1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "InputFiles.h" 19 #include "LinkerScript.h" 20 #include "OutputSections.h" 21 #include "SymbolTable.h" 22 #include "Symbols.h" 23 #include "Target.h" 24 #include "Writer.h" 25 #include "lld/Common/DWARF.h" 26 #include "lld/Common/ErrorHandler.h" 27 #include "lld/Common/Memory.h" 28 #include "lld/Common/Strings.h" 29 #include "lld/Common/Version.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 34 #include "llvm/Object/ELFObjectFile.h" 35 #include "llvm/Support/Compression.h" 36 #include "llvm/Support/Endian.h" 37 #include "llvm/Support/LEB128.h" 38 #include "llvm/Support/MD5.h" 39 #include "llvm/Support/Parallel.h" 40 #include "llvm/Support/TimeProfiler.h" 41 #include <cstdlib> 42 #include <thread> 43 44 using namespace llvm; 45 using namespace llvm::dwarf; 46 using namespace llvm::ELF; 47 using namespace llvm::object; 48 using namespace llvm::support; 49 using namespace lld; 50 using namespace lld::elf; 51 52 using llvm::support::endian::read32le; 53 using llvm::support::endian::write32le; 54 using llvm::support::endian::write64le; 55 56 constexpr size_t MergeNoTailSection::numShards; 57 58 static uint64_t readUint(uint8_t *buf) { 59 return config->is64 ? read64(buf) : read32(buf); 60 } 61 62 static void writeUint(uint8_t *buf, uint64_t val) { 63 if (config->is64) 64 write64(buf, val); 65 else 66 write32(buf, val); 67 } 68 69 // Returns an LLD version string. 70 static ArrayRef<uint8_t> getVersion() { 71 // Check LLD_VERSION first for ease of testing. 72 // You can get consistent output by using the environment variable. 73 // This is only for testing. 74 StringRef s = getenv("LLD_VERSION"); 75 if (s.empty()) 76 s = saver.save(Twine("Linker: ") + getLLDVersion()); 77 78 // +1 to include the terminating '\0'. 79 return {(const uint8_t *)s.data(), s.size() + 1}; 80 } 81 82 // Creates a .comment section containing LLD version info. 83 // With this feature, you can identify LLD-generated binaries easily 84 // by "readelf --string-dump .comment <file>". 85 // The returned object is a mergeable string section. 86 MergeInputSection *elf::createCommentSection() { 87 return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 88 getVersion(), ".comment"); 89 } 90 91 // .MIPS.abiflags section. 92 template <class ELFT> 93 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 94 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 95 flags(flags) { 96 this->entsize = sizeof(Elf_Mips_ABIFlags); 97 } 98 99 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 100 memcpy(buf, &flags, sizeof(flags)); 101 } 102 103 template <class ELFT> 104 MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() { 105 Elf_Mips_ABIFlags flags = {}; 106 bool create = false; 107 108 for (InputSectionBase *sec : inputSections) { 109 if (sec->type != SHT_MIPS_ABIFLAGS) 110 continue; 111 sec->markDead(); 112 create = true; 113 114 std::string filename = toString(sec->file); 115 const size_t size = sec->data().size(); 116 // Older version of BFD (such as the default FreeBSD linker) concatenate 117 // .MIPS.abiflags instead of merging. To allow for this case (or potential 118 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 119 if (size < sizeof(Elf_Mips_ABIFlags)) { 120 error(filename + ": invalid size of .MIPS.abiflags section: got " + 121 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 122 return nullptr; 123 } 124 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data()); 125 if (s->version != 0) { 126 error(filename + ": unexpected .MIPS.abiflags version " + 127 Twine(s->version)); 128 return nullptr; 129 } 130 131 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 132 // select the highest number of ISA/Rev/Ext. 133 flags.isa_level = std::max(flags.isa_level, s->isa_level); 134 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 135 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 136 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 137 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 138 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 139 flags.ases |= s->ases; 140 flags.flags1 |= s->flags1; 141 flags.flags2 |= s->flags2; 142 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 143 }; 144 145 if (create) 146 return make<MipsAbiFlagsSection<ELFT>>(flags); 147 return nullptr; 148 } 149 150 // .MIPS.options section. 151 template <class ELFT> 152 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 153 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 154 reginfo(reginfo) { 155 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 156 } 157 158 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 159 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 160 options->kind = ODK_REGINFO; 161 options->size = getSize(); 162 163 if (!config->relocatable) 164 reginfo.ri_gp_value = in.mipsGot->getGp(); 165 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 166 } 167 168 template <class ELFT> 169 MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() { 170 // N64 ABI only. 171 if (!ELFT::Is64Bits) 172 return nullptr; 173 174 std::vector<InputSectionBase *> sections; 175 for (InputSectionBase *sec : inputSections) 176 if (sec->type == SHT_MIPS_OPTIONS) 177 sections.push_back(sec); 178 179 if (sections.empty()) 180 return nullptr; 181 182 Elf_Mips_RegInfo reginfo = {}; 183 for (InputSectionBase *sec : sections) { 184 sec->markDead(); 185 186 std::string filename = toString(sec->file); 187 ArrayRef<uint8_t> d = sec->data(); 188 189 while (!d.empty()) { 190 if (d.size() < sizeof(Elf_Mips_Options)) { 191 error(filename + ": invalid size of .MIPS.options section"); 192 break; 193 } 194 195 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 196 if (opt->kind == ODK_REGINFO) { 197 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 198 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 199 break; 200 } 201 202 if (!opt->size) 203 fatal(filename + ": zero option descriptor size"); 204 d = d.slice(opt->size); 205 } 206 }; 207 208 return make<MipsOptionsSection<ELFT>>(reginfo); 209 } 210 211 // MIPS .reginfo section. 212 template <class ELFT> 213 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 214 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 215 reginfo(reginfo) { 216 this->entsize = sizeof(Elf_Mips_RegInfo); 217 } 218 219 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 220 if (!config->relocatable) 221 reginfo.ri_gp_value = in.mipsGot->getGp(); 222 memcpy(buf, ®info, sizeof(reginfo)); 223 } 224 225 template <class ELFT> 226 MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() { 227 // Section should be alive for O32 and N32 ABIs only. 228 if (ELFT::Is64Bits) 229 return nullptr; 230 231 std::vector<InputSectionBase *> sections; 232 for (InputSectionBase *sec : inputSections) 233 if (sec->type == SHT_MIPS_REGINFO) 234 sections.push_back(sec); 235 236 if (sections.empty()) 237 return nullptr; 238 239 Elf_Mips_RegInfo reginfo = {}; 240 for (InputSectionBase *sec : sections) { 241 sec->markDead(); 242 243 if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) { 244 error(toString(sec->file) + ": invalid size of .reginfo section"); 245 return nullptr; 246 } 247 248 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data()); 249 reginfo.ri_gprmask |= r->ri_gprmask; 250 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 251 }; 252 253 return make<MipsReginfoSection<ELFT>>(reginfo); 254 } 255 256 InputSection *elf::createInterpSection() { 257 // StringSaver guarantees that the returned string ends with '\0'. 258 StringRef s = saver.save(config->dynamicLinker); 259 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 260 261 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 262 ".interp"); 263 } 264 265 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 266 uint64_t size, InputSectionBase §ion) { 267 auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type, 268 value, size, §ion); 269 if (in.symTab) 270 in.symTab->addSymbol(s); 271 return s; 272 } 273 274 static size_t getHashSize() { 275 switch (config->buildId) { 276 case BuildIdKind::Fast: 277 return 8; 278 case BuildIdKind::Md5: 279 case BuildIdKind::Uuid: 280 return 16; 281 case BuildIdKind::Sha1: 282 return 20; 283 case BuildIdKind::Hexstring: 284 return config->buildIdVector.size(); 285 default: 286 llvm_unreachable("unknown BuildIdKind"); 287 } 288 } 289 290 // This class represents a linker-synthesized .note.gnu.property section. 291 // 292 // In x86 and AArch64, object files may contain feature flags indicating the 293 // features that they have used. The flags are stored in a .note.gnu.property 294 // section. 295 // 296 // lld reads the sections from input files and merges them by computing AND of 297 // the flags. The result is written as a new .note.gnu.property section. 298 // 299 // If the flag is zero (which indicates that the intersection of the feature 300 // sets is empty, or some input files didn't have .note.gnu.property sections), 301 // we don't create this section. 302 GnuPropertySection::GnuPropertySection() 303 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 304 config->wordsize, ".note.gnu.property") {} 305 306 void GnuPropertySection::writeTo(uint8_t *buf) { 307 uint32_t featureAndType = config->emachine == EM_AARCH64 308 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 309 : GNU_PROPERTY_X86_FEATURE_1_AND; 310 311 write32(buf, 4); // Name size 312 write32(buf + 4, config->is64 ? 16 : 12); // Content size 313 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 314 memcpy(buf + 12, "GNU", 4); // Name string 315 write32(buf + 16, featureAndType); // Feature type 316 write32(buf + 20, 4); // Feature size 317 write32(buf + 24, config->andFeatures); // Feature flags 318 if (config->is64) 319 write32(buf + 28, 0); // Padding 320 } 321 322 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 323 324 BuildIdSection::BuildIdSection() 325 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 326 hashSize(getHashSize()) {} 327 328 void BuildIdSection::writeTo(uint8_t *buf) { 329 write32(buf, 4); // Name size 330 write32(buf + 4, hashSize); // Content size 331 write32(buf + 8, NT_GNU_BUILD_ID); // Type 332 memcpy(buf + 12, "GNU", 4); // Name string 333 hashBuf = buf + 16; 334 } 335 336 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 337 assert(buf.size() == hashSize); 338 memcpy(hashBuf, buf.data(), hashSize); 339 } 340 341 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 342 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 343 this->bss = true; 344 this->size = size; 345 } 346 347 EhFrameSection::EhFrameSection() 348 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 349 350 // Search for an existing CIE record or create a new one. 351 // CIE records from input object files are uniquified by their contents 352 // and where their relocations point to. 353 template <class ELFT, class RelTy> 354 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 355 Symbol *personality = nullptr; 356 unsigned firstRelI = cie.firstRelocation; 357 if (firstRelI != (unsigned)-1) 358 personality = 359 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 360 361 // Search for an existing CIE by CIE contents/relocation target pair. 362 CieRecord *&rec = cieMap[{cie.data(), personality}]; 363 364 // If not found, create a new one. 365 if (!rec) { 366 rec = make<CieRecord>(); 367 rec->cie = &cie; 368 cieRecords.push_back(rec); 369 } 370 return rec; 371 } 372 373 // There is one FDE per function. Returns a non-null pointer to the function 374 // symbol if the given FDE points to a live function. 375 template <class ELFT, class RelTy> 376 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 377 auto *sec = cast<EhInputSection>(fde.sec); 378 unsigned firstRelI = fde.firstRelocation; 379 380 // An FDE should point to some function because FDEs are to describe 381 // functions. That's however not always the case due to an issue of 382 // ld.gold with -r. ld.gold may discard only functions and leave their 383 // corresponding FDEs, which results in creating bad .eh_frame sections. 384 // To deal with that, we ignore such FDEs. 385 if (firstRelI == (unsigned)-1) 386 return nullptr; 387 388 const RelTy &rel = rels[firstRelI]; 389 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 390 391 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 392 // another partition, are dead. 393 if (auto *d = dyn_cast<Defined>(&b)) 394 if (d->section && d->section->partition == partition) 395 return d; 396 return nullptr; 397 } 398 399 // .eh_frame is a sequence of CIE or FDE records. In general, there 400 // is one CIE record per input object file which is followed by 401 // a list of FDEs. This function searches an existing CIE or create a new 402 // one and associates FDEs to the CIE. 403 template <class ELFT, class RelTy> 404 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 405 offsetToCie.clear(); 406 for (EhSectionPiece &piece : sec->pieces) { 407 // The empty record is the end marker. 408 if (piece.size == 4) 409 return; 410 411 size_t offset = piece.inputOff; 412 uint32_t id = read32(piece.data().data() + 4); 413 if (id == 0) { 414 offsetToCie[offset] = addCie<ELFT>(piece, rels); 415 continue; 416 } 417 418 uint32_t cieOffset = offset + 4 - id; 419 CieRecord *rec = offsetToCie[cieOffset]; 420 if (!rec) 421 fatal(toString(sec) + ": invalid CIE reference"); 422 423 if (!isFdeLive<ELFT>(piece, rels)) 424 continue; 425 rec->fdes.push_back(&piece); 426 numFdes++; 427 } 428 } 429 430 template <class ELFT> 431 void EhFrameSection::addSectionAux(EhInputSection *sec) { 432 if (!sec->isLive()) 433 return; 434 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 435 if (rels.areRelocsRel()) 436 addRecords<ELFT>(sec, rels.rels); 437 else 438 addRecords<ELFT>(sec, rels.relas); 439 } 440 441 void EhFrameSection::addSection(EhInputSection *sec) { 442 sec->parent = this; 443 444 alignment = std::max(alignment, sec->alignment); 445 sections.push_back(sec); 446 447 for (auto *ds : sec->dependentSections) 448 dependentSections.push_back(ds); 449 } 450 451 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 452 // EhFrameSection::addRecords(). 453 template <class ELFT, class RelTy> 454 void EhFrameSection::iterateFDEWithLSDAAux( 455 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 456 llvm::function_ref<void(InputSection &)> fn) { 457 for (EhSectionPiece &piece : sec.pieces) { 458 // Skip ZERO terminator. 459 if (piece.size == 4) 460 continue; 461 462 size_t offset = piece.inputOff; 463 uint32_t id = 464 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 465 if (id == 0) { 466 if (hasLSDA(piece)) 467 ciesWithLSDA.insert(offset); 468 continue; 469 } 470 uint32_t cieOffset = offset + 4 - id; 471 if (ciesWithLSDA.count(cieOffset) == 0) 472 continue; 473 474 // The CIE has a LSDA argument. Call fn with d's section. 475 if (Defined *d = isFdeLive<ELFT>(piece, rels)) 476 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 477 fn(*s); 478 } 479 } 480 481 template <class ELFT> 482 void EhFrameSection::iterateFDEWithLSDA( 483 llvm::function_ref<void(InputSection &)> fn) { 484 DenseSet<size_t> ciesWithLSDA; 485 for (EhInputSection *sec : sections) { 486 ciesWithLSDA.clear(); 487 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 488 if (rels.areRelocsRel()) 489 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); 490 else 491 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); 492 } 493 } 494 495 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 496 memcpy(buf, d.data(), d.size()); 497 498 size_t aligned = alignTo(d.size(), config->wordsize); 499 500 // Zero-clear trailing padding if it exists. 501 memset(buf + d.size(), 0, aligned - d.size()); 502 503 // Fix the size field. -4 since size does not include the size field itself. 504 write32(buf, aligned - 4); 505 } 506 507 void EhFrameSection::finalizeContents() { 508 assert(!this->size); // Not finalized. 509 510 switch (config->ekind) { 511 case ELFNoneKind: 512 llvm_unreachable("invalid ekind"); 513 case ELF32LEKind: 514 for (EhInputSection *sec : sections) 515 addSectionAux<ELF32LE>(sec); 516 break; 517 case ELF32BEKind: 518 for (EhInputSection *sec : sections) 519 addSectionAux<ELF32BE>(sec); 520 break; 521 case ELF64LEKind: 522 for (EhInputSection *sec : sections) 523 addSectionAux<ELF64LE>(sec); 524 break; 525 case ELF64BEKind: 526 for (EhInputSection *sec : sections) 527 addSectionAux<ELF64BE>(sec); 528 break; 529 } 530 531 size_t off = 0; 532 for (CieRecord *rec : cieRecords) { 533 rec->cie->outputOff = off; 534 off += alignTo(rec->cie->size, config->wordsize); 535 536 for (EhSectionPiece *fde : rec->fdes) { 537 fde->outputOff = off; 538 off += alignTo(fde->size, config->wordsize); 539 } 540 } 541 542 // The LSB standard does not allow a .eh_frame section with zero 543 // Call Frame Information records. glibc unwind-dw2-fde.c 544 // classify_object_over_fdes expects there is a CIE record length 0 as a 545 // terminator. Thus we add one unconditionally. 546 off += 4; 547 548 this->size = off; 549 } 550 551 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 552 // to get an FDE from an address to which FDE is applied. This function 553 // returns a list of such pairs. 554 std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const { 555 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 556 std::vector<FdeData> ret; 557 558 uint64_t va = getPartition().ehFrameHdr->getVA(); 559 for (CieRecord *rec : cieRecords) { 560 uint8_t enc = getFdeEncoding(rec->cie); 561 for (EhSectionPiece *fde : rec->fdes) { 562 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 563 uint64_t fdeVA = getParent()->addr + fde->outputOff; 564 if (!isInt<32>(pc - va)) 565 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 566 Twine::utohexstr(pc - va)); 567 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 568 } 569 } 570 571 // Sort the FDE list by their PC and uniqueify. Usually there is only 572 // one FDE for a PC (i.e. function), but if ICF merges two functions 573 // into one, there can be more than one FDEs pointing to the address. 574 auto less = [](const FdeData &a, const FdeData &b) { 575 return a.pcRel < b.pcRel; 576 }; 577 llvm::stable_sort(ret, less); 578 auto eq = [](const FdeData &a, const FdeData &b) { 579 return a.pcRel == b.pcRel; 580 }; 581 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 582 583 return ret; 584 } 585 586 static uint64_t readFdeAddr(uint8_t *buf, int size) { 587 switch (size) { 588 case DW_EH_PE_udata2: 589 return read16(buf); 590 case DW_EH_PE_sdata2: 591 return (int16_t)read16(buf); 592 case DW_EH_PE_udata4: 593 return read32(buf); 594 case DW_EH_PE_sdata4: 595 return (int32_t)read32(buf); 596 case DW_EH_PE_udata8: 597 case DW_EH_PE_sdata8: 598 return read64(buf); 599 case DW_EH_PE_absptr: 600 return readUint(buf); 601 } 602 fatal("unknown FDE size encoding"); 603 } 604 605 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 606 // We need it to create .eh_frame_hdr section. 607 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 608 uint8_t enc) const { 609 // The starting address to which this FDE applies is 610 // stored at FDE + 8 byte. 611 size_t off = fdeOff + 8; 612 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 613 if ((enc & 0x70) == DW_EH_PE_absptr) 614 return addr; 615 if ((enc & 0x70) == DW_EH_PE_pcrel) 616 return addr + getParent()->addr + off; 617 fatal("unknown FDE size relative encoding"); 618 } 619 620 void EhFrameSection::writeTo(uint8_t *buf) { 621 // Write CIE and FDE records. 622 for (CieRecord *rec : cieRecords) { 623 size_t cieOffset = rec->cie->outputOff; 624 writeCieFde(buf + cieOffset, rec->cie->data()); 625 626 for (EhSectionPiece *fde : rec->fdes) { 627 size_t off = fde->outputOff; 628 writeCieFde(buf + off, fde->data()); 629 630 // FDE's second word should have the offset to an associated CIE. 631 // Write it. 632 write32(buf + off + 4, off + 4 - cieOffset); 633 } 634 } 635 636 // Apply relocations. .eh_frame section contents are not contiguous 637 // in the output buffer, but relocateAlloc() still works because 638 // getOffset() takes care of discontiguous section pieces. 639 for (EhInputSection *s : sections) 640 s->relocateAlloc(buf, nullptr); 641 642 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 643 getPartition().ehFrameHdr->write(); 644 } 645 646 GotSection::GotSection() 647 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 648 target->gotEntrySize, ".got") { 649 numEntries = target->gotHeaderEntriesNum; 650 } 651 652 void GotSection::addEntry(Symbol &sym) { 653 sym.gotIndex = numEntries; 654 ++numEntries; 655 } 656 657 bool GotSection::addDynTlsEntry(Symbol &sym) { 658 if (sym.globalDynIndex != -1U) 659 return false; 660 sym.globalDynIndex = numEntries; 661 // Global Dynamic TLS entries take two GOT slots. 662 numEntries += 2; 663 return true; 664 } 665 666 // Reserves TLS entries for a TLS module ID and a TLS block offset. 667 // In total it takes two GOT slots. 668 bool GotSection::addTlsIndex() { 669 if (tlsIndexOff != uint32_t(-1)) 670 return false; 671 tlsIndexOff = numEntries * config->wordsize; 672 numEntries += 2; 673 return true; 674 } 675 676 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 677 return this->getVA() + b.globalDynIndex * config->wordsize; 678 } 679 680 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 681 return b.globalDynIndex * config->wordsize; 682 } 683 684 void GotSection::finalizeContents() { 685 if (config->emachine == EM_PPC64 && 686 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable) 687 size = 0; 688 else 689 size = numEntries * config->wordsize; 690 } 691 692 bool GotSection::isNeeded() const { 693 // Needed if the GOT symbol is used or the number of entries is more than just 694 // the header. A GOT with just the header may not be needed. 695 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum; 696 } 697 698 void GotSection::writeTo(uint8_t *buf) { 699 target->writeGotHeader(buf); 700 relocateAlloc(buf, buf + size); 701 } 702 703 static uint64_t getMipsPageAddr(uint64_t addr) { 704 return (addr + 0x8000) & ~0xffff; 705 } 706 707 static uint64_t getMipsPageCount(uint64_t size) { 708 return (size + 0xfffe) / 0xffff + 1; 709 } 710 711 MipsGotSection::MipsGotSection() 712 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 713 ".got") {} 714 715 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 716 RelExpr expr) { 717 FileGot &g = getGot(file); 718 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 719 if (const OutputSection *os = sym.getOutputSection()) 720 g.pagesMap.insert({os, {}}); 721 else 722 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 723 } else if (sym.isTls()) 724 g.tls.insert({&sym, 0}); 725 else if (sym.isPreemptible && expr == R_ABS) 726 g.relocs.insert({&sym, 0}); 727 else if (sym.isPreemptible) 728 g.global.insert({&sym, 0}); 729 else if (expr == R_MIPS_GOT_OFF32) 730 g.local32.insert({{&sym, addend}, 0}); 731 else 732 g.local16.insert({{&sym, addend}, 0}); 733 } 734 735 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 736 getGot(file).dynTlsSymbols.insert({&sym, 0}); 737 } 738 739 void MipsGotSection::addTlsIndex(InputFile &file) { 740 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 741 } 742 743 size_t MipsGotSection::FileGot::getEntriesNum() const { 744 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 745 tls.size() + dynTlsSymbols.size() * 2; 746 } 747 748 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 749 size_t num = 0; 750 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 751 num += p.second.count; 752 return num; 753 } 754 755 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 756 size_t count = getPageEntriesNum() + local16.size() + global.size(); 757 // If there are relocation-only entries in the GOT, TLS entries 758 // are allocated after them. TLS entries should be addressable 759 // by 16-bit index so count both reloc-only and TLS entries. 760 if (!tls.empty() || !dynTlsSymbols.empty()) 761 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 762 return count; 763 } 764 765 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 766 if (!f.mipsGotIndex.hasValue()) { 767 gots.emplace_back(); 768 gots.back().file = &f; 769 f.mipsGotIndex = gots.size() - 1; 770 } 771 return gots[*f.mipsGotIndex]; 772 } 773 774 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 775 const Symbol &sym, 776 int64_t addend) const { 777 const FileGot &g = gots[*f->mipsGotIndex]; 778 uint64_t index = 0; 779 if (const OutputSection *outSec = sym.getOutputSection()) { 780 uint64_t secAddr = getMipsPageAddr(outSec->addr); 781 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 782 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 783 } else { 784 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 785 } 786 return index * config->wordsize; 787 } 788 789 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 790 int64_t addend) const { 791 const FileGot &g = gots[*f->mipsGotIndex]; 792 Symbol *sym = const_cast<Symbol *>(&s); 793 if (sym->isTls()) 794 return g.tls.lookup(sym) * config->wordsize; 795 if (sym->isPreemptible) 796 return g.global.lookup(sym) * config->wordsize; 797 return g.local16.lookup({sym, addend}) * config->wordsize; 798 } 799 800 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 801 const FileGot &g = gots[*f->mipsGotIndex]; 802 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 803 } 804 805 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 806 const Symbol &s) const { 807 const FileGot &g = gots[*f->mipsGotIndex]; 808 Symbol *sym = const_cast<Symbol *>(&s); 809 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 810 } 811 812 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 813 if (gots.empty()) 814 return nullptr; 815 const FileGot &primGot = gots.front(); 816 if (!primGot.global.empty()) 817 return primGot.global.front().first; 818 if (!primGot.relocs.empty()) 819 return primGot.relocs.front().first; 820 return nullptr; 821 } 822 823 unsigned MipsGotSection::getLocalEntriesNum() const { 824 if (gots.empty()) 825 return headerEntriesNum; 826 return headerEntriesNum + gots.front().getPageEntriesNum() + 827 gots.front().local16.size(); 828 } 829 830 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 831 FileGot tmp = dst; 832 set_union(tmp.pagesMap, src.pagesMap); 833 set_union(tmp.local16, src.local16); 834 set_union(tmp.global, src.global); 835 set_union(tmp.relocs, src.relocs); 836 set_union(tmp.tls, src.tls); 837 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 838 839 size_t count = isPrimary ? headerEntriesNum : 0; 840 count += tmp.getIndexedEntriesNum(); 841 842 if (count * config->wordsize > config->mipsGotSize) 843 return false; 844 845 std::swap(tmp, dst); 846 return true; 847 } 848 849 void MipsGotSection::finalizeContents() { updateAllocSize(); } 850 851 bool MipsGotSection::updateAllocSize() { 852 size = headerEntriesNum * config->wordsize; 853 for (const FileGot &g : gots) 854 size += g.getEntriesNum() * config->wordsize; 855 return false; 856 } 857 858 void MipsGotSection::build() { 859 if (gots.empty()) 860 return; 861 862 std::vector<FileGot> mergedGots(1); 863 864 // For each GOT move non-preemptible symbols from the `Global` 865 // to `Local16` list. Preemptible symbol might become non-preemptible 866 // one if, for example, it gets a related copy relocation. 867 for (FileGot &got : gots) { 868 for (auto &p: got.global) 869 if (!p.first->isPreemptible) 870 got.local16.insert({{p.first, 0}, 0}); 871 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 872 return !p.first->isPreemptible; 873 }); 874 } 875 876 // For each GOT remove "reloc-only" entry if there is "global" 877 // entry for the same symbol. And add local entries which indexed 878 // using 32-bit value at the end of 16-bit entries. 879 for (FileGot &got : gots) { 880 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 881 return got.global.count(p.first); 882 }); 883 set_union(got.local16, got.local32); 884 got.local32.clear(); 885 } 886 887 // Evaluate number of "reloc-only" entries in the resulting GOT. 888 // To do that put all unique "reloc-only" and "global" entries 889 // from all GOTs to the future primary GOT. 890 FileGot *primGot = &mergedGots.front(); 891 for (FileGot &got : gots) { 892 set_union(primGot->relocs, got.global); 893 set_union(primGot->relocs, got.relocs); 894 got.relocs.clear(); 895 } 896 897 // Evaluate number of "page" entries in each GOT. 898 for (FileGot &got : gots) { 899 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 900 got.pagesMap) { 901 const OutputSection *os = p.first; 902 uint64_t secSize = 0; 903 for (BaseCommand *cmd : os->sectionCommands) { 904 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 905 for (InputSection *isec : isd->sections) { 906 uint64_t off = alignTo(secSize, isec->alignment); 907 secSize = off + isec->getSize(); 908 } 909 } 910 p.second.count = getMipsPageCount(secSize); 911 } 912 } 913 914 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 915 // maximum GOT size. At first, try to fill the primary GOT because 916 // the primary GOT can be accessed in the most effective way. If it 917 // is not possible, try to fill the last GOT in the list, and finally 918 // create a new GOT if both attempts failed. 919 for (FileGot &srcGot : gots) { 920 InputFile *file = srcGot.file; 921 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 922 file->mipsGotIndex = 0; 923 } else { 924 // If this is the first time we failed to merge with the primary GOT, 925 // MergedGots.back() will also be the primary GOT. We must make sure not 926 // to try to merge again with isPrimary=false, as otherwise, if the 927 // inputs are just right, we could allow the primary GOT to become 1 or 2 928 // words bigger due to ignoring the header size. 929 if (mergedGots.size() == 1 || 930 !tryMergeGots(mergedGots.back(), srcGot, false)) { 931 mergedGots.emplace_back(); 932 std::swap(mergedGots.back(), srcGot); 933 } 934 file->mipsGotIndex = mergedGots.size() - 1; 935 } 936 } 937 std::swap(gots, mergedGots); 938 939 // Reduce number of "reloc-only" entries in the primary GOT 940 // by subtracting "global" entries in the primary GOT. 941 primGot = &gots.front(); 942 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 943 return primGot->global.count(p.first); 944 }); 945 946 // Calculate indexes for each GOT entry. 947 size_t index = headerEntriesNum; 948 for (FileGot &got : gots) { 949 got.startIndex = &got == primGot ? 0 : index; 950 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 951 got.pagesMap) { 952 // For each output section referenced by GOT page relocations calculate 953 // and save into pagesMap an upper bound of MIPS GOT entries required 954 // to store page addresses of local symbols. We assume the worst case - 955 // each 64kb page of the output section has at least one GOT relocation 956 // against it. And take in account the case when the section intersects 957 // page boundaries. 958 p.second.firstIndex = index; 959 index += p.second.count; 960 } 961 for (auto &p: got.local16) 962 p.second = index++; 963 for (auto &p: got.global) 964 p.second = index++; 965 for (auto &p: got.relocs) 966 p.second = index++; 967 for (auto &p: got.tls) 968 p.second = index++; 969 for (auto &p: got.dynTlsSymbols) { 970 p.second = index; 971 index += 2; 972 } 973 } 974 975 // Update Symbol::gotIndex field to use this 976 // value later in the `sortMipsSymbols` function. 977 for (auto &p : primGot->global) 978 p.first->gotIndex = p.second; 979 for (auto &p : primGot->relocs) 980 p.first->gotIndex = p.second; 981 982 // Create dynamic relocations. 983 for (FileGot &got : gots) { 984 // Create dynamic relocations for TLS entries. 985 for (std::pair<Symbol *, size_t> &p : got.tls) { 986 Symbol *s = p.first; 987 uint64_t offset = p.second * config->wordsize; 988 // When building a shared library we still need a dynamic relocation 989 // for the TP-relative offset as we don't know how much other data will 990 // be allocated before us in the static TLS block. 991 if (s->isPreemptible || config->shared) 992 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset, 993 DynamicReloc::AgainstSymbolWithTargetVA, 994 *s, 0, R_ABS}); 995 } 996 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 997 Symbol *s = p.first; 998 uint64_t offset = p.second * config->wordsize; 999 if (s == nullptr) { 1000 if (!config->shared) 1001 continue; 1002 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset}); 1003 } else { 1004 // When building a shared library we still need a dynamic relocation 1005 // for the module index. Therefore only checking for 1006 // S->isPreemptible is not sufficient (this happens e.g. for 1007 // thread-locals that have been marked as local through a linker script) 1008 if (!s->isPreemptible && !config->shared) 1009 continue; 1010 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, this, 1011 offset, *s); 1012 // However, we can skip writing the TLS offset reloc for non-preemptible 1013 // symbols since it is known even in shared libraries 1014 if (!s->isPreemptible) 1015 continue; 1016 offset += config->wordsize; 1017 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, this, offset, 1018 *s); 1019 } 1020 } 1021 1022 // Do not create dynamic relocations for non-TLS 1023 // entries in the primary GOT. 1024 if (&got == primGot) 1025 continue; 1026 1027 // Dynamic relocations for "global" entries. 1028 for (const std::pair<Symbol *, size_t> &p : got.global) { 1029 uint64_t offset = p.second * config->wordsize; 1030 mainPart->relaDyn->addSymbolReloc(target->relativeRel, this, offset, 1031 *p.first); 1032 } 1033 if (!config->isPic) 1034 continue; 1035 // Dynamic relocations for "local" entries in case of PIC. 1036 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1037 got.pagesMap) { 1038 size_t pageCount = l.second.count; 1039 for (size_t pi = 0; pi < pageCount; ++pi) { 1040 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1041 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1042 int64_t(pi * 0x10000)}); 1043 } 1044 } 1045 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1046 uint64_t offset = p.second * config->wordsize; 1047 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, 1048 DynamicReloc::AddendOnlyWithTargetVA, 1049 *p.first.first, p.first.second, R_ABS}); 1050 } 1051 } 1052 } 1053 1054 bool MipsGotSection::isNeeded() const { 1055 // We add the .got section to the result for dynamic MIPS target because 1056 // its address and properties are mentioned in the .dynamic section. 1057 return !config->relocatable; 1058 } 1059 1060 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1061 // For files without related GOT or files refer a primary GOT 1062 // returns "common" _gp value. For secondary GOTs calculate 1063 // individual _gp values. 1064 if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0) 1065 return ElfSym::mipsGp->getVA(0); 1066 return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize + 1067 0x7ff0; 1068 } 1069 1070 void MipsGotSection::writeTo(uint8_t *buf) { 1071 // Set the MSB of the second GOT slot. This is not required by any 1072 // MIPS ABI documentation, though. 1073 // 1074 // There is a comment in glibc saying that "The MSB of got[1] of a 1075 // gnu object is set to identify gnu objects," and in GNU gold it 1076 // says "the second entry will be used by some runtime loaders". 1077 // But how this field is being used is unclear. 1078 // 1079 // We are not really willing to mimic other linkers behaviors 1080 // without understanding why they do that, but because all files 1081 // generated by GNU tools have this special GOT value, and because 1082 // we've been doing this for years, it is probably a safe bet to 1083 // keep doing this for now. We really need to revisit this to see 1084 // if we had to do this. 1085 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1086 for (const FileGot &g : gots) { 1087 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1088 uint64_t va = a; 1089 if (s) 1090 va = s->getVA(a); 1091 writeUint(buf + i * config->wordsize, va); 1092 }; 1093 // Write 'page address' entries to the local part of the GOT. 1094 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1095 g.pagesMap) { 1096 size_t pageCount = l.second.count; 1097 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1098 for (size_t pi = 0; pi < pageCount; ++pi) 1099 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1100 } 1101 // Local, global, TLS, reloc-only entries. 1102 // If TLS entry has a corresponding dynamic relocations, leave it 1103 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1104 // To calculate the adjustments use offsets for thread-local storage. 1105 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL 1106 for (const std::pair<GotEntry, size_t> &p : g.local16) 1107 write(p.second, p.first.first, p.first.second); 1108 // Write VA to the primary GOT only. For secondary GOTs that 1109 // will be done by REL32 dynamic relocations. 1110 if (&g == &gots.front()) 1111 for (const std::pair<Symbol *, size_t> &p : g.global) 1112 write(p.second, p.first, 0); 1113 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1114 write(p.second, p.first, 0); 1115 for (const std::pair<Symbol *, size_t> &p : g.tls) 1116 write(p.second, p.first, 1117 p.first->isPreemptible || config->shared ? 0 : -0x7000); 1118 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1119 if (p.first == nullptr && !config->shared) 1120 write(p.second, nullptr, 1); 1121 else if (p.first && !p.first->isPreemptible) { 1122 // If we are emitting a shared library with relocations we mustn't write 1123 // anything to the GOT here. When using Elf_Rel relocations the value 1124 // one will be treated as an addend and will cause crashes at runtime 1125 if (!config->shared) 1126 write(p.second, nullptr, 1); 1127 write(p.second + 1, p.first, -0x8000); 1128 } 1129 } 1130 } 1131 } 1132 1133 // On PowerPC the .plt section is used to hold the table of function addresses 1134 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1135 // section. I don't know why we have a BSS style type for the section but it is 1136 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1137 GotPltSection::GotPltSection() 1138 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1139 ".got.plt") { 1140 if (config->emachine == EM_PPC) { 1141 name = ".plt"; 1142 } else if (config->emachine == EM_PPC64) { 1143 type = SHT_NOBITS; 1144 name = ".plt"; 1145 } 1146 } 1147 1148 void GotPltSection::addEntry(Symbol &sym) { 1149 assert(sym.pltIndex == entries.size()); 1150 entries.push_back(&sym); 1151 } 1152 1153 size_t GotPltSection::getSize() const { 1154 return (target->gotPltHeaderEntriesNum + entries.size()) * 1155 target->gotEntrySize; 1156 } 1157 1158 void GotPltSection::writeTo(uint8_t *buf) { 1159 target->writeGotPltHeader(buf); 1160 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize; 1161 for (const Symbol *b : entries) { 1162 target->writeGotPlt(buf, *b); 1163 buf += target->gotEntrySize; 1164 } 1165 } 1166 1167 bool GotPltSection::isNeeded() const { 1168 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1169 // to it. 1170 return !entries.empty() || hasGotPltOffRel; 1171 } 1172 1173 static StringRef getIgotPltName() { 1174 // On ARM the IgotPltSection is part of the GotSection. 1175 if (config->emachine == EM_ARM) 1176 return ".got"; 1177 1178 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1179 // needs to be named the same. 1180 if (config->emachine == EM_PPC64) 1181 return ".plt"; 1182 1183 return ".got.plt"; 1184 } 1185 1186 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1187 // with the IgotPltSection. 1188 IgotPltSection::IgotPltSection() 1189 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1190 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1191 target->gotEntrySize, getIgotPltName()) {} 1192 1193 void IgotPltSection::addEntry(Symbol &sym) { 1194 assert(sym.pltIndex == entries.size()); 1195 entries.push_back(&sym); 1196 } 1197 1198 size_t IgotPltSection::getSize() const { 1199 return entries.size() * target->gotEntrySize; 1200 } 1201 1202 void IgotPltSection::writeTo(uint8_t *buf) { 1203 for (const Symbol *b : entries) { 1204 target->writeIgotPlt(buf, *b); 1205 buf += target->gotEntrySize; 1206 } 1207 } 1208 1209 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1210 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1211 dynamic(dynamic) { 1212 // ELF string tables start with a NUL byte. 1213 addString(""); 1214 } 1215 1216 // Adds a string to the string table. If `hashIt` is true we hash and check for 1217 // duplicates. It is optional because the name of global symbols are already 1218 // uniqued and hashing them again has a big cost for a small value: uniquing 1219 // them with some other string that happens to be the same. 1220 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1221 if (hashIt) { 1222 auto r = stringMap.insert(std::make_pair(s, this->size)); 1223 if (!r.second) 1224 return r.first->second; 1225 } 1226 unsigned ret = this->size; 1227 this->size = this->size + s.size() + 1; 1228 strings.push_back(s); 1229 return ret; 1230 } 1231 1232 void StringTableSection::writeTo(uint8_t *buf) { 1233 for (StringRef s : strings) { 1234 memcpy(buf, s.data(), s.size()); 1235 buf[s.size()] = '\0'; 1236 buf += s.size() + 1; 1237 } 1238 } 1239 1240 // Returns the number of entries in .gnu.version_d: the number of 1241 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1242 // Note that we don't support vd_cnt > 1 yet. 1243 static unsigned getVerDefNum() { 1244 return namedVersionDefs().size() + 1; 1245 } 1246 1247 template <class ELFT> 1248 DynamicSection<ELFT>::DynamicSection() 1249 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1250 ".dynamic") { 1251 this->entsize = ELFT::Is64Bits ? 16 : 8; 1252 1253 // .dynamic section is not writable on MIPS and on Fuchsia OS 1254 // which passes -z rodynamic. 1255 // See "Special Section" in Chapter 4 in the following document: 1256 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1257 if (config->emachine == EM_MIPS || config->zRodynamic) 1258 this->flags = SHF_ALLOC; 1259 } 1260 1261 template <class ELFT> 1262 void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) { 1263 entries.push_back({tag, fn}); 1264 } 1265 1266 template <class ELFT> 1267 void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) { 1268 entries.push_back({tag, [=] { return val; }}); 1269 } 1270 1271 template <class ELFT> 1272 void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) { 1273 entries.push_back({tag, [=] { return sec->getVA(0); }}); 1274 } 1275 1276 template <class ELFT> 1277 void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) { 1278 size_t tagOffset = entries.size() * entsize; 1279 entries.push_back( 1280 {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }}); 1281 } 1282 1283 template <class ELFT> 1284 void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) { 1285 entries.push_back({tag, [=] { return sec->addr; }}); 1286 } 1287 1288 template <class ELFT> 1289 void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) { 1290 entries.push_back({tag, [=] { return sec->size; }}); 1291 } 1292 1293 template <class ELFT> 1294 void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) { 1295 entries.push_back({tag, [=] { return sym->getVA(); }}); 1296 } 1297 1298 // The output section .rela.dyn may include these synthetic sections: 1299 // 1300 // - part.relaDyn 1301 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1302 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1303 // .rela.dyn 1304 // 1305 // DT_RELASZ is the total size of the included sections. 1306 static std::function<uint64_t()> addRelaSz(RelocationBaseSection *relaDyn) { 1307 return [=]() { 1308 size_t size = relaDyn->getSize(); 1309 if (in.relaIplt->getParent() == relaDyn->getParent()) 1310 size += in.relaIplt->getSize(); 1311 if (in.relaPlt->getParent() == relaDyn->getParent()) 1312 size += in.relaPlt->getSize(); 1313 return size; 1314 }; 1315 } 1316 1317 // A Linker script may assign the RELA relocation sections to the same 1318 // output section. When this occurs we cannot just use the OutputSection 1319 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1320 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1321 static uint64_t addPltRelSz() { 1322 size_t size = in.relaPlt->getSize(); 1323 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1324 in.relaIplt->name == in.relaPlt->name) 1325 size += in.relaIplt->getSize(); 1326 return size; 1327 } 1328 1329 // Add remaining entries to complete .dynamic contents. 1330 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1331 elf::Partition &part = getPartition(); 1332 bool isMain = part.name.empty(); 1333 1334 for (StringRef s : config->filterList) 1335 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1336 for (StringRef s : config->auxiliaryList) 1337 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1338 1339 if (!config->rpath.empty()) 1340 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1341 part.dynStrTab->addString(config->rpath)); 1342 1343 for (SharedFile *file : sharedFiles) 1344 if (file->isNeeded) 1345 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1346 1347 if (isMain) { 1348 if (!config->soName.empty()) 1349 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1350 } else { 1351 if (!config->soName.empty()) 1352 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1353 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1354 } 1355 1356 // Set DT_FLAGS and DT_FLAGS_1. 1357 uint32_t dtFlags = 0; 1358 uint32_t dtFlags1 = 0; 1359 if (config->bsymbolic == BsymbolicKind::All) 1360 dtFlags |= DF_SYMBOLIC; 1361 if (config->zGlobal) 1362 dtFlags1 |= DF_1_GLOBAL; 1363 if (config->zInitfirst) 1364 dtFlags1 |= DF_1_INITFIRST; 1365 if (config->zInterpose) 1366 dtFlags1 |= DF_1_INTERPOSE; 1367 if (config->zNodefaultlib) 1368 dtFlags1 |= DF_1_NODEFLIB; 1369 if (config->zNodelete) 1370 dtFlags1 |= DF_1_NODELETE; 1371 if (config->zNodlopen) 1372 dtFlags1 |= DF_1_NOOPEN; 1373 if (config->pie) 1374 dtFlags1 |= DF_1_PIE; 1375 if (config->zNow) { 1376 dtFlags |= DF_BIND_NOW; 1377 dtFlags1 |= DF_1_NOW; 1378 } 1379 if (config->zOrigin) { 1380 dtFlags |= DF_ORIGIN; 1381 dtFlags1 |= DF_1_ORIGIN; 1382 } 1383 if (!config->zText) 1384 dtFlags |= DF_TEXTREL; 1385 if (config->hasStaticTlsModel) 1386 dtFlags |= DF_STATIC_TLS; 1387 1388 if (dtFlags) 1389 addInt(DT_FLAGS, dtFlags); 1390 if (dtFlags1) 1391 addInt(DT_FLAGS_1, dtFlags1); 1392 1393 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1394 // need it for each process, so we don't write it for DSOs. The loader writes 1395 // the pointer into this entry. 1396 // 1397 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1398 // systems (currently only Fuchsia OS) provide other means to give the 1399 // debugger this information. Such systems may choose make .dynamic read-only. 1400 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1401 if (!config->shared && !config->relocatable && !config->zRodynamic) 1402 addInt(DT_DEBUG, 0); 1403 1404 if (OutputSection *sec = part.dynStrTab->getParent()) 1405 this->link = sec->sectionIndex; 1406 1407 if (part.relaDyn->isNeeded() || 1408 (in.relaIplt->isNeeded() && 1409 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1410 addInSec(part.relaDyn->dynamicTag, part.relaDyn); 1411 entries.push_back({part.relaDyn->sizeDynamicTag, addRelaSz(part.relaDyn)}); 1412 1413 bool isRela = config->isRela; 1414 addInt(isRela ? DT_RELAENT : DT_RELENT, 1415 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1416 1417 // MIPS dynamic loader does not support RELCOUNT tag. 1418 // The problem is in the tight relation between dynamic 1419 // relocations and GOT. So do not emit this tag on MIPS. 1420 if (config->emachine != EM_MIPS) { 1421 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1422 if (config->zCombreloc && numRelativeRels) 1423 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1424 } 1425 } 1426 if (part.relrDyn && !part.relrDyn->relocs.empty()) { 1427 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1428 part.relrDyn); 1429 addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1430 part.relrDyn->getParent()); 1431 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1432 sizeof(Elf_Relr)); 1433 } 1434 // .rel[a].plt section usually consists of two parts, containing plt and 1435 // iplt relocations. It is possible to have only iplt relocations in the 1436 // output. In that case relaPlt is empty and have zero offset, the same offset 1437 // as relaIplt has. And we still want to emit proper dynamic tags for that 1438 // case, so here we always use relaPlt as marker for the beginning of 1439 // .rel[a].plt section. 1440 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1441 addInSec(DT_JMPREL, in.relaPlt); 1442 entries.push_back({DT_PLTRELSZ, addPltRelSz}); 1443 switch (config->emachine) { 1444 case EM_MIPS: 1445 addInSec(DT_MIPS_PLTGOT, in.gotPlt); 1446 break; 1447 case EM_SPARCV9: 1448 addInSec(DT_PLTGOT, in.plt); 1449 break; 1450 case EM_AARCH64: 1451 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1452 return r.type == target->pltRel && 1453 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1454 }) != in.relaPlt->relocs.end()) 1455 addInt(DT_AARCH64_VARIANT_PCS, 0); 1456 LLVM_FALLTHROUGH; 1457 default: 1458 addInSec(DT_PLTGOT, in.gotPlt); 1459 break; 1460 } 1461 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1462 } 1463 1464 if (config->emachine == EM_AARCH64) { 1465 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1466 addInt(DT_AARCH64_BTI_PLT, 0); 1467 if (config->zPacPlt) 1468 addInt(DT_AARCH64_PAC_PLT, 0); 1469 } 1470 1471 addInSec(DT_SYMTAB, part.dynSymTab); 1472 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1473 addInSec(DT_STRTAB, part.dynStrTab); 1474 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1475 if (!config->zText) 1476 addInt(DT_TEXTREL, 0); 1477 if (part.gnuHashTab) 1478 addInSec(DT_GNU_HASH, part.gnuHashTab); 1479 if (part.hashTab) 1480 addInSec(DT_HASH, part.hashTab); 1481 1482 if (isMain) { 1483 if (Out::preinitArray) { 1484 addOutSec(DT_PREINIT_ARRAY, Out::preinitArray); 1485 addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray); 1486 } 1487 if (Out::initArray) { 1488 addOutSec(DT_INIT_ARRAY, Out::initArray); 1489 addSize(DT_INIT_ARRAYSZ, Out::initArray); 1490 } 1491 if (Out::finiArray) { 1492 addOutSec(DT_FINI_ARRAY, Out::finiArray); 1493 addSize(DT_FINI_ARRAYSZ, Out::finiArray); 1494 } 1495 1496 if (Symbol *b = symtab->find(config->init)) 1497 if (b->isDefined()) 1498 addSym(DT_INIT, b); 1499 if (Symbol *b = symtab->find(config->fini)) 1500 if (b->isDefined()) 1501 addSym(DT_FINI, b); 1502 } 1503 1504 if (part.verSym && part.verSym->isNeeded()) 1505 addInSec(DT_VERSYM, part.verSym); 1506 if (part.verDef && part.verDef->isLive()) { 1507 addInSec(DT_VERDEF, part.verDef); 1508 addInt(DT_VERDEFNUM, getVerDefNum()); 1509 } 1510 if (part.verNeed && part.verNeed->isNeeded()) { 1511 addInSec(DT_VERNEED, part.verNeed); 1512 unsigned needNum = 0; 1513 for (SharedFile *f : sharedFiles) 1514 if (!f->vernauxs.empty()) 1515 ++needNum; 1516 addInt(DT_VERNEEDNUM, needNum); 1517 } 1518 1519 if (config->emachine == EM_MIPS) { 1520 addInt(DT_MIPS_RLD_VERSION, 1); 1521 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1522 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1523 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1524 1525 add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); }); 1526 1527 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1528 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1529 else 1530 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1531 addInSec(DT_PLTGOT, in.mipsGot); 1532 if (in.mipsRldMap) { 1533 if (!config->pie) 1534 addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap); 1535 // Store the offset to the .rld_map section 1536 // relative to the address of the tag. 1537 addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap); 1538 } 1539 } 1540 1541 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1542 // glibc assumes the old-style BSS PLT layout which we don't support. 1543 if (config->emachine == EM_PPC) 1544 add(DT_PPC_GOT, [] { return in.got->getVA(); }); 1545 1546 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1547 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1548 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1549 // stub, which starts directly after the header. 1550 entries.push_back({DT_PPC64_GLINK, [=] { 1551 unsigned offset = target->pltHeaderSize - 32; 1552 return in.plt->getVA(0) + offset; 1553 }}); 1554 } 1555 1556 addInt(DT_NULL, 0); 1557 1558 getParent()->link = this->link; 1559 this->size = entries.size() * this->entsize; 1560 } 1561 1562 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1563 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1564 1565 for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) { 1566 p->d_tag = kv.first; 1567 p->d_un.d_val = kv.second(); 1568 ++p; 1569 } 1570 } 1571 1572 uint64_t DynamicReloc::getOffset() const { 1573 return inputSec->getVA(offsetInSec); 1574 } 1575 1576 int64_t DynamicReloc::computeAddend() const { 1577 switch (kind) { 1578 case AddendOnly: 1579 assert(sym == nullptr); 1580 return addend; 1581 case AgainstSymbol: 1582 assert(sym != nullptr); 1583 return addend; 1584 case AddendOnlyWithTargetVA: 1585 case AgainstSymbolWithTargetVA: 1586 return InputSection::getRelocTargetVA(inputSec->file, type, addend, 1587 getOffset(), *sym, expr); 1588 case MipsMultiGotPage: 1589 assert(sym == nullptr); 1590 return getMipsPageAddr(outputSec->addr) + addend; 1591 } 1592 llvm_unreachable("Unknown DynamicReloc::Kind enum"); 1593 } 1594 1595 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1596 if (needsDynSymIndex()) 1597 return symTab->getSymbolIndex(sym); 1598 return 0; 1599 } 1600 1601 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1602 int32_t dynamicTag, 1603 int32_t sizeDynamicTag) 1604 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1605 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {} 1606 1607 void RelocationBaseSection::addSymbolReloc(RelType dynType, 1608 InputSectionBase *isec, 1609 uint64_t offsetInSec, Symbol &sym, 1610 int64_t addend, 1611 Optional<RelType> addendRelType) { 1612 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, 1613 R_ADDEND, addendRelType ? *addendRelType : target->noneRel); 1614 } 1615 1616 void RelocationBaseSection::addRelativeReloc( 1617 RelType dynType, InputSectionBase *inputSec, uint64_t offsetInSec, 1618 Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) { 1619 // This function should only be called for non-preemptible symbols or 1620 // RelExpr values that refer to an address inside the output file (e.g. the 1621 // address of the GOT entry for a potentially preemptible symbol). 1622 assert((!sym.isPreemptible || expr == R_GOT) && 1623 "cannot add relative relocation against preemptible symbol"); 1624 assert(expr != R_ADDEND && "expected non-addend relocation expression"); 1625 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec, 1626 sym, addend, expr, addendRelType); 1627 } 1628 1629 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( 1630 RelType dynType, InputSectionBase *isec, uint64_t offsetInSec, Symbol &sym, 1631 RelType addendRelType) { 1632 // No need to write an addend to the section for preemptible symbols. 1633 if (sym.isPreemptible) 1634 addReloc({dynType, isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, 1635 R_ABS}); 1636 else 1637 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, 1638 sym, 0, R_ABS, addendRelType); 1639 } 1640 1641 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType, 1642 InputSectionBase *inputSec, 1643 uint64_t offsetInSec, Symbol &sym, 1644 int64_t addend, RelExpr expr, 1645 RelType addendRelType) { 1646 // Write the addends to the relocated address if required. We skip 1647 // it if the written value would be zero. 1648 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1649 inputSec->relocations.push_back( 1650 {expr, addendRelType, offsetInSec, addend, &sym}); 1651 addReloc({dynType, inputSec, offsetInSec, kind, sym, addend, expr}); 1652 } 1653 1654 void RelocationBaseSection::addReloc(const DynamicReloc &reloc) { 1655 if (reloc.type == target->relativeRel) 1656 ++numRelativeRelocs; 1657 relocs.push_back(reloc); 1658 } 1659 1660 void RelocationBaseSection::finalizeContents() { 1661 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 1662 1663 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1664 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1665 // case. 1666 if (symTab && symTab->getParent()) 1667 getParent()->link = symTab->getParent()->sectionIndex; 1668 else 1669 getParent()->link = 0; 1670 1671 if (in.relaPlt == this && in.gotPlt->getParent()) { 1672 getParent()->flags |= ELF::SHF_INFO_LINK; 1673 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1674 } 1675 if (in.relaIplt == this && in.igotPlt->getParent()) { 1676 getParent()->flags |= ELF::SHF_INFO_LINK; 1677 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1678 } 1679 } 1680 1681 RelrBaseSection::RelrBaseSection() 1682 : SyntheticSection(SHF_ALLOC, 1683 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1684 config->wordsize, ".relr.dyn") {} 1685 1686 template <class ELFT> 1687 static void encodeDynamicReloc(SymbolTableBaseSection *symTab, 1688 typename ELFT::Rela *p, 1689 const DynamicReloc &rel) { 1690 if (config->isRela) 1691 p->r_addend = rel.computeAddend(); 1692 p->r_offset = rel.getOffset(); 1693 p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL); 1694 } 1695 1696 template <class ELFT> 1697 RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort) 1698 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1699 config->isRela ? DT_RELA : DT_REL, 1700 config->isRela ? DT_RELASZ : DT_RELSZ), 1701 sort(sort) { 1702 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1703 } 1704 1705 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1706 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 1707 1708 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1709 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1710 // is to make results easier to read. 1711 if (sort) 1712 llvm::stable_sort( 1713 relocs, [&](const DynamicReloc &a, const DynamicReloc &b) { 1714 return std::make_tuple(a.type != target->relativeRel, 1715 a.getSymIndex(symTab), a.getOffset()) < 1716 std::make_tuple(b.type != target->relativeRel, 1717 b.getSymIndex(symTab), b.getOffset()); 1718 }); 1719 1720 for (const DynamicReloc &rel : relocs) { 1721 encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel); 1722 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1723 } 1724 } 1725 1726 template <class ELFT> 1727 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1728 StringRef name) 1729 : RelocationBaseSection( 1730 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1731 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1732 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) { 1733 this->entsize = 1; 1734 } 1735 1736 template <class ELFT> 1737 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1738 // This function computes the contents of an Android-format packed relocation 1739 // section. 1740 // 1741 // This format compresses relocations by using relocation groups to factor out 1742 // fields that are common between relocations and storing deltas from previous 1743 // relocations in SLEB128 format (which has a short representation for small 1744 // numbers). A good example of a relocation type with common fields is 1745 // R_*_RELATIVE, which is normally used to represent function pointers in 1746 // vtables. In the REL format, each relative relocation has the same r_info 1747 // field, and is only different from other relative relocations in terms of 1748 // the r_offset field. By sorting relocations by offset, grouping them by 1749 // r_info and representing each relocation with only the delta from the 1750 // previous offset, each 8-byte relocation can be compressed to as little as 1 1751 // byte (or less with run-length encoding). This relocation packer was able to 1752 // reduce the size of the relocation section in an Android Chromium DSO from 1753 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1754 // 1755 // A relocation section consists of a header containing the literal bytes 1756 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1757 // elements are the total number of relocations in the section and an initial 1758 // r_offset value. The remaining elements define a sequence of relocation 1759 // groups. Each relocation group starts with a header consisting of the 1760 // following elements: 1761 // 1762 // - the number of relocations in the relocation group 1763 // - flags for the relocation group 1764 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1765 // for each relocation in the group. 1766 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1767 // field for each relocation in the group. 1768 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1769 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1770 // each relocation in the group. 1771 // 1772 // Following the relocation group header are descriptions of each of the 1773 // relocations in the group. They consist of the following elements: 1774 // 1775 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1776 // delta for this relocation. 1777 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1778 // field for this relocation. 1779 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1780 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1781 // this relocation. 1782 1783 size_t oldSize = relocData.size(); 1784 1785 relocData = {'A', 'P', 'S', '2'}; 1786 raw_svector_ostream os(relocData); 1787 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1788 1789 // The format header includes the number of relocations and the initial 1790 // offset (we set this to zero because the first relocation group will 1791 // perform the initial adjustment). 1792 add(relocs.size()); 1793 add(0); 1794 1795 std::vector<Elf_Rela> relatives, nonRelatives; 1796 1797 for (const DynamicReloc &rel : relocs) { 1798 Elf_Rela r; 1799 encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel); 1800 1801 if (r.getType(config->isMips64EL) == target->relativeRel) 1802 relatives.push_back(r); 1803 else 1804 nonRelatives.push_back(r); 1805 } 1806 1807 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1808 return a.r_offset < b.r_offset; 1809 }); 1810 1811 // Try to find groups of relative relocations which are spaced one word 1812 // apart from one another. These generally correspond to vtable entries. The 1813 // format allows these groups to be encoded using a sort of run-length 1814 // encoding, but each group will cost 7 bytes in addition to the offset from 1815 // the previous group, so it is only profitable to do this for groups of 1816 // size 8 or larger. 1817 std::vector<Elf_Rela> ungroupedRelatives; 1818 std::vector<std::vector<Elf_Rela>> relativeGroups; 1819 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1820 std::vector<Elf_Rela> group; 1821 do { 1822 group.push_back(*i++); 1823 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1824 1825 if (group.size() < 8) 1826 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1827 group.end()); 1828 else 1829 relativeGroups.emplace_back(std::move(group)); 1830 } 1831 1832 // For non-relative relocations, we would like to: 1833 // 1. Have relocations with the same symbol offset to be consecutive, so 1834 // that the runtime linker can speed-up symbol lookup by implementing an 1835 // 1-entry cache. 1836 // 2. Group relocations by r_info to reduce the size of the relocation 1837 // section. 1838 // Since the symbol offset is the high bits in r_info, sorting by r_info 1839 // allows us to do both. 1840 // 1841 // For Rela, we also want to sort by r_addend when r_info is the same. This 1842 // enables us to group by r_addend as well. 1843 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1844 if (a.r_info != b.r_info) 1845 return a.r_info < b.r_info; 1846 if (config->isRela) 1847 return a.r_addend < b.r_addend; 1848 return false; 1849 }); 1850 1851 // Group relocations with the same r_info. Note that each group emits a group 1852 // header and that may make the relocation section larger. It is hard to 1853 // estimate the size of a group header as the encoded size of that varies 1854 // based on r_info. However, we can approximate this trade-off by the number 1855 // of values encoded. Each group header contains 3 values, and each relocation 1856 // in a group encodes one less value, as compared to when it is not grouped. 1857 // Therefore, we only group relocations if there are 3 or more of them with 1858 // the same r_info. 1859 // 1860 // For Rela, the addend for most non-relative relocations is zero, and thus we 1861 // can usually get a smaller relocation section if we group relocations with 0 1862 // addend as well. 1863 std::vector<Elf_Rela> ungroupedNonRelatives; 1864 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1865 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1866 auto j = i + 1; 1867 while (j != e && i->r_info == j->r_info && 1868 (!config->isRela || i->r_addend == j->r_addend)) 1869 ++j; 1870 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1871 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1872 else 1873 nonRelativeGroups.emplace_back(i, j); 1874 i = j; 1875 } 1876 1877 // Sort ungrouped relocations by offset to minimize the encoded length. 1878 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1879 return a.r_offset < b.r_offset; 1880 }); 1881 1882 unsigned hasAddendIfRela = 1883 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1884 1885 uint64_t offset = 0; 1886 uint64_t addend = 0; 1887 1888 // Emit the run-length encoding for the groups of adjacent relative 1889 // relocations. Each group is represented using two groups in the packed 1890 // format. The first is used to set the current offset to the start of the 1891 // group (and also encodes the first relocation), and the second encodes the 1892 // remaining relocations. 1893 for (std::vector<Elf_Rela> &g : relativeGroups) { 1894 // The first relocation in the group. 1895 add(1); 1896 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1897 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1898 add(g[0].r_offset - offset); 1899 add(target->relativeRel); 1900 if (config->isRela) { 1901 add(g[0].r_addend - addend); 1902 addend = g[0].r_addend; 1903 } 1904 1905 // The remaining relocations. 1906 add(g.size() - 1); 1907 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1908 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1909 add(config->wordsize); 1910 add(target->relativeRel); 1911 if (config->isRela) { 1912 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1913 add(i->r_addend - addend); 1914 addend = i->r_addend; 1915 } 1916 } 1917 1918 offset = g.back().r_offset; 1919 } 1920 1921 // Now the ungrouped relatives. 1922 if (!ungroupedRelatives.empty()) { 1923 add(ungroupedRelatives.size()); 1924 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1925 add(target->relativeRel); 1926 for (Elf_Rela &r : ungroupedRelatives) { 1927 add(r.r_offset - offset); 1928 offset = r.r_offset; 1929 if (config->isRela) { 1930 add(r.r_addend - addend); 1931 addend = r.r_addend; 1932 } 1933 } 1934 } 1935 1936 // Grouped non-relatives. 1937 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1938 add(g.size()); 1939 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1940 add(g[0].r_info); 1941 for (const Elf_Rela &r : g) { 1942 add(r.r_offset - offset); 1943 offset = r.r_offset; 1944 } 1945 addend = 0; 1946 } 1947 1948 // Finally the ungrouped non-relative relocations. 1949 if (!ungroupedNonRelatives.empty()) { 1950 add(ungroupedNonRelatives.size()); 1951 add(hasAddendIfRela); 1952 for (Elf_Rela &r : ungroupedNonRelatives) { 1953 add(r.r_offset - offset); 1954 offset = r.r_offset; 1955 add(r.r_info); 1956 if (config->isRela) { 1957 add(r.r_addend - addend); 1958 addend = r.r_addend; 1959 } 1960 } 1961 } 1962 1963 // Don't allow the section to shrink; otherwise the size of the section can 1964 // oscillate infinitely. 1965 if (relocData.size() < oldSize) 1966 relocData.append(oldSize - relocData.size(), 0); 1967 1968 // Returns whether the section size changed. We need to keep recomputing both 1969 // section layout and the contents of this section until the size converges 1970 // because changing this section's size can affect section layout, which in 1971 // turn can affect the sizes of the LEB-encoded integers stored in this 1972 // section. 1973 return relocData.size() != oldSize; 1974 } 1975 1976 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1977 this->entsize = config->wordsize; 1978 } 1979 1980 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1981 // This function computes the contents of an SHT_RELR packed relocation 1982 // section. 1983 // 1984 // Proposal for adding SHT_RELR sections to generic-abi is here: 1985 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1986 // 1987 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 1988 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 1989 // 1990 // i.e. start with an address, followed by any number of bitmaps. The address 1991 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 1992 // relocations each, at subsequent offsets following the last address entry. 1993 // 1994 // The bitmap entries must have 1 in the least significant bit. The assumption 1995 // here is that an address cannot have 1 in lsb. Odd addresses are not 1996 // supported. 1997 // 1998 // Excluding the least significant bit in the bitmap, each non-zero bit in 1999 // the bitmap represents a relocation to be applied to a corresponding machine 2000 // word that follows the base address word. The second least significant bit 2001 // represents the machine word immediately following the initial address, and 2002 // each bit that follows represents the next word, in linear order. As such, 2003 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 2004 // 63 relocations in a 64-bit object. 2005 // 2006 // This encoding has a couple of interesting properties: 2007 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 2008 // even means address, odd means bitmap. 2009 // 2. Just a simple list of addresses is a valid encoding. 2010 2011 size_t oldSize = relrRelocs.size(); 2012 relrRelocs.clear(); 2013 2014 // Same as Config->Wordsize but faster because this is a compile-time 2015 // constant. 2016 const size_t wordsize = sizeof(typename ELFT::uint); 2017 2018 // Number of bits to use for the relocation offsets bitmap. 2019 // Must be either 63 or 31. 2020 const size_t nBits = wordsize * 8 - 1; 2021 2022 // Get offsets for all relative relocations and sort them. 2023 std::vector<uint64_t> offsets; 2024 for (const RelativeReloc &rel : relocs) 2025 offsets.push_back(rel.getOffset()); 2026 llvm::sort(offsets); 2027 2028 // For each leading relocation, find following ones that can be folded 2029 // as a bitmap and fold them. 2030 for (size_t i = 0, e = offsets.size(); i < e;) { 2031 // Add a leading relocation. 2032 relrRelocs.push_back(Elf_Relr(offsets[i])); 2033 uint64_t base = offsets[i] + wordsize; 2034 ++i; 2035 2036 // Find foldable relocations to construct bitmaps. 2037 while (i < e) { 2038 uint64_t bitmap = 0; 2039 2040 while (i < e) { 2041 uint64_t delta = offsets[i] - base; 2042 2043 // If it is too far, it cannot be folded. 2044 if (delta >= nBits * wordsize) 2045 break; 2046 2047 // If it is not a multiple of wordsize away, it cannot be folded. 2048 if (delta % wordsize) 2049 break; 2050 2051 // Fold it. 2052 bitmap |= 1ULL << (delta / wordsize); 2053 ++i; 2054 } 2055 2056 if (!bitmap) 2057 break; 2058 2059 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2060 base += nBits * wordsize; 2061 } 2062 } 2063 2064 // Don't allow the section to shrink; otherwise the size of the section can 2065 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2066 if (relrRelocs.size() < oldSize) { 2067 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2068 " padding word(s)"); 2069 relrRelocs.resize(oldSize, Elf_Relr(1)); 2070 } 2071 2072 return relrRelocs.size() != oldSize; 2073 } 2074 2075 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2076 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2077 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2078 config->wordsize, 2079 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2080 strTabSec(strTabSec) {} 2081 2082 // Orders symbols according to their positions in the GOT, 2083 // in compliance with MIPS ABI rules. 2084 // See "Global Offset Table" in Chapter 5 in the following document 2085 // for detailed description: 2086 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2087 static bool sortMipsSymbols(const SymbolTableEntry &l, 2088 const SymbolTableEntry &r) { 2089 // Sort entries related to non-local preemptible symbols by GOT indexes. 2090 // All other entries go to the beginning of a dynsym in arbitrary order. 2091 if (l.sym->isInGot() && r.sym->isInGot()) 2092 return l.sym->gotIndex < r.sym->gotIndex; 2093 if (!l.sym->isInGot() && !r.sym->isInGot()) 2094 return false; 2095 return !l.sym->isInGot(); 2096 } 2097 2098 void SymbolTableBaseSection::finalizeContents() { 2099 if (OutputSection *sec = strTabSec.getParent()) 2100 getParent()->link = sec->sectionIndex; 2101 2102 if (this->type != SHT_DYNSYM) { 2103 sortSymTabSymbols(); 2104 return; 2105 } 2106 2107 // If it is a .dynsym, there should be no local symbols, but we need 2108 // to do a few things for the dynamic linker. 2109 2110 // Section's Info field has the index of the first non-local symbol. 2111 // Because the first symbol entry is a null entry, 1 is the first. 2112 getParent()->info = 1; 2113 2114 if (getPartition().gnuHashTab) { 2115 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2116 getPartition().gnuHashTab->addSymbols(symbols); 2117 } else if (config->emachine == EM_MIPS) { 2118 llvm::stable_sort(symbols, sortMipsSymbols); 2119 } 2120 2121 // Only the main partition's dynsym indexes are stored in the symbols 2122 // themselves. All other partitions use a lookup table. 2123 if (this == mainPart->dynSymTab) { 2124 size_t i = 0; 2125 for (const SymbolTableEntry &s : symbols) 2126 s.sym->dynsymIndex = ++i; 2127 } 2128 } 2129 2130 // The ELF spec requires that all local symbols precede global symbols, so we 2131 // sort symbol entries in this function. (For .dynsym, we don't do that because 2132 // symbols for dynamic linking are inherently all globals.) 2133 // 2134 // Aside from above, we put local symbols in groups starting with the STT_FILE 2135 // symbol. That is convenient for purpose of identifying where are local symbols 2136 // coming from. 2137 void SymbolTableBaseSection::sortSymTabSymbols() { 2138 // Move all local symbols before global symbols. 2139 auto e = std::stable_partition( 2140 symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) { 2141 return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL; 2142 }); 2143 size_t numLocals = e - symbols.begin(); 2144 getParent()->info = numLocals + 1; 2145 2146 // We want to group the local symbols by file. For that we rebuild the local 2147 // part of the symbols vector. We do not need to care about the STT_FILE 2148 // symbols, they are already naturally placed first in each group. That 2149 // happens because STT_FILE is always the first symbol in the object and hence 2150 // precede all other local symbols we add for a file. 2151 MapVector<InputFile *, std::vector<SymbolTableEntry>> arr; 2152 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2153 arr[s.sym->file].push_back(s); 2154 2155 auto i = symbols.begin(); 2156 for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr) 2157 for (SymbolTableEntry &entry : p.second) 2158 *i++ = entry; 2159 } 2160 2161 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2162 // Adding a local symbol to a .dynsym is a bug. 2163 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2164 2165 bool hashIt = b->isLocal(); 2166 symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)}); 2167 } 2168 2169 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2170 if (this == mainPart->dynSymTab) 2171 return sym->dynsymIndex; 2172 2173 // Initializes symbol lookup tables lazily. This is used only for -r, 2174 // --emit-relocs and dynsyms in partitions other than the main one. 2175 llvm::call_once(onceFlag, [&] { 2176 symbolIndexMap.reserve(symbols.size()); 2177 size_t i = 0; 2178 for (const SymbolTableEntry &e : symbols) { 2179 if (e.sym->type == STT_SECTION) 2180 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2181 else 2182 symbolIndexMap[e.sym] = ++i; 2183 } 2184 }); 2185 2186 // Section symbols are mapped based on their output sections 2187 // to maintain their semantics. 2188 if (sym->type == STT_SECTION) 2189 return sectionIndexMap.lookup(sym->getOutputSection()); 2190 return symbolIndexMap.lookup(sym); 2191 } 2192 2193 template <class ELFT> 2194 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2195 : SymbolTableBaseSection(strTabSec) { 2196 this->entsize = sizeof(Elf_Sym); 2197 } 2198 2199 static BssSection *getCommonSec(Symbol *sym) { 2200 if (!config->defineCommon) 2201 if (auto *d = dyn_cast<Defined>(sym)) 2202 return dyn_cast_or_null<BssSection>(d->section); 2203 return nullptr; 2204 } 2205 2206 static uint32_t getSymSectionIndex(Symbol *sym) { 2207 if (getCommonSec(sym)) 2208 return SHN_COMMON; 2209 if (!isa<Defined>(sym) || sym->needsPltAddr) 2210 return SHN_UNDEF; 2211 if (const OutputSection *os = sym->getOutputSection()) 2212 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2213 : os->sectionIndex; 2214 return SHN_ABS; 2215 } 2216 2217 // Write the internal symbol table contents to the output symbol table. 2218 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2219 // The first entry is a null entry as per the ELF spec. 2220 memset(buf, 0, sizeof(Elf_Sym)); 2221 buf += sizeof(Elf_Sym); 2222 2223 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2224 2225 for (SymbolTableEntry &ent : symbols) { 2226 Symbol *sym = ent.sym; 2227 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2228 2229 // Set st_info and st_other. 2230 eSym->st_other = 0; 2231 if (sym->isLocal()) { 2232 eSym->setBindingAndType(STB_LOCAL, sym->type); 2233 } else { 2234 eSym->setBindingAndType(sym->computeBinding(), sym->type); 2235 eSym->setVisibility(sym->visibility); 2236 } 2237 2238 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2239 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2240 if (config->emachine == EM_PPC64) 2241 eSym->st_other |= sym->stOther & 0xe0; 2242 // The most significant bit of st_other is used by AArch64 ABI for the 2243 // variant PCS. 2244 else if (config->emachine == EM_AARCH64) 2245 eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS; 2246 2247 eSym->st_name = ent.strTabOffset; 2248 if (isDefinedHere) 2249 eSym->st_shndx = getSymSectionIndex(ent.sym); 2250 else 2251 eSym->st_shndx = 0; 2252 2253 // Copy symbol size if it is a defined symbol. st_size is not significant 2254 // for undefined symbols, so whether copying it or not is up to us if that's 2255 // the case. We'll leave it as zero because by not setting a value, we can 2256 // get the exact same outputs for two sets of input files that differ only 2257 // in undefined symbol size in DSOs. 2258 if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere) 2259 eSym->st_size = 0; 2260 else 2261 eSym->st_size = sym->getSize(); 2262 2263 // st_value is usually an address of a symbol, but that has a special 2264 // meaning for uninstantiated common symbols (--no-define-common). 2265 if (BssSection *commonSec = getCommonSec(ent.sym)) 2266 eSym->st_value = commonSec->alignment; 2267 else if (isDefinedHere) 2268 eSym->st_value = sym->getVA(); 2269 else 2270 eSym->st_value = 0; 2271 2272 ++eSym; 2273 } 2274 2275 // On MIPS we need to mark symbol which has a PLT entry and requires 2276 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2277 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2278 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2279 if (config->emachine == EM_MIPS) { 2280 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2281 2282 for (SymbolTableEntry &ent : symbols) { 2283 Symbol *sym = ent.sym; 2284 if (sym->isInPlt() && sym->needsPltAddr) 2285 eSym->st_other |= STO_MIPS_PLT; 2286 if (isMicroMips()) { 2287 // We already set the less-significant bit for symbols 2288 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2289 // records. That allows us to distinguish such symbols in 2290 // the `MIPS<ELFT>::relocate()` routine. Now we should 2291 // clear that bit for non-dynamic symbol table, so tools 2292 // like `objdump` will be able to deal with a correct 2293 // symbol position. 2294 if (sym->isDefined() && 2295 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) { 2296 if (!strTabSec.isDynamic()) 2297 eSym->st_value &= ~1; 2298 eSym->st_other |= STO_MIPS_MICROMIPS; 2299 } 2300 } 2301 if (config->relocatable) 2302 if (auto *d = dyn_cast<Defined>(sym)) 2303 if (isMipsPIC<ELFT>(d)) 2304 eSym->st_other |= STO_MIPS_PIC; 2305 ++eSym; 2306 } 2307 } 2308 } 2309 2310 SymtabShndxSection::SymtabShndxSection() 2311 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2312 this->entsize = 4; 2313 } 2314 2315 void SymtabShndxSection::writeTo(uint8_t *buf) { 2316 // We write an array of 32 bit values, where each value has 1:1 association 2317 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2318 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2319 buf += 4; // Ignore .symtab[0] entry. 2320 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2321 if (getSymSectionIndex(entry.sym) == SHN_XINDEX) 2322 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2323 buf += 4; 2324 } 2325 } 2326 2327 bool SymtabShndxSection::isNeeded() const { 2328 // SHT_SYMTAB can hold symbols with section indices values up to 2329 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2330 // section. Problem is that we reveal the final section indices a bit too 2331 // late, and we do not know them here. For simplicity, we just always create 2332 // a .symtab_shndx section when the amount of output sections is huge. 2333 size_t size = 0; 2334 for (BaseCommand *base : script->sectionCommands) 2335 if (isa<OutputSection>(base)) 2336 ++size; 2337 return size >= SHN_LORESERVE; 2338 } 2339 2340 void SymtabShndxSection::finalizeContents() { 2341 getParent()->link = in.symTab->getParent()->sectionIndex; 2342 } 2343 2344 size_t SymtabShndxSection::getSize() const { 2345 return in.symTab->getNumSymbols() * 4; 2346 } 2347 2348 // .hash and .gnu.hash sections contain on-disk hash tables that map 2349 // symbol names to their dynamic symbol table indices. Their purpose 2350 // is to help the dynamic linker resolve symbols quickly. If ELF files 2351 // don't have them, the dynamic linker has to do linear search on all 2352 // dynamic symbols, which makes programs slower. Therefore, a .hash 2353 // section is added to a DSO by default. 2354 // 2355 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2356 // Each ELF file has a list of DSOs that the ELF file depends on and a 2357 // list of dynamic symbols that need to be resolved from any of the 2358 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2359 // where m is the number of DSOs and n is the number of dynamic 2360 // symbols. For modern large programs, both m and n are large. So 2361 // making each step faster by using hash tables substantially 2362 // improves time to load programs. 2363 // 2364 // (Note that this is not the only way to design the shared library. 2365 // For instance, the Windows DLL takes a different approach. On 2366 // Windows, each dynamic symbol has a name of DLL from which the symbol 2367 // has to be resolved. That makes the cost of symbol resolution O(n). 2368 // This disables some hacky techniques you can use on Unix such as 2369 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2370 // 2371 // Due to historical reasons, we have two different hash tables, .hash 2372 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2373 // and better version of .hash. .hash is just an on-disk hash table, but 2374 // .gnu.hash has a bloom filter in addition to a hash table to skip 2375 // DSOs very quickly. If you are sure that your dynamic linker knows 2376 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a 2377 // safe bet is to specify --hash-style=both for backward compatibility. 2378 GnuHashTableSection::GnuHashTableSection() 2379 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2380 } 2381 2382 void GnuHashTableSection::finalizeContents() { 2383 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2384 getParent()->link = sec->sectionIndex; 2385 2386 // Computes bloom filter size in word size. We want to allocate 12 2387 // bits for each symbol. It must be a power of two. 2388 if (symbols.empty()) { 2389 maskWords = 1; 2390 } else { 2391 uint64_t numBits = symbols.size() * 12; 2392 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2393 } 2394 2395 size = 16; // Header 2396 size += config->wordsize * maskWords; // Bloom filter 2397 size += nBuckets * 4; // Hash buckets 2398 size += symbols.size() * 4; // Hash values 2399 } 2400 2401 void GnuHashTableSection::writeTo(uint8_t *buf) { 2402 // The output buffer is not guaranteed to be zero-cleared because we pre- 2403 // fill executable sections with trap instructions. This is a precaution 2404 // for that case, which happens only when --no-rosegment is given. 2405 memset(buf, 0, size); 2406 2407 // Write a header. 2408 write32(buf, nBuckets); 2409 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2410 write32(buf + 8, maskWords); 2411 write32(buf + 12, Shift2); 2412 buf += 16; 2413 2414 // Write a bloom filter and a hash table. 2415 writeBloomFilter(buf); 2416 buf += config->wordsize * maskWords; 2417 writeHashTable(buf); 2418 } 2419 2420 // This function writes a 2-bit bloom filter. This bloom filter alone 2421 // usually filters out 80% or more of all symbol lookups [1]. 2422 // The dynamic linker uses the hash table only when a symbol is not 2423 // filtered out by a bloom filter. 2424 // 2425 // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2), 2426 // p.9, https://www.akkadia.org/drepper/dsohowto.pdf 2427 void GnuHashTableSection::writeBloomFilter(uint8_t *buf) { 2428 unsigned c = config->is64 ? 64 : 32; 2429 for (const Entry &sym : symbols) { 2430 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2431 // the word using bits [0:5] and [26:31]. 2432 size_t i = (sym.hash / c) & (maskWords - 1); 2433 uint64_t val = readUint(buf + i * config->wordsize); 2434 val |= uint64_t(1) << (sym.hash % c); 2435 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2436 writeUint(buf + i * config->wordsize, val); 2437 } 2438 } 2439 2440 void GnuHashTableSection::writeHashTable(uint8_t *buf) { 2441 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2442 uint32_t oldBucket = -1; 2443 uint32_t *values = buckets + nBuckets; 2444 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2445 // Write a hash value. It represents a sequence of chains that share the 2446 // same hash modulo value. The last element of each chain is terminated by 2447 // LSB 1. 2448 uint32_t hash = i->hash; 2449 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2450 hash = isLastInChain ? hash | 1 : hash & ~1; 2451 write32(values++, hash); 2452 2453 if (i->bucketIdx == oldBucket) 2454 continue; 2455 // Write a hash bucket. Hash buckets contain indices in the following hash 2456 // value table. 2457 write32(buckets + i->bucketIdx, 2458 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2459 oldBucket = i->bucketIdx; 2460 } 2461 } 2462 2463 static uint32_t hashGnu(StringRef name) { 2464 uint32_t h = 5381; 2465 for (uint8_t c : name) 2466 h = (h << 5) + h + c; 2467 return h; 2468 } 2469 2470 // Add symbols to this symbol hash table. Note that this function 2471 // destructively sort a given vector -- which is needed because 2472 // GNU-style hash table places some sorting requirements. 2473 void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) { 2474 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2475 // its type correctly. 2476 std::vector<SymbolTableEntry>::iterator mid = 2477 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2478 return !s.sym->isDefined() || s.sym->partition != partition; 2479 }); 2480 2481 // We chose load factor 4 for the on-disk hash table. For each hash 2482 // collision, the dynamic linker will compare a uint32_t hash value. 2483 // Since the integer comparison is quite fast, we believe we can 2484 // make the load factor even larger. 4 is just a conservative choice. 2485 // 2486 // Note that we don't want to create a zero-sized hash table because 2487 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2488 // table. If that's the case, we create a hash table with one unused 2489 // dummy slot. 2490 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2491 2492 if (mid == v.end()) 2493 return; 2494 2495 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2496 Symbol *b = ent.sym; 2497 uint32_t hash = hashGnu(b->getName()); 2498 uint32_t bucketIdx = hash % nBuckets; 2499 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2500 } 2501 2502 llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) { 2503 return l.bucketIdx < r.bucketIdx; 2504 }); 2505 2506 v.erase(mid, v.end()); 2507 for (const Entry &ent : symbols) 2508 v.push_back({ent.sym, ent.strTabOffset}); 2509 } 2510 2511 HashTableSection::HashTableSection() 2512 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2513 this->entsize = 4; 2514 } 2515 2516 void HashTableSection::finalizeContents() { 2517 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 2518 2519 if (OutputSection *sec = symTab->getParent()) 2520 getParent()->link = sec->sectionIndex; 2521 2522 unsigned numEntries = 2; // nbucket and nchain. 2523 numEntries += symTab->getNumSymbols(); // The chain entries. 2524 2525 // Create as many buckets as there are symbols. 2526 numEntries += symTab->getNumSymbols(); 2527 this->size = numEntries * 4; 2528 } 2529 2530 void HashTableSection::writeTo(uint8_t *buf) { 2531 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 2532 2533 // See comment in GnuHashTableSection::writeTo. 2534 memset(buf, 0, size); 2535 2536 unsigned numSymbols = symTab->getNumSymbols(); 2537 2538 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2539 write32(p++, numSymbols); // nbucket 2540 write32(p++, numSymbols); // nchain 2541 2542 uint32_t *buckets = p; 2543 uint32_t *chains = p + numSymbols; 2544 2545 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2546 Symbol *sym = s.sym; 2547 StringRef name = sym->getName(); 2548 unsigned i = sym->dynsymIndex; 2549 uint32_t hash = hashSysV(name) % numSymbols; 2550 chains[i] = buckets[hash]; 2551 write32(buckets + hash, i); 2552 } 2553 } 2554 2555 PltSection::PltSection() 2556 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2557 headerSize(target->pltHeaderSize) { 2558 // On PowerPC, this section contains lazy symbol resolvers. 2559 if (config->emachine == EM_PPC64) { 2560 name = ".glink"; 2561 alignment = 4; 2562 } 2563 2564 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2565 // symbol resolvers). 2566 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2567 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2568 name = ".plt.sec"; 2569 2570 // The PLT needs to be writable on SPARC as the dynamic linker will 2571 // modify the instructions in the PLT entries. 2572 if (config->emachine == EM_SPARCV9) 2573 this->flags |= SHF_WRITE; 2574 } 2575 2576 void PltSection::writeTo(uint8_t *buf) { 2577 // At beginning of PLT, we have code to call the dynamic 2578 // linker to resolve dynsyms at runtime. Write such code. 2579 target->writePltHeader(buf); 2580 size_t off = headerSize; 2581 2582 for (const Symbol *sym : entries) { 2583 target->writePlt(buf + off, *sym, getVA() + off); 2584 off += target->pltEntrySize; 2585 } 2586 } 2587 2588 void PltSection::addEntry(Symbol &sym) { 2589 sym.pltIndex = entries.size(); 2590 entries.push_back(&sym); 2591 } 2592 2593 size_t PltSection::getSize() const { 2594 return headerSize + entries.size() * target->pltEntrySize; 2595 } 2596 2597 bool PltSection::isNeeded() const { 2598 // For -z retpolineplt, .iplt needs the .plt header. 2599 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2600 } 2601 2602 // Used by ARM to add mapping symbols in the PLT section, which aid 2603 // disassembly. 2604 void PltSection::addSymbols() { 2605 target->addPltHeaderSymbols(*this); 2606 2607 size_t off = headerSize; 2608 for (size_t i = 0; i < entries.size(); ++i) { 2609 target->addPltSymbols(*this, off); 2610 off += target->pltEntrySize; 2611 } 2612 } 2613 2614 IpltSection::IpltSection() 2615 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2616 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2617 name = ".glink"; 2618 alignment = 4; 2619 } 2620 } 2621 2622 void IpltSection::writeTo(uint8_t *buf) { 2623 uint32_t off = 0; 2624 for (const Symbol *sym : entries) { 2625 target->writeIplt(buf + off, *sym, getVA() + off); 2626 off += target->ipltEntrySize; 2627 } 2628 } 2629 2630 size_t IpltSection::getSize() const { 2631 return entries.size() * target->ipltEntrySize; 2632 } 2633 2634 void IpltSection::addEntry(Symbol &sym) { 2635 sym.pltIndex = entries.size(); 2636 entries.push_back(&sym); 2637 } 2638 2639 // ARM uses mapping symbols to aid disassembly. 2640 void IpltSection::addSymbols() { 2641 size_t off = 0; 2642 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2643 target->addPltSymbols(*this, off); 2644 off += target->pltEntrySize; 2645 } 2646 } 2647 2648 PPC32GlinkSection::PPC32GlinkSection() { 2649 name = ".glink"; 2650 alignment = 4; 2651 } 2652 2653 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2654 writePPC32GlinkSection(buf, entries.size()); 2655 } 2656 2657 size_t PPC32GlinkSection::getSize() const { 2658 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2659 } 2660 2661 // This is an x86-only extra PLT section and used only when a security 2662 // enhancement feature called CET is enabled. In this comment, I'll explain what 2663 // the feature is and why we have two PLT sections if CET is enabled. 2664 // 2665 // So, what does CET do? CET introduces a new restriction to indirect jump 2666 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2667 // execute an indirect jump instruction, the processor verifies that a special 2668 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2669 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2670 // does not start with that instruction, the processor raises an exception 2671 // instead of continuing executing code. 2672 // 2673 // If CET is enabled, the compiler emits endbr to all locations where indirect 2674 // jumps may jump to. 2675 // 2676 // This mechanism makes it extremely hard to transfer the control to a middle of 2677 // a function that is not supporsed to be a indirect jump target, preventing 2678 // certain types of attacks such as ROP or JOP. 2679 // 2680 // Note that the processors in the market as of 2019 don't actually support the 2681 // feature. Only the spec is available at the moment. 2682 // 2683 // Now, I'll explain why we have this extra PLT section for CET. 2684 // 2685 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2686 // start with endbr. The problem is there's no extra space for endbr (which is 4 2687 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2688 // used. 2689 // 2690 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2691 // Remember that each PLT entry contains code to jump to an address read from 2692 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2693 // the former code is written to .plt.sec, and the latter code is written to 2694 // .plt. 2695 // 2696 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2697 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2698 // contain only code for lazy symbol resolution. 2699 // 2700 // In other words, this is how the 2-PLT scheme works. Application code is 2701 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2702 // entry contains code to read an address from a corresponding .got.plt entry 2703 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2704 // when an application calls an external function for the first time, the 2705 // control is transferred to a function that resolves a symbol name from 2706 // external shared object files. That function then rewrites a .got.plt entry 2707 // with a resolved address, so that the subsequent function calls directly jump 2708 // to a desired location from .plt.sec. 2709 // 2710 // There is an open question as to whether the 2-PLT scheme was desirable or 2711 // not. We could have simply extended the PLT entry size to 32-bytes to 2712 // accommodate endbr, and that scheme would have been much simpler than the 2713 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2714 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2715 // that the optimization actually makes a difference. 2716 // 2717 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2718 // depend on it, so we implement the ABI. 2719 IBTPltSection::IBTPltSection() 2720 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2721 2722 void IBTPltSection::writeTo(uint8_t *buf) { 2723 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2724 } 2725 2726 size_t IBTPltSection::getSize() const { 2727 // 16 is the header size of .plt. 2728 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2729 } 2730 2731 // The string hash function for .gdb_index. 2732 static uint32_t computeGdbHash(StringRef s) { 2733 uint32_t h = 0; 2734 for (uint8_t c : s) 2735 h = h * 67 + toLower(c) - 113; 2736 return h; 2737 } 2738 2739 GdbIndexSection::GdbIndexSection() 2740 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2741 2742 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2743 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2744 size_t GdbIndexSection::computeSymtabSize() const { 2745 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2746 } 2747 2748 // Compute the output section size. 2749 void GdbIndexSection::initOutputSize() { 2750 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2751 2752 for (GdbChunk &chunk : chunks) 2753 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2754 2755 // Add the constant pool size if exists. 2756 if (!symbols.empty()) { 2757 GdbSymbol &sym = symbols.back(); 2758 size += sym.nameOff + sym.name.size() + 1; 2759 } 2760 } 2761 2762 static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) { 2763 std::vector<GdbIndexSection::CuEntry> ret; 2764 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2765 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2766 return ret; 2767 } 2768 2769 static std::vector<GdbIndexSection::AddressEntry> 2770 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2771 std::vector<GdbIndexSection::AddressEntry> ret; 2772 2773 uint32_t cuIdx = 0; 2774 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2775 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2776 warn(toString(sec) + ": " + toString(std::move(e))); 2777 return {}; 2778 } 2779 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2780 if (!ranges) { 2781 warn(toString(sec) + ": " + toString(ranges.takeError())); 2782 return {}; 2783 } 2784 2785 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2786 for (DWARFAddressRange &r : *ranges) { 2787 if (r.SectionIndex == -1ULL) 2788 continue; 2789 // Range list with zero size has no effect. 2790 InputSectionBase *s = sections[r.SectionIndex]; 2791 if (s && s != &InputSection::discarded && s->isLive()) 2792 if (r.LowPC != r.HighPC) 2793 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2794 } 2795 ++cuIdx; 2796 } 2797 2798 return ret; 2799 } 2800 2801 template <class ELFT> 2802 static std::vector<GdbIndexSection::NameAttrEntry> 2803 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2804 const std::vector<GdbIndexSection::CuEntry> &cus) { 2805 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2806 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2807 2808 std::vector<GdbIndexSection::NameAttrEntry> ret; 2809 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2810 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2811 DWARFDebugPubTable table; 2812 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2813 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2814 }); 2815 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2816 // The value written into the constant pool is kind << 24 | cuIndex. As we 2817 // don't know how many compilation units precede this object to compute 2818 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2819 // the number of preceding compilation units later. 2820 uint32_t i = llvm::partition_point(cus, 2821 [&](GdbIndexSection::CuEntry cu) { 2822 return cu.cuOffset < set.Offset; 2823 }) - 2824 cus.begin(); 2825 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2826 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2827 (ent.Descriptor.toBits() << 24) | i}); 2828 } 2829 } 2830 return ret; 2831 } 2832 2833 // Create a list of symbols from a given list of symbol names and types 2834 // by uniquifying them by name. 2835 static std::vector<GdbIndexSection::GdbSymbol> 2836 createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs, 2837 const std::vector<GdbIndexSection::GdbChunk> &chunks) { 2838 using GdbSymbol = GdbIndexSection::GdbSymbol; 2839 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2840 2841 // For each chunk, compute the number of compilation units preceding it. 2842 uint32_t cuIdx = 0; 2843 std::vector<uint32_t> cuIdxs(chunks.size()); 2844 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2845 cuIdxs[i] = cuIdx; 2846 cuIdx += chunks[i].compilationUnits.size(); 2847 } 2848 2849 // The number of symbols we will handle in this function is of the order 2850 // of millions for very large executables, so we use multi-threading to 2851 // speed it up. 2852 constexpr size_t numShards = 32; 2853 size_t concurrency = PowerOf2Floor( 2854 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 2855 .compute_thread_count(), 2856 numShards)); 2857 2858 // A sharded map to uniquify symbols by name. 2859 std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards); 2860 size_t shift = 32 - countTrailingZeros(numShards); 2861 2862 // Instantiate GdbSymbols while uniqufying them by name. 2863 std::vector<std::vector<GdbSymbol>> symbols(numShards); 2864 parallelForEachN(0, concurrency, [&](size_t threadId) { 2865 uint32_t i = 0; 2866 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2867 for (const NameAttrEntry &ent : entries) { 2868 size_t shardId = ent.name.hash() >> shift; 2869 if ((shardId & (concurrency - 1)) != threadId) 2870 continue; 2871 2872 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2873 size_t &idx = map[shardId][ent.name]; 2874 if (idx) { 2875 symbols[shardId][idx - 1].cuVector.push_back(v); 2876 continue; 2877 } 2878 2879 idx = symbols[shardId].size() + 1; 2880 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2881 } 2882 ++i; 2883 } 2884 }); 2885 2886 size_t numSymbols = 0; 2887 for (ArrayRef<GdbSymbol> v : symbols) 2888 numSymbols += v.size(); 2889 2890 // The return type is a flattened vector, so we'll copy each vector 2891 // contents to Ret. 2892 std::vector<GdbSymbol> ret; 2893 ret.reserve(numSymbols); 2894 for (std::vector<GdbSymbol> &vec : symbols) 2895 for (GdbSymbol &sym : vec) 2896 ret.push_back(std::move(sym)); 2897 2898 // CU vectors and symbol names are adjacent in the output file. 2899 // We can compute their offsets in the output file now. 2900 size_t off = 0; 2901 for (GdbSymbol &sym : ret) { 2902 sym.cuVectorOff = off; 2903 off += (sym.cuVector.size() + 1) * 4; 2904 } 2905 for (GdbSymbol &sym : ret) { 2906 sym.nameOff = off; 2907 off += sym.name.size() + 1; 2908 } 2909 2910 return ret; 2911 } 2912 2913 // Returns a newly-created .gdb_index section. 2914 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2915 // Collect InputFiles with .debug_info. See the comment in 2916 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2917 // note that isec->data() may uncompress the full content, which should be 2918 // parallelized. 2919 SetVector<InputFile *> files; 2920 for (InputSectionBase *s : inputSections) { 2921 InputSection *isec = dyn_cast<InputSection>(s); 2922 if (!isec) 2923 continue; 2924 // .debug_gnu_pub{names,types} are useless in executables. 2925 // They are present in input object files solely for creating 2926 // a .gdb_index. So we can remove them from the output. 2927 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2928 s->markDead(); 2929 else if (isec->name == ".debug_info") 2930 files.insert(isec->file); 2931 } 2932 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 2933 llvm::erase_if(inputSections, [](InputSectionBase *s) { 2934 if (auto *isec = dyn_cast<InputSection>(s)) 2935 if (InputSectionBase *rel = isec->getRelocatedSection()) 2936 return !rel->isLive(); 2937 return !s->isLive(); 2938 }); 2939 2940 std::vector<GdbChunk> chunks(files.size()); 2941 std::vector<std::vector<NameAttrEntry>> nameAttrs(files.size()); 2942 2943 parallelForEachN(0, files.size(), [&](size_t i) { 2944 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2945 // avoid getDwarf() here. 2946 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2947 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2948 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2949 2950 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2951 // this only picks the last one. Other address ranges are lost. 2952 chunks[i].sec = dobj.getInfoSection(); 2953 chunks[i].compilationUnits = readCuList(dwarf); 2954 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2955 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2956 }); 2957 2958 auto *ret = make<GdbIndexSection>(); 2959 ret->chunks = std::move(chunks); 2960 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2961 ret->initOutputSize(); 2962 return ret; 2963 } 2964 2965 void GdbIndexSection::writeTo(uint8_t *buf) { 2966 // Write the header. 2967 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2968 uint8_t *start = buf; 2969 hdr->version = 7; 2970 buf += sizeof(*hdr); 2971 2972 // Write the CU list. 2973 hdr->cuListOff = buf - start; 2974 for (GdbChunk &chunk : chunks) { 2975 for (CuEntry &cu : chunk.compilationUnits) { 2976 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2977 write64le(buf + 8, cu.cuLength); 2978 buf += 16; 2979 } 2980 } 2981 2982 // Write the address area. 2983 hdr->cuTypesOff = buf - start; 2984 hdr->addressAreaOff = buf - start; 2985 uint32_t cuOff = 0; 2986 for (GdbChunk &chunk : chunks) { 2987 for (AddressEntry &e : chunk.addressAreas) { 2988 // In the case of ICF there may be duplicate address range entries. 2989 const uint64_t baseAddr = e.section->repl->getVA(0); 2990 write64le(buf, baseAddr + e.lowAddress); 2991 write64le(buf + 8, baseAddr + e.highAddress); 2992 write32le(buf + 16, e.cuIndex + cuOff); 2993 buf += 20; 2994 } 2995 cuOff += chunk.compilationUnits.size(); 2996 } 2997 2998 // Write the on-disk open-addressing hash table containing symbols. 2999 hdr->symtabOff = buf - start; 3000 size_t symtabSize = computeSymtabSize(); 3001 uint32_t mask = symtabSize - 1; 3002 3003 for (GdbSymbol &sym : symbols) { 3004 uint32_t h = sym.name.hash(); 3005 uint32_t i = h & mask; 3006 uint32_t step = ((h * 17) & mask) | 1; 3007 3008 while (read32le(buf + i * 8)) 3009 i = (i + step) & mask; 3010 3011 write32le(buf + i * 8, sym.nameOff); 3012 write32le(buf + i * 8 + 4, sym.cuVectorOff); 3013 } 3014 3015 buf += symtabSize * 8; 3016 3017 // Write the string pool. 3018 hdr->constantPoolOff = buf - start; 3019 parallelForEach(symbols, [&](GdbSymbol &sym) { 3020 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 3021 }); 3022 3023 // Write the CU vectors. 3024 for (GdbSymbol &sym : symbols) { 3025 write32le(buf, sym.cuVector.size()); 3026 buf += 4; 3027 for (uint32_t val : sym.cuVector) { 3028 write32le(buf, val); 3029 buf += 4; 3030 } 3031 } 3032 } 3033 3034 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 3035 3036 EhFrameHeader::EhFrameHeader() 3037 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 3038 3039 void EhFrameHeader::writeTo(uint8_t *buf) { 3040 // Unlike most sections, the EhFrameHeader section is written while writing 3041 // another section, namely EhFrameSection, which calls the write() function 3042 // below from its writeTo() function. This is necessary because the contents 3043 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 3044 // don't know which order the sections will be written in. 3045 } 3046 3047 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 3048 // Each entry of the search table consists of two values, 3049 // the starting PC from where FDEs covers, and the FDE's address. 3050 // It is sorted by PC. 3051 void EhFrameHeader::write() { 3052 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3053 using FdeData = EhFrameSection::FdeData; 3054 3055 std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData(); 3056 3057 buf[0] = 1; 3058 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3059 buf[2] = DW_EH_PE_udata4; 3060 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3061 write32(buf + 4, 3062 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3063 write32(buf + 8, fdes.size()); 3064 buf += 12; 3065 3066 for (FdeData &fde : fdes) { 3067 write32(buf, fde.pcRel); 3068 write32(buf + 4, fde.fdeVARel); 3069 buf += 8; 3070 } 3071 } 3072 3073 size_t EhFrameHeader::getSize() const { 3074 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3075 return 12 + getPartition().ehFrame->numFdes * 8; 3076 } 3077 3078 bool EhFrameHeader::isNeeded() const { 3079 return isLive() && getPartition().ehFrame->isNeeded(); 3080 } 3081 3082 VersionDefinitionSection::VersionDefinitionSection() 3083 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3084 ".gnu.version_d") {} 3085 3086 StringRef VersionDefinitionSection::getFileDefName() { 3087 if (!getPartition().name.empty()) 3088 return getPartition().name; 3089 if (!config->soName.empty()) 3090 return config->soName; 3091 return config->outputFile; 3092 } 3093 3094 void VersionDefinitionSection::finalizeContents() { 3095 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3096 for (const VersionDefinition &v : namedVersionDefs()) 3097 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3098 3099 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3100 getParent()->link = sec->sectionIndex; 3101 3102 // sh_info should be set to the number of definitions. This fact is missed in 3103 // documentation, but confirmed by binutils community: 3104 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3105 getParent()->info = getVerDefNum(); 3106 } 3107 3108 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3109 StringRef name, size_t nameOff) { 3110 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3111 3112 // Write a verdef. 3113 write16(buf, 1); // vd_version 3114 write16(buf + 2, flags); // vd_flags 3115 write16(buf + 4, index); // vd_ndx 3116 write16(buf + 6, 1); // vd_cnt 3117 write32(buf + 8, hashSysV(name)); // vd_hash 3118 write32(buf + 12, 20); // vd_aux 3119 write32(buf + 16, 28); // vd_next 3120 3121 // Write a veraux. 3122 write32(buf + 20, nameOff); // vda_name 3123 write32(buf + 24, 0); // vda_next 3124 } 3125 3126 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3127 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3128 3129 auto nameOffIt = verDefNameOffs.begin(); 3130 for (const VersionDefinition &v : namedVersionDefs()) { 3131 buf += EntrySize; 3132 writeOne(buf, v.id, v.name, *nameOffIt++); 3133 } 3134 3135 // Need to terminate the last version definition. 3136 write32(buf + 16, 0); // vd_next 3137 } 3138 3139 size_t VersionDefinitionSection::getSize() const { 3140 return EntrySize * getVerDefNum(); 3141 } 3142 3143 // .gnu.version is a table where each entry is 2 byte long. 3144 VersionTableSection::VersionTableSection() 3145 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3146 ".gnu.version") { 3147 this->entsize = 2; 3148 } 3149 3150 void VersionTableSection::finalizeContents() { 3151 // At the moment of june 2016 GNU docs does not mention that sh_link field 3152 // should be set, but Sun docs do. Also readelf relies on this field. 3153 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3154 } 3155 3156 size_t VersionTableSection::getSize() const { 3157 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3158 } 3159 3160 void VersionTableSection::writeTo(uint8_t *buf) { 3161 buf += 2; 3162 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3163 // For an unfetched lazy symbol (undefined weak), it must have been 3164 // converted to Undefined and have VER_NDX_GLOBAL version here. 3165 assert(!s.sym->isLazy()); 3166 write16(buf, s.sym->versionId); 3167 buf += 2; 3168 } 3169 } 3170 3171 bool VersionTableSection::isNeeded() const { 3172 return isLive() && 3173 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3174 } 3175 3176 void elf::addVerneed(Symbol *ss) { 3177 auto &file = cast<SharedFile>(*ss->file); 3178 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3179 ss->versionId = VER_NDX_GLOBAL; 3180 return; 3181 } 3182 3183 if (file.vernauxs.empty()) 3184 file.vernauxs.resize(file.verdefs.size()); 3185 3186 // Select a version identifier for the vernaux data structure, if we haven't 3187 // already allocated one. The verdef identifiers cover the range 3188 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3189 // getVerDefNum()+1. 3190 if (file.vernauxs[ss->verdefIndex] == 0) 3191 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3192 3193 ss->versionId = file.vernauxs[ss->verdefIndex]; 3194 } 3195 3196 template <class ELFT> 3197 VersionNeedSection<ELFT>::VersionNeedSection() 3198 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3199 ".gnu.version_r") {} 3200 3201 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3202 for (SharedFile *f : sharedFiles) { 3203 if (f->vernauxs.empty()) 3204 continue; 3205 verneeds.emplace_back(); 3206 Verneed &vn = verneeds.back(); 3207 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3208 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3209 if (f->vernauxs[i] == 0) 3210 continue; 3211 auto *verdef = 3212 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3213 vn.vernauxs.push_back( 3214 {verdef->vd_hash, f->vernauxs[i], 3215 getPartition().dynStrTab->addString(f->getStringTable().data() + 3216 verdef->getAux()->vda_name)}); 3217 } 3218 } 3219 3220 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3221 getParent()->link = sec->sectionIndex; 3222 getParent()->info = verneeds.size(); 3223 } 3224 3225 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3226 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3227 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3228 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3229 3230 for (auto &vn : verneeds) { 3231 // Create an Elf_Verneed for this DSO. 3232 verneed->vn_version = 1; 3233 verneed->vn_cnt = vn.vernauxs.size(); 3234 verneed->vn_file = vn.nameStrTab; 3235 verneed->vn_aux = 3236 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3237 verneed->vn_next = sizeof(Elf_Verneed); 3238 ++verneed; 3239 3240 // Create the Elf_Vernauxs for this Elf_Verneed. 3241 for (auto &vna : vn.vernauxs) { 3242 vernaux->vna_hash = vna.hash; 3243 vernaux->vna_flags = 0; 3244 vernaux->vna_other = vna.verneedIndex; 3245 vernaux->vna_name = vna.nameStrTab; 3246 vernaux->vna_next = sizeof(Elf_Vernaux); 3247 ++vernaux; 3248 } 3249 3250 vernaux[-1].vna_next = 0; 3251 } 3252 verneed[-1].vn_next = 0; 3253 } 3254 3255 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3256 return verneeds.size() * sizeof(Elf_Verneed) + 3257 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3258 } 3259 3260 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3261 return isLive() && SharedFile::vernauxNum != 0; 3262 } 3263 3264 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3265 ms->parent = this; 3266 sections.push_back(ms); 3267 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3268 alignment = std::max(alignment, ms->alignment); 3269 } 3270 3271 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3272 uint64_t flags, uint32_t alignment) 3273 : MergeSyntheticSection(name, type, flags, alignment), 3274 builder(StringTableBuilder::RAW, alignment) {} 3275 3276 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3277 3278 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3279 3280 void MergeTailSection::finalizeContents() { 3281 // Add all string pieces to the string table builder to create section 3282 // contents. 3283 for (MergeInputSection *sec : sections) 3284 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3285 if (sec->pieces[i].live) 3286 builder.add(sec->getData(i)); 3287 3288 // Fix the string table content. After this, the contents will never change. 3289 builder.finalize(); 3290 3291 // finalize() fixed tail-optimized strings, so we can now get 3292 // offsets of strings. Get an offset for each string and save it 3293 // to a corresponding SectionPiece for easy access. 3294 for (MergeInputSection *sec : sections) 3295 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3296 if (sec->pieces[i].live) 3297 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3298 } 3299 3300 void MergeNoTailSection::writeTo(uint8_t *buf) { 3301 for (size_t i = 0; i < numShards; ++i) 3302 shards[i].write(buf + shardOffsets[i]); 3303 } 3304 3305 // This function is very hot (i.e. it can take several seconds to finish) 3306 // because sometimes the number of inputs is in an order of magnitude of 3307 // millions. So, we use multi-threading. 3308 // 3309 // For any strings S and T, we know S is not mergeable with T if S's hash 3310 // value is different from T's. If that's the case, we can safely put S and 3311 // T into different string builders without worrying about merge misses. 3312 // We do it in parallel. 3313 void MergeNoTailSection::finalizeContents() { 3314 // Initializes string table builders. 3315 for (size_t i = 0; i < numShards; ++i) 3316 shards.emplace_back(StringTableBuilder::RAW, alignment); 3317 3318 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3319 // operations in the following tight loop. 3320 size_t concurrency = PowerOf2Floor( 3321 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 3322 .compute_thread_count(), 3323 numShards)); 3324 3325 // Add section pieces to the builders. 3326 parallelForEachN(0, concurrency, [&](size_t threadId) { 3327 for (MergeInputSection *sec : sections) { 3328 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3329 if (!sec->pieces[i].live) 3330 continue; 3331 size_t shardId = getShardId(sec->pieces[i].hash); 3332 if ((shardId & (concurrency - 1)) == threadId) 3333 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3334 } 3335 } 3336 }); 3337 3338 // Compute an in-section offset for each shard. 3339 size_t off = 0; 3340 for (size_t i = 0; i < numShards; ++i) { 3341 shards[i].finalizeInOrder(); 3342 if (shards[i].getSize() > 0) 3343 off = alignTo(off, alignment); 3344 shardOffsets[i] = off; 3345 off += shards[i].getSize(); 3346 } 3347 size = off; 3348 3349 // So far, section pieces have offsets from beginning of shards, but 3350 // we want offsets from beginning of the whole section. Fix them. 3351 parallelForEach(sections, [&](MergeInputSection *sec) { 3352 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3353 if (sec->pieces[i].live) 3354 sec->pieces[i].outputOff += 3355 shardOffsets[getShardId(sec->pieces[i].hash)]; 3356 }); 3357 } 3358 3359 MergeSyntheticSection *elf::createMergeSynthetic(StringRef name, uint32_t type, 3360 uint64_t flags, 3361 uint32_t alignment) { 3362 bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2; 3363 if (shouldTailMerge) 3364 return make<MergeTailSection>(name, type, flags, alignment); 3365 return make<MergeNoTailSection>(name, type, flags, alignment); 3366 } 3367 3368 template <class ELFT> void elf::splitSections() { 3369 llvm::TimeTraceScope timeScope("Split sections"); 3370 // splitIntoPieces needs to be called on each MergeInputSection 3371 // before calling finalizeContents(). 3372 parallelForEach(inputSections, [](InputSectionBase *sec) { 3373 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3374 s->splitIntoPieces(); 3375 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3376 eh->split<ELFT>(); 3377 }); 3378 } 3379 3380 MipsRldMapSection::MipsRldMapSection() 3381 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3382 ".rld_map") {} 3383 3384 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3385 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3386 config->wordsize, ".ARM.exidx") {} 3387 3388 static InputSection *findExidxSection(InputSection *isec) { 3389 for (InputSection *d : isec->dependentSections) 3390 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3391 return d; 3392 return nullptr; 3393 } 3394 3395 static bool isValidExidxSectionDep(InputSection *isec) { 3396 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3397 isec->getSize() > 0; 3398 } 3399 3400 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3401 if (isec->type == SHT_ARM_EXIDX) { 3402 if (InputSection *dep = isec->getLinkOrderDep()) 3403 if (isValidExidxSectionDep(dep)) { 3404 exidxSections.push_back(isec); 3405 // Every exidxSection is 8 bytes, we need an estimate of 3406 // size before assignAddresses can be called. Final size 3407 // will only be known after finalize is called. 3408 size += 8; 3409 } 3410 return true; 3411 } 3412 3413 if (isValidExidxSectionDep(isec)) { 3414 executableSections.push_back(isec); 3415 return false; 3416 } 3417 3418 // FIXME: we do not output a relocation section when --emit-relocs is used 3419 // as we do not have relocation sections for linker generated table entries 3420 // and we would have to erase at a late stage relocations from merged entries. 3421 // Given that exception tables are already position independent and a binary 3422 // analyzer could derive the relocations we choose to erase the relocations. 3423 if (config->emitRelocs && isec->type == SHT_REL) 3424 if (InputSectionBase *ex = isec->getRelocatedSection()) 3425 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3426 return true; 3427 3428 return false; 3429 } 3430 3431 // References to .ARM.Extab Sections have bit 31 clear and are not the 3432 // special EXIDX_CANTUNWIND bit-pattern. 3433 static bool isExtabRef(uint32_t unwind) { 3434 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3435 } 3436 3437 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3438 // section Prev, where Cur follows Prev in the table. This can be done if the 3439 // unwinding instructions in Cur are identical to Prev. Linker generated 3440 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3441 // InputSection. 3442 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3443 3444 struct ExidxEntry { 3445 ulittle32_t fn; 3446 ulittle32_t unwind; 3447 }; 3448 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3449 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3450 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3451 if (prev) 3452 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3453 if (isExtabRef(prevEntry.unwind)) 3454 return false; 3455 3456 // We consider the unwind instructions of an .ARM.exidx table entry 3457 // a duplicate if the previous unwind instructions if: 3458 // - Both are the special EXIDX_CANTUNWIND. 3459 // - Both are the same inline unwind instructions. 3460 // We do not attempt to follow and check links into .ARM.extab tables as 3461 // consecutive identical entries are rare and the effort to check that they 3462 // are identical is high. 3463 3464 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3465 if (cur == nullptr) 3466 return prevEntry.unwind == 1; 3467 3468 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3469 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3470 return false; 3471 3472 // All table entries in this .ARM.exidx Section can be merged into the 3473 // previous Section. 3474 return true; 3475 } 3476 3477 // The .ARM.exidx table must be sorted in ascending order of the address of the 3478 // functions the table describes. Optionally duplicate adjacent table entries 3479 // can be removed. At the end of the function the executableSections must be 3480 // sorted in ascending order of address, Sentinel is set to the InputSection 3481 // with the highest address and any InputSections that have mergeable 3482 // .ARM.exidx table entries are removed from it. 3483 void ARMExidxSyntheticSection::finalizeContents() { 3484 // The executableSections and exidxSections that we use to derive the final 3485 // contents of this SyntheticSection are populated before 3486 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3487 // ICF may remove executable InputSections and their dependent .ARM.exidx 3488 // section that we recorded earlier. 3489 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3490 llvm::erase_if(exidxSections, isDiscarded); 3491 // We need to remove discarded InputSections and InputSections without 3492 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3493 // of range. 3494 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3495 if (!isec->isLive()) 3496 return true; 3497 if (findExidxSection(isec)) 3498 return false; 3499 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3500 return off != llvm::SignExtend64(off, 31); 3501 }; 3502 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3503 3504 // Sort the executable sections that may or may not have associated 3505 // .ARM.exidx sections by order of ascending address. This requires the 3506 // relative positions of InputSections and OutputSections to be known. 3507 auto compareByFilePosition = [](const InputSection *a, 3508 const InputSection *b) { 3509 OutputSection *aOut = a->getParent(); 3510 OutputSection *bOut = b->getParent(); 3511 3512 if (aOut != bOut) 3513 return aOut->addr < bOut->addr; 3514 return a->outSecOff < b->outSecOff; 3515 }; 3516 llvm::stable_sort(executableSections, compareByFilePosition); 3517 sentinel = executableSections.back(); 3518 // Optionally merge adjacent duplicate entries. 3519 if (config->mergeArmExidx) { 3520 std::vector<InputSection *> selectedSections; 3521 selectedSections.reserve(executableSections.size()); 3522 selectedSections.push_back(executableSections[0]); 3523 size_t prev = 0; 3524 for (size_t i = 1; i < executableSections.size(); ++i) { 3525 InputSection *ex1 = findExidxSection(executableSections[prev]); 3526 InputSection *ex2 = findExidxSection(executableSections[i]); 3527 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3528 selectedSections.push_back(executableSections[i]); 3529 prev = i; 3530 } 3531 } 3532 executableSections = std::move(selectedSections); 3533 } 3534 3535 size_t offset = 0; 3536 size = 0; 3537 for (InputSection *isec : executableSections) { 3538 if (InputSection *d = findExidxSection(isec)) { 3539 d->outSecOff = offset; 3540 d->parent = getParent(); 3541 offset += d->getSize(); 3542 } else { 3543 offset += 8; 3544 } 3545 } 3546 // Size includes Sentinel. 3547 size = offset + 8; 3548 } 3549 3550 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3551 return executableSections.front(); 3552 } 3553 3554 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3555 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3556 // We write the .ARM.exidx section contents and apply its relocations. 3557 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3558 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3559 // start of the InputSection as the purpose of the linker generated 3560 // section is to terminate the address range of the previous entry. 3561 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3562 // the table to terminate the address range of the final entry. 3563 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3564 3565 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3566 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3567 3568 uint64_t offset = 0; 3569 for (InputSection *isec : executableSections) { 3570 assert(isec->getParent() != nullptr); 3571 if (InputSection *d = findExidxSection(isec)) { 3572 memcpy(buf + offset, d->data().data(), d->data().size()); 3573 d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize()); 3574 offset += d->getSize(); 3575 } else { 3576 // A Linker generated CANTUNWIND section. 3577 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3578 uint64_t s = isec->getVA(); 3579 uint64_t p = getVA() + offset; 3580 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3581 offset += 8; 3582 } 3583 } 3584 // Write Sentinel. 3585 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3586 uint64_t s = sentinel->getVA(sentinel->getSize()); 3587 uint64_t p = getVA() + offset; 3588 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3589 assert(size == offset + 8); 3590 } 3591 3592 bool ARMExidxSyntheticSection::isNeeded() const { 3593 return llvm::any_of(exidxSections, 3594 [](InputSection *isec) { return isec->isLive(); }); 3595 } 3596 3597 bool ARMExidxSyntheticSection::classof(const SectionBase *d) { 3598 return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX; 3599 } 3600 3601 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3602 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 3603 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 3604 this->parent = os; 3605 this->outSecOff = off; 3606 } 3607 3608 size_t ThunkSection::getSize() const { 3609 if (roundUpSizeForErrata) 3610 return alignTo(size, 4096); 3611 return size; 3612 } 3613 3614 void ThunkSection::addThunk(Thunk *t) { 3615 thunks.push_back(t); 3616 t->addSymbols(*this); 3617 } 3618 3619 void ThunkSection::writeTo(uint8_t *buf) { 3620 for (Thunk *t : thunks) 3621 t->writeTo(buf + t->offset); 3622 } 3623 3624 InputSection *ThunkSection::getTargetInputSection() const { 3625 if (thunks.empty()) 3626 return nullptr; 3627 const Thunk *t = thunks.front(); 3628 return t->getTargetInputSection(); 3629 } 3630 3631 bool ThunkSection::assignOffsets() { 3632 uint64_t off = 0; 3633 for (Thunk *t : thunks) { 3634 off = alignTo(off, t->alignment); 3635 t->setOffset(off); 3636 uint32_t size = t->size(); 3637 t->getThunkTargetSym()->size = size; 3638 off += size; 3639 } 3640 bool changed = off != size; 3641 size = off; 3642 return changed; 3643 } 3644 3645 PPC32Got2Section::PPC32Got2Section() 3646 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3647 3648 bool PPC32Got2Section::isNeeded() const { 3649 // See the comment below. This is not needed if there is no other 3650 // InputSection. 3651 for (BaseCommand *base : getParent()->sectionCommands) 3652 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 3653 for (InputSection *isec : isd->sections) 3654 if (isec != this) 3655 return true; 3656 return false; 3657 } 3658 3659 void PPC32Got2Section::finalizeContents() { 3660 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3661 // .got2 . This function computes outSecOff of each .got2 to be used in 3662 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3663 // to collect input sections named ".got2". 3664 uint32_t offset = 0; 3665 for (BaseCommand *base : getParent()->sectionCommands) 3666 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 3667 for (InputSection *isec : isd->sections) { 3668 if (isec == this) 3669 continue; 3670 isec->file->ppc32Got2OutSecOff = offset; 3671 offset += (uint32_t)isec->getSize(); 3672 } 3673 } 3674 } 3675 3676 // If linking position-dependent code then the table will store the addresses 3677 // directly in the binary so the section has type SHT_PROGBITS. If linking 3678 // position-independent code the section has type SHT_NOBITS since it will be 3679 // allocated and filled in by the dynamic linker. 3680 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3681 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3682 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3683 ".branch_lt") {} 3684 3685 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3686 int64_t addend) { 3687 return getVA() + entry_index.find({sym, addend})->second * 8; 3688 } 3689 3690 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3691 int64_t addend) { 3692 auto res = 3693 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3694 if (!res.second) 3695 return None; 3696 entries.emplace_back(sym, addend); 3697 return res.first->second; 3698 } 3699 3700 size_t PPC64LongBranchTargetSection::getSize() const { 3701 return entries.size() * 8; 3702 } 3703 3704 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3705 // If linking non-pic we have the final addresses of the targets and they get 3706 // written to the table directly. For pic the dynamic linker will allocate 3707 // the section and fill it it. 3708 if (config->isPic) 3709 return; 3710 3711 for (auto entry : entries) { 3712 const Symbol *sym = entry.first; 3713 int64_t addend = entry.second; 3714 assert(sym->getVA()); 3715 // Need calls to branch to the local entry-point since a long-branch 3716 // must be a local-call. 3717 write64(buf, sym->getVA(addend) + 3718 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3719 buf += 8; 3720 } 3721 } 3722 3723 bool PPC64LongBranchTargetSection::isNeeded() const { 3724 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3725 // is too early to determine if this section will be empty or not. We need 3726 // Finalized to keep the section alive until after thunk creation. Finalized 3727 // only gets set to true once `finalizeSections()` is called after thunk 3728 // creation. Because of this, if we don't create any long-branch thunks we end 3729 // up with an empty .branch_lt section in the binary. 3730 return !finalized || !entries.empty(); 3731 } 3732 3733 static uint8_t getAbiVersion() { 3734 // MIPS non-PIC executable gets ABI version 1. 3735 if (config->emachine == EM_MIPS) { 3736 if (!config->isPic && !config->relocatable && 3737 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3738 return 1; 3739 return 0; 3740 } 3741 3742 if (config->emachine == EM_AMDGPU) { 3743 uint8_t ver = objectFiles[0]->abiVersion; 3744 for (InputFile *file : makeArrayRef(objectFiles).slice(1)) 3745 if (file->abiVersion != ver) 3746 error("incompatible ABI version: " + toString(file)); 3747 return ver; 3748 } 3749 3750 return 0; 3751 } 3752 3753 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3754 // For executable segments, the trap instructions are written before writing 3755 // the header. Setting Elf header bytes to zero ensures that any unused bytes 3756 // in header are zero-cleared, instead of having trap instructions. 3757 memset(buf, 0, sizeof(typename ELFT::Ehdr)); 3758 memcpy(buf, "\177ELF", 4); 3759 3760 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3761 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3762 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3763 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3764 eHdr->e_ident[EI_OSABI] = config->osabi; 3765 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3766 eHdr->e_machine = config->emachine; 3767 eHdr->e_version = EV_CURRENT; 3768 eHdr->e_flags = config->eflags; 3769 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3770 eHdr->e_phnum = part.phdrs.size(); 3771 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3772 3773 if (!config->relocatable) { 3774 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3775 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3776 } 3777 } 3778 3779 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3780 // Write the program header table. 3781 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3782 for (PhdrEntry *p : part.phdrs) { 3783 hBuf->p_type = p->p_type; 3784 hBuf->p_flags = p->p_flags; 3785 hBuf->p_offset = p->p_offset; 3786 hBuf->p_vaddr = p->p_vaddr; 3787 hBuf->p_paddr = p->p_paddr; 3788 hBuf->p_filesz = p->p_filesz; 3789 hBuf->p_memsz = p->p_memsz; 3790 hBuf->p_align = p->p_align; 3791 ++hBuf; 3792 } 3793 } 3794 3795 template <typename ELFT> 3796 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3797 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3798 3799 template <typename ELFT> 3800 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3801 return sizeof(typename ELFT::Ehdr); 3802 } 3803 3804 template <typename ELFT> 3805 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3806 writeEhdr<ELFT>(buf, getPartition()); 3807 3808 // Loadable partitions are always ET_DYN. 3809 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3810 eHdr->e_type = ET_DYN; 3811 } 3812 3813 template <typename ELFT> 3814 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3815 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3816 3817 template <typename ELFT> 3818 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3819 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3820 } 3821 3822 template <typename ELFT> 3823 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3824 writePhdrs<ELFT>(buf, getPartition()); 3825 } 3826 3827 PartitionIndexSection::PartitionIndexSection() 3828 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3829 3830 size_t PartitionIndexSection::getSize() const { 3831 return 12 * (partitions.size() - 1); 3832 } 3833 3834 void PartitionIndexSection::finalizeContents() { 3835 for (size_t i = 1; i != partitions.size(); ++i) 3836 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3837 } 3838 3839 void PartitionIndexSection::writeTo(uint8_t *buf) { 3840 uint64_t va = getVA(); 3841 for (size_t i = 1; i != partitions.size(); ++i) { 3842 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3843 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3844 3845 SyntheticSection *next = 3846 i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader; 3847 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3848 3849 va += 12; 3850 buf += 12; 3851 } 3852 } 3853 3854 InStruct elf::in; 3855 3856 std::vector<Partition> elf::partitions; 3857 Partition *elf::mainPart; 3858 3859 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3860 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3861 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3862 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3863 3864 template void elf::splitSections<ELF32LE>(); 3865 template void elf::splitSections<ELF32BE>(); 3866 template void elf::splitSections<ELF64LE>(); 3867 template void elf::splitSections<ELF64BE>(); 3868 3869 template class elf::MipsAbiFlagsSection<ELF32LE>; 3870 template class elf::MipsAbiFlagsSection<ELF32BE>; 3871 template class elf::MipsAbiFlagsSection<ELF64LE>; 3872 template class elf::MipsAbiFlagsSection<ELF64BE>; 3873 3874 template class elf::MipsOptionsSection<ELF32LE>; 3875 template class elf::MipsOptionsSection<ELF32BE>; 3876 template class elf::MipsOptionsSection<ELF64LE>; 3877 template class elf::MipsOptionsSection<ELF64BE>; 3878 3879 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 3880 function_ref<void(InputSection &)>); 3881 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 3882 function_ref<void(InputSection &)>); 3883 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 3884 function_ref<void(InputSection &)>); 3885 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 3886 function_ref<void(InputSection &)>); 3887 3888 template class elf::MipsReginfoSection<ELF32LE>; 3889 template class elf::MipsReginfoSection<ELF32BE>; 3890 template class elf::MipsReginfoSection<ELF64LE>; 3891 template class elf::MipsReginfoSection<ELF64BE>; 3892 3893 template class elf::DynamicSection<ELF32LE>; 3894 template class elf::DynamicSection<ELF32BE>; 3895 template class elf::DynamicSection<ELF64LE>; 3896 template class elf::DynamicSection<ELF64BE>; 3897 3898 template class elf::RelocationSection<ELF32LE>; 3899 template class elf::RelocationSection<ELF32BE>; 3900 template class elf::RelocationSection<ELF64LE>; 3901 template class elf::RelocationSection<ELF64BE>; 3902 3903 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3904 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3905 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3906 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3907 3908 template class elf::RelrSection<ELF32LE>; 3909 template class elf::RelrSection<ELF32BE>; 3910 template class elf::RelrSection<ELF64LE>; 3911 template class elf::RelrSection<ELF64BE>; 3912 3913 template class elf::SymbolTableSection<ELF32LE>; 3914 template class elf::SymbolTableSection<ELF32BE>; 3915 template class elf::SymbolTableSection<ELF64LE>; 3916 template class elf::SymbolTableSection<ELF64BE>; 3917 3918 template class elf::VersionNeedSection<ELF32LE>; 3919 template class elf::VersionNeedSection<ELF32BE>; 3920 template class elf::VersionNeedSection<ELF64LE>; 3921 template class elf::VersionNeedSection<ELF64BE>; 3922 3923 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3924 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3925 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3926 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3927 3928 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3929 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3930 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3931 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3932 3933 template class elf::PartitionElfHeaderSection<ELF32LE>; 3934 template class elf::PartitionElfHeaderSection<ELF32BE>; 3935 template class elf::PartitionElfHeaderSection<ELF64LE>; 3936 template class elf::PartitionElfHeaderSection<ELF64BE>; 3937 3938 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3939 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3940 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3941 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3942