       if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3426         return true;
3427 
3428   return false;
3429 }
3430 
3431 // References to .ARM.Extab Sections have bit 31 clear and are not the
3432 // special EXIDX_CANTUNWIND bit-pattern.
3433 static bool isExtabRef(uint32_t unwind) {
3434   return (unwind & 0x80000000) == 0 && unwind != 0x1;
3435 }
3436 
3437 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3438 // section Prev, where Cur follows Prev in the table. This can be done if the
3439 // unwinding instructions in Cur are identical to Prev. Linker generated
3440 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3441 // InputSection.
3442 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3443 
3444   struct ExidxEntry {
3445     ulittle32_t fn;
3446     ulittle32_t unwind;
3447   };
3448   // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3449   // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3450   ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
3451   if (prev)
3452     prevEntry = prev->getDataAs<ExidxEntry>().back();
3453   if (isExtabRef(prevEntry.unwind))
3454     return false;
3455 
3456   // We consider the unwind instructions of an .ARM.exidx table entry
3457   // a duplicate if the previous unwind instructions if:
3458   // - Both are the special EXIDX_CANTUNWIND.
3459   // - Both are the same inline unwind instructions.
3460   // We do not attempt to follow and check links into .ARM.extab tables as
3461   // consecutive identical entries are rare and the effort to check that they
3462   // are identical is high.
3463 
3464   // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3465   if (cur == nullptr)
3466     return prevEntry.unwind == 1;
3467 
3468   for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
3469     if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
3470       return false;
3471 
3472   // All table entries in this .ARM.exidx Section can be merged into the
3473   // previous Section.
3474   return true;
3475 }
3476 
3477 // The .ARM.exidx table must be sorted in ascending order of the address of the
3478 // functions the table describes. Optionally duplicate adjacent table entries
3479 // can be removed. At the end of the function the executableSections must be
3480 // sorted in ascending order of address, Sentinel is set to the InputSection
3481 // with the highest address and any InputSections that have mergeable
3482 // .ARM.exidx table entries are removed from it.
3483 void ARMExidxSyntheticSection::finalizeContents() {
3484   // The executableSections and exidxSections that we use to derive the final
3485   // contents of this SyntheticSection are populated before
3486   // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3487   // ICF may remove executable InputSections and their dependent .ARM.exidx
3488   // section that we recorded earlier.
3489   auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3490   llvm::erase_if(exidxSections, isDiscarded);
3491   // We need to remove discarded InputSections and InputSections without
3492   // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3493   // of range.
3494   auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3495     if (!isec->isLive())
3496       return true;
3497     if (findExidxSection(isec))
3498       return false;
3499     int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3500     return off != llvm::SignExtend64(off, 31);
3501   };
3502   llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3503 
3504   // Sort the executable sections that may or may not have associated
3505   // .ARM.exidx sections by order of ascending address. This requires the
3506   // relative positions of InputSections and OutputSections to be known.
3507   auto compareByFilePosition = [](const InputSection *a,
3508                                   const InputSection *b) {
3509     OutputSection *aOut = a->getParent();
3510     OutputSection *bOut = b->getParent();
3511 
3512     if (aOut != bOut)
3513       return aOut->addr < bOut->addr;
3514     return a->outSecOff < b->outSecOff;
3515   };
3516   llvm::stable_sort(executableSections, compareByFilePosition);
3517   sentinel = executableSections.back();
3518   // Optionally merge adjacent duplicate entries.
3519   if (config->mergeArmExidx) {
3520     std::vector<InputSection *> selectedSections;
3521     selectedSections.reserve(executableSections.size());
3522     selectedSections.push_back(executableSections[0]);
3523     size_t prev = 0;
3524     for (size_t i = 1; i < executableSections.size(); ++i) {
3525       InputSection *ex1 = findExidxSection(executableSections[prev]);
3526       InputSection *ex2 = findExidxSection(executableSections[i]);
3527       if (!isDuplicateArmExidxSec(ex1, ex2)) {
3528         selectedSections.push_back(executableSections[i]);
3529         prev = i;
3530       }
3531     }
3532     executableSections = std::move(selectedSections);
3533   }
3534 
3535   size_t offset = 0;
3536   size = 0;
3537   for (InputSection *isec : executableSections) {
3538     if (InputSection *d = findExidxSection(isec)) {
3539       d->outSecOff = offset;
3540       d->parent = getParent();
3541       offset += d->getSize();
3542     } else {
3543       offset += 8;
3544     }
3545   }
3546   // Size includes Sentinel.
3547   size = offset + 8;
3548 }
3549 
3550 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3551   return executableSections.front();
3552 }
3553 
3554 // To write the .ARM.exidx table from the ExecutableSections we have three cases
3555 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3556 //     We write the .ARM.exidx section contents and apply its relocations.
3557 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3558 //     must write the contents of an EXIDX_CANTUNWIND directly. We use the
3559 //     start of the InputSection as the purpose of the linker generated
3560 //     section is to terminate the address range of the previous entry.
3561 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3562 //     the table to terminate the address range of the final entry.
3563 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3564 
3565   const uint8_t cantUnwindData[8] = {0, 0, 0, 0,  // PREL31 to target
3566                                      1, 0, 0, 0}; // EXIDX_CANTUNWIND
3567 
3568   uint64_t offset = 0;
3569   for (InputSection *isec : executableSections) {
3570     assert(isec->getParent() != nullptr);
3571     if (InputSection *d = findExidxSection(isec)) {
3572       memcpy(buf + offset, d->data().data(), d->data().size());
3573       d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize());
3574       offset += d->getSize();
3575     } else {
3576       // A Linker generated CANTUNWIND section.
3577       memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3578       uint64_t s = isec->getVA();
3579       uint64_t p = getVA() + offset;
3580       target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3581       offset += 8;
3582     }
3583   }
3584   // Write Sentinel.
3585   memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3586   uint64_t s = sentinel->getVA(sentinel->getSize());
3587   uint64_t p = getVA() + offset;
3588   target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3589   assert(size == offset + 8);
3590 }
3591 
3592 bool ARMExidxSyntheticSection::isNeeded() const {
3593   return llvm::any_of(exidxSections,
3594                       [](InputSection *isec) { return isec->isLive(); });
3595 }
3596 
3597 bool ARMExidxSyntheticSection::classof(const SectionBase *d) {
3598   return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX;
3599 }
3600 
3601 ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3602     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
3603                        config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") {
3604   this->parent = os;
3605   this->outSecOff = off;
3606 }
3607 
3608 size_t ThunkSection::getSize() const {
3609   if (roundUpSizeForErrata)
3610     return alignTo(size, 4096);
3611   return size;
3612 }
3613 
3614 void ThunkSection::addThunk(Thunk *t) {
3615   thunks.push_back(t);
3616   t->addSymbols(*this);
3617 }
3618 
3619 void ThunkSection::writeTo(uint8_t *buf) {
3620   for (Thunk *t : thunks)
3621     t->writeTo(buf + t->offset);
3622 }
3623 
3624 InputSection *ThunkSection::getTargetInputSection() const {
3625   if (thunks.empty())
3626     return nullptr;
3627   const Thunk *t = thunks.front();
3628   return t->getTargetInputSection();
3629 }
3630 
3631 bool ThunkSection::assignOffsets() {
3632   uint64_t off = 0;
3633   for (Thunk *t : thunks) {
3634     off = alignTo(off, t->alignment);
3635     t->setOffset(off);
3636     uint32_t size = t->size();
3637     t->getThunkTargetSym()->size = size;
3638     off += size;
3639   }
3640   bool changed = off != size;
3641   size = off;
3642   return changed;
3643 }
3644 
3645 PPC32Got2Section::PPC32Got2Section()
3646     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3647 
3648 bool PPC32Got2Section::isNeeded() const {
3649   // See the comment below. This is not needed if there is no other
3650   // InputSection.
3651   for (BaseCommand *base : getParent()->sectionCommands)
3652     if (auto *isd = dyn_cast<InputSectionDescription>(base))
3653       for (InputSection *isec : isd->sections)
3654         if (isec != this)
3655           return true;
3656   return false;
3657 }
3658 
3659 void PPC32Got2Section::finalizeContents() {
3660   // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3661   // .got2 . This function computes outSecOff of each .got2 to be used in
3662   // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3663   // to collect input sections named ".got2".
3664   uint32_t offset = 0;
3665   for (BaseCommand *base : getParent()->sectionCommands)
3666     if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
3667       for (InputSection *isec : isd->sections) {
3668         if (isec == this)
3669           continue;
3670         isec->file->ppc32Got2OutSecOff = offset;
3671         offset += (uint32_t)isec->getSize();
3672       }
3673     }
3674 }
3675 
3676 // If linking position-dependent code then the table will store the addresses
3677 // directly in the binary so the section has type SHT_PROGBITS. If linking
3678 // position-independent code the section has type SHT_NOBITS since it will be
3679 // allocated and filled in by the dynamic linker.
3680 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3681     : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3682                        config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3683                        ".branch_lt") {}
3684 
3685 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3686                                                   int64_t addend) {
3687   return getVA() + entry_index.find({sym, addend})->second * 8;
3688 }
3689 
3690 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym,
3691                                                           int64_t addend) {
3692   auto res =
3693       entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3694   if (!res.second)
3695     return None;
3696   entries.emplace_back(sym, addend);
3697   return res.first->second;
3698 }
3699 
3700 size_t PPC64LongBranchTargetSection::getSize() const {
3701   return entries.size() * 8;
3702 }
3703 
3704 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3705   // If linking non-pic we have the final addresses of the targets and they get
3706   // written to the table directly. For pic the dynamic linker will allocate
3707   // the section and fill it it.
3708   if (config->isPic)
3709     return;
3710 
3711   for (auto entry : entries) {
3712     const Symbol *sym = entry.first;
3713     int64_t addend = entry.second;
3714     assert(sym->getVA());
3715     // Need calls to branch to the local entry-point since a long-branch
3716     // must be a local-call.
3717     write64(buf, sym->getVA(addend) +
3718                      getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3719     buf += 8;
3720   }
3721 }
3722 
3723 bool PPC64LongBranchTargetSection::isNeeded() const {
3724   // `removeUnusedSyntheticSections()` is called before thunk allocation which
3725   // is too early to determine if this section will be empty or not. We need
3726   // Finalized to keep the section alive until after thunk creation. Finalized
3727   // only gets set to true once `finalizeSections()` is called after thunk
3728   // creation. Because of this, if we don't create any long-branch thunks we end
3729   // up with an empty .branch_lt section in the binary.
3730   return !finalized || !entries.empty();
3731 }
3732 
3733 static uint8_t getAbiVersion() {
3734   // MIPS non-PIC executable gets ABI version 1.
3735   if (config->emachine == EM_MIPS) {
3736     if (!config->isPic && !config->relocatable &&
3737         (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3738       return 1;
3739     return 0;
3740   }
3741 
3742   if (config->emachine == EM_AMDGPU) {
3743     uint8_t ver = objectFiles[0]->abiVersion;
3744     for (InputFile *file : makeArrayRef(objectFiles).slice(1))
3745       if (file->abiVersion != ver)
3746         error("incompatible ABI version: " + toString(file));
3747     return ver;
3748   }
3749 
3750   return 0;
3751 }
3752 
3753 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3754   // For executable segments, the trap instructions are written before writing
3755   // the header. Setting Elf header bytes to zero ensures that any unused bytes
3756   // in header are zero-cleared, instead of having trap instructions.
3757   memset(buf, 0, sizeof(typename ELFT::Ehdr));
3758   memcpy(buf, "\177ELF", 4);
3759 
3760   auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3761   eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3762   eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3763   eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3764   eHdr->e_ident[EI_OSABI] = config->osabi;
3765   eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3766   eHdr->e_machine = config->emachine;
3767   eHdr->e_version = EV_CURRENT;
3768   eHdr->e_flags = config->eflags;
3769   eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3770   eHdr->e_phnum = part.phdrs.size();
3771   eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3772 
3773   if (!config->relocatable) {
3774     eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3775     eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3776   }
3777 }
3778 
3779 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3780   // Write the program header table.
3781   auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3782   for (PhdrEntry *p : part.phdrs) {
3783     hBuf->p_type = p->p_type;
3784     hBuf->p_flags = p->p_flags;
3785     hBuf->p_offset = p->p_offset;
3786     hBuf->p_vaddr = p->p_vaddr;
3787     hBuf->p_paddr = p->p_paddr;
3788     hBuf->p_filesz = p->p_filesz;
3789     hBuf->p_memsz = p->p_memsz;
3790     hBuf->p_align = p->p_align;
3791     ++hBuf;
3792   }
3793 }
3794 
3795 template <typename ELFT>
3796 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3797     : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3798 
3799 template <typename ELFT>
3800 size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3801   return sizeof(typename ELFT::Ehdr);
3802 }
3803 
3804 template <typename ELFT>
3805 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3806   writeEhdr<ELFT>(buf, getPartition());
3807 
3808   // Loadable partitions are always ET_DYN.
3809   auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3810   eHdr->e_type = ET_DYN;
3811 }
3812 
3813 template <typename ELFT>
3814 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3815     : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3816 
3817 template <typename ELFT>
3818 size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3819   return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3820 }
3821 
3822 template <typename ELFT>
3823 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3824   writePhdrs<ELFT>(buf, getPartition());
3825 }
3826 
3827 PartitionIndexSection::PartitionIndexSection()
3828     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3829 
3830 size_t PartitionIndexSection::getSize() const {
3831   return 12 * (partitions.size() - 1);
3832 }
3833 
3834 void PartitionIndexSection::finalizeContents() {
3835   for (size_t i = 1; i != partitions.size(); ++i)
3836     partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3837 }
3838 
3839 void PartitionIndexSection::writeTo(uint8_t *buf) {
3840   uint64_t va = getVA();
3841   for (size_t i = 1; i != partitions.size(); ++i) {
3842     write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3843     write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3844 
3845     SyntheticSection *next =
3846         i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader;
3847     write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3848 
3849     va += 12;
3850     buf += 12;
3851   }
3852 }
3853 
3854 InStruct elf::in;
3855 
3856 std::vector<Partition> elf::partitions;
3857 Partition *elf::mainPart;
3858 
3859 template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3860 template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3861 template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3862 template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3863 
3864 template void elf::splitSections<ELF32LE>();
3865 template void elf::splitSections<ELF32BE>();
3866 template void elf::splitSections<ELF64LE>();
3867 template void elf::splitSections<ELF64BE>();
3868 
3869 template class elf::MipsAbiFlagsSection<ELF32LE>;
3870 template class elf::MipsAbiFlagsSection<ELF32BE>;
3871 template class elf::MipsAbiFlagsSection<ELF64LE>;
3872 template class elf::MipsAbiFlagsSection<ELF64BE>;
3873 
3874 template class elf::MipsOptionsSection<ELF32LE>;
3875 template class elf::MipsOptionsSection<ELF32BE>;
3876 template class elf::MipsOptionsSection<ELF64LE>;
3877 template class elf::MipsOptionsSection<ELF64BE>;
3878 
3879 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
3880     function_ref<void(InputSection &)>);
3881 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
3882     function_ref<void(InputSection &)>);
3883 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
3884     function_ref<void(InputSection &)>);
3885 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
3886     function_ref<void(InputSection &)>);
3887 
3888 template class elf::MipsReginfoSection<ELF32LE>;
3889 template class elf::MipsReginfoSection<ELF32BE>;
3890 template class elf::MipsReginfoSection<ELF64LE>;
3891 template class elf::MipsReginfoSection<ELF64BE>;
3892 
3893 template class elf::DynamicSection<ELF32LE>;
3894 template class elf::DynamicSection<ELF32BE>;
3895 template class elf::DynamicSection<ELF64LE>;
3896 template class elf::DynamicSection<ELF64BE>;
3897 
3898 template class elf::RelocationSection<ELF32LE>;
3899 template class elf::RelocationSection<ELF32BE>;
3900 template class elf::RelocationSection<ELF64LE>;
3901 template class elf::RelocationSection<ELF64BE>;
3902 
3903 template class elf::AndroidPackedRelocationSection<ELF32LE>;
3904 template class elf::AndroidPackedRelocationSection<ELF32BE>;
3905 template class elf::AndroidPackedRelocationSection<ELF64LE>;
3906 template class elf::AndroidPackedRelocationSection<ELF64BE>;
3907 
3908 template class elf::RelrSection<ELF32LE>;
3909 template class elf::RelrSection<ELF32BE>;
3910 template class elf::RelrSection<ELF64LE>;
3911 template class elf::RelrSection<ELF64BE>;
3912 
3913 template class elf::SymbolTableSection<ELF32LE>;
3914 template class elf::SymbolTableSection<ELF32BE>;
3915 template class elf::SymbolTableSection<ELF64LE>;
3916 template class elf::SymbolTableSection<ELF64BE>;
3917 
3918 template class elf::VersionNeedSection<ELF32LE>;
3919 template class elf::VersionNeedSection<ELF32BE>;
3920 template class elf::VersionNeedSection<ELF64LE>;
3921 template class elf::VersionNeedSection<ELF64BE>;
3922 
3923 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
3924 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
3925 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
3926 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
3927 
3928 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
3929 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
3930 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
3931 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
3932 
3933 template class elf::PartitionElfHeaderSection<ELF32LE>;
3934 template class elf::PartitionElfHeaderSection<ELF32BE>;
3935 template class elf::PartitionElfHeaderSection<ELF64LE>;
3936 template class elf::PartitionElfHeaderSection<ELF64BE>;
3937 
3938 template class elf::PartitionProgramHeadersSection<ELF32LE>;
3939 template class elf::PartitionProgramHeadersSection<ELF32BE>;
3940 template class elf::PartitionProgramHeadersSection<ELF64LE>;
3941 template class elf::PartitionProgramHeadersSection<ELF64BE>;
3942