1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "DWARF.h" 19 #include "EhFrame.h" 20 #include "InputFiles.h" 21 #include "LinkerScript.h" 22 #include "OutputSections.h" 23 #include "SymbolTable.h" 24 #include "Symbols.h" 25 #include "Target.h" 26 #include "Thunks.h" 27 #include "Writer.h" 28 #include "lld/Common/CommonLinkerContext.h" 29 #include "lld/Common/DWARF.h" 30 #include "lld/Common/Strings.h" 31 #include "lld/Common/Version.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/ADT/Sequence.h" 34 #include "llvm/ADT/SetOperations.h" 35 #include "llvm/ADT/StringExtras.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" 39 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 40 #include "llvm/Support/DJB.h" 41 #include "llvm/Support/Endian.h" 42 #include "llvm/Support/LEB128.h" 43 #include "llvm/Support/Parallel.h" 44 #include "llvm/Support/TimeProfiler.h" 45 #include <cinttypes> 46 #include <cstdlib> 47 48 using namespace llvm; 49 using namespace llvm::dwarf; 50 using namespace llvm::ELF; 51 using namespace llvm::object; 52 using namespace llvm::support; 53 using namespace lld; 54 using namespace lld::elf; 55 56 using llvm::support::endian::read32le; 57 using llvm::support::endian::write32le; 58 using llvm::support::endian::write64le; 59 60 constexpr size_t MergeNoTailSection::numShards; 61 62 static uint64_t readUint(uint8_t *buf) { 63 return config->is64 ? read64(buf) : read32(buf); 64 } 65 66 static void writeUint(uint8_t *buf, uint64_t val) { 67 if (config->is64) 68 write64(buf, val); 69 else 70 write32(buf, val); 71 } 72 73 // Returns an LLD version string. 74 static ArrayRef<uint8_t> getVersion() { 75 // Check LLD_VERSION first for ease of testing. 76 // You can get consistent output by using the environment variable. 77 // This is only for testing. 78 StringRef s = getenv("LLD_VERSION"); 79 if (s.empty()) 80 s = saver().save(Twine("Linker: ") + getLLDVersion()); 81 82 // +1 to include the terminating '\0'. 83 return {(const uint8_t *)s.data(), s.size() + 1}; 84 } 85 86 // Creates a .comment section containing LLD version info. 87 // With this feature, you can identify LLD-generated binaries easily 88 // by "readelf --string-dump .comment <file>". 89 // The returned object is a mergeable string section. 90 MergeInputSection *elf::createCommentSection() { 91 auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 92 getVersion(), ".comment"); 93 sec->splitIntoPieces(); 94 return sec; 95 } 96 97 // .MIPS.abiflags section. 98 template <class ELFT> 99 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 100 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 101 flags(flags) { 102 this->entsize = sizeof(Elf_Mips_ABIFlags); 103 } 104 105 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 106 memcpy(buf, &flags, sizeof(flags)); 107 } 108 109 template <class ELFT> 110 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() { 111 Elf_Mips_ABIFlags flags = {}; 112 bool create = false; 113 114 for (InputSectionBase *sec : ctx.inputSections) { 115 if (sec->type != SHT_MIPS_ABIFLAGS) 116 continue; 117 sec->markDead(); 118 create = true; 119 120 std::string filename = toString(sec->file); 121 const size_t size = sec->content().size(); 122 // Older version of BFD (such as the default FreeBSD linker) concatenate 123 // .MIPS.abiflags instead of merging. To allow for this case (or potential 124 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 125 if (size < sizeof(Elf_Mips_ABIFlags)) { 126 error(filename + ": invalid size of .MIPS.abiflags section: got " + 127 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 128 return nullptr; 129 } 130 auto *s = 131 reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data()); 132 if (s->version != 0) { 133 error(filename + ": unexpected .MIPS.abiflags version " + 134 Twine(s->version)); 135 return nullptr; 136 } 137 138 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 139 // select the highest number of ISA/Rev/Ext. 140 flags.isa_level = std::max(flags.isa_level, s->isa_level); 141 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 142 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 143 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 144 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 145 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 146 flags.ases |= s->ases; 147 flags.flags1 |= s->flags1; 148 flags.flags2 |= s->flags2; 149 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 150 }; 151 152 if (create) 153 return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags); 154 return nullptr; 155 } 156 157 // .MIPS.options section. 158 template <class ELFT> 159 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 160 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 161 reginfo(reginfo) { 162 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 163 } 164 165 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 166 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 167 options->kind = ODK_REGINFO; 168 options->size = getSize(); 169 170 if (!config->relocatable) 171 reginfo.ri_gp_value = in.mipsGot->getGp(); 172 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 173 } 174 175 template <class ELFT> 176 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() { 177 // N64 ABI only. 178 if (!ELFT::Is64Bits) 179 return nullptr; 180 181 SmallVector<InputSectionBase *, 0> sections; 182 for (InputSectionBase *sec : ctx.inputSections) 183 if (sec->type == SHT_MIPS_OPTIONS) 184 sections.push_back(sec); 185 186 if (sections.empty()) 187 return nullptr; 188 189 Elf_Mips_RegInfo reginfo = {}; 190 for (InputSectionBase *sec : sections) { 191 sec->markDead(); 192 193 std::string filename = toString(sec->file); 194 ArrayRef<uint8_t> d = sec->content(); 195 196 while (!d.empty()) { 197 if (d.size() < sizeof(Elf_Mips_Options)) { 198 error(filename + ": invalid size of .MIPS.options section"); 199 break; 200 } 201 202 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 203 if (opt->kind == ODK_REGINFO) { 204 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 205 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 206 break; 207 } 208 209 if (!opt->size) 210 fatal(filename + ": zero option descriptor size"); 211 d = d.slice(opt->size); 212 } 213 }; 214 215 return std::make_unique<MipsOptionsSection<ELFT>>(reginfo); 216 } 217 218 // MIPS .reginfo section. 219 template <class ELFT> 220 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 221 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 222 reginfo(reginfo) { 223 this->entsize = sizeof(Elf_Mips_RegInfo); 224 } 225 226 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 227 if (!config->relocatable) 228 reginfo.ri_gp_value = in.mipsGot->getGp(); 229 memcpy(buf, ®info, sizeof(reginfo)); 230 } 231 232 template <class ELFT> 233 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() { 234 // Section should be alive for O32 and N32 ABIs only. 235 if (ELFT::Is64Bits) 236 return nullptr; 237 238 SmallVector<InputSectionBase *, 0> sections; 239 for (InputSectionBase *sec : ctx.inputSections) 240 if (sec->type == SHT_MIPS_REGINFO) 241 sections.push_back(sec); 242 243 if (sections.empty()) 244 return nullptr; 245 246 Elf_Mips_RegInfo reginfo = {}; 247 for (InputSectionBase *sec : sections) { 248 sec->markDead(); 249 250 if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) { 251 error(toString(sec->file) + ": invalid size of .reginfo section"); 252 return nullptr; 253 } 254 255 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data()); 256 reginfo.ri_gprmask |= r->ri_gprmask; 257 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 258 }; 259 260 return std::make_unique<MipsReginfoSection<ELFT>>(reginfo); 261 } 262 263 InputSection *elf::createInterpSection() { 264 // StringSaver guarantees that the returned string ends with '\0'. 265 StringRef s = saver().save(config->dynamicLinker); 266 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 267 268 return make<InputSection>(ctx.internalFile, SHF_ALLOC, SHT_PROGBITS, 1, 269 contents, ".interp"); 270 } 271 272 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 273 uint64_t size, InputSectionBase §ion) { 274 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type, 275 value, size, §ion); 276 if (in.symTab) 277 in.symTab->addSymbol(s); 278 279 if (config->emachine == EM_ARM && !config->isLE && config->armBe8 && 280 (section.flags & SHF_EXECINSTR)) 281 // Adding Linker generated mapping symbols to the arm specific mapping 282 // symbols list. 283 addArmSyntheticSectionMappingSymbol(s); 284 285 return s; 286 } 287 288 static size_t getHashSize() { 289 switch (config->buildId) { 290 case BuildIdKind::Fast: 291 return 8; 292 case BuildIdKind::Md5: 293 case BuildIdKind::Uuid: 294 return 16; 295 case BuildIdKind::Sha1: 296 return 20; 297 case BuildIdKind::Hexstring: 298 return config->buildIdVector.size(); 299 default: 300 llvm_unreachable("unknown BuildIdKind"); 301 } 302 } 303 304 // This class represents a linker-synthesized .note.gnu.property section. 305 // 306 // In x86 and AArch64, object files may contain feature flags indicating the 307 // features that they have used. The flags are stored in a .note.gnu.property 308 // section. 309 // 310 // lld reads the sections from input files and merges them by computing AND of 311 // the flags. The result is written as a new .note.gnu.property section. 312 // 313 // If the flag is zero (which indicates that the intersection of the feature 314 // sets is empty, or some input files didn't have .note.gnu.property sections), 315 // we don't create this section. 316 GnuPropertySection::GnuPropertySection() 317 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 318 config->wordsize, ".note.gnu.property") {} 319 320 void GnuPropertySection::writeTo(uint8_t *buf) { 321 write32(buf, 4); // Name size 322 write32(buf + 4, getSize() - 16); // Content size 323 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 324 memcpy(buf + 12, "GNU", 4); // Name string 325 326 uint32_t featureAndType = config->emachine == EM_AARCH64 327 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 328 : GNU_PROPERTY_X86_FEATURE_1_AND; 329 330 unsigned offset = 16; 331 if (config->andFeatures != 0) { 332 write32(buf + offset + 0, featureAndType); // Feature type 333 write32(buf + offset + 4, 4); // Feature size 334 write32(buf + offset + 8, config->andFeatures); // Feature flags 335 if (config->is64) 336 write32(buf + offset + 12, 0); // Padding 337 offset += 16; 338 } 339 340 if (!ctx.aarch64PauthAbiCoreInfo.empty()) { 341 write32(buf + offset + 0, GNU_PROPERTY_AARCH64_FEATURE_PAUTH); 342 write32(buf + offset + 4, ctx.aarch64PauthAbiCoreInfo.size()); 343 memcpy(buf + offset + 8, ctx.aarch64PauthAbiCoreInfo.data(), 344 ctx.aarch64PauthAbiCoreInfo.size()); 345 } 346 } 347 348 size_t GnuPropertySection::getSize() const { 349 uint32_t contentSize = 0; 350 if (config->andFeatures != 0) 351 contentSize += config->is64 ? 16 : 12; 352 if (!ctx.aarch64PauthAbiCoreInfo.empty()) 353 contentSize += 4 + 4 + ctx.aarch64PauthAbiCoreInfo.size(); 354 assert(contentSize != 0); 355 return contentSize + 16; 356 } 357 358 BuildIdSection::BuildIdSection() 359 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 360 hashSize(getHashSize()) {} 361 362 void BuildIdSection::writeTo(uint8_t *buf) { 363 write32(buf, 4); // Name size 364 write32(buf + 4, hashSize); // Content size 365 write32(buf + 8, NT_GNU_BUILD_ID); // Type 366 memcpy(buf + 12, "GNU", 4); // Name string 367 hashBuf = buf + 16; 368 } 369 370 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 371 assert(buf.size() == hashSize); 372 memcpy(hashBuf, buf.data(), hashSize); 373 } 374 375 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 376 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 377 this->bss = true; 378 this->size = size; 379 } 380 381 EhFrameSection::EhFrameSection() 382 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 383 384 // Search for an existing CIE record or create a new one. 385 // CIE records from input object files are uniquified by their contents 386 // and where their relocations point to. 387 template <class ELFT, class RelTy> 388 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 389 Symbol *personality = nullptr; 390 unsigned firstRelI = cie.firstRelocation; 391 if (firstRelI != (unsigned)-1) 392 personality = &cie.sec->file->getRelocTargetSym(rels[firstRelI]); 393 394 // Search for an existing CIE by CIE contents/relocation target pair. 395 CieRecord *&rec = cieMap[{cie.data(), personality}]; 396 397 // If not found, create a new one. 398 if (!rec) { 399 rec = make<CieRecord>(); 400 rec->cie = &cie; 401 cieRecords.push_back(rec); 402 } 403 return rec; 404 } 405 406 // There is one FDE per function. Returns a non-null pointer to the function 407 // symbol if the given FDE points to a live function. 408 template <class ELFT, class RelTy> 409 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 410 auto *sec = cast<EhInputSection>(fde.sec); 411 unsigned firstRelI = fde.firstRelocation; 412 413 // An FDE should point to some function because FDEs are to describe 414 // functions. That's however not always the case due to an issue of 415 // ld.gold with -r. ld.gold may discard only functions and leave their 416 // corresponding FDEs, which results in creating bad .eh_frame sections. 417 // To deal with that, we ignore such FDEs. 418 if (firstRelI == (unsigned)-1) 419 return nullptr; 420 421 const RelTy &rel = rels[firstRelI]; 422 Symbol &b = sec->file->getRelocTargetSym(rel); 423 424 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 425 // another partition, are dead. 426 if (auto *d = dyn_cast<Defined>(&b)) 427 if (!d->folded && d->section && d->section->partition == partition) 428 return d; 429 return nullptr; 430 } 431 432 // .eh_frame is a sequence of CIE or FDE records. In general, there 433 // is one CIE record per input object file which is followed by 434 // a list of FDEs. This function searches an existing CIE or create a new 435 // one and associates FDEs to the CIE. 436 template <class ELFT, class RelTy> 437 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 438 offsetToCie.clear(); 439 for (EhSectionPiece &cie : sec->cies) 440 offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels); 441 for (EhSectionPiece &fde : sec->fdes) { 442 uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); 443 CieRecord *rec = offsetToCie[fde.inputOff + 4 - id]; 444 if (!rec) 445 fatal(toString(sec) + ": invalid CIE reference"); 446 447 if (!isFdeLive<ELFT>(fde, rels)) 448 continue; 449 rec->fdes.push_back(&fde); 450 numFdes++; 451 } 452 } 453 454 template <class ELFT> 455 void EhFrameSection::addSectionAux(EhInputSection *sec) { 456 if (!sec->isLive()) 457 return; 458 const RelsOrRelas<ELFT> rels = 459 sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); 460 if (rels.areRelocsRel()) 461 addRecords<ELFT>(sec, rels.rels); 462 else 463 addRecords<ELFT>(sec, rels.relas); 464 } 465 466 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 467 // EhFrameSection::addRecords(). 468 template <class ELFT, class RelTy> 469 void EhFrameSection::iterateFDEWithLSDAAux( 470 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 471 llvm::function_ref<void(InputSection &)> fn) { 472 for (EhSectionPiece &cie : sec.cies) 473 if (hasLSDA(cie)) 474 ciesWithLSDA.insert(cie.inputOff); 475 for (EhSectionPiece &fde : sec.fdes) { 476 uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); 477 if (!ciesWithLSDA.contains(fde.inputOff + 4 - id)) 478 continue; 479 480 // The CIE has a LSDA argument. Call fn with d's section. 481 if (Defined *d = isFdeLive<ELFT>(fde, rels)) 482 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 483 fn(*s); 484 } 485 } 486 487 template <class ELFT> 488 void EhFrameSection::iterateFDEWithLSDA( 489 llvm::function_ref<void(InputSection &)> fn) { 490 DenseSet<size_t> ciesWithLSDA; 491 for (EhInputSection *sec : sections) { 492 ciesWithLSDA.clear(); 493 const RelsOrRelas<ELFT> rels = 494 sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); 495 if (rels.areRelocsRel()) 496 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); 497 else 498 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); 499 } 500 } 501 502 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 503 memcpy(buf, d.data(), d.size()); 504 // Fix the size field. -4 since size does not include the size field itself. 505 write32(buf, d.size() - 4); 506 } 507 508 void EhFrameSection::finalizeContents() { 509 assert(!this->size); // Not finalized. 510 511 switch (config->ekind) { 512 case ELFNoneKind: 513 llvm_unreachable("invalid ekind"); 514 case ELF32LEKind: 515 for (EhInputSection *sec : sections) 516 addSectionAux<ELF32LE>(sec); 517 break; 518 case ELF32BEKind: 519 for (EhInputSection *sec : sections) 520 addSectionAux<ELF32BE>(sec); 521 break; 522 case ELF64LEKind: 523 for (EhInputSection *sec : sections) 524 addSectionAux<ELF64LE>(sec); 525 break; 526 case ELF64BEKind: 527 for (EhInputSection *sec : sections) 528 addSectionAux<ELF64BE>(sec); 529 break; 530 } 531 532 size_t off = 0; 533 for (CieRecord *rec : cieRecords) { 534 rec->cie->outputOff = off; 535 off += rec->cie->size; 536 537 for (EhSectionPiece *fde : rec->fdes) { 538 fde->outputOff = off; 539 off += fde->size; 540 } 541 } 542 543 // The LSB standard does not allow a .eh_frame section with zero 544 // Call Frame Information records. glibc unwind-dw2-fde.c 545 // classify_object_over_fdes expects there is a CIE record length 0 as a 546 // terminator. Thus we add one unconditionally. 547 off += 4; 548 549 this->size = off; 550 } 551 552 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 553 // to get an FDE from an address to which FDE is applied. This function 554 // returns a list of such pairs. 555 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { 556 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 557 SmallVector<FdeData, 0> ret; 558 559 uint64_t va = getPartition().ehFrameHdr->getVA(); 560 for (CieRecord *rec : cieRecords) { 561 uint8_t enc = getFdeEncoding(rec->cie); 562 for (EhSectionPiece *fde : rec->fdes) { 563 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 564 uint64_t fdeVA = getParent()->addr + fde->outputOff; 565 if (!isInt<32>(pc - va)) { 566 errorOrWarn(toString(fde->sec) + ": PC offset is too large: 0x" + 567 Twine::utohexstr(pc - va)); 568 continue; 569 } 570 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 571 } 572 } 573 574 // Sort the FDE list by their PC and uniqueify. Usually there is only 575 // one FDE for a PC (i.e. function), but if ICF merges two functions 576 // into one, there can be more than one FDEs pointing to the address. 577 auto less = [](const FdeData &a, const FdeData &b) { 578 return a.pcRel < b.pcRel; 579 }; 580 llvm::stable_sort(ret, less); 581 auto eq = [](const FdeData &a, const FdeData &b) { 582 return a.pcRel == b.pcRel; 583 }; 584 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 585 586 return ret; 587 } 588 589 static uint64_t readFdeAddr(uint8_t *buf, int size) { 590 switch (size) { 591 case DW_EH_PE_udata2: 592 return read16(buf); 593 case DW_EH_PE_sdata2: 594 return (int16_t)read16(buf); 595 case DW_EH_PE_udata4: 596 return read32(buf); 597 case DW_EH_PE_sdata4: 598 return (int32_t)read32(buf); 599 case DW_EH_PE_udata8: 600 case DW_EH_PE_sdata8: 601 return read64(buf); 602 case DW_EH_PE_absptr: 603 return readUint(buf); 604 } 605 fatal("unknown FDE size encoding"); 606 } 607 608 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 609 // We need it to create .eh_frame_hdr section. 610 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 611 uint8_t enc) const { 612 // The starting address to which this FDE applies is 613 // stored at FDE + 8 byte. And this offset is within 614 // the .eh_frame section. 615 size_t off = fdeOff + 8; 616 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 617 if ((enc & 0x70) == DW_EH_PE_absptr) 618 return config->is64 ? addr : uint32_t(addr); 619 if ((enc & 0x70) == DW_EH_PE_pcrel) 620 return addr + getParent()->addr + off + outSecOff; 621 fatal("unknown FDE size relative encoding"); 622 } 623 624 void EhFrameSection::writeTo(uint8_t *buf) { 625 // Write CIE and FDE records. 626 for (CieRecord *rec : cieRecords) { 627 size_t cieOffset = rec->cie->outputOff; 628 writeCieFde(buf + cieOffset, rec->cie->data()); 629 630 for (EhSectionPiece *fde : rec->fdes) { 631 size_t off = fde->outputOff; 632 writeCieFde(buf + off, fde->data()); 633 634 // FDE's second word should have the offset to an associated CIE. 635 // Write it. 636 write32(buf + off + 4, off + 4 - cieOffset); 637 } 638 } 639 640 // Apply relocations. .eh_frame section contents are not contiguous 641 // in the output buffer, but relocateAlloc() still works because 642 // getOffset() takes care of discontiguous section pieces. 643 for (EhInputSection *s : sections) 644 target->relocateAlloc(*s, buf); 645 646 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 647 getPartition().ehFrameHdr->write(); 648 } 649 650 GotSection::GotSection() 651 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 652 target->gotEntrySize, ".got") { 653 numEntries = target->gotHeaderEntriesNum; 654 } 655 656 void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); } 657 void GotSection::addEntry(const Symbol &sym) { 658 assert(sym.auxIdx == symAux.size() - 1); 659 symAux.back().gotIdx = numEntries++; 660 } 661 662 bool GotSection::addTlsDescEntry(const Symbol &sym) { 663 assert(sym.auxIdx == symAux.size() - 1); 664 symAux.back().tlsDescIdx = numEntries; 665 numEntries += 2; 666 return true; 667 } 668 669 bool GotSection::addDynTlsEntry(const Symbol &sym) { 670 assert(sym.auxIdx == symAux.size() - 1); 671 symAux.back().tlsGdIdx = numEntries; 672 // Global Dynamic TLS entries take two GOT slots. 673 numEntries += 2; 674 return true; 675 } 676 677 // Reserves TLS entries for a TLS module ID and a TLS block offset. 678 // In total it takes two GOT slots. 679 bool GotSection::addTlsIndex() { 680 if (tlsIndexOff != uint32_t(-1)) 681 return false; 682 tlsIndexOff = numEntries * config->wordsize; 683 numEntries += 2; 684 return true; 685 } 686 687 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { 688 return sym.getTlsDescIdx() * config->wordsize; 689 } 690 691 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { 692 return getVA() + getTlsDescOffset(sym); 693 } 694 695 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 696 return this->getVA() + b.getTlsGdIdx() * config->wordsize; 697 } 698 699 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 700 return b.getTlsGdIdx() * config->wordsize; 701 } 702 703 void GotSection::finalizeContents() { 704 if (config->emachine == EM_PPC64 && 705 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable) 706 size = 0; 707 else 708 size = numEntries * config->wordsize; 709 } 710 711 bool GotSection::isNeeded() const { 712 // Needed if the GOT symbol is used or the number of entries is more than just 713 // the header. A GOT with just the header may not be needed. 714 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum; 715 } 716 717 void GotSection::writeTo(uint8_t *buf) { 718 // On PPC64 .got may be needed but empty. Skip the write. 719 if (size == 0) 720 return; 721 target->writeGotHeader(buf); 722 target->relocateAlloc(*this, buf); 723 } 724 725 static uint64_t getMipsPageAddr(uint64_t addr) { 726 return (addr + 0x8000) & ~0xffff; 727 } 728 729 static uint64_t getMipsPageCount(uint64_t size) { 730 return (size + 0xfffe) / 0xffff + 1; 731 } 732 733 MipsGotSection::MipsGotSection() 734 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 735 ".got") {} 736 737 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 738 RelExpr expr) { 739 FileGot &g = getGot(file); 740 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 741 if (const OutputSection *os = sym.getOutputSection()) 742 g.pagesMap.insert({os, {}}); 743 else 744 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 745 } else if (sym.isTls()) 746 g.tls.insert({&sym, 0}); 747 else if (sym.isPreemptible && expr == R_ABS) 748 g.relocs.insert({&sym, 0}); 749 else if (sym.isPreemptible) 750 g.global.insert({&sym, 0}); 751 else if (expr == R_MIPS_GOT_OFF32) 752 g.local32.insert({{&sym, addend}, 0}); 753 else 754 g.local16.insert({{&sym, addend}, 0}); 755 } 756 757 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 758 getGot(file).dynTlsSymbols.insert({&sym, 0}); 759 } 760 761 void MipsGotSection::addTlsIndex(InputFile &file) { 762 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 763 } 764 765 size_t MipsGotSection::FileGot::getEntriesNum() const { 766 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 767 tls.size() + dynTlsSymbols.size() * 2; 768 } 769 770 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 771 size_t num = 0; 772 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 773 num += p.second.count; 774 return num; 775 } 776 777 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 778 size_t count = getPageEntriesNum() + local16.size() + global.size(); 779 // If there are relocation-only entries in the GOT, TLS entries 780 // are allocated after them. TLS entries should be addressable 781 // by 16-bit index so count both reloc-only and TLS entries. 782 if (!tls.empty() || !dynTlsSymbols.empty()) 783 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 784 return count; 785 } 786 787 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 788 if (f.mipsGotIndex == uint32_t(-1)) { 789 gots.emplace_back(); 790 gots.back().file = &f; 791 f.mipsGotIndex = gots.size() - 1; 792 } 793 return gots[f.mipsGotIndex]; 794 } 795 796 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 797 const Symbol &sym, 798 int64_t addend) const { 799 const FileGot &g = gots[f->mipsGotIndex]; 800 uint64_t index = 0; 801 if (const OutputSection *outSec = sym.getOutputSection()) { 802 uint64_t secAddr = getMipsPageAddr(outSec->addr); 803 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 804 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 805 } else { 806 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 807 } 808 return index * config->wordsize; 809 } 810 811 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 812 int64_t addend) const { 813 const FileGot &g = gots[f->mipsGotIndex]; 814 Symbol *sym = const_cast<Symbol *>(&s); 815 if (sym->isTls()) 816 return g.tls.lookup(sym) * config->wordsize; 817 if (sym->isPreemptible) 818 return g.global.lookup(sym) * config->wordsize; 819 return g.local16.lookup({sym, addend}) * config->wordsize; 820 } 821 822 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 823 const FileGot &g = gots[f->mipsGotIndex]; 824 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 825 } 826 827 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 828 const Symbol &s) const { 829 const FileGot &g = gots[f->mipsGotIndex]; 830 Symbol *sym = const_cast<Symbol *>(&s); 831 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 832 } 833 834 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 835 if (gots.empty()) 836 return nullptr; 837 const FileGot &primGot = gots.front(); 838 if (!primGot.global.empty()) 839 return primGot.global.front().first; 840 if (!primGot.relocs.empty()) 841 return primGot.relocs.front().first; 842 return nullptr; 843 } 844 845 unsigned MipsGotSection::getLocalEntriesNum() const { 846 if (gots.empty()) 847 return headerEntriesNum; 848 return headerEntriesNum + gots.front().getPageEntriesNum() + 849 gots.front().local16.size(); 850 } 851 852 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 853 FileGot tmp = dst; 854 set_union(tmp.pagesMap, src.pagesMap); 855 set_union(tmp.local16, src.local16); 856 set_union(tmp.global, src.global); 857 set_union(tmp.relocs, src.relocs); 858 set_union(tmp.tls, src.tls); 859 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 860 861 size_t count = isPrimary ? headerEntriesNum : 0; 862 count += tmp.getIndexedEntriesNum(); 863 864 if (count * config->wordsize > config->mipsGotSize) 865 return false; 866 867 std::swap(tmp, dst); 868 return true; 869 } 870 871 void MipsGotSection::finalizeContents() { updateAllocSize(); } 872 873 bool MipsGotSection::updateAllocSize() { 874 size = headerEntriesNum * config->wordsize; 875 for (const FileGot &g : gots) 876 size += g.getEntriesNum() * config->wordsize; 877 return false; 878 } 879 880 void MipsGotSection::build() { 881 if (gots.empty()) 882 return; 883 884 std::vector<FileGot> mergedGots(1); 885 886 // For each GOT move non-preemptible symbols from the `Global` 887 // to `Local16` list. Preemptible symbol might become non-preemptible 888 // one if, for example, it gets a related copy relocation. 889 for (FileGot &got : gots) { 890 for (auto &p: got.global) 891 if (!p.first->isPreemptible) 892 got.local16.insert({{p.first, 0}, 0}); 893 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 894 return !p.first->isPreemptible; 895 }); 896 } 897 898 // For each GOT remove "reloc-only" entry if there is "global" 899 // entry for the same symbol. And add local entries which indexed 900 // using 32-bit value at the end of 16-bit entries. 901 for (FileGot &got : gots) { 902 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 903 return got.global.count(p.first); 904 }); 905 set_union(got.local16, got.local32); 906 got.local32.clear(); 907 } 908 909 // Evaluate number of "reloc-only" entries in the resulting GOT. 910 // To do that put all unique "reloc-only" and "global" entries 911 // from all GOTs to the future primary GOT. 912 FileGot *primGot = &mergedGots.front(); 913 for (FileGot &got : gots) { 914 set_union(primGot->relocs, got.global); 915 set_union(primGot->relocs, got.relocs); 916 got.relocs.clear(); 917 } 918 919 // Evaluate number of "page" entries in each GOT. 920 for (FileGot &got : gots) { 921 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 922 got.pagesMap) { 923 const OutputSection *os = p.first; 924 uint64_t secSize = 0; 925 for (SectionCommand *cmd : os->commands) { 926 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 927 for (InputSection *isec : isd->sections) { 928 uint64_t off = alignToPowerOf2(secSize, isec->addralign); 929 secSize = off + isec->getSize(); 930 } 931 } 932 p.second.count = getMipsPageCount(secSize); 933 } 934 } 935 936 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 937 // maximum GOT size. At first, try to fill the primary GOT because 938 // the primary GOT can be accessed in the most effective way. If it 939 // is not possible, try to fill the last GOT in the list, and finally 940 // create a new GOT if both attempts failed. 941 for (FileGot &srcGot : gots) { 942 InputFile *file = srcGot.file; 943 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 944 file->mipsGotIndex = 0; 945 } else { 946 // If this is the first time we failed to merge with the primary GOT, 947 // MergedGots.back() will also be the primary GOT. We must make sure not 948 // to try to merge again with isPrimary=false, as otherwise, if the 949 // inputs are just right, we could allow the primary GOT to become 1 or 2 950 // words bigger due to ignoring the header size. 951 if (mergedGots.size() == 1 || 952 !tryMergeGots(mergedGots.back(), srcGot, false)) { 953 mergedGots.emplace_back(); 954 std::swap(mergedGots.back(), srcGot); 955 } 956 file->mipsGotIndex = mergedGots.size() - 1; 957 } 958 } 959 std::swap(gots, mergedGots); 960 961 // Reduce number of "reloc-only" entries in the primary GOT 962 // by subtracting "global" entries in the primary GOT. 963 primGot = &gots.front(); 964 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 965 return primGot->global.count(p.first); 966 }); 967 968 // Calculate indexes for each GOT entry. 969 size_t index = headerEntriesNum; 970 for (FileGot &got : gots) { 971 got.startIndex = &got == primGot ? 0 : index; 972 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 973 got.pagesMap) { 974 // For each output section referenced by GOT page relocations calculate 975 // and save into pagesMap an upper bound of MIPS GOT entries required 976 // to store page addresses of local symbols. We assume the worst case - 977 // each 64kb page of the output section has at least one GOT relocation 978 // against it. And take in account the case when the section intersects 979 // page boundaries. 980 p.second.firstIndex = index; 981 index += p.second.count; 982 } 983 for (auto &p: got.local16) 984 p.second = index++; 985 for (auto &p: got.global) 986 p.second = index++; 987 for (auto &p: got.relocs) 988 p.second = index++; 989 for (auto &p: got.tls) 990 p.second = index++; 991 for (auto &p: got.dynTlsSymbols) { 992 p.second = index; 993 index += 2; 994 } 995 } 996 997 // Update SymbolAux::gotIdx field to use this 998 // value later in the `sortMipsSymbols` function. 999 for (auto &p : primGot->global) { 1000 if (p.first->auxIdx == 0) 1001 p.first->allocateAux(); 1002 symAux.back().gotIdx = p.second; 1003 } 1004 for (auto &p : primGot->relocs) { 1005 if (p.first->auxIdx == 0) 1006 p.first->allocateAux(); 1007 symAux.back().gotIdx = p.second; 1008 } 1009 1010 // Create dynamic relocations. 1011 for (FileGot &got : gots) { 1012 // Create dynamic relocations for TLS entries. 1013 for (std::pair<Symbol *, size_t> &p : got.tls) { 1014 Symbol *s = p.first; 1015 uint64_t offset = p.second * config->wordsize; 1016 // When building a shared library we still need a dynamic relocation 1017 // for the TP-relative offset as we don't know how much other data will 1018 // be allocated before us in the static TLS block. 1019 if (s->isPreemptible || config->shared) 1020 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset, 1021 DynamicReloc::AgainstSymbolWithTargetVA, 1022 *s, 0, R_ABS}); 1023 } 1024 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 1025 Symbol *s = p.first; 1026 uint64_t offset = p.second * config->wordsize; 1027 if (s == nullptr) { 1028 if (!config->shared) 1029 continue; 1030 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset}); 1031 } else { 1032 // When building a shared library we still need a dynamic relocation 1033 // for the module index. Therefore only checking for 1034 // S->isPreemptible is not sufficient (this happens e.g. for 1035 // thread-locals that have been marked as local through a linker script) 1036 if (!s->isPreemptible && !config->shared) 1037 continue; 1038 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this, 1039 offset, *s); 1040 // However, we can skip writing the TLS offset reloc for non-preemptible 1041 // symbols since it is known even in shared libraries 1042 if (!s->isPreemptible) 1043 continue; 1044 offset += config->wordsize; 1045 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset, 1046 *s); 1047 } 1048 } 1049 1050 // Do not create dynamic relocations for non-TLS 1051 // entries in the primary GOT. 1052 if (&got == primGot) 1053 continue; 1054 1055 // Dynamic relocations for "global" entries. 1056 for (const std::pair<Symbol *, size_t> &p : got.global) { 1057 uint64_t offset = p.second * config->wordsize; 1058 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset, 1059 *p.first); 1060 } 1061 if (!config->isPic) 1062 continue; 1063 // Dynamic relocations for "local" entries in case of PIC. 1064 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1065 got.pagesMap) { 1066 size_t pageCount = l.second.count; 1067 for (size_t pi = 0; pi < pageCount; ++pi) { 1068 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1069 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1070 int64_t(pi * 0x10000)}); 1071 } 1072 } 1073 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1074 uint64_t offset = p.second * config->wordsize; 1075 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, 1076 DynamicReloc::AddendOnlyWithTargetVA, 1077 *p.first.first, p.first.second, R_ABS}); 1078 } 1079 } 1080 } 1081 1082 bool MipsGotSection::isNeeded() const { 1083 // We add the .got section to the result for dynamic MIPS target because 1084 // its address and properties are mentioned in the .dynamic section. 1085 return !config->relocatable; 1086 } 1087 1088 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1089 // For files without related GOT or files refer a primary GOT 1090 // returns "common" _gp value. For secondary GOTs calculate 1091 // individual _gp values. 1092 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) 1093 return ElfSym::mipsGp->getVA(0); 1094 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0; 1095 } 1096 1097 void MipsGotSection::writeTo(uint8_t *buf) { 1098 // Set the MSB of the second GOT slot. This is not required by any 1099 // MIPS ABI documentation, though. 1100 // 1101 // There is a comment in glibc saying that "The MSB of got[1] of a 1102 // gnu object is set to identify gnu objects," and in GNU gold it 1103 // says "the second entry will be used by some runtime loaders". 1104 // But how this field is being used is unclear. 1105 // 1106 // We are not really willing to mimic other linkers behaviors 1107 // without understanding why they do that, but because all files 1108 // generated by GNU tools have this special GOT value, and because 1109 // we've been doing this for years, it is probably a safe bet to 1110 // keep doing this for now. We really need to revisit this to see 1111 // if we had to do this. 1112 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1113 for (const FileGot &g : gots) { 1114 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1115 uint64_t va = a; 1116 if (s) 1117 va = s->getVA(a); 1118 writeUint(buf + i * config->wordsize, va); 1119 }; 1120 // Write 'page address' entries to the local part of the GOT. 1121 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1122 g.pagesMap) { 1123 size_t pageCount = l.second.count; 1124 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1125 for (size_t pi = 0; pi < pageCount; ++pi) 1126 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1127 } 1128 // Local, global, TLS, reloc-only entries. 1129 // If TLS entry has a corresponding dynamic relocations, leave it 1130 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1131 // To calculate the adjustments use offsets for thread-local storage. 1132 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL 1133 for (const std::pair<GotEntry, size_t> &p : g.local16) 1134 write(p.second, p.first.first, p.first.second); 1135 // Write VA to the primary GOT only. For secondary GOTs that 1136 // will be done by REL32 dynamic relocations. 1137 if (&g == &gots.front()) 1138 for (const std::pair<Symbol *, size_t> &p : g.global) 1139 write(p.second, p.first, 0); 1140 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1141 write(p.second, p.first, 0); 1142 for (const std::pair<Symbol *, size_t> &p : g.tls) 1143 write(p.second, p.first, 1144 p.first->isPreemptible || config->shared ? 0 : -0x7000); 1145 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1146 if (p.first == nullptr && !config->shared) 1147 write(p.second, nullptr, 1); 1148 else if (p.first && !p.first->isPreemptible) { 1149 // If we are emitting a shared library with relocations we mustn't write 1150 // anything to the GOT here. When using Elf_Rel relocations the value 1151 // one will be treated as an addend and will cause crashes at runtime 1152 if (!config->shared) 1153 write(p.second, nullptr, 1); 1154 write(p.second + 1, p.first, -0x8000); 1155 } 1156 } 1157 } 1158 } 1159 1160 // On PowerPC the .plt section is used to hold the table of function addresses 1161 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1162 // section. I don't know why we have a BSS style type for the section but it is 1163 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1164 GotPltSection::GotPltSection() 1165 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1166 ".got.plt") { 1167 if (config->emachine == EM_PPC) { 1168 name = ".plt"; 1169 } else if (config->emachine == EM_PPC64) { 1170 type = SHT_NOBITS; 1171 name = ".plt"; 1172 } 1173 } 1174 1175 void GotPltSection::addEntry(Symbol &sym) { 1176 assert(sym.auxIdx == symAux.size() - 1 && 1177 symAux.back().pltIdx == entries.size()); 1178 entries.push_back(&sym); 1179 } 1180 1181 size_t GotPltSection::getSize() const { 1182 return (target->gotPltHeaderEntriesNum + entries.size()) * 1183 target->gotEntrySize; 1184 } 1185 1186 void GotPltSection::writeTo(uint8_t *buf) { 1187 target->writeGotPltHeader(buf); 1188 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize; 1189 for (const Symbol *b : entries) { 1190 target->writeGotPlt(buf, *b); 1191 buf += target->gotEntrySize; 1192 } 1193 } 1194 1195 bool GotPltSection::isNeeded() const { 1196 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1197 // to it. 1198 return !entries.empty() || hasGotPltOffRel; 1199 } 1200 1201 static StringRef getIgotPltName() { 1202 // On ARM the IgotPltSection is part of the GotSection. 1203 if (config->emachine == EM_ARM) 1204 return ".got"; 1205 1206 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1207 // needs to be named the same. 1208 if (config->emachine == EM_PPC64) 1209 return ".plt"; 1210 1211 return ".got.plt"; 1212 } 1213 1214 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1215 // with the IgotPltSection. 1216 IgotPltSection::IgotPltSection() 1217 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1218 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1219 target->gotEntrySize, getIgotPltName()) {} 1220 1221 void IgotPltSection::addEntry(Symbol &sym) { 1222 assert(symAux.back().pltIdx == entries.size()); 1223 entries.push_back(&sym); 1224 } 1225 1226 size_t IgotPltSection::getSize() const { 1227 return entries.size() * target->gotEntrySize; 1228 } 1229 1230 void IgotPltSection::writeTo(uint8_t *buf) { 1231 for (const Symbol *b : entries) { 1232 target->writeIgotPlt(buf, *b); 1233 buf += target->gotEntrySize; 1234 } 1235 } 1236 1237 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1238 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1239 dynamic(dynamic) { 1240 // ELF string tables start with a NUL byte. 1241 strings.push_back(""); 1242 stringMap.try_emplace(CachedHashStringRef(""), 0); 1243 size = 1; 1244 } 1245 1246 // Adds a string to the string table. If `hashIt` is true we hash and check for 1247 // duplicates. It is optional because the name of global symbols are already 1248 // uniqued and hashing them again has a big cost for a small value: uniquing 1249 // them with some other string that happens to be the same. 1250 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1251 if (hashIt) { 1252 auto r = stringMap.try_emplace(CachedHashStringRef(s), size); 1253 if (!r.second) 1254 return r.first->second; 1255 } 1256 if (s.empty()) 1257 return 0; 1258 unsigned ret = this->size; 1259 this->size = this->size + s.size() + 1; 1260 strings.push_back(s); 1261 return ret; 1262 } 1263 1264 void StringTableSection::writeTo(uint8_t *buf) { 1265 for (StringRef s : strings) { 1266 memcpy(buf, s.data(), s.size()); 1267 buf[s.size()] = '\0'; 1268 buf += s.size() + 1; 1269 } 1270 } 1271 1272 // Returns the number of entries in .gnu.version_d: the number of 1273 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1274 // Note that we don't support vd_cnt > 1 yet. 1275 static unsigned getVerDefNum() { 1276 return namedVersionDefs().size() + 1; 1277 } 1278 1279 template <class ELFT> 1280 DynamicSection<ELFT>::DynamicSection() 1281 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1282 ".dynamic") { 1283 this->entsize = ELFT::Is64Bits ? 16 : 8; 1284 1285 // .dynamic section is not writable on MIPS and on Fuchsia OS 1286 // which passes -z rodynamic. 1287 // See "Special Section" in Chapter 4 in the following document: 1288 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1289 if (config->emachine == EM_MIPS || config->zRodynamic) 1290 this->flags = SHF_ALLOC; 1291 } 1292 1293 // The output section .rela.dyn may include these synthetic sections: 1294 // 1295 // - part.relaDyn 1296 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1297 // .rela.dyn 1298 // 1299 // DT_RELASZ is the total size of the included sections. 1300 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) { 1301 size_t size = relaDyn.getSize(); 1302 if (in.relaPlt->getParent() == relaDyn.getParent()) 1303 size += in.relaPlt->getSize(); 1304 return size; 1305 } 1306 1307 // A Linker script may assign the RELA relocation sections to the same 1308 // output section. When this occurs we cannot just use the OutputSection 1309 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1310 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1311 static uint64_t addPltRelSz() { return in.relaPlt->getSize(); } 1312 1313 // Add remaining entries to complete .dynamic contents. 1314 template <class ELFT> 1315 std::vector<std::pair<int32_t, uint64_t>> 1316 DynamicSection<ELFT>::computeContents() { 1317 elf::Partition &part = getPartition(); 1318 bool isMain = part.name.empty(); 1319 std::vector<std::pair<int32_t, uint64_t>> entries; 1320 1321 auto addInt = [&](int32_t tag, uint64_t val) { 1322 entries.emplace_back(tag, val); 1323 }; 1324 auto addInSec = [&](int32_t tag, const InputSection &sec) { 1325 entries.emplace_back(tag, sec.getVA()); 1326 }; 1327 1328 for (StringRef s : config->filterList) 1329 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1330 for (StringRef s : config->auxiliaryList) 1331 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1332 1333 if (!config->rpath.empty()) 1334 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1335 part.dynStrTab->addString(config->rpath)); 1336 1337 for (SharedFile *file : ctx.sharedFiles) 1338 if (file->isNeeded) 1339 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1340 1341 if (isMain) { 1342 if (!config->soName.empty()) 1343 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1344 } else { 1345 if (!config->soName.empty()) 1346 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1347 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1348 } 1349 1350 // Set DT_FLAGS and DT_FLAGS_1. 1351 uint32_t dtFlags = 0; 1352 uint32_t dtFlags1 = 0; 1353 if (config->bsymbolic == BsymbolicKind::All) 1354 dtFlags |= DF_SYMBOLIC; 1355 if (config->zGlobal) 1356 dtFlags1 |= DF_1_GLOBAL; 1357 if (config->zInitfirst) 1358 dtFlags1 |= DF_1_INITFIRST; 1359 if (config->zInterpose) 1360 dtFlags1 |= DF_1_INTERPOSE; 1361 if (config->zNodefaultlib) 1362 dtFlags1 |= DF_1_NODEFLIB; 1363 if (config->zNodelete) 1364 dtFlags1 |= DF_1_NODELETE; 1365 if (config->zNodlopen) 1366 dtFlags1 |= DF_1_NOOPEN; 1367 if (config->pie) 1368 dtFlags1 |= DF_1_PIE; 1369 if (config->zNow) { 1370 dtFlags |= DF_BIND_NOW; 1371 dtFlags1 |= DF_1_NOW; 1372 } 1373 if (config->zOrigin) { 1374 dtFlags |= DF_ORIGIN; 1375 dtFlags1 |= DF_1_ORIGIN; 1376 } 1377 if (!config->zText) 1378 dtFlags |= DF_TEXTREL; 1379 if (ctx.hasTlsIe && config->shared) 1380 dtFlags |= DF_STATIC_TLS; 1381 1382 if (dtFlags) 1383 addInt(DT_FLAGS, dtFlags); 1384 if (dtFlags1) 1385 addInt(DT_FLAGS_1, dtFlags1); 1386 1387 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1388 // need it for each process, so we don't write it for DSOs. The loader writes 1389 // the pointer into this entry. 1390 // 1391 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1392 // systems (currently only Fuchsia OS) provide other means to give the 1393 // debugger this information. Such systems may choose make .dynamic read-only. 1394 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1395 if (!config->shared && !config->relocatable && !config->zRodynamic) 1396 addInt(DT_DEBUG, 0); 1397 1398 if (part.relaDyn->isNeeded()) { 1399 addInSec(part.relaDyn->dynamicTag, *part.relaDyn); 1400 entries.emplace_back(part.relaDyn->sizeDynamicTag, 1401 addRelaSz(*part.relaDyn)); 1402 1403 bool isRela = config->isRela; 1404 addInt(isRela ? DT_RELAENT : DT_RELENT, 1405 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1406 1407 // MIPS dynamic loader does not support RELCOUNT tag. 1408 // The problem is in the tight relation between dynamic 1409 // relocations and GOT. So do not emit this tag on MIPS. 1410 if (config->emachine != EM_MIPS) { 1411 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1412 if (config->zCombreloc && numRelativeRels) 1413 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1414 } 1415 } 1416 if (part.relrDyn && part.relrDyn->getParent() && 1417 !part.relrDyn->relocs.empty()) { 1418 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1419 *part.relrDyn); 1420 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1421 part.relrDyn->getParent()->size); 1422 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1423 sizeof(Elf_Relr)); 1424 } 1425 if (part.relrAuthDyn && part.relrAuthDyn->getParent() && 1426 !part.relrAuthDyn->relocs.empty()) { 1427 addInSec(DT_AARCH64_AUTH_RELR, *part.relrAuthDyn); 1428 addInt(DT_AARCH64_AUTH_RELRSZ, part.relrAuthDyn->getParent()->size); 1429 addInt(DT_AARCH64_AUTH_RELRENT, sizeof(Elf_Relr)); 1430 } 1431 if (isMain && in.relaPlt->isNeeded()) { 1432 addInSec(DT_JMPREL, *in.relaPlt); 1433 entries.emplace_back(DT_PLTRELSZ, addPltRelSz()); 1434 switch (config->emachine) { 1435 case EM_MIPS: 1436 addInSec(DT_MIPS_PLTGOT, *in.gotPlt); 1437 break; 1438 case EM_S390: 1439 addInSec(DT_PLTGOT, *in.got); 1440 break; 1441 case EM_SPARCV9: 1442 addInSec(DT_PLTGOT, *in.plt); 1443 break; 1444 case EM_AARCH64: 1445 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1446 return r.type == target->pltRel && 1447 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1448 }) != in.relaPlt->relocs.end()) 1449 addInt(DT_AARCH64_VARIANT_PCS, 0); 1450 addInSec(DT_PLTGOT, *in.gotPlt); 1451 break; 1452 case EM_RISCV: 1453 if (llvm::any_of(in.relaPlt->relocs, [](const DynamicReloc &r) { 1454 return r.type == target->pltRel && 1455 (r.sym->stOther & STO_RISCV_VARIANT_CC); 1456 })) 1457 addInt(DT_RISCV_VARIANT_CC, 0); 1458 [[fallthrough]]; 1459 default: 1460 addInSec(DT_PLTGOT, *in.gotPlt); 1461 break; 1462 } 1463 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1464 } 1465 1466 if (config->emachine == EM_AARCH64) { 1467 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1468 addInt(DT_AARCH64_BTI_PLT, 0); 1469 if (config->zPacPlt) 1470 addInt(DT_AARCH64_PAC_PLT, 0); 1471 1472 if (hasMemtag()) { 1473 addInt(DT_AARCH64_MEMTAG_MODE, config->androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC); 1474 addInt(DT_AARCH64_MEMTAG_HEAP, config->androidMemtagHeap); 1475 addInt(DT_AARCH64_MEMTAG_STACK, config->androidMemtagStack); 1476 if (mainPart->memtagGlobalDescriptors->isNeeded()) { 1477 addInSec(DT_AARCH64_MEMTAG_GLOBALS, *mainPart->memtagGlobalDescriptors); 1478 addInt(DT_AARCH64_MEMTAG_GLOBALSSZ, 1479 mainPart->memtagGlobalDescriptors->getSize()); 1480 } 1481 } 1482 } 1483 1484 addInSec(DT_SYMTAB, *part.dynSymTab); 1485 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1486 addInSec(DT_STRTAB, *part.dynStrTab); 1487 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1488 if (!config->zText) 1489 addInt(DT_TEXTREL, 0); 1490 if (part.gnuHashTab && part.gnuHashTab->getParent()) 1491 addInSec(DT_GNU_HASH, *part.gnuHashTab); 1492 if (part.hashTab && part.hashTab->getParent()) 1493 addInSec(DT_HASH, *part.hashTab); 1494 1495 if (isMain) { 1496 if (Out::preinitArray) { 1497 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr); 1498 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size); 1499 } 1500 if (Out::initArray) { 1501 addInt(DT_INIT_ARRAY, Out::initArray->addr); 1502 addInt(DT_INIT_ARRAYSZ, Out::initArray->size); 1503 } 1504 if (Out::finiArray) { 1505 addInt(DT_FINI_ARRAY, Out::finiArray->addr); 1506 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size); 1507 } 1508 1509 if (Symbol *b = symtab.find(config->init)) 1510 if (b->isDefined()) 1511 addInt(DT_INIT, b->getVA()); 1512 if (Symbol *b = symtab.find(config->fini)) 1513 if (b->isDefined()) 1514 addInt(DT_FINI, b->getVA()); 1515 } 1516 1517 if (part.verSym && part.verSym->isNeeded()) 1518 addInSec(DT_VERSYM, *part.verSym); 1519 if (part.verDef && part.verDef->isLive()) { 1520 addInSec(DT_VERDEF, *part.verDef); 1521 addInt(DT_VERDEFNUM, getVerDefNum()); 1522 } 1523 if (part.verNeed && part.verNeed->isNeeded()) { 1524 addInSec(DT_VERNEED, *part.verNeed); 1525 unsigned needNum = 0; 1526 for (SharedFile *f : ctx.sharedFiles) 1527 if (!f->vernauxs.empty()) 1528 ++needNum; 1529 addInt(DT_VERNEEDNUM, needNum); 1530 } 1531 1532 if (config->emachine == EM_MIPS) { 1533 addInt(DT_MIPS_RLD_VERSION, 1); 1534 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1535 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1536 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1537 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum()); 1538 1539 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1540 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1541 else 1542 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1543 addInSec(DT_PLTGOT, *in.mipsGot); 1544 if (in.mipsRldMap) { 1545 if (!config->pie) 1546 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap); 1547 // Store the offset to the .rld_map section 1548 // relative to the address of the tag. 1549 addInt(DT_MIPS_RLD_MAP_REL, 1550 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); 1551 } 1552 } 1553 1554 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1555 // glibc assumes the old-style BSS PLT layout which we don't support. 1556 if (config->emachine == EM_PPC) 1557 addInSec(DT_PPC_GOT, *in.got); 1558 1559 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1560 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1561 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1562 // stub, which starts directly after the header. 1563 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32); 1564 } 1565 1566 if (config->emachine == EM_PPC64) 1567 addInt(DT_PPC64_OPT, getPPC64TargetInfo()->ppc64DynamicSectionOpt); 1568 1569 addInt(DT_NULL, 0); 1570 return entries; 1571 } 1572 1573 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1574 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 1575 getParent()->link = sec->sectionIndex; 1576 this->size = computeContents().size() * this->entsize; 1577 } 1578 1579 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1580 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1581 1582 for (std::pair<int32_t, uint64_t> kv : computeContents()) { 1583 p->d_tag = kv.first; 1584 p->d_un.d_val = kv.second; 1585 ++p; 1586 } 1587 } 1588 1589 uint64_t DynamicReloc::getOffset() const { 1590 return inputSec->getVA(offsetInSec); 1591 } 1592 1593 int64_t DynamicReloc::computeAddend() const { 1594 switch (kind) { 1595 case AddendOnly: 1596 assert(sym == nullptr); 1597 return addend; 1598 case AgainstSymbol: 1599 assert(sym != nullptr); 1600 return addend; 1601 case AddendOnlyWithTargetVA: 1602 case AgainstSymbolWithTargetVA: { 1603 uint64_t ca = InputSection::getRelocTargetVA(inputSec->file, type, addend, 1604 getOffset(), *sym, expr); 1605 return config->is64 ? ca : SignExtend64<32>(ca); 1606 } 1607 case MipsMultiGotPage: 1608 assert(sym == nullptr); 1609 return getMipsPageAddr(outputSec->addr) + addend; 1610 } 1611 llvm_unreachable("Unknown DynamicReloc::Kind enum"); 1612 } 1613 1614 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1615 if (!needsDynSymIndex()) 1616 return 0; 1617 1618 size_t index = symTab->getSymbolIndex(*sym); 1619 assert((index != 0 || (type != target->gotRel && type != target->pltRel) || 1620 !mainPart->dynSymTab->getParent()) && 1621 "GOT or PLT relocation must refer to symbol in dynamic symbol table"); 1622 return index; 1623 } 1624 1625 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1626 int32_t dynamicTag, 1627 int32_t sizeDynamicTag, 1628 bool combreloc, 1629 unsigned concurrency) 1630 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1631 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), 1632 relocsVec(concurrency), combreloc(combreloc) {} 1633 1634 void RelocationBaseSection::addSymbolReloc( 1635 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, 1636 int64_t addend, std::optional<RelType> addendRelType) { 1637 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, 1638 R_ADDEND, addendRelType ? *addendRelType : target->noneRel); 1639 } 1640 1641 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( 1642 RelType dynType, GotSection &sec, uint64_t offsetInSec, Symbol &sym, 1643 RelType addendRelType) { 1644 // No need to write an addend to the section for preemptible symbols. 1645 if (sym.isPreemptible) 1646 addReloc({dynType, &sec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, 1647 R_ABS}); 1648 else 1649 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, sec, offsetInSec, 1650 sym, 0, R_ABS, addendRelType); 1651 } 1652 1653 void RelocationBaseSection::mergeRels() { 1654 size_t newSize = relocs.size(); 1655 for (const auto &v : relocsVec) 1656 newSize += v.size(); 1657 relocs.reserve(newSize); 1658 for (const auto &v : relocsVec) 1659 llvm::append_range(relocs, v); 1660 relocsVec.clear(); 1661 } 1662 1663 void RelocationBaseSection::partitionRels() { 1664 if (!combreloc) 1665 return; 1666 const RelType relativeRel = target->relativeRel; 1667 numRelativeRelocs = 1668 std::stable_partition(relocs.begin(), relocs.end(), 1669 [=](auto &r) { return r.type == relativeRel; }) - 1670 relocs.begin(); 1671 } 1672 1673 void RelocationBaseSection::finalizeContents() { 1674 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1675 1676 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1677 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1678 // case. 1679 if (symTab && symTab->getParent()) 1680 getParent()->link = symTab->getParent()->sectionIndex; 1681 else 1682 getParent()->link = 0; 1683 1684 if (in.relaPlt.get() == this && in.gotPlt->getParent()) { 1685 getParent()->flags |= ELF::SHF_INFO_LINK; 1686 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1687 } 1688 } 1689 1690 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) { 1691 r_offset = getOffset(); 1692 r_sym = getSymIndex(symtab); 1693 addend = computeAddend(); 1694 kind = AddendOnly; // Catch errors 1695 } 1696 1697 void RelocationBaseSection::computeRels() { 1698 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1699 parallelForEach(relocs, 1700 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); }); 1701 1702 auto irelative = std::stable_partition( 1703 relocs.begin() + numRelativeRelocs, relocs.end(), 1704 [t = target->iRelativeRel](auto &r) { return r.type != t; }); 1705 1706 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1707 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1708 // is to make results easier to read. 1709 if (combreloc) { 1710 auto nonRelative = relocs.begin() + numRelativeRelocs; 1711 parallelSort(relocs.begin(), nonRelative, 1712 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); 1713 // Non-relative relocations are few, so don't bother with parallelSort. 1714 llvm::sort(nonRelative, irelative, [&](auto &a, auto &b) { 1715 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); 1716 }); 1717 } 1718 } 1719 1720 template <class ELFT> 1721 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc, 1722 unsigned concurrency) 1723 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1724 config->isRela ? DT_RELA : DT_REL, 1725 config->isRela ? DT_RELASZ : DT_RELSZ, combreloc, 1726 concurrency) { 1727 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1728 } 1729 1730 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1731 computeRels(); 1732 for (const DynamicReloc &rel : relocs) { 1733 auto *p = reinterpret_cast<Elf_Rela *>(buf); 1734 p->r_offset = rel.r_offset; 1735 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL); 1736 if (config->isRela) 1737 p->r_addend = rel.addend; 1738 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1739 } 1740 } 1741 1742 RelrBaseSection::RelrBaseSection(unsigned concurrency, bool isAArch64Auth) 1743 : SyntheticSection( 1744 SHF_ALLOC, 1745 isAArch64Auth 1746 ? SHT_AARCH64_AUTH_RELR 1747 : (config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR), 1748 config->wordsize, isAArch64Auth ? ".relr.auth.dyn" : ".relr.dyn"), 1749 relocsVec(concurrency) {} 1750 1751 void RelrBaseSection::mergeRels() { 1752 size_t newSize = relocs.size(); 1753 for (const auto &v : relocsVec) 1754 newSize += v.size(); 1755 relocs.reserve(newSize); 1756 for (const auto &v : relocsVec) 1757 llvm::append_range(relocs, v); 1758 relocsVec.clear(); 1759 } 1760 1761 template <class ELFT> 1762 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1763 StringRef name, unsigned concurrency) 1764 : RelocationBaseSection( 1765 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1766 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1767 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, 1768 /*combreloc=*/false, concurrency) { 1769 this->entsize = 1; 1770 } 1771 1772 template <class ELFT> 1773 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1774 // This function computes the contents of an Android-format packed relocation 1775 // section. 1776 // 1777 // This format compresses relocations by using relocation groups to factor out 1778 // fields that are common between relocations and storing deltas from previous 1779 // relocations in SLEB128 format (which has a short representation for small 1780 // numbers). A good example of a relocation type with common fields is 1781 // R_*_RELATIVE, which is normally used to represent function pointers in 1782 // vtables. In the REL format, each relative relocation has the same r_info 1783 // field, and is only different from other relative relocations in terms of 1784 // the r_offset field. By sorting relocations by offset, grouping them by 1785 // r_info and representing each relocation with only the delta from the 1786 // previous offset, each 8-byte relocation can be compressed to as little as 1 1787 // byte (or less with run-length encoding). This relocation packer was able to 1788 // reduce the size of the relocation section in an Android Chromium DSO from 1789 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1790 // 1791 // A relocation section consists of a header containing the literal bytes 1792 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1793 // elements are the total number of relocations in the section and an initial 1794 // r_offset value. The remaining elements define a sequence of relocation 1795 // groups. Each relocation group starts with a header consisting of the 1796 // following elements: 1797 // 1798 // - the number of relocations in the relocation group 1799 // - flags for the relocation group 1800 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1801 // for each relocation in the group. 1802 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1803 // field for each relocation in the group. 1804 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1805 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1806 // each relocation in the group. 1807 // 1808 // Following the relocation group header are descriptions of each of the 1809 // relocations in the group. They consist of the following elements: 1810 // 1811 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1812 // delta for this relocation. 1813 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1814 // field for this relocation. 1815 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1816 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1817 // this relocation. 1818 1819 size_t oldSize = relocData.size(); 1820 1821 relocData = {'A', 'P', 'S', '2'}; 1822 raw_svector_ostream os(relocData); 1823 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1824 1825 // The format header includes the number of relocations and the initial 1826 // offset (we set this to zero because the first relocation group will 1827 // perform the initial adjustment). 1828 add(relocs.size()); 1829 add(0); 1830 1831 std::vector<Elf_Rela> relatives, nonRelatives; 1832 1833 for (const DynamicReloc &rel : relocs) { 1834 Elf_Rela r; 1835 r.r_offset = rel.getOffset(); 1836 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()), 1837 rel.type, false); 1838 r.r_addend = config->isRela ? rel.computeAddend() : 0; 1839 1840 if (r.getType(config->isMips64EL) == target->relativeRel) 1841 relatives.push_back(r); 1842 else 1843 nonRelatives.push_back(r); 1844 } 1845 1846 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1847 return a.r_offset < b.r_offset; 1848 }); 1849 1850 // Try to find groups of relative relocations which are spaced one word 1851 // apart from one another. These generally correspond to vtable entries. The 1852 // format allows these groups to be encoded using a sort of run-length 1853 // encoding, but each group will cost 7 bytes in addition to the offset from 1854 // the previous group, so it is only profitable to do this for groups of 1855 // size 8 or larger. 1856 std::vector<Elf_Rela> ungroupedRelatives; 1857 std::vector<std::vector<Elf_Rela>> relativeGroups; 1858 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1859 std::vector<Elf_Rela> group; 1860 do { 1861 group.push_back(*i++); 1862 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1863 1864 if (group.size() < 8) 1865 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1866 group.end()); 1867 else 1868 relativeGroups.emplace_back(std::move(group)); 1869 } 1870 1871 // For non-relative relocations, we would like to: 1872 // 1. Have relocations with the same symbol offset to be consecutive, so 1873 // that the runtime linker can speed-up symbol lookup by implementing an 1874 // 1-entry cache. 1875 // 2. Group relocations by r_info to reduce the size of the relocation 1876 // section. 1877 // Since the symbol offset is the high bits in r_info, sorting by r_info 1878 // allows us to do both. 1879 // 1880 // For Rela, we also want to sort by r_addend when r_info is the same. This 1881 // enables us to group by r_addend as well. 1882 llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1883 if (a.r_info != b.r_info) 1884 return a.r_info < b.r_info; 1885 if (a.r_addend != b.r_addend) 1886 return a.r_addend < b.r_addend; 1887 return a.r_offset < b.r_offset; 1888 }); 1889 1890 // Group relocations with the same r_info. Note that each group emits a group 1891 // header and that may make the relocation section larger. It is hard to 1892 // estimate the size of a group header as the encoded size of that varies 1893 // based on r_info. However, we can approximate this trade-off by the number 1894 // of values encoded. Each group header contains 3 values, and each relocation 1895 // in a group encodes one less value, as compared to when it is not grouped. 1896 // Therefore, we only group relocations if there are 3 or more of them with 1897 // the same r_info. 1898 // 1899 // For Rela, the addend for most non-relative relocations is zero, and thus we 1900 // can usually get a smaller relocation section if we group relocations with 0 1901 // addend as well. 1902 std::vector<Elf_Rela> ungroupedNonRelatives; 1903 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1904 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1905 auto j = i + 1; 1906 while (j != e && i->r_info == j->r_info && 1907 (!config->isRela || i->r_addend == j->r_addend)) 1908 ++j; 1909 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1910 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1911 else 1912 nonRelativeGroups.emplace_back(i, j); 1913 i = j; 1914 } 1915 1916 // Sort ungrouped relocations by offset to minimize the encoded length. 1917 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1918 return a.r_offset < b.r_offset; 1919 }); 1920 1921 unsigned hasAddendIfRela = 1922 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1923 1924 uint64_t offset = 0; 1925 uint64_t addend = 0; 1926 1927 // Emit the run-length encoding for the groups of adjacent relative 1928 // relocations. Each group is represented using two groups in the packed 1929 // format. The first is used to set the current offset to the start of the 1930 // group (and also encodes the first relocation), and the second encodes the 1931 // remaining relocations. 1932 for (std::vector<Elf_Rela> &g : relativeGroups) { 1933 // The first relocation in the group. 1934 add(1); 1935 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1936 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1937 add(g[0].r_offset - offset); 1938 add(target->relativeRel); 1939 if (config->isRela) { 1940 add(g[0].r_addend - addend); 1941 addend = g[0].r_addend; 1942 } 1943 1944 // The remaining relocations. 1945 add(g.size() - 1); 1946 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1947 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1948 add(config->wordsize); 1949 add(target->relativeRel); 1950 if (config->isRela) { 1951 for (const auto &i : llvm::drop_begin(g)) { 1952 add(i.r_addend - addend); 1953 addend = i.r_addend; 1954 } 1955 } 1956 1957 offset = g.back().r_offset; 1958 } 1959 1960 // Now the ungrouped relatives. 1961 if (!ungroupedRelatives.empty()) { 1962 add(ungroupedRelatives.size()); 1963 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1964 add(target->relativeRel); 1965 for (Elf_Rela &r : ungroupedRelatives) { 1966 add(r.r_offset - offset); 1967 offset = r.r_offset; 1968 if (config->isRela) { 1969 add(r.r_addend - addend); 1970 addend = r.r_addend; 1971 } 1972 } 1973 } 1974 1975 // Grouped non-relatives. 1976 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1977 add(g.size()); 1978 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1979 add(g[0].r_info); 1980 for (const Elf_Rela &r : g) { 1981 add(r.r_offset - offset); 1982 offset = r.r_offset; 1983 } 1984 addend = 0; 1985 } 1986 1987 // Finally the ungrouped non-relative relocations. 1988 if (!ungroupedNonRelatives.empty()) { 1989 add(ungroupedNonRelatives.size()); 1990 add(hasAddendIfRela); 1991 for (Elf_Rela &r : ungroupedNonRelatives) { 1992 add(r.r_offset - offset); 1993 offset = r.r_offset; 1994 add(r.r_info); 1995 if (config->isRela) { 1996 add(r.r_addend - addend); 1997 addend = r.r_addend; 1998 } 1999 } 2000 } 2001 2002 // Don't allow the section to shrink; otherwise the size of the section can 2003 // oscillate infinitely. 2004 if (relocData.size() < oldSize) 2005 relocData.append(oldSize - relocData.size(), 0); 2006 2007 // Returns whether the section size changed. We need to keep recomputing both 2008 // section layout and the contents of this section until the size converges 2009 // because changing this section's size can affect section layout, which in 2010 // turn can affect the sizes of the LEB-encoded integers stored in this 2011 // section. 2012 return relocData.size() != oldSize; 2013 } 2014 2015 template <class ELFT> 2016 RelrSection<ELFT>::RelrSection(unsigned concurrency, bool isAArch64Auth) 2017 : RelrBaseSection(concurrency, isAArch64Auth) { 2018 this->entsize = config->wordsize; 2019 } 2020 2021 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 2022 // This function computes the contents of an SHT_RELR packed relocation 2023 // section. 2024 // 2025 // Proposal for adding SHT_RELR sections to generic-abi is here: 2026 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 2027 // 2028 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 2029 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 2030 // 2031 // i.e. start with an address, followed by any number of bitmaps. The address 2032 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 2033 // relocations each, at subsequent offsets following the last address entry. 2034 // 2035 // The bitmap entries must have 1 in the least significant bit. The assumption 2036 // here is that an address cannot have 1 in lsb. Odd addresses are not 2037 // supported. 2038 // 2039 // Excluding the least significant bit in the bitmap, each non-zero bit in 2040 // the bitmap represents a relocation to be applied to a corresponding machine 2041 // word that follows the base address word. The second least significant bit 2042 // represents the machine word immediately following the initial address, and 2043 // each bit that follows represents the next word, in linear order. As such, 2044 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 2045 // 63 relocations in a 64-bit object. 2046 // 2047 // This encoding has a couple of interesting properties: 2048 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 2049 // even means address, odd means bitmap. 2050 // 2. Just a simple list of addresses is a valid encoding. 2051 2052 size_t oldSize = relrRelocs.size(); 2053 relrRelocs.clear(); 2054 2055 // Same as Config->Wordsize but faster because this is a compile-time 2056 // constant. 2057 const size_t wordsize = sizeof(typename ELFT::uint); 2058 2059 // Number of bits to use for the relocation offsets bitmap. 2060 // Must be either 63 or 31. 2061 const size_t nBits = wordsize * 8 - 1; 2062 2063 // Get offsets for all relative relocations and sort them. 2064 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); 2065 for (auto [i, r] : llvm::enumerate(relocs)) 2066 offsets[i] = r.getOffset(); 2067 llvm::sort(offsets.get(), offsets.get() + relocs.size()); 2068 2069 // For each leading relocation, find following ones that can be folded 2070 // as a bitmap and fold them. 2071 for (size_t i = 0, e = relocs.size(); i != e;) { 2072 // Add a leading relocation. 2073 relrRelocs.push_back(Elf_Relr(offsets[i])); 2074 uint64_t base = offsets[i] + wordsize; 2075 ++i; 2076 2077 // Find foldable relocations to construct bitmaps. 2078 for (;;) { 2079 uint64_t bitmap = 0; 2080 for (; i != e; ++i) { 2081 uint64_t d = offsets[i] - base; 2082 if (d >= nBits * wordsize || d % wordsize) 2083 break; 2084 bitmap |= uint64_t(1) << (d / wordsize); 2085 } 2086 if (!bitmap) 2087 break; 2088 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2089 base += nBits * wordsize; 2090 } 2091 } 2092 2093 // Don't allow the section to shrink; otherwise the size of the section can 2094 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2095 if (relrRelocs.size() < oldSize) { 2096 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2097 " padding word(s)"); 2098 relrRelocs.resize(oldSize, Elf_Relr(1)); 2099 } 2100 2101 return relrRelocs.size() != oldSize; 2102 } 2103 2104 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2105 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2106 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2107 config->wordsize, 2108 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2109 strTabSec(strTabSec) {} 2110 2111 // Orders symbols according to their positions in the GOT, 2112 // in compliance with MIPS ABI rules. 2113 // See "Global Offset Table" in Chapter 5 in the following document 2114 // for detailed description: 2115 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2116 static bool sortMipsSymbols(const SymbolTableEntry &l, 2117 const SymbolTableEntry &r) { 2118 // Sort entries related to non-local preemptible symbols by GOT indexes. 2119 // All other entries go to the beginning of a dynsym in arbitrary order. 2120 if (l.sym->isInGot() && r.sym->isInGot()) 2121 return l.sym->getGotIdx() < r.sym->getGotIdx(); 2122 if (!l.sym->isInGot() && !r.sym->isInGot()) 2123 return false; 2124 return !l.sym->isInGot(); 2125 } 2126 2127 void SymbolTableBaseSection::finalizeContents() { 2128 if (OutputSection *sec = strTabSec.getParent()) 2129 getParent()->link = sec->sectionIndex; 2130 2131 if (this->type != SHT_DYNSYM) { 2132 sortSymTabSymbols(); 2133 return; 2134 } 2135 2136 // If it is a .dynsym, there should be no local symbols, but we need 2137 // to do a few things for the dynamic linker. 2138 2139 // Section's Info field has the index of the first non-local symbol. 2140 // Because the first symbol entry is a null entry, 1 is the first. 2141 getParent()->info = 1; 2142 2143 if (getPartition().gnuHashTab) { 2144 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2145 getPartition().gnuHashTab->addSymbols(symbols); 2146 } else if (config->emachine == EM_MIPS) { 2147 llvm::stable_sort(symbols, sortMipsSymbols); 2148 } 2149 2150 // Only the main partition's dynsym indexes are stored in the symbols 2151 // themselves. All other partitions use a lookup table. 2152 if (this == mainPart->dynSymTab.get()) { 2153 size_t i = 0; 2154 for (const SymbolTableEntry &s : symbols) 2155 s.sym->dynsymIndex = ++i; 2156 } 2157 } 2158 2159 // The ELF spec requires that all local symbols precede global symbols, so we 2160 // sort symbol entries in this function. (For .dynsym, we don't do that because 2161 // symbols for dynamic linking are inherently all globals.) 2162 // 2163 // Aside from above, we put local symbols in groups starting with the STT_FILE 2164 // symbol. That is convenient for purpose of identifying where are local symbols 2165 // coming from. 2166 void SymbolTableBaseSection::sortSymTabSymbols() { 2167 // Move all local symbols before global symbols. 2168 auto e = std::stable_partition( 2169 symbols.begin(), symbols.end(), 2170 [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); 2171 size_t numLocals = e - symbols.begin(); 2172 getParent()->info = numLocals + 1; 2173 2174 // We want to group the local symbols by file. For that we rebuild the local 2175 // part of the symbols vector. We do not need to care about the STT_FILE 2176 // symbols, they are already naturally placed first in each group. That 2177 // happens because STT_FILE is always the first symbol in the object and hence 2178 // precede all other local symbols we add for a file. 2179 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; 2180 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2181 arr[s.sym->file].push_back(s); 2182 2183 auto i = symbols.begin(); 2184 for (auto &p : arr) 2185 for (SymbolTableEntry &entry : p.second) 2186 *i++ = entry; 2187 } 2188 2189 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2190 // Adding a local symbol to a .dynsym is a bug. 2191 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2192 symbols.push_back({b, strTabSec.addString(b->getName(), false)}); 2193 } 2194 2195 size_t SymbolTableBaseSection::getSymbolIndex(const Symbol &sym) { 2196 if (this == mainPart->dynSymTab.get()) 2197 return sym.dynsymIndex; 2198 2199 // Initializes symbol lookup tables lazily. This is used only for -r, 2200 // --emit-relocs and dynsyms in partitions other than the main one. 2201 llvm::call_once(onceFlag, [&] { 2202 symbolIndexMap.reserve(symbols.size()); 2203 size_t i = 0; 2204 for (const SymbolTableEntry &e : symbols) { 2205 if (e.sym->type == STT_SECTION) 2206 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2207 else 2208 symbolIndexMap[e.sym] = ++i; 2209 } 2210 }); 2211 2212 // Section symbols are mapped based on their output sections 2213 // to maintain their semantics. 2214 if (sym.type == STT_SECTION) 2215 return sectionIndexMap.lookup(sym.getOutputSection()); 2216 return symbolIndexMap.lookup(&sym); 2217 } 2218 2219 template <class ELFT> 2220 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2221 : SymbolTableBaseSection(strTabSec) { 2222 this->entsize = sizeof(Elf_Sym); 2223 } 2224 2225 static BssSection *getCommonSec(Symbol *sym) { 2226 if (config->relocatable) 2227 if (auto *d = dyn_cast<Defined>(sym)) 2228 return dyn_cast_or_null<BssSection>(d->section); 2229 return nullptr; 2230 } 2231 2232 static uint32_t getSymSectionIndex(Symbol *sym) { 2233 assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject())); 2234 if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY)) 2235 return SHN_UNDEF; 2236 if (const OutputSection *os = sym->getOutputSection()) 2237 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2238 : os->sectionIndex; 2239 return SHN_ABS; 2240 } 2241 2242 // Write the internal symbol table contents to the output symbol table. 2243 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2244 // The first entry is a null entry as per the ELF spec. 2245 buf += sizeof(Elf_Sym); 2246 2247 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2248 2249 for (SymbolTableEntry &ent : symbols) { 2250 Symbol *sym = ent.sym; 2251 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2252 2253 // Set st_name, st_info and st_other. 2254 eSym->st_name = ent.strTabOffset; 2255 eSym->setBindingAndType(sym->binding, sym->type); 2256 eSym->st_other = sym->stOther; 2257 2258 if (BssSection *commonSec = getCommonSec(sym)) { 2259 // When -r is specified, a COMMON symbol is not allocated. Its st_shndx 2260 // holds SHN_COMMON and st_value holds the alignment. 2261 eSym->st_shndx = SHN_COMMON; 2262 eSym->st_value = commonSec->addralign; 2263 eSym->st_size = cast<Defined>(sym)->size; 2264 } else { 2265 const uint32_t shndx = getSymSectionIndex(sym); 2266 if (isDefinedHere) { 2267 eSym->st_shndx = shndx; 2268 eSym->st_value = sym->getVA(); 2269 // Copy symbol size if it is a defined symbol. st_size is not 2270 // significant for undefined symbols, so whether copying it or not is up 2271 // to us if that's the case. We'll leave it as zero because by not 2272 // setting a value, we can get the exact same outputs for two sets of 2273 // input files that differ only in undefined symbol size in DSOs. 2274 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; 2275 } else { 2276 eSym->st_shndx = 0; 2277 eSym->st_value = 0; 2278 eSym->st_size = 0; 2279 } 2280 } 2281 2282 ++eSym; 2283 } 2284 2285 // On MIPS we need to mark symbol which has a PLT entry and requires 2286 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2287 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2288 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2289 if (config->emachine == EM_MIPS) { 2290 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2291 2292 for (SymbolTableEntry &ent : symbols) { 2293 Symbol *sym = ent.sym; 2294 if (sym->isInPlt() && sym->hasFlag(NEEDS_COPY)) 2295 eSym->st_other |= STO_MIPS_PLT; 2296 if (isMicroMips()) { 2297 // We already set the less-significant bit for symbols 2298 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2299 // records. That allows us to distinguish such symbols in 2300 // the `MIPS<ELFT>::relocate()` routine. Now we should 2301 // clear that bit for non-dynamic symbol table, so tools 2302 // like `objdump` will be able to deal with a correct 2303 // symbol position. 2304 if (sym->isDefined() && 2305 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) { 2306 if (!strTabSec.isDynamic()) 2307 eSym->st_value &= ~1; 2308 eSym->st_other |= STO_MIPS_MICROMIPS; 2309 } 2310 } 2311 if (config->relocatable) 2312 if (auto *d = dyn_cast<Defined>(sym)) 2313 if (isMipsPIC<ELFT>(d)) 2314 eSym->st_other |= STO_MIPS_PIC; 2315 ++eSym; 2316 } 2317 } 2318 } 2319 2320 SymtabShndxSection::SymtabShndxSection() 2321 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2322 this->entsize = 4; 2323 } 2324 2325 void SymtabShndxSection::writeTo(uint8_t *buf) { 2326 // We write an array of 32 bit values, where each value has 1:1 association 2327 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2328 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2329 buf += 4; // Ignore .symtab[0] entry. 2330 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2331 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX) 2332 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2333 buf += 4; 2334 } 2335 } 2336 2337 bool SymtabShndxSection::isNeeded() const { 2338 // SHT_SYMTAB can hold symbols with section indices values up to 2339 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2340 // section. Problem is that we reveal the final section indices a bit too 2341 // late, and we do not know them here. For simplicity, we just always create 2342 // a .symtab_shndx section when the amount of output sections is huge. 2343 size_t size = 0; 2344 for (SectionCommand *cmd : script->sectionCommands) 2345 if (isa<OutputDesc>(cmd)) 2346 ++size; 2347 return size >= SHN_LORESERVE; 2348 } 2349 2350 void SymtabShndxSection::finalizeContents() { 2351 getParent()->link = in.symTab->getParent()->sectionIndex; 2352 } 2353 2354 size_t SymtabShndxSection::getSize() const { 2355 return in.symTab->getNumSymbols() * 4; 2356 } 2357 2358 // .hash and .gnu.hash sections contain on-disk hash tables that map 2359 // symbol names to their dynamic symbol table indices. Their purpose 2360 // is to help the dynamic linker resolve symbols quickly. If ELF files 2361 // don't have them, the dynamic linker has to do linear search on all 2362 // dynamic symbols, which makes programs slower. Therefore, a .hash 2363 // section is added to a DSO by default. 2364 // 2365 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2366 // Each ELF file has a list of DSOs that the ELF file depends on and a 2367 // list of dynamic symbols that need to be resolved from any of the 2368 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2369 // where m is the number of DSOs and n is the number of dynamic 2370 // symbols. For modern large programs, both m and n are large. So 2371 // making each step faster by using hash tables substantially 2372 // improves time to load programs. 2373 // 2374 // (Note that this is not the only way to design the shared library. 2375 // For instance, the Windows DLL takes a different approach. On 2376 // Windows, each dynamic symbol has a name of DLL from which the symbol 2377 // has to be resolved. That makes the cost of symbol resolution O(n). 2378 // This disables some hacky techniques you can use on Unix such as 2379 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2380 // 2381 // Due to historical reasons, we have two different hash tables, .hash 2382 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2383 // and better version of .hash. .hash is just an on-disk hash table, but 2384 // .gnu.hash has a bloom filter in addition to a hash table to skip 2385 // DSOs very quickly. If you are sure that your dynamic linker knows 2386 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a 2387 // safe bet is to specify --hash-style=both for backward compatibility. 2388 GnuHashTableSection::GnuHashTableSection() 2389 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2390 } 2391 2392 void GnuHashTableSection::finalizeContents() { 2393 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2394 getParent()->link = sec->sectionIndex; 2395 2396 // Computes bloom filter size in word size. We want to allocate 12 2397 // bits for each symbol. It must be a power of two. 2398 if (symbols.empty()) { 2399 maskWords = 1; 2400 } else { 2401 uint64_t numBits = symbols.size() * 12; 2402 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2403 } 2404 2405 size = 16; // Header 2406 size += config->wordsize * maskWords; // Bloom filter 2407 size += nBuckets * 4; // Hash buckets 2408 size += symbols.size() * 4; // Hash values 2409 } 2410 2411 void GnuHashTableSection::writeTo(uint8_t *buf) { 2412 // Write a header. 2413 write32(buf, nBuckets); 2414 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2415 write32(buf + 8, maskWords); 2416 write32(buf + 12, Shift2); 2417 buf += 16; 2418 2419 // Write the 2-bit bloom filter. 2420 const unsigned c = config->is64 ? 64 : 32; 2421 for (const Entry &sym : symbols) { 2422 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2423 // the word using bits [0:5] and [26:31]. 2424 size_t i = (sym.hash / c) & (maskWords - 1); 2425 uint64_t val = readUint(buf + i * config->wordsize); 2426 val |= uint64_t(1) << (sym.hash % c); 2427 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2428 writeUint(buf + i * config->wordsize, val); 2429 } 2430 buf += config->wordsize * maskWords; 2431 2432 // Write the hash table. 2433 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2434 uint32_t oldBucket = -1; 2435 uint32_t *values = buckets + nBuckets; 2436 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2437 // Write a hash value. It represents a sequence of chains that share the 2438 // same hash modulo value. The last element of each chain is terminated by 2439 // LSB 1. 2440 uint32_t hash = i->hash; 2441 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2442 hash = isLastInChain ? hash | 1 : hash & ~1; 2443 write32(values++, hash); 2444 2445 if (i->bucketIdx == oldBucket) 2446 continue; 2447 // Write a hash bucket. Hash buckets contain indices in the following hash 2448 // value table. 2449 write32(buckets + i->bucketIdx, 2450 getPartition().dynSymTab->getSymbolIndex(*i->sym)); 2451 oldBucket = i->bucketIdx; 2452 } 2453 } 2454 2455 // Add symbols to this symbol hash table. Note that this function 2456 // destructively sort a given vector -- which is needed because 2457 // GNU-style hash table places some sorting requirements. 2458 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { 2459 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2460 // its type correctly. 2461 auto mid = 2462 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2463 return !s.sym->isDefined() || s.sym->partition != partition; 2464 }); 2465 2466 // We chose load factor 4 for the on-disk hash table. For each hash 2467 // collision, the dynamic linker will compare a uint32_t hash value. 2468 // Since the integer comparison is quite fast, we believe we can 2469 // make the load factor even larger. 4 is just a conservative choice. 2470 // 2471 // Note that we don't want to create a zero-sized hash table because 2472 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2473 // table. If that's the case, we create a hash table with one unused 2474 // dummy slot. 2475 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2476 2477 if (mid == v.end()) 2478 return; 2479 2480 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2481 Symbol *b = ent.sym; 2482 uint32_t hash = hashGnu(b->getName()); 2483 uint32_t bucketIdx = hash % nBuckets; 2484 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2485 } 2486 2487 llvm::sort(symbols, [](const Entry &l, const Entry &r) { 2488 return std::tie(l.bucketIdx, l.strTabOffset) < 2489 std::tie(r.bucketIdx, r.strTabOffset); 2490 }); 2491 2492 v.erase(mid, v.end()); 2493 for (const Entry &ent : symbols) 2494 v.push_back({ent.sym, ent.strTabOffset}); 2495 } 2496 2497 HashTableSection::HashTableSection() 2498 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2499 this->entsize = 4; 2500 } 2501 2502 void HashTableSection::finalizeContents() { 2503 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2504 2505 if (OutputSection *sec = symTab->getParent()) 2506 getParent()->link = sec->sectionIndex; 2507 2508 unsigned numEntries = 2; // nbucket and nchain. 2509 numEntries += symTab->getNumSymbols(); // The chain entries. 2510 2511 // Create as many buckets as there are symbols. 2512 numEntries += symTab->getNumSymbols(); 2513 this->size = numEntries * 4; 2514 } 2515 2516 void HashTableSection::writeTo(uint8_t *buf) { 2517 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2518 unsigned numSymbols = symTab->getNumSymbols(); 2519 2520 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2521 write32(p++, numSymbols); // nbucket 2522 write32(p++, numSymbols); // nchain 2523 2524 uint32_t *buckets = p; 2525 uint32_t *chains = p + numSymbols; 2526 2527 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2528 Symbol *sym = s.sym; 2529 StringRef name = sym->getName(); 2530 unsigned i = sym->dynsymIndex; 2531 uint32_t hash = hashSysV(name) % numSymbols; 2532 chains[i] = buckets[hash]; 2533 write32(buckets + hash, i); 2534 } 2535 } 2536 2537 PltSection::PltSection() 2538 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2539 headerSize(target->pltHeaderSize) { 2540 // On PowerPC, this section contains lazy symbol resolvers. 2541 if (config->emachine == EM_PPC64) { 2542 name = ".glink"; 2543 addralign = 4; 2544 } 2545 2546 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2547 // symbol resolvers). 2548 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2549 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2550 name = ".plt.sec"; 2551 2552 // The PLT needs to be writable on SPARC as the dynamic linker will 2553 // modify the instructions in the PLT entries. 2554 if (config->emachine == EM_SPARCV9) 2555 this->flags |= SHF_WRITE; 2556 } 2557 2558 void PltSection::writeTo(uint8_t *buf) { 2559 // At beginning of PLT, we have code to call the dynamic 2560 // linker to resolve dynsyms at runtime. Write such code. 2561 target->writePltHeader(buf); 2562 size_t off = headerSize; 2563 2564 for (const Symbol *sym : entries) { 2565 target->writePlt(buf + off, *sym, getVA() + off); 2566 off += target->pltEntrySize; 2567 } 2568 } 2569 2570 void PltSection::addEntry(Symbol &sym) { 2571 assert(sym.auxIdx == symAux.size() - 1); 2572 symAux.back().pltIdx = entries.size(); 2573 entries.push_back(&sym); 2574 } 2575 2576 size_t PltSection::getSize() const { 2577 return headerSize + entries.size() * target->pltEntrySize; 2578 } 2579 2580 bool PltSection::isNeeded() const { 2581 // For -z retpolineplt, .iplt needs the .plt header. 2582 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2583 } 2584 2585 // Used by ARM to add mapping symbols in the PLT section, which aid 2586 // disassembly. 2587 void PltSection::addSymbols() { 2588 target->addPltHeaderSymbols(*this); 2589 2590 size_t off = headerSize; 2591 for (size_t i = 0; i < entries.size(); ++i) { 2592 target->addPltSymbols(*this, off); 2593 off += target->pltEntrySize; 2594 } 2595 } 2596 2597 IpltSection::IpltSection() 2598 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2599 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2600 name = ".glink"; 2601 addralign = 4; 2602 } 2603 } 2604 2605 void IpltSection::writeTo(uint8_t *buf) { 2606 uint32_t off = 0; 2607 for (const Symbol *sym : entries) { 2608 target->writeIplt(buf + off, *sym, getVA() + off); 2609 off += target->ipltEntrySize; 2610 } 2611 } 2612 2613 size_t IpltSection::getSize() const { 2614 return entries.size() * target->ipltEntrySize; 2615 } 2616 2617 void IpltSection::addEntry(Symbol &sym) { 2618 assert(sym.auxIdx == symAux.size() - 1); 2619 symAux.back().pltIdx = entries.size(); 2620 entries.push_back(&sym); 2621 } 2622 2623 // ARM uses mapping symbols to aid disassembly. 2624 void IpltSection::addSymbols() { 2625 size_t off = 0; 2626 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2627 target->addPltSymbols(*this, off); 2628 off += target->pltEntrySize; 2629 } 2630 } 2631 2632 PPC32GlinkSection::PPC32GlinkSection() { 2633 name = ".glink"; 2634 addralign = 4; 2635 } 2636 2637 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2638 writePPC32GlinkSection(buf, entries.size()); 2639 } 2640 2641 size_t PPC32GlinkSection::getSize() const { 2642 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2643 } 2644 2645 // This is an x86-only extra PLT section and used only when a security 2646 // enhancement feature called CET is enabled. In this comment, I'll explain what 2647 // the feature is and why we have two PLT sections if CET is enabled. 2648 // 2649 // So, what does CET do? CET introduces a new restriction to indirect jump 2650 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2651 // execute an indirect jump instruction, the processor verifies that a special 2652 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2653 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2654 // does not start with that instruction, the processor raises an exception 2655 // instead of continuing executing code. 2656 // 2657 // If CET is enabled, the compiler emits endbr to all locations where indirect 2658 // jumps may jump to. 2659 // 2660 // This mechanism makes it extremely hard to transfer the control to a middle of 2661 // a function that is not supporsed to be a indirect jump target, preventing 2662 // certain types of attacks such as ROP or JOP. 2663 // 2664 // Note that the processors in the market as of 2019 don't actually support the 2665 // feature. Only the spec is available at the moment. 2666 // 2667 // Now, I'll explain why we have this extra PLT section for CET. 2668 // 2669 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2670 // start with endbr. The problem is there's no extra space for endbr (which is 4 2671 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2672 // used. 2673 // 2674 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2675 // Remember that each PLT entry contains code to jump to an address read from 2676 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2677 // the former code is written to .plt.sec, and the latter code is written to 2678 // .plt. 2679 // 2680 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2681 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2682 // contain only code for lazy symbol resolution. 2683 // 2684 // In other words, this is how the 2-PLT scheme works. Application code is 2685 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2686 // entry contains code to read an address from a corresponding .got.plt entry 2687 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2688 // when an application calls an external function for the first time, the 2689 // control is transferred to a function that resolves a symbol name from 2690 // external shared object files. That function then rewrites a .got.plt entry 2691 // with a resolved address, so that the subsequent function calls directly jump 2692 // to a desired location from .plt.sec. 2693 // 2694 // There is an open question as to whether the 2-PLT scheme was desirable or 2695 // not. We could have simply extended the PLT entry size to 32-bytes to 2696 // accommodate endbr, and that scheme would have been much simpler than the 2697 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2698 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2699 // that the optimization actually makes a difference. 2700 // 2701 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2702 // depend on it, so we implement the ABI. 2703 IBTPltSection::IBTPltSection() 2704 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2705 2706 void IBTPltSection::writeTo(uint8_t *buf) { 2707 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2708 } 2709 2710 size_t IBTPltSection::getSize() const { 2711 // 16 is the header size of .plt. 2712 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2713 } 2714 2715 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; } 2716 2717 RelroPaddingSection::RelroPaddingSection() 2718 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 1, ".relro_padding") { 2719 } 2720 2721 // The string hash function for .gdb_index. 2722 static uint32_t computeGdbHash(StringRef s) { 2723 uint32_t h = 0; 2724 for (uint8_t c : s) 2725 h = h * 67 + toLower(c) - 113; 2726 return h; 2727 } 2728 2729 // 4-byte alignment ensures that values in the hash lookup table and the name 2730 // table are aligned. 2731 DebugNamesBaseSection::DebugNamesBaseSection() 2732 : SyntheticSection(0, SHT_PROGBITS, 4, ".debug_names") {} 2733 2734 // Get the size of the .debug_names section header in bytes for DWARF32: 2735 static uint32_t getDebugNamesHeaderSize(uint32_t augmentationStringSize) { 2736 return /* unit length */ 4 + 2737 /* version */ 2 + 2738 /* padding */ 2 + 2739 /* CU count */ 4 + 2740 /* TU count */ 4 + 2741 /* Foreign TU count */ 4 + 2742 /* Bucket Count */ 4 + 2743 /* Name Count */ 4 + 2744 /* Abbrev table size */ 4 + 2745 /* Augmentation string size */ 4 + 2746 /* Augmentation string */ augmentationStringSize; 2747 } 2748 2749 static Expected<DebugNamesBaseSection::IndexEntry *> 2750 readEntry(uint64_t &offset, const DWARFDebugNames::NameIndex &ni, 2751 uint64_t entriesBase, DWARFDataExtractor &namesExtractor, 2752 const LLDDWARFSection &namesSec) { 2753 auto ie = makeThreadLocal<DebugNamesBaseSection::IndexEntry>(); 2754 ie->poolOffset = offset; 2755 Error err = Error::success(); 2756 uint64_t ulebVal = namesExtractor.getULEB128(&offset, &err); 2757 if (err) 2758 return createStringError(inconvertibleErrorCode(), 2759 "invalid abbrev code: %s", 2760 toString(std::move(err)).c_str()); 2761 if (!isUInt<32>(ulebVal)) 2762 return createStringError(inconvertibleErrorCode(), 2763 "abbrev code too large for DWARF32: %" PRIu64, 2764 ulebVal); 2765 ie->abbrevCode = static_cast<uint32_t>(ulebVal); 2766 auto it = ni.getAbbrevs().find_as(ie->abbrevCode); 2767 if (it == ni.getAbbrevs().end()) 2768 return createStringError(inconvertibleErrorCode(), 2769 "abbrev code not found in abbrev table: %" PRIu32, 2770 ie->abbrevCode); 2771 2772 DebugNamesBaseSection::AttrValue attr, cuAttr = {0, 0}; 2773 for (DWARFDebugNames::AttributeEncoding a : it->Attributes) { 2774 if (a.Index == dwarf::DW_IDX_parent) { 2775 if (a.Form == dwarf::DW_FORM_ref4) { 2776 attr.attrValue = namesExtractor.getU32(&offset, &err); 2777 attr.attrSize = 4; 2778 ie->parentOffset = entriesBase + attr.attrValue; 2779 } else if (a.Form != DW_FORM_flag_present) 2780 return createStringError(inconvertibleErrorCode(), 2781 "invalid form for DW_IDX_parent"); 2782 } else { 2783 switch (a.Form) { 2784 case DW_FORM_data1: 2785 case DW_FORM_ref1: { 2786 attr.attrValue = namesExtractor.getU8(&offset, &err); 2787 attr.attrSize = 1; 2788 break; 2789 } 2790 case DW_FORM_data2: 2791 case DW_FORM_ref2: { 2792 attr.attrValue = namesExtractor.getU16(&offset, &err); 2793 attr.attrSize = 2; 2794 break; 2795 } 2796 case DW_FORM_data4: 2797 case DW_FORM_ref4: { 2798 attr.attrValue = namesExtractor.getU32(&offset, &err); 2799 attr.attrSize = 4; 2800 break; 2801 } 2802 default: 2803 return createStringError( 2804 inconvertibleErrorCode(), 2805 "unrecognized form encoding %d in abbrev table", a.Form); 2806 } 2807 } 2808 if (err) 2809 return createStringError(inconvertibleErrorCode(), 2810 "error while reading attributes: %s", 2811 toString(std::move(err)).c_str()); 2812 if (a.Index == DW_IDX_compile_unit) 2813 cuAttr = attr; 2814 else if (a.Form != DW_FORM_flag_present) 2815 ie->attrValues.push_back(attr); 2816 } 2817 // Canonicalize abbrev by placing the CU/TU index at the end. 2818 ie->attrValues.push_back(cuAttr); 2819 return ie; 2820 } 2821 2822 void DebugNamesBaseSection::parseDebugNames( 2823 InputChunk &inputChunk, OutputChunk &chunk, 2824 DWARFDataExtractor &namesExtractor, DataExtractor &strExtractor, 2825 function_ref<SmallVector<uint32_t, 0>( 2826 uint32_t numCus, const DWARFDebugNames::Header &, 2827 const DWARFDebugNames::DWARFDebugNamesOffsets &)> 2828 readOffsets) { 2829 const LLDDWARFSection &namesSec = inputChunk.section; 2830 DenseMap<uint32_t, IndexEntry *> offsetMap; 2831 // Number of CUs seen in previous NameIndex sections within current chunk. 2832 uint32_t numCus = 0; 2833 for (const DWARFDebugNames::NameIndex &ni : *inputChunk.llvmDebugNames) { 2834 NameData &nd = inputChunk.nameData.emplace_back(); 2835 nd.hdr = ni.getHeader(); 2836 if (nd.hdr.Format != DwarfFormat::DWARF32) { 2837 errorOrWarn(toString(namesSec.sec) + 2838 Twine(": found DWARF64, which is currently unsupported")); 2839 return; 2840 } 2841 if (nd.hdr.Version != 5) { 2842 errorOrWarn(toString(namesSec.sec) + Twine(": unsupported version: ") + 2843 Twine(nd.hdr.Version)); 2844 return; 2845 } 2846 uint32_t dwarfSize = dwarf::getDwarfOffsetByteSize(DwarfFormat::DWARF32); 2847 DWARFDebugNames::DWARFDebugNamesOffsets locs = ni.getOffsets(); 2848 if (locs.EntriesBase > namesExtractor.getData().size()) { 2849 errorOrWarn(toString(namesSec.sec) + 2850 Twine(": entry pool start is beyond end of section")); 2851 return; 2852 } 2853 2854 SmallVector<uint32_t, 0> entryOffsets = readOffsets(numCus, nd.hdr, locs); 2855 2856 // Read the entry pool. 2857 offsetMap.clear(); 2858 nd.nameEntries.resize(nd.hdr.NameCount); 2859 for (auto i : seq(nd.hdr.NameCount)) { 2860 NameEntry &ne = nd.nameEntries[i]; 2861 uint64_t strOffset = locs.StringOffsetsBase + i * dwarfSize; 2862 ne.stringOffset = strOffset; 2863 uint64_t strp = namesExtractor.getRelocatedValue(dwarfSize, &strOffset); 2864 StringRef name = strExtractor.getCStrRef(&strp); 2865 ne.name = name.data(); 2866 ne.hashValue = caseFoldingDjbHash(name); 2867 2868 // Read a series of index entries that end with abbreviation code 0. 2869 uint64_t offset = locs.EntriesBase + entryOffsets[i]; 2870 while (offset < namesSec.Data.size() && namesSec.Data[offset] != 0) { 2871 // Read & store all entries (for the same string). 2872 Expected<IndexEntry *> ieOrErr = 2873 readEntry(offset, ni, locs.EntriesBase, namesExtractor, namesSec); 2874 if (!ieOrErr) { 2875 errorOrWarn(toString(namesSec.sec) + ": " + 2876 toString(ieOrErr.takeError())); 2877 return; 2878 } 2879 ne.indexEntries.push_back(std::move(*ieOrErr)); 2880 } 2881 if (offset >= namesSec.Data.size()) 2882 errorOrWarn(toString(namesSec.sec) + 2883 Twine(": index entry is out of bounds")); 2884 2885 for (IndexEntry &ie : ne.entries()) 2886 offsetMap[ie.poolOffset] = &ie; 2887 } 2888 2889 // Assign parent pointers, which will be used to update DW_IDX_parent index 2890 // attributes. Note: offsetMap[0] does not exist, so parentOffset == 0 will 2891 // get parentEntry == null as well. 2892 for (NameEntry &ne : nd.nameEntries) 2893 for (IndexEntry &ie : ne.entries()) 2894 ie.parentEntry = offsetMap.lookup(ie.parentOffset); 2895 numCus += nd.hdr.CompUnitCount; 2896 } 2897 } 2898 2899 // Compute the form for output DW_IDX_compile_unit attributes, similar to 2900 // DIEInteger::BestForm. The input form (often DW_FORM_data1) may not hold all 2901 // the merged CU indices. 2902 std::pair<uint8_t, dwarf::Form> static getMergedCuCountForm( 2903 uint32_t compUnitCount) { 2904 if (compUnitCount > UINT16_MAX) 2905 return {4, DW_FORM_data4}; 2906 if (compUnitCount > UINT8_MAX) 2907 return {2, DW_FORM_data2}; 2908 return {1, DW_FORM_data1}; 2909 } 2910 2911 void DebugNamesBaseSection::computeHdrAndAbbrevTable( 2912 MutableArrayRef<InputChunk> inputChunks) { 2913 TimeTraceScope timeScope("Merge .debug_names", "hdr and abbrev table"); 2914 size_t numCu = 0; 2915 hdr.Format = DwarfFormat::DWARF32; 2916 hdr.Version = 5; 2917 hdr.CompUnitCount = 0; 2918 hdr.LocalTypeUnitCount = 0; 2919 hdr.ForeignTypeUnitCount = 0; 2920 hdr.AugmentationStringSize = 0; 2921 2922 // Compute CU and TU counts. 2923 for (auto i : seq(numChunks)) { 2924 InputChunk &inputChunk = inputChunks[i]; 2925 inputChunk.baseCuIdx = numCu; 2926 numCu += chunks[i].compUnits.size(); 2927 for (const NameData &nd : inputChunk.nameData) { 2928 hdr.CompUnitCount += nd.hdr.CompUnitCount; 2929 // TODO: We don't handle type units yet, so LocalTypeUnitCount & 2930 // ForeignTypeUnitCount are left as 0. 2931 if (nd.hdr.LocalTypeUnitCount || nd.hdr.ForeignTypeUnitCount) 2932 warn(toString(inputChunk.section.sec) + 2933 Twine(": type units are not implemented")); 2934 // If augmentation strings are not identical, use an empty string. 2935 if (i == 0) { 2936 hdr.AugmentationStringSize = nd.hdr.AugmentationStringSize; 2937 hdr.AugmentationString = nd.hdr.AugmentationString; 2938 } else if (hdr.AugmentationString != nd.hdr.AugmentationString) { 2939 // There are conflicting augmentation strings, so it's best for the 2940 // merged index to not use an augmentation string. 2941 hdr.AugmentationStringSize = 0; 2942 hdr.AugmentationString.clear(); 2943 } 2944 } 2945 } 2946 2947 // Create the merged abbrev table, uniquifyinng the input abbrev tables and 2948 // computing mapping from old (per-cu) abbrev codes to new (merged) abbrev 2949 // codes. 2950 FoldingSet<Abbrev> abbrevSet; 2951 // Determine the form for the DW_IDX_compile_unit attributes in the merged 2952 // index. The input form may not be big enough for all CU indices. 2953 dwarf::Form cuAttrForm = getMergedCuCountForm(hdr.CompUnitCount).second; 2954 for (InputChunk &inputChunk : inputChunks) { 2955 for (auto [i, ni] : enumerate(*inputChunk.llvmDebugNames)) { 2956 for (const DWARFDebugNames::Abbrev &oldAbbrev : ni.getAbbrevs()) { 2957 // Canonicalize abbrev by placing the CU/TU index at the end, 2958 // similar to 'parseDebugNames'. 2959 Abbrev abbrev; 2960 DWARFDebugNames::AttributeEncoding cuAttr(DW_IDX_compile_unit, 2961 cuAttrForm); 2962 abbrev.code = oldAbbrev.Code; 2963 abbrev.tag = oldAbbrev.Tag; 2964 for (DWARFDebugNames::AttributeEncoding a : oldAbbrev.Attributes) { 2965 if (a.Index == DW_IDX_compile_unit) 2966 cuAttr.Index = a.Index; 2967 else 2968 abbrev.attributes.push_back({a.Index, a.Form}); 2969 } 2970 // Put the CU/TU index at the end of the attributes list. 2971 abbrev.attributes.push_back(cuAttr); 2972 2973 // Profile the abbrev, get or assign a new code, then record the abbrev 2974 // code mapping. 2975 FoldingSetNodeID id; 2976 abbrev.Profile(id); 2977 uint32_t newCode; 2978 void *insertPos; 2979 if (Abbrev *existing = abbrevSet.FindNodeOrInsertPos(id, insertPos)) { 2980 // Found it; we've already seen an identical abbreviation. 2981 newCode = existing->code; 2982 } else { 2983 Abbrev *abbrev2 = 2984 new (abbrevAlloc.Allocate()) Abbrev(std::move(abbrev)); 2985 abbrevSet.InsertNode(abbrev2, insertPos); 2986 abbrevTable.push_back(abbrev2); 2987 newCode = abbrevTable.size(); 2988 abbrev2->code = newCode; 2989 } 2990 inputChunk.nameData[i].abbrevCodeMap[oldAbbrev.Code] = newCode; 2991 } 2992 } 2993 } 2994 2995 // Compute the merged abbrev table. 2996 raw_svector_ostream os(abbrevTableBuf); 2997 for (Abbrev *abbrev : abbrevTable) { 2998 encodeULEB128(abbrev->code, os); 2999 encodeULEB128(abbrev->tag, os); 3000 for (DWARFDebugNames::AttributeEncoding a : abbrev->attributes) { 3001 encodeULEB128(a.Index, os); 3002 encodeULEB128(a.Form, os); 3003 } 3004 os.write("\0", 2); // attribute specification end 3005 } 3006 os.write(0); // abbrev table end 3007 hdr.AbbrevTableSize = abbrevTableBuf.size(); 3008 } 3009 3010 void DebugNamesBaseSection::Abbrev::Profile(FoldingSetNodeID &id) const { 3011 id.AddInteger(tag); 3012 for (const DWARFDebugNames::AttributeEncoding &attr : attributes) { 3013 id.AddInteger(attr.Index); 3014 id.AddInteger(attr.Form); 3015 } 3016 } 3017 3018 std::pair<uint32_t, uint32_t> DebugNamesBaseSection::computeEntryPool( 3019 MutableArrayRef<InputChunk> inputChunks) { 3020 TimeTraceScope timeScope("Merge .debug_names", "entry pool"); 3021 // Collect and de-duplicate all the names (preserving all the entries). 3022 // Speed it up using multithreading, as the number of symbols can be in the 3023 // order of millions. 3024 const size_t concurrency = 3025 bit_floor(std::min<size_t>(config->threadCount, numShards)); 3026 const size_t shift = 32 - countr_zero(numShards); 3027 const uint8_t cuAttrSize = getMergedCuCountForm(hdr.CompUnitCount).first; 3028 DenseMap<CachedHashStringRef, size_t> maps[numShards]; 3029 3030 parallelFor(0, concurrency, [&](size_t threadId) { 3031 for (auto i : seq(numChunks)) { 3032 InputChunk &inputChunk = inputChunks[i]; 3033 for (auto j : seq(inputChunk.nameData.size())) { 3034 NameData &nd = inputChunk.nameData[j]; 3035 // Deduplicate the NameEntry records (based on the string/name), 3036 // appending all IndexEntries from duplicate NameEntry records to 3037 // the single preserved copy. 3038 for (NameEntry &ne : nd.nameEntries) { 3039 auto shardId = ne.hashValue >> shift; 3040 if ((shardId & (concurrency - 1)) != threadId) 3041 continue; 3042 3043 ne.chunkIdx = i; 3044 for (IndexEntry &ie : ne.entries()) { 3045 // Update the IndexEntry's abbrev code to match the merged 3046 // abbreviations. 3047 ie.abbrevCode = nd.abbrevCodeMap[ie.abbrevCode]; 3048 // Update the DW_IDX_compile_unit attribute (the last one after 3049 // canonicalization) to have correct merged offset value and size. 3050 auto &back = ie.attrValues.back(); 3051 back.attrValue += inputChunk.baseCuIdx + j; 3052 back.attrSize = cuAttrSize; 3053 } 3054 3055 auto &nameVec = nameVecs[shardId]; 3056 auto [it, inserted] = maps[shardId].try_emplace( 3057 CachedHashStringRef(ne.name, ne.hashValue), nameVec.size()); 3058 if (inserted) 3059 nameVec.push_back(std::move(ne)); 3060 else 3061 nameVec[it->second].indexEntries.append(std::move(ne.indexEntries)); 3062 } 3063 } 3064 } 3065 }); 3066 3067 // Compute entry offsets in parallel. First, compute offsets relative to the 3068 // current shard. 3069 uint32_t offsets[numShards]; 3070 parallelFor(0, numShards, [&](size_t shard) { 3071 uint32_t offset = 0; 3072 for (NameEntry &ne : nameVecs[shard]) { 3073 ne.entryOffset = offset; 3074 for (IndexEntry &ie : ne.entries()) { 3075 ie.poolOffset = offset; 3076 offset += getULEB128Size(ie.abbrevCode); 3077 for (AttrValue value : ie.attrValues) 3078 offset += value.attrSize; 3079 } 3080 ++offset; // index entry sentinel 3081 } 3082 offsets[shard] = offset; 3083 }); 3084 // Then add shard offsets. 3085 std::partial_sum(offsets, std::end(offsets), offsets); 3086 parallelFor(1, numShards, [&](size_t shard) { 3087 uint32_t offset = offsets[shard - 1]; 3088 for (NameEntry &ne : nameVecs[shard]) { 3089 ne.entryOffset += offset; 3090 for (IndexEntry &ie : ne.entries()) 3091 ie.poolOffset += offset; 3092 } 3093 }); 3094 3095 // Update the DW_IDX_parent entries that refer to real parents (have 3096 // DW_FORM_ref4). 3097 parallelFor(0, numShards, [&](size_t shard) { 3098 for (NameEntry &ne : nameVecs[shard]) { 3099 for (IndexEntry &ie : ne.entries()) { 3100 if (!ie.parentEntry) 3101 continue; 3102 // Abbrevs are indexed starting at 1; vector starts at 0. (abbrevCode 3103 // corresponds to position in the merged table vector). 3104 const Abbrev *abbrev = abbrevTable[ie.abbrevCode - 1]; 3105 for (const auto &[a, v] : zip_equal(abbrev->attributes, ie.attrValues)) 3106 if (a.Index == DW_IDX_parent && a.Form == DW_FORM_ref4) 3107 v.attrValue = ie.parentEntry->poolOffset; 3108 } 3109 } 3110 }); 3111 3112 // Return (entry pool size, number of entries). 3113 uint32_t num = 0; 3114 for (auto &map : maps) 3115 num += map.size(); 3116 return {offsets[numShards - 1], num}; 3117 } 3118 3119 void DebugNamesBaseSection::init( 3120 function_ref<void(InputFile *, InputChunk &, OutputChunk &)> parseFile) { 3121 TimeTraceScope timeScope("Merge .debug_names"); 3122 // Collect and remove input .debug_names sections. Save InputSection pointers 3123 // to relocate string offsets in `writeTo`. 3124 SetVector<InputFile *> files; 3125 for (InputSectionBase *s : ctx.inputSections) { 3126 InputSection *isec = dyn_cast<InputSection>(s); 3127 if (!isec) 3128 continue; 3129 if (!(s->flags & SHF_ALLOC) && s->name == ".debug_names") { 3130 s->markDead(); 3131 inputSections.push_back(isec); 3132 files.insert(isec->file); 3133 } 3134 } 3135 3136 // Parse input .debug_names sections and extract InputChunk and OutputChunk 3137 // data. OutputChunk contains CU information, which will be needed by 3138 // `writeTo`. 3139 auto inputChunksPtr = std::make_unique<InputChunk[]>(files.size()); 3140 MutableArrayRef<InputChunk> inputChunks(inputChunksPtr.get(), files.size()); 3141 numChunks = files.size(); 3142 chunks = std::make_unique<OutputChunk[]>(files.size()); 3143 { 3144 TimeTraceScope timeScope("Merge .debug_names", "parse"); 3145 parallelFor(0, files.size(), [&](size_t i) { 3146 parseFile(files[i], inputChunks[i], chunks[i]); 3147 }); 3148 } 3149 3150 // Compute section header (except unit_length), abbrev table, and entry pool. 3151 computeHdrAndAbbrevTable(inputChunks); 3152 uint32_t entryPoolSize; 3153 std::tie(entryPoolSize, hdr.NameCount) = computeEntryPool(inputChunks); 3154 hdr.BucketCount = dwarf::getDebugNamesBucketCount(hdr.NameCount); 3155 3156 // Compute the section size. Subtract 4 to get the unit_length for DWARF32. 3157 uint32_t hdrSize = getDebugNamesHeaderSize(hdr.AugmentationStringSize); 3158 size = findDebugNamesOffsets(hdrSize, hdr).EntriesBase + entryPoolSize; 3159 hdr.UnitLength = size - 4; 3160 } 3161 3162 template <class ELFT> DebugNamesSection<ELFT>::DebugNamesSection() { 3163 init([](InputFile *f, InputChunk &inputChunk, OutputChunk &chunk) { 3164 auto *file = cast<ObjFile<ELFT>>(f); 3165 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 3166 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 3167 chunk.infoSec = dobj.getInfoSection(); 3168 DWARFDataExtractor namesExtractor(dobj, dobj.getNamesSection(), 3169 ELFT::Endianness == endianness::little, 3170 ELFT::Is64Bits ? 8 : 4); 3171 // .debug_str is needed to get symbol names from string offsets. 3172 DataExtractor strExtractor(dobj.getStrSection(), 3173 ELFT::Endianness == endianness::little, 3174 ELFT::Is64Bits ? 8 : 4); 3175 inputChunk.section = dobj.getNamesSection(); 3176 3177 inputChunk.llvmDebugNames.emplace(namesExtractor, strExtractor); 3178 if (Error e = inputChunk.llvmDebugNames->extract()) { 3179 errorOrWarn(toString(dobj.getNamesSection().sec) + Twine(": ") + 3180 toString(std::move(e))); 3181 } 3182 parseDebugNames( 3183 inputChunk, chunk, namesExtractor, strExtractor, 3184 [&chunk, namesData = dobj.getNamesSection().Data.data()]( 3185 uint32_t numCus, const DWARFDebugNames::Header &hdr, 3186 const DWARFDebugNames::DWARFDebugNamesOffsets &locs) { 3187 // Read CU offsets, which are relocated by .debug_info + X 3188 // relocations. Record the section offset to be relocated by 3189 // `finalizeContents`. 3190 chunk.compUnits.resize_for_overwrite(numCus + hdr.CompUnitCount); 3191 for (auto i : seq(hdr.CompUnitCount)) 3192 chunk.compUnits[numCus + i] = locs.CUsBase + i * 4; 3193 3194 // Read entry offsets. 3195 const char *p = namesData + locs.EntryOffsetsBase; 3196 SmallVector<uint32_t, 0> entryOffsets; 3197 entryOffsets.resize_for_overwrite(hdr.NameCount); 3198 for (uint32_t &offset : entryOffsets) 3199 offset = endian::readNext<uint32_t, ELFT::Endianness, unaligned>(p); 3200 return entryOffsets; 3201 }); 3202 }); 3203 } 3204 3205 template <class ELFT> 3206 template <class RelTy> 3207 void DebugNamesSection<ELFT>::getNameRelocs( 3208 const InputFile &file, DenseMap<uint32_t, uint32_t> &relocs, 3209 Relocs<RelTy> rels) { 3210 for (const RelTy &rel : rels) { 3211 Symbol &sym = file.getRelocTargetSym(rel); 3212 relocs[rel.r_offset] = sym.getVA(getAddend<ELFT>(rel)); 3213 } 3214 } 3215 3216 template <class ELFT> void DebugNamesSection<ELFT>::finalizeContents() { 3217 // Get relocations of .debug_names sections. 3218 auto relocs = std::make_unique<DenseMap<uint32_t, uint32_t>[]>(numChunks); 3219 parallelFor(0, numChunks, [&](size_t i) { 3220 InputSection *sec = inputSections[i]; 3221 invokeOnRelocs(*sec, getNameRelocs, *sec->file, relocs.get()[i]); 3222 3223 // Relocate CU offsets with .debug_info + X relocations. 3224 OutputChunk &chunk = chunks.get()[i]; 3225 for (auto [j, cuOffset] : enumerate(chunk.compUnits)) 3226 cuOffset = relocs.get()[i].lookup(cuOffset); 3227 }); 3228 3229 // Relocate string offsets in the name table with .debug_str + X relocations. 3230 parallelForEach(nameVecs, [&](auto &nameVec) { 3231 for (NameEntry &ne : nameVec) 3232 ne.stringOffset = relocs.get()[ne.chunkIdx].lookup(ne.stringOffset); 3233 }); 3234 } 3235 3236 template <class ELFT> void DebugNamesSection<ELFT>::writeTo(uint8_t *buf) { 3237 [[maybe_unused]] const uint8_t *const beginBuf = buf; 3238 // Write the header. 3239 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.UnitLength); 3240 endian::writeNext<uint16_t, ELFT::Endianness>(buf, hdr.Version); 3241 buf += 2; // padding 3242 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.CompUnitCount); 3243 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.LocalTypeUnitCount); 3244 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.ForeignTypeUnitCount); 3245 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.BucketCount); 3246 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.NameCount); 3247 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.AbbrevTableSize); 3248 endian::writeNext<uint32_t, ELFT::Endianness>(buf, 3249 hdr.AugmentationStringSize); 3250 memcpy(buf, hdr.AugmentationString.c_str(), hdr.AugmentationString.size()); 3251 buf += hdr.AugmentationStringSize; 3252 3253 // Write the CU list. 3254 for (auto &chunk : getChunks()) 3255 for (uint32_t cuOffset : chunk.compUnits) 3256 endian::writeNext<uint32_t, ELFT::Endianness>(buf, cuOffset); 3257 3258 // TODO: Write the local TU list, then the foreign TU list.. 3259 3260 // Write the hash lookup table. 3261 SmallVector<SmallVector<NameEntry *, 0>, 0> buckets(hdr.BucketCount); 3262 // Symbols enter into a bucket whose index is the hash modulo bucket_count. 3263 for (auto &nameVec : nameVecs) 3264 for (NameEntry &ne : nameVec) 3265 buckets[ne.hashValue % hdr.BucketCount].push_back(&ne); 3266 3267 // Write buckets (accumulated bucket counts). 3268 uint32_t bucketIdx = 1; 3269 for (const SmallVector<NameEntry *, 0> &bucket : buckets) { 3270 if (!bucket.empty()) 3271 endian::write32<ELFT::Endianness>(buf, bucketIdx); 3272 buf += 4; 3273 bucketIdx += bucket.size(); 3274 } 3275 // Write the hashes. 3276 for (const SmallVector<NameEntry *, 0> &bucket : buckets) 3277 for (const NameEntry *e : bucket) 3278 endian::writeNext<uint32_t, ELFT::Endianness>(buf, e->hashValue); 3279 3280 // Write the name table. The name entries are ordered by bucket_idx and 3281 // correspond one-to-one with the hash lookup table. 3282 // 3283 // First, write the relocated string offsets. 3284 for (const SmallVector<NameEntry *, 0> &bucket : buckets) 3285 for (const NameEntry *ne : bucket) 3286 endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->stringOffset); 3287 3288 // Then write the entry offsets. 3289 for (const SmallVector<NameEntry *, 0> &bucket : buckets) 3290 for (const NameEntry *ne : bucket) 3291 endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->entryOffset); 3292 3293 // Write the abbrev table. 3294 buf = llvm::copy(abbrevTableBuf, buf); 3295 3296 // Write the entry pool. Unlike the name table, the name entries follow the 3297 // nameVecs order computed by `computeEntryPool`. 3298 for (auto &nameVec : nameVecs) { 3299 for (NameEntry &ne : nameVec) { 3300 // Write all the entries for the string. 3301 for (const IndexEntry &ie : ne.entries()) { 3302 buf += encodeULEB128(ie.abbrevCode, buf); 3303 for (AttrValue value : ie.attrValues) { 3304 switch (value.attrSize) { 3305 case 1: 3306 *buf++ = value.attrValue; 3307 break; 3308 case 2: 3309 endian::writeNext<uint16_t, ELFT::Endianness>(buf, value.attrValue); 3310 break; 3311 case 4: 3312 endian::writeNext<uint32_t, ELFT::Endianness>(buf, value.attrValue); 3313 break; 3314 default: 3315 llvm_unreachable("invalid attrSize"); 3316 } 3317 } 3318 } 3319 ++buf; // index entry sentinel 3320 } 3321 } 3322 assert(uint64_t(buf - beginBuf) == size); 3323 } 3324 3325 GdbIndexSection::GdbIndexSection() 3326 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 3327 3328 // Returns the desired size of an on-disk hash table for a .gdb_index section. 3329 // There's a tradeoff between size and collision rate. We aim 75% utilization. 3330 size_t GdbIndexSection::computeSymtabSize() const { 3331 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 3332 } 3333 3334 static SmallVector<GdbIndexSection::CuEntry, 0> 3335 readCuList(DWARFContext &dwarf) { 3336 SmallVector<GdbIndexSection::CuEntry, 0> ret; 3337 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 3338 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 3339 return ret; 3340 } 3341 3342 static SmallVector<GdbIndexSection::AddressEntry, 0> 3343 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 3344 SmallVector<GdbIndexSection::AddressEntry, 0> ret; 3345 3346 uint32_t cuIdx = 0; 3347 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 3348 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 3349 warn(toString(sec) + ": " + toString(std::move(e))); 3350 return {}; 3351 } 3352 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 3353 if (!ranges) { 3354 warn(toString(sec) + ": " + toString(ranges.takeError())); 3355 return {}; 3356 } 3357 3358 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 3359 for (DWARFAddressRange &r : *ranges) { 3360 if (r.SectionIndex == -1ULL) 3361 continue; 3362 // Range list with zero size has no effect. 3363 InputSectionBase *s = sections[r.SectionIndex]; 3364 if (s && s != &InputSection::discarded && s->isLive()) 3365 if (r.LowPC != r.HighPC) 3366 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 3367 } 3368 ++cuIdx; 3369 } 3370 3371 return ret; 3372 } 3373 3374 template <class ELFT> 3375 static SmallVector<GdbIndexSection::NameAttrEntry, 0> 3376 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 3377 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { 3378 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 3379 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 3380 3381 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret; 3382 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 3383 DWARFDataExtractor data(obj, *pub, ELFT::Endianness == endianness::little, 3384 ELFT::Is64Bits ? 8 : 4); 3385 DWARFDebugPubTable table; 3386 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 3387 warn(toString(pub->sec) + ": " + toString(std::move(e))); 3388 }); 3389 for (const DWARFDebugPubTable::Set &set : table.getData()) { 3390 // The value written into the constant pool is kind << 24 | cuIndex. As we 3391 // don't know how many compilation units precede this object to compute 3392 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 3393 // the number of preceding compilation units later. 3394 uint32_t i = llvm::partition_point(cus, 3395 [&](GdbIndexSection::CuEntry cu) { 3396 return cu.cuOffset < set.Offset; 3397 }) - 3398 cus.begin(); 3399 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 3400 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 3401 (ent.Descriptor.toBits() << 24) | i}); 3402 } 3403 } 3404 return ret; 3405 } 3406 3407 // Create a list of symbols from a given list of symbol names and types 3408 // by uniquifying them by name. 3409 static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t> 3410 createSymbols( 3411 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs, 3412 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) { 3413 using GdbSymbol = GdbIndexSection::GdbSymbol; 3414 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 3415 3416 // For each chunk, compute the number of compilation units preceding it. 3417 uint32_t cuIdx = 0; 3418 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); 3419 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 3420 cuIdxs[i] = cuIdx; 3421 cuIdx += chunks[i].compilationUnits.size(); 3422 } 3423 3424 // Collect the compilation unitss for each unique name. Speed it up using 3425 // multi-threading as the number of symbols can be in the order of millions. 3426 // Shard GdbSymbols by hash's high bits. 3427 constexpr size_t numShards = 32; 3428 const size_t concurrency = 3429 llvm::bit_floor(std::min<size_t>(config->threadCount, numShards)); 3430 const size_t shift = 32 - llvm::countr_zero(numShards); 3431 auto map = 3432 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards); 3433 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards); 3434 parallelFor(0, concurrency, [&](size_t threadId) { 3435 uint32_t i = 0; 3436 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 3437 for (const NameAttrEntry &ent : entries) { 3438 size_t shardId = ent.name.hash() >> shift; 3439 if ((shardId & (concurrency - 1)) != threadId) 3440 continue; 3441 3442 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 3443 auto [it, inserted] = 3444 map[shardId].try_emplace(ent.name, symbols[shardId].size()); 3445 if (inserted) 3446 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 3447 else 3448 symbols[shardId][it->second].cuVector.push_back(v); 3449 } 3450 ++i; 3451 } 3452 }); 3453 3454 size_t numSymbols = 0; 3455 for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards)) 3456 numSymbols += v.size(); 3457 3458 // The return type is a flattened vector, so we'll copy each vector 3459 // contents to Ret. 3460 SmallVector<GdbSymbol, 0> ret; 3461 ret.reserve(numSymbols); 3462 for (SmallVector<GdbSymbol, 0> &vec : 3463 MutableArrayRef(symbols.get(), numShards)) 3464 for (GdbSymbol &sym : vec) 3465 ret.push_back(std::move(sym)); 3466 3467 // CU vectors and symbol names are adjacent in the output file. 3468 // We can compute their offsets in the output file now. 3469 size_t off = 0; 3470 for (GdbSymbol &sym : ret) { 3471 sym.cuVectorOff = off; 3472 off += (sym.cuVector.size() + 1) * 4; 3473 } 3474 for (GdbSymbol &sym : ret) { 3475 sym.nameOff = off; 3476 off += sym.name.size() + 1; 3477 } 3478 // If off overflows, the last symbol's nameOff likely overflows. 3479 if (!isUInt<32>(off)) 3480 errorOrWarn("--gdb-index: constant pool size (" + Twine(off) + 3481 ") exceeds UINT32_MAX"); 3482 3483 return {ret, off}; 3484 } 3485 3486 // Returns a newly-created .gdb_index section. 3487 template <class ELFT> 3488 std::unique_ptr<GdbIndexSection> GdbIndexSection::create() { 3489 llvm::TimeTraceScope timeScope("Create gdb index"); 3490 3491 // Collect InputFiles with .debug_info. See the comment in 3492 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 3493 // note that isec->data() may uncompress the full content, which should be 3494 // parallelized. 3495 SetVector<InputFile *> files; 3496 for (InputSectionBase *s : ctx.inputSections) { 3497 InputSection *isec = dyn_cast<InputSection>(s); 3498 if (!isec) 3499 continue; 3500 // .debug_gnu_pub{names,types} are useless in executables. 3501 // They are present in input object files solely for creating 3502 // a .gdb_index. So we can remove them from the output. 3503 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 3504 s->markDead(); 3505 else if (isec->name == ".debug_info") 3506 files.insert(isec->file); 3507 } 3508 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 3509 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) { 3510 if (auto *isec = dyn_cast<InputSection>(s)) 3511 if (InputSectionBase *rel = isec->getRelocatedSection()) 3512 return !rel->isLive(); 3513 return !s->isLive(); 3514 }); 3515 3516 SmallVector<GdbChunk, 0> chunks(files.size()); 3517 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size()); 3518 3519 parallelFor(0, files.size(), [&](size_t i) { 3520 // To keep memory usage low, we don't want to keep cached DWARFContext, so 3521 // avoid getDwarf() here. 3522 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 3523 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 3524 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 3525 3526 // If the are multiple compile units .debug_info (very rare ld -r --unique), 3527 // this only picks the last one. Other address ranges are lost. 3528 chunks[i].sec = dobj.getInfoSection(); 3529 chunks[i].compilationUnits = readCuList(dwarf); 3530 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 3531 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 3532 }); 3533 3534 auto ret = std::make_unique<GdbIndexSection>(); 3535 ret->chunks = std::move(chunks); 3536 std::tie(ret->symbols, ret->size) = createSymbols(nameAttrs, ret->chunks); 3537 3538 // Count the areas other than the constant pool. 3539 ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8; 3540 for (GdbChunk &chunk : ret->chunks) 3541 ret->size += 3542 chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 3543 3544 return ret; 3545 } 3546 3547 void GdbIndexSection::writeTo(uint8_t *buf) { 3548 // Write the header. 3549 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 3550 uint8_t *start = buf; 3551 hdr->version = 7; 3552 buf += sizeof(*hdr); 3553 3554 // Write the CU list. 3555 hdr->cuListOff = buf - start; 3556 for (GdbChunk &chunk : chunks) { 3557 for (CuEntry &cu : chunk.compilationUnits) { 3558 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 3559 write64le(buf + 8, cu.cuLength); 3560 buf += 16; 3561 } 3562 } 3563 3564 // Write the address area. 3565 hdr->cuTypesOff = buf - start; 3566 hdr->addressAreaOff = buf - start; 3567 uint32_t cuOff = 0; 3568 for (GdbChunk &chunk : chunks) { 3569 for (AddressEntry &e : chunk.addressAreas) { 3570 // In the case of ICF there may be duplicate address range entries. 3571 const uint64_t baseAddr = e.section->repl->getVA(0); 3572 write64le(buf, baseAddr + e.lowAddress); 3573 write64le(buf + 8, baseAddr + e.highAddress); 3574 write32le(buf + 16, e.cuIndex + cuOff); 3575 buf += 20; 3576 } 3577 cuOff += chunk.compilationUnits.size(); 3578 } 3579 3580 // Write the on-disk open-addressing hash table containing symbols. 3581 hdr->symtabOff = buf - start; 3582 size_t symtabSize = computeSymtabSize(); 3583 uint32_t mask = symtabSize - 1; 3584 3585 for (GdbSymbol &sym : symbols) { 3586 uint32_t h = sym.name.hash(); 3587 uint32_t i = h & mask; 3588 uint32_t step = ((h * 17) & mask) | 1; 3589 3590 while (read32le(buf + i * 8)) 3591 i = (i + step) & mask; 3592 3593 write32le(buf + i * 8, sym.nameOff); 3594 write32le(buf + i * 8 + 4, sym.cuVectorOff); 3595 } 3596 3597 buf += symtabSize * 8; 3598 3599 // Write the string pool. 3600 hdr->constantPoolOff = buf - start; 3601 parallelForEach(symbols, [&](GdbSymbol &sym) { 3602 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 3603 }); 3604 3605 // Write the CU vectors. 3606 for (GdbSymbol &sym : symbols) { 3607 write32le(buf, sym.cuVector.size()); 3608 buf += 4; 3609 for (uint32_t val : sym.cuVector) { 3610 write32le(buf, val); 3611 buf += 4; 3612 } 3613 } 3614 } 3615 3616 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 3617 3618 EhFrameHeader::EhFrameHeader() 3619 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 3620 3621 void EhFrameHeader::writeTo(uint8_t *buf) { 3622 // Unlike most sections, the EhFrameHeader section is written while writing 3623 // another section, namely EhFrameSection, which calls the write() function 3624 // below from its writeTo() function. This is necessary because the contents 3625 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 3626 // don't know which order the sections will be written in. 3627 } 3628 3629 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 3630 // Each entry of the search table consists of two values, 3631 // the starting PC from where FDEs covers, and the FDE's address. 3632 // It is sorted by PC. 3633 void EhFrameHeader::write() { 3634 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3635 using FdeData = EhFrameSection::FdeData; 3636 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData(); 3637 3638 buf[0] = 1; 3639 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3640 buf[2] = DW_EH_PE_udata4; 3641 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3642 write32(buf + 4, 3643 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3644 write32(buf + 8, fdes.size()); 3645 buf += 12; 3646 3647 for (FdeData &fde : fdes) { 3648 write32(buf, fde.pcRel); 3649 write32(buf + 4, fde.fdeVARel); 3650 buf += 8; 3651 } 3652 } 3653 3654 size_t EhFrameHeader::getSize() const { 3655 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3656 return 12 + getPartition().ehFrame->numFdes * 8; 3657 } 3658 3659 bool EhFrameHeader::isNeeded() const { 3660 return isLive() && getPartition().ehFrame->isNeeded(); 3661 } 3662 3663 VersionDefinitionSection::VersionDefinitionSection() 3664 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3665 ".gnu.version_d") {} 3666 3667 StringRef VersionDefinitionSection::getFileDefName() { 3668 if (!getPartition().name.empty()) 3669 return getPartition().name; 3670 if (!config->soName.empty()) 3671 return config->soName; 3672 return config->outputFile; 3673 } 3674 3675 void VersionDefinitionSection::finalizeContents() { 3676 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3677 for (const VersionDefinition &v : namedVersionDefs()) 3678 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3679 3680 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3681 getParent()->link = sec->sectionIndex; 3682 3683 // sh_info should be set to the number of definitions. This fact is missed in 3684 // documentation, but confirmed by binutils community: 3685 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3686 getParent()->info = getVerDefNum(); 3687 } 3688 3689 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3690 StringRef name, size_t nameOff) { 3691 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3692 3693 // Write a verdef. 3694 write16(buf, 1); // vd_version 3695 write16(buf + 2, flags); // vd_flags 3696 write16(buf + 4, index); // vd_ndx 3697 write16(buf + 6, 1); // vd_cnt 3698 write32(buf + 8, hashSysV(name)); // vd_hash 3699 write32(buf + 12, 20); // vd_aux 3700 write32(buf + 16, 28); // vd_next 3701 3702 // Write a veraux. 3703 write32(buf + 20, nameOff); // vda_name 3704 write32(buf + 24, 0); // vda_next 3705 } 3706 3707 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3708 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3709 3710 auto nameOffIt = verDefNameOffs.begin(); 3711 for (const VersionDefinition &v : namedVersionDefs()) { 3712 buf += EntrySize; 3713 writeOne(buf, v.id, v.name, *nameOffIt++); 3714 } 3715 3716 // Need to terminate the last version definition. 3717 write32(buf + 16, 0); // vd_next 3718 } 3719 3720 size_t VersionDefinitionSection::getSize() const { 3721 return EntrySize * getVerDefNum(); 3722 } 3723 3724 // .gnu.version is a table where each entry is 2 byte long. 3725 VersionTableSection::VersionTableSection() 3726 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3727 ".gnu.version") { 3728 this->entsize = 2; 3729 } 3730 3731 void VersionTableSection::finalizeContents() { 3732 // At the moment of june 2016 GNU docs does not mention that sh_link field 3733 // should be set, but Sun docs do. Also readelf relies on this field. 3734 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3735 } 3736 3737 size_t VersionTableSection::getSize() const { 3738 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3739 } 3740 3741 void VersionTableSection::writeTo(uint8_t *buf) { 3742 buf += 2; 3743 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3744 // For an unextracted lazy symbol (undefined weak), it must have been 3745 // converted to Undefined and have VER_NDX_GLOBAL version here. 3746 assert(!s.sym->isLazy()); 3747 write16(buf, s.sym->versionId); 3748 buf += 2; 3749 } 3750 } 3751 3752 bool VersionTableSection::isNeeded() const { 3753 return isLive() && 3754 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3755 } 3756 3757 void elf::addVerneed(Symbol *ss) { 3758 auto &file = cast<SharedFile>(*ss->file); 3759 if (ss->versionId == VER_NDX_GLOBAL) 3760 return; 3761 3762 if (file.vernauxs.empty()) 3763 file.vernauxs.resize(file.verdefs.size()); 3764 3765 // Select a version identifier for the vernaux data structure, if we haven't 3766 // already allocated one. The verdef identifiers cover the range 3767 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3768 // getVerDefNum()+1. 3769 if (file.vernauxs[ss->versionId] == 0) 3770 file.vernauxs[ss->versionId] = ++SharedFile::vernauxNum + getVerDefNum(); 3771 3772 ss->versionId = file.vernauxs[ss->versionId]; 3773 } 3774 3775 template <class ELFT> 3776 VersionNeedSection<ELFT>::VersionNeedSection() 3777 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3778 ".gnu.version_r") {} 3779 3780 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3781 for (SharedFile *f : ctx.sharedFiles) { 3782 if (f->vernauxs.empty()) 3783 continue; 3784 verneeds.emplace_back(); 3785 Verneed &vn = verneeds.back(); 3786 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3787 bool isLibc = config->relrGlibc && f->soName.starts_with("libc.so."); 3788 bool isGlibc2 = false; 3789 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3790 if (f->vernauxs[i] == 0) 3791 continue; 3792 auto *verdef = 3793 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3794 StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name); 3795 if (isLibc && ver.starts_with("GLIBC_2.")) 3796 isGlibc2 = true; 3797 vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i], 3798 getPartition().dynStrTab->addString(ver)}); 3799 } 3800 if (isGlibc2) { 3801 const char *ver = "GLIBC_ABI_DT_RELR"; 3802 vn.vernauxs.push_back({hashSysV(ver), 3803 ++SharedFile::vernauxNum + getVerDefNum(), 3804 getPartition().dynStrTab->addString(ver)}); 3805 } 3806 } 3807 3808 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3809 getParent()->link = sec->sectionIndex; 3810 getParent()->info = verneeds.size(); 3811 } 3812 3813 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3814 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3815 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3816 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3817 3818 for (auto &vn : verneeds) { 3819 // Create an Elf_Verneed for this DSO. 3820 verneed->vn_version = 1; 3821 verneed->vn_cnt = vn.vernauxs.size(); 3822 verneed->vn_file = vn.nameStrTab; 3823 verneed->vn_aux = 3824 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3825 verneed->vn_next = sizeof(Elf_Verneed); 3826 ++verneed; 3827 3828 // Create the Elf_Vernauxs for this Elf_Verneed. 3829 for (auto &vna : vn.vernauxs) { 3830 vernaux->vna_hash = vna.hash; 3831 vernaux->vna_flags = 0; 3832 vernaux->vna_other = vna.verneedIndex; 3833 vernaux->vna_name = vna.nameStrTab; 3834 vernaux->vna_next = sizeof(Elf_Vernaux); 3835 ++vernaux; 3836 } 3837 3838 vernaux[-1].vna_next = 0; 3839 } 3840 verneed[-1].vn_next = 0; 3841 } 3842 3843 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3844 return verneeds.size() * sizeof(Elf_Verneed) + 3845 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3846 } 3847 3848 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3849 return isLive() && SharedFile::vernauxNum != 0; 3850 } 3851 3852 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3853 ms->parent = this; 3854 sections.push_back(ms); 3855 assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS)); 3856 addralign = std::max(addralign, ms->addralign); 3857 } 3858 3859 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3860 uint64_t flags, uint32_t alignment) 3861 : MergeSyntheticSection(name, type, flags, alignment), 3862 builder(StringTableBuilder::RAW, llvm::Align(alignment)) {} 3863 3864 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3865 3866 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3867 3868 void MergeTailSection::finalizeContents() { 3869 // Add all string pieces to the string table builder to create section 3870 // contents. 3871 for (MergeInputSection *sec : sections) 3872 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3873 if (sec->pieces[i].live) 3874 builder.add(sec->getData(i)); 3875 3876 // Fix the string table content. After this, the contents will never change. 3877 builder.finalize(); 3878 3879 // finalize() fixed tail-optimized strings, so we can now get 3880 // offsets of strings. Get an offset for each string and save it 3881 // to a corresponding SectionPiece for easy access. 3882 for (MergeInputSection *sec : sections) 3883 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3884 if (sec->pieces[i].live) 3885 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3886 } 3887 3888 void MergeNoTailSection::writeTo(uint8_t *buf) { 3889 parallelFor(0, numShards, 3890 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); 3891 } 3892 3893 // This function is very hot (i.e. it can take several seconds to finish) 3894 // because sometimes the number of inputs is in an order of magnitude of 3895 // millions. So, we use multi-threading. 3896 // 3897 // For any strings S and T, we know S is not mergeable with T if S's hash 3898 // value is different from T's. If that's the case, we can safely put S and 3899 // T into different string builders without worrying about merge misses. 3900 // We do it in parallel. 3901 void MergeNoTailSection::finalizeContents() { 3902 // Initializes string table builders. 3903 for (size_t i = 0; i < numShards; ++i) 3904 shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign)); 3905 3906 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3907 // operations in the following tight loop. 3908 const size_t concurrency = 3909 llvm::bit_floor(std::min<size_t>(config->threadCount, numShards)); 3910 3911 // Add section pieces to the builders. 3912 parallelFor(0, concurrency, [&](size_t threadId) { 3913 for (MergeInputSection *sec : sections) { 3914 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3915 if (!sec->pieces[i].live) 3916 continue; 3917 size_t shardId = getShardId(sec->pieces[i].hash); 3918 if ((shardId & (concurrency - 1)) == threadId) 3919 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3920 } 3921 } 3922 }); 3923 3924 // Compute an in-section offset for each shard. 3925 size_t off = 0; 3926 for (size_t i = 0; i < numShards; ++i) { 3927 shards[i].finalizeInOrder(); 3928 if (shards[i].getSize() > 0) 3929 off = alignToPowerOf2(off, addralign); 3930 shardOffsets[i] = off; 3931 off += shards[i].getSize(); 3932 } 3933 size = off; 3934 3935 // So far, section pieces have offsets from beginning of shards, but 3936 // we want offsets from beginning of the whole section. Fix them. 3937 parallelForEach(sections, [&](MergeInputSection *sec) { 3938 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3939 if (sec->pieces[i].live) 3940 sec->pieces[i].outputOff += 3941 shardOffsets[getShardId(sec->pieces[i].hash)]; 3942 }); 3943 } 3944 3945 template <class ELFT> void elf::splitSections() { 3946 llvm::TimeTraceScope timeScope("Split sections"); 3947 // splitIntoPieces needs to be called on each MergeInputSection 3948 // before calling finalizeContents(). 3949 parallelForEach(ctx.objectFiles, [](ELFFileBase *file) { 3950 for (InputSectionBase *sec : file->getSections()) { 3951 if (!sec) 3952 continue; 3953 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3954 s->splitIntoPieces(); 3955 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3956 eh->split<ELFT>(); 3957 } 3958 }); 3959 } 3960 3961 void elf::combineEhSections() { 3962 llvm::TimeTraceScope timeScope("Combine EH sections"); 3963 for (EhInputSection *sec : ctx.ehInputSections) { 3964 EhFrameSection &eh = *sec->getPartition().ehFrame; 3965 sec->parent = &eh; 3966 eh.addralign = std::max(eh.addralign, sec->addralign); 3967 eh.sections.push_back(sec); 3968 llvm::append_range(eh.dependentSections, sec->dependentSections); 3969 } 3970 3971 if (!mainPart->armExidx) 3972 return; 3973 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) { 3974 // Ignore dead sections and the partition end marker (.part.end), 3975 // whose partition number is out of bounds. 3976 if (!s->isLive() || s->partition == 255) 3977 return false; 3978 Partition &part = s->getPartition(); 3979 return s->kind() == SectionBase::Regular && part.armExidx && 3980 part.armExidx->addSection(cast<InputSection>(s)); 3981 }); 3982 } 3983 3984 MipsRldMapSection::MipsRldMapSection() 3985 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3986 ".rld_map") {} 3987 3988 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3989 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3990 config->wordsize, ".ARM.exidx") {} 3991 3992 static InputSection *findExidxSection(InputSection *isec) { 3993 for (InputSection *d : isec->dependentSections) 3994 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3995 return d; 3996 return nullptr; 3997 } 3998 3999 static bool isValidExidxSectionDep(InputSection *isec) { 4000 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 4001 isec->getSize() > 0; 4002 } 4003 4004 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 4005 if (isec->type == SHT_ARM_EXIDX) { 4006 if (InputSection *dep = isec->getLinkOrderDep()) 4007 if (isValidExidxSectionDep(dep)) { 4008 exidxSections.push_back(isec); 4009 // Every exidxSection is 8 bytes, we need an estimate of 4010 // size before assignAddresses can be called. Final size 4011 // will only be known after finalize is called. 4012 size += 8; 4013 } 4014 return true; 4015 } 4016 4017 if (isValidExidxSectionDep(isec)) { 4018 executableSections.push_back(isec); 4019 return false; 4020 } 4021 4022 // FIXME: we do not output a relocation section when --emit-relocs is used 4023 // as we do not have relocation sections for linker generated table entries 4024 // and we would have to erase at a late stage relocations from merged entries. 4025 // Given that exception tables are already position independent and a binary 4026 // analyzer could derive the relocations we choose to erase the relocations. 4027 if (config->emitRelocs && isec->type == SHT_REL) 4028 if (InputSectionBase *ex = isec->getRelocatedSection()) 4029 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 4030 return true; 4031 4032 return false; 4033 } 4034 4035 // References to .ARM.Extab Sections have bit 31 clear and are not the 4036 // special EXIDX_CANTUNWIND bit-pattern. 4037 static bool isExtabRef(uint32_t unwind) { 4038 return (unwind & 0x80000000) == 0 && unwind != 0x1; 4039 } 4040 4041 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 4042 // section Prev, where Cur follows Prev in the table. This can be done if the 4043 // unwinding instructions in Cur are identical to Prev. Linker generated 4044 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 4045 // InputSection. 4046 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 4047 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 4048 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 4049 uint32_t prevUnwind = 1; 4050 if (prev) 4051 prevUnwind = read32(prev->content().data() + prev->content().size() - 4); 4052 if (isExtabRef(prevUnwind)) 4053 return false; 4054 4055 // We consider the unwind instructions of an .ARM.exidx table entry 4056 // a duplicate if the previous unwind instructions if: 4057 // - Both are the special EXIDX_CANTUNWIND. 4058 // - Both are the same inline unwind instructions. 4059 // We do not attempt to follow and check links into .ARM.extab tables as 4060 // consecutive identical entries are rare and the effort to check that they 4061 // are identical is high. 4062 4063 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 4064 if (cur == nullptr) 4065 return prevUnwind == 1; 4066 4067 for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) { 4068 uint32_t curUnwind = read32(cur->content().data() + offset); 4069 if (isExtabRef(curUnwind) || curUnwind != prevUnwind) 4070 return false; 4071 } 4072 // All table entries in this .ARM.exidx Section can be merged into the 4073 // previous Section. 4074 return true; 4075 } 4076 4077 // The .ARM.exidx table must be sorted in ascending order of the address of the 4078 // functions the table describes. std::optionally duplicate adjacent table 4079 // entries can be removed. At the end of the function the executableSections 4080 // must be sorted in ascending order of address, Sentinel is set to the 4081 // InputSection with the highest address and any InputSections that have 4082 // mergeable .ARM.exidx table entries are removed from it. 4083 void ARMExidxSyntheticSection::finalizeContents() { 4084 // Ensure that any fixed-point iterations after the first see the original set 4085 // of sections. 4086 if (!originalExecutableSections.empty()) 4087 executableSections = originalExecutableSections; 4088 else if (config->enableNonContiguousRegions) 4089 originalExecutableSections = executableSections; 4090 4091 // The executableSections and exidxSections that we use to derive the final 4092 // contents of this SyntheticSection are populated before 4093 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 4094 // ICF may remove executable InputSections and their dependent .ARM.exidx 4095 // section that we recorded earlier. 4096 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 4097 llvm::erase_if(exidxSections, isDiscarded); 4098 // We need to remove discarded InputSections and InputSections without 4099 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 4100 // of range. 4101 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 4102 if (!isec->isLive()) 4103 return true; 4104 if (findExidxSection(isec)) 4105 return false; 4106 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 4107 return off != llvm::SignExtend64(off, 31); 4108 }; 4109 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 4110 4111 // Sort the executable sections that may or may not have associated 4112 // .ARM.exidx sections by order of ascending address. This requires the 4113 // relative positions of InputSections and OutputSections to be known. 4114 auto compareByFilePosition = [](const InputSection *a, 4115 const InputSection *b) { 4116 OutputSection *aOut = a->getParent(); 4117 OutputSection *bOut = b->getParent(); 4118 4119 if (aOut != bOut) 4120 return aOut->addr < bOut->addr; 4121 return a->outSecOff < b->outSecOff; 4122 }; 4123 llvm::stable_sort(executableSections, compareByFilePosition); 4124 sentinel = executableSections.back(); 4125 // std::optionally merge adjacent duplicate entries. 4126 if (config->mergeArmExidx) { 4127 SmallVector<InputSection *, 0> selectedSections; 4128 selectedSections.reserve(executableSections.size()); 4129 selectedSections.push_back(executableSections[0]); 4130 size_t prev = 0; 4131 for (size_t i = 1; i < executableSections.size(); ++i) { 4132 InputSection *ex1 = findExidxSection(executableSections[prev]); 4133 InputSection *ex2 = findExidxSection(executableSections[i]); 4134 if (!isDuplicateArmExidxSec(ex1, ex2)) { 4135 selectedSections.push_back(executableSections[i]); 4136 prev = i; 4137 } 4138 } 4139 executableSections = std::move(selectedSections); 4140 } 4141 // offset is within the SyntheticSection. 4142 size_t offset = 0; 4143 size = 0; 4144 for (InputSection *isec : executableSections) { 4145 if (InputSection *d = findExidxSection(isec)) { 4146 d->outSecOff = offset; 4147 d->parent = getParent(); 4148 offset += d->getSize(); 4149 } else { 4150 offset += 8; 4151 } 4152 } 4153 // Size includes Sentinel. 4154 size = offset + 8; 4155 } 4156 4157 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 4158 return executableSections.front(); 4159 } 4160 4161 // To write the .ARM.exidx table from the ExecutableSections we have three cases 4162 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 4163 // We write the .ARM.exidx section contents and apply its relocations. 4164 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 4165 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 4166 // start of the InputSection as the purpose of the linker generated 4167 // section is to terminate the address range of the previous entry. 4168 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 4169 // the table to terminate the address range of the final entry. 4170 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 4171 4172 // A linker generated CANTUNWIND entry is made up of two words: 4173 // 0x0 with R_ARM_PREL31 relocation to target. 4174 // 0x1 with EXIDX_CANTUNWIND. 4175 uint64_t offset = 0; 4176 for (InputSection *isec : executableSections) { 4177 assert(isec->getParent() != nullptr); 4178 if (InputSection *d = findExidxSection(isec)) { 4179 for (int dataOffset = 0; dataOffset != (int)d->content().size(); 4180 dataOffset += 4) 4181 write32(buf + offset + dataOffset, 4182 read32(d->content().data() + dataOffset)); 4183 // Recalculate outSecOff as finalizeAddressDependentContent() 4184 // may have altered syntheticSection outSecOff. 4185 d->outSecOff = offset + outSecOff; 4186 target->relocateAlloc(*d, buf + offset); 4187 offset += d->getSize(); 4188 } else { 4189 // A Linker generated CANTUNWIND section. 4190 write32(buf + offset + 0, 0x0); 4191 write32(buf + offset + 4, 0x1); 4192 uint64_t s = isec->getVA(); 4193 uint64_t p = getVA() + offset; 4194 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 4195 offset += 8; 4196 } 4197 } 4198 // Write Sentinel CANTUNWIND entry. 4199 write32(buf + offset + 0, 0x0); 4200 write32(buf + offset + 4, 0x1); 4201 uint64_t s = sentinel->getVA(sentinel->getSize()); 4202 uint64_t p = getVA() + offset; 4203 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 4204 assert(size == offset + 8); 4205 } 4206 4207 bool ARMExidxSyntheticSection::isNeeded() const { 4208 return llvm::any_of(exidxSections, 4209 [](InputSection *isec) { return isec->isLive(); }); 4210 } 4211 4212 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 4213 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4214 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 4215 this->parent = os; 4216 this->outSecOff = off; 4217 } 4218 4219 size_t ThunkSection::getSize() const { 4220 if (roundUpSizeForErrata) 4221 return alignTo(size, 4096); 4222 return size; 4223 } 4224 4225 void ThunkSection::addThunk(Thunk *t) { 4226 thunks.push_back(t); 4227 t->addSymbols(*this); 4228 } 4229 4230 void ThunkSection::writeTo(uint8_t *buf) { 4231 for (Thunk *t : thunks) 4232 t->writeTo(buf + t->offset); 4233 } 4234 4235 InputSection *ThunkSection::getTargetInputSection() const { 4236 if (thunks.empty()) 4237 return nullptr; 4238 const Thunk *t = thunks.front(); 4239 return t->getTargetInputSection(); 4240 } 4241 4242 bool ThunkSection::assignOffsets() { 4243 uint64_t off = 0; 4244 for (Thunk *t : thunks) { 4245 off = alignToPowerOf2(off, t->alignment); 4246 t->setOffset(off); 4247 uint32_t size = t->size(); 4248 t->getThunkTargetSym()->size = size; 4249 off += size; 4250 } 4251 bool changed = off != size; 4252 size = off; 4253 return changed; 4254 } 4255 4256 PPC32Got2Section::PPC32Got2Section() 4257 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 4258 4259 bool PPC32Got2Section::isNeeded() const { 4260 // See the comment below. This is not needed if there is no other 4261 // InputSection. 4262 for (SectionCommand *cmd : getParent()->commands) 4263 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 4264 for (InputSection *isec : isd->sections) 4265 if (isec != this) 4266 return true; 4267 return false; 4268 } 4269 4270 void PPC32Got2Section::finalizeContents() { 4271 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 4272 // .got2 . This function computes outSecOff of each .got2 to be used in 4273 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 4274 // to collect input sections named ".got2". 4275 for (SectionCommand *cmd : getParent()->commands) 4276 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 4277 for (InputSection *isec : isd->sections) { 4278 // isec->file may be nullptr for MergeSyntheticSection. 4279 if (isec != this && isec->file) 4280 isec->file->ppc32Got2 = isec; 4281 } 4282 } 4283 } 4284 4285 // If linking position-dependent code then the table will store the addresses 4286 // directly in the binary so the section has type SHT_PROGBITS. If linking 4287 // position-independent code the section has type SHT_NOBITS since it will be 4288 // allocated and filled in by the dynamic linker. 4289 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 4290 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 4291 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 4292 ".branch_lt") {} 4293 4294 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 4295 int64_t addend) { 4296 return getVA() + entry_index.find({sym, addend})->second * 8; 4297 } 4298 4299 std::optional<uint32_t> 4300 PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) { 4301 auto res = 4302 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 4303 if (!res.second) 4304 return std::nullopt; 4305 entries.emplace_back(sym, addend); 4306 return res.first->second; 4307 } 4308 4309 size_t PPC64LongBranchTargetSection::getSize() const { 4310 return entries.size() * 8; 4311 } 4312 4313 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 4314 // If linking non-pic we have the final addresses of the targets and they get 4315 // written to the table directly. For pic the dynamic linker will allocate 4316 // the section and fill it. 4317 if (config->isPic) 4318 return; 4319 4320 for (auto entry : entries) { 4321 const Symbol *sym = entry.first; 4322 int64_t addend = entry.second; 4323 assert(sym->getVA()); 4324 // Need calls to branch to the local entry-point since a long-branch 4325 // must be a local-call. 4326 write64(buf, sym->getVA(addend) + 4327 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 4328 buf += 8; 4329 } 4330 } 4331 4332 bool PPC64LongBranchTargetSection::isNeeded() const { 4333 // `removeUnusedSyntheticSections()` is called before thunk allocation which 4334 // is too early to determine if this section will be empty or not. We need 4335 // Finalized to keep the section alive until after thunk creation. Finalized 4336 // only gets set to true once `finalizeSections()` is called after thunk 4337 // creation. Because of this, if we don't create any long-branch thunks we end 4338 // up with an empty .branch_lt section in the binary. 4339 return !finalized || !entries.empty(); 4340 } 4341 4342 static uint8_t getAbiVersion() { 4343 // MIPS non-PIC executable gets ABI version 1. 4344 if (config->emachine == EM_MIPS) { 4345 if (!config->isPic && !config->relocatable && 4346 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 4347 return 1; 4348 return 0; 4349 } 4350 4351 if (config->emachine == EM_AMDGPU && !ctx.objectFiles.empty()) { 4352 uint8_t ver = ctx.objectFiles[0]->abiVersion; 4353 for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1)) 4354 if (file->abiVersion != ver) 4355 error("incompatible ABI version: " + toString(file)); 4356 return ver; 4357 } 4358 4359 return 0; 4360 } 4361 4362 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 4363 memcpy(buf, "\177ELF", 4); 4364 4365 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 4366 eHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 4367 eHdr->e_ident[EI_DATA] = 4368 ELFT::Endianness == endianness::little ? ELFDATA2LSB : ELFDATA2MSB; 4369 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 4370 eHdr->e_ident[EI_OSABI] = config->osabi; 4371 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 4372 eHdr->e_machine = config->emachine; 4373 eHdr->e_version = EV_CURRENT; 4374 eHdr->e_flags = config->eflags; 4375 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 4376 eHdr->e_phnum = part.phdrs.size(); 4377 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 4378 4379 if (!config->relocatable) { 4380 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 4381 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 4382 } 4383 } 4384 4385 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 4386 // Write the program header table. 4387 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 4388 for (PhdrEntry *p : part.phdrs) { 4389 hBuf->p_type = p->p_type; 4390 hBuf->p_flags = p->p_flags; 4391 hBuf->p_offset = p->p_offset; 4392 hBuf->p_vaddr = p->p_vaddr; 4393 hBuf->p_paddr = p->p_paddr; 4394 hBuf->p_filesz = p->p_filesz; 4395 hBuf->p_memsz = p->p_memsz; 4396 hBuf->p_align = p->p_align; 4397 ++hBuf; 4398 } 4399 } 4400 4401 template <typename ELFT> 4402 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 4403 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 4404 4405 template <typename ELFT> 4406 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 4407 return sizeof(typename ELFT::Ehdr); 4408 } 4409 4410 template <typename ELFT> 4411 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 4412 writeEhdr<ELFT>(buf, getPartition()); 4413 4414 // Loadable partitions are always ET_DYN. 4415 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 4416 eHdr->e_type = ET_DYN; 4417 } 4418 4419 template <typename ELFT> 4420 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 4421 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 4422 4423 template <typename ELFT> 4424 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 4425 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 4426 } 4427 4428 template <typename ELFT> 4429 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 4430 writePhdrs<ELFT>(buf, getPartition()); 4431 } 4432 4433 PartitionIndexSection::PartitionIndexSection() 4434 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 4435 4436 size_t PartitionIndexSection::getSize() const { 4437 return 12 * (partitions.size() - 1); 4438 } 4439 4440 void PartitionIndexSection::finalizeContents() { 4441 for (size_t i = 1; i != partitions.size(); ++i) 4442 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 4443 } 4444 4445 void PartitionIndexSection::writeTo(uint8_t *buf) { 4446 uint64_t va = getVA(); 4447 for (size_t i = 1; i != partitions.size(); ++i) { 4448 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 4449 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 4450 4451 SyntheticSection *next = i == partitions.size() - 1 4452 ? in.partEnd.get() 4453 : partitions[i + 1].elfHeader.get(); 4454 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 4455 4456 va += 12; 4457 buf += 12; 4458 } 4459 } 4460 4461 void InStruct::reset() { 4462 attributes.reset(); 4463 riscvAttributes.reset(); 4464 bss.reset(); 4465 bssRelRo.reset(); 4466 got.reset(); 4467 gotPlt.reset(); 4468 igotPlt.reset(); 4469 relroPadding.reset(); 4470 armCmseSGSection.reset(); 4471 ppc64LongBranchTarget.reset(); 4472 mipsAbiFlags.reset(); 4473 mipsGot.reset(); 4474 mipsOptions.reset(); 4475 mipsReginfo.reset(); 4476 mipsRldMap.reset(); 4477 partEnd.reset(); 4478 partIndex.reset(); 4479 plt.reset(); 4480 iplt.reset(); 4481 ppc32Got2.reset(); 4482 ibtPlt.reset(); 4483 relaPlt.reset(); 4484 debugNames.reset(); 4485 gdbIndex.reset(); 4486 shStrTab.reset(); 4487 strTab.reset(); 4488 symTab.reset(); 4489 symTabShndx.reset(); 4490 } 4491 4492 static bool needsInterpSection() { 4493 return !config->relocatable && !config->shared && 4494 !config->dynamicLinker.empty() && script->needsInterpSection(); 4495 } 4496 4497 bool elf::hasMemtag() { 4498 return config->emachine == EM_AARCH64 && 4499 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE; 4500 } 4501 4502 // Fully static executables don't support MTE globals at this point in time, as 4503 // we currently rely on: 4504 // - A dynamic loader to process relocations, and 4505 // - Dynamic entries. 4506 // This restriction could be removed in future by re-using some of the ideas 4507 // that ifuncs use in fully static executables. 4508 bool elf::canHaveMemtagGlobals() { 4509 return hasMemtag() && 4510 (config->relocatable || config->shared || needsInterpSection()); 4511 } 4512 4513 constexpr char kMemtagAndroidNoteName[] = "Android"; 4514 void MemtagAndroidNote::writeTo(uint8_t *buf) { 4515 static_assert( 4516 sizeof(kMemtagAndroidNoteName) == 8, 4517 "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it " 4518 "that way for backwards compatibility."); 4519 4520 write32(buf, sizeof(kMemtagAndroidNoteName)); 4521 write32(buf + 4, sizeof(uint32_t)); 4522 write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG); 4523 memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName)); 4524 buf += 12 + alignTo(sizeof(kMemtagAndroidNoteName), 4); 4525 4526 uint32_t value = 0; 4527 value |= config->androidMemtagMode; 4528 if (config->androidMemtagHeap) 4529 value |= ELF::NT_MEMTAG_HEAP; 4530 // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled 4531 // binary on Android 11 or 12 will result in a checkfail in the loader. 4532 if (config->androidMemtagStack) 4533 value |= ELF::NT_MEMTAG_STACK; 4534 write32(buf, value); // note value 4535 } 4536 4537 size_t MemtagAndroidNote::getSize() const { 4538 return sizeof(llvm::ELF::Elf64_Nhdr) + 4539 /*namesz=*/alignTo(sizeof(kMemtagAndroidNoteName), 4) + 4540 /*descsz=*/sizeof(uint32_t); 4541 } 4542 4543 void PackageMetadataNote::writeTo(uint8_t *buf) { 4544 write32(buf, 4); 4545 write32(buf + 4, config->packageMetadata.size() + 1); 4546 write32(buf + 8, FDO_PACKAGING_METADATA); 4547 memcpy(buf + 12, "FDO", 4); 4548 memcpy(buf + 16, config->packageMetadata.data(), 4549 config->packageMetadata.size()); 4550 } 4551 4552 size_t PackageMetadataNote::getSize() const { 4553 return sizeof(llvm::ELF::Elf64_Nhdr) + 4 + 4554 alignTo(config->packageMetadata.size() + 1, 4); 4555 } 4556 4557 // Helper function, return the size of the ULEB128 for 'v', optionally writing 4558 // it to `*(buf + offset)` if `buf` is non-null. 4559 static size_t computeOrWriteULEB128(uint64_t v, uint8_t *buf, size_t offset) { 4560 if (buf) 4561 return encodeULEB128(v, buf + offset); 4562 return getULEB128Size(v); 4563 } 4564 4565 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic 4566 constexpr uint64_t kMemtagStepSizeBits = 3; 4567 constexpr uint64_t kMemtagGranuleSize = 16; 4568 static size_t 4569 createMemtagGlobalDescriptors(const SmallVector<const Symbol *, 0> &symbols, 4570 uint8_t *buf = nullptr) { 4571 size_t sectionSize = 0; 4572 uint64_t lastGlobalEnd = 0; 4573 4574 for (const Symbol *sym : symbols) { 4575 if (!includeInSymtab(*sym)) 4576 continue; 4577 const uint64_t addr = sym->getVA(); 4578 const uint64_t size = sym->getSize(); 4579 4580 if (addr <= kMemtagGranuleSize && buf != nullptr) 4581 errorOrWarn("address of the tagged symbol \"" + sym->getName() + 4582 "\" falls in the ELF header. This is indicative of a " 4583 "compiler/linker bug"); 4584 if (addr % kMemtagGranuleSize != 0) 4585 errorOrWarn("address of the tagged symbol \"" + sym->getName() + 4586 "\" at 0x" + Twine::utohexstr(addr) + 4587 "\" is not granule (16-byte) aligned"); 4588 if (size == 0) 4589 errorOrWarn("size of the tagged symbol \"" + sym->getName() + 4590 "\" is not allowed to be zero"); 4591 if (size % kMemtagGranuleSize != 0) 4592 errorOrWarn("size of the tagged symbol \"" + sym->getName() + 4593 "\" (size 0x" + Twine::utohexstr(size) + 4594 ") is not granule (16-byte) aligned"); 4595 4596 const uint64_t sizeToEncode = size / kMemtagGranuleSize; 4597 const uint64_t stepToEncode = ((addr - lastGlobalEnd) / kMemtagGranuleSize) 4598 << kMemtagStepSizeBits; 4599 if (sizeToEncode < (1 << kMemtagStepSizeBits)) { 4600 sectionSize += computeOrWriteULEB128(stepToEncode | sizeToEncode, buf, sectionSize); 4601 } else { 4602 sectionSize += computeOrWriteULEB128(stepToEncode, buf, sectionSize); 4603 sectionSize += computeOrWriteULEB128(sizeToEncode - 1, buf, sectionSize); 4604 } 4605 lastGlobalEnd = addr + size; 4606 } 4607 4608 return sectionSize; 4609 } 4610 4611 bool MemtagGlobalDescriptors::updateAllocSize() { 4612 size_t oldSize = getSize(); 4613 std::stable_sort(symbols.begin(), symbols.end(), 4614 [](const Symbol *s1, const Symbol *s2) { 4615 return s1->getVA() < s2->getVA(); 4616 }); 4617 return oldSize != getSize(); 4618 } 4619 4620 void MemtagGlobalDescriptors::writeTo(uint8_t *buf) { 4621 createMemtagGlobalDescriptors(symbols, buf); 4622 } 4623 4624 size_t MemtagGlobalDescriptors::getSize() const { 4625 return createMemtagGlobalDescriptors(symbols); 4626 } 4627 4628 static OutputSection *findSection(StringRef name) { 4629 for (SectionCommand *cmd : script->sectionCommands) 4630 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 4631 if (osd->osec.name == name) 4632 return &osd->osec; 4633 return nullptr; 4634 } 4635 4636 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 4637 uint64_t val, uint8_t stOther = STV_HIDDEN) { 4638 Symbol *s = symtab.find(name); 4639 if (!s || s->isDefined() || s->isCommon()) 4640 return nullptr; 4641 4642 s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, stOther, 4643 STT_NOTYPE, val, 4644 /*size=*/0, sec}); 4645 s->isUsedInRegularObj = true; 4646 return cast<Defined>(s); 4647 } 4648 4649 template <class ELFT> void elf::createSyntheticSections() { 4650 // Initialize all pointers with NULL. This is needed because 4651 // you can call lld::elf::main more than once as a library. 4652 Out::tlsPhdr = nullptr; 4653 Out::preinitArray = nullptr; 4654 Out::initArray = nullptr; 4655 Out::finiArray = nullptr; 4656 4657 // Add the .interp section first because it is not a SyntheticSection. 4658 // The removeUnusedSyntheticSections() function relies on the 4659 // SyntheticSections coming last. 4660 if (needsInterpSection()) { 4661 for (size_t i = 1; i <= partitions.size(); ++i) { 4662 InputSection *sec = createInterpSection(); 4663 sec->partition = i; 4664 ctx.inputSections.push_back(sec); 4665 } 4666 } 4667 4668 auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); }; 4669 4670 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 4671 4672 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 4673 Out::programHeaders->addralign = config->wordsize; 4674 4675 if (config->strip != StripPolicy::All) { 4676 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 4677 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 4678 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 4679 } 4680 4681 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 4682 add(*in.bss); 4683 4684 // If there is a SECTIONS command and a .data.rel.ro section name use name 4685 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 4686 // This makes sure our relro is contiguous. 4687 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 4688 in.bssRelRo = std::make_unique<BssSection>( 4689 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 4690 add(*in.bssRelRo); 4691 4692 // Add MIPS-specific sections. 4693 if (config->emachine == EM_MIPS) { 4694 if (!config->shared && config->hasDynSymTab) { 4695 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 4696 add(*in.mipsRldMap); 4697 } 4698 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 4699 add(*in.mipsAbiFlags); 4700 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 4701 add(*in.mipsOptions); 4702 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 4703 add(*in.mipsReginfo); 4704 } 4705 4706 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 4707 4708 const unsigned threadCount = config->threadCount; 4709 for (Partition &part : partitions) { 4710 auto add = [&](SyntheticSection &sec) { 4711 sec.partition = part.getNumber(); 4712 ctx.inputSections.push_back(&sec); 4713 }; 4714 4715 if (!part.name.empty()) { 4716 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 4717 part.elfHeader->name = part.name; 4718 add(*part.elfHeader); 4719 4720 part.programHeaders = 4721 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 4722 add(*part.programHeaders); 4723 } 4724 4725 if (config->buildId != BuildIdKind::None) { 4726 part.buildId = std::make_unique<BuildIdSection>(); 4727 add(*part.buildId); 4728 } 4729 4730 // dynSymTab is always present to simplify sym->includeInDynsym() in 4731 // finalizeSections. 4732 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 4733 part.dynSymTab = 4734 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 4735 4736 if (config->relocatable) 4737 continue; 4738 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 4739 4740 if (hasMemtag()) { 4741 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(); 4742 add(*part.memtagAndroidNote); 4743 if (canHaveMemtagGlobals()) { 4744 part.memtagGlobalDescriptors = 4745 std::make_unique<MemtagGlobalDescriptors>(); 4746 add(*part.memtagGlobalDescriptors); 4747 } 4748 } 4749 4750 if (config->androidPackDynRelocs) 4751 part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>( 4752 relaDynName, threadCount); 4753 else 4754 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 4755 relaDynName, config->zCombreloc, threadCount); 4756 4757 if (config->hasDynSymTab) { 4758 add(*part.dynSymTab); 4759 4760 part.verSym = std::make_unique<VersionTableSection>(); 4761 add(*part.verSym); 4762 4763 if (!namedVersionDefs().empty()) { 4764 part.verDef = std::make_unique<VersionDefinitionSection>(); 4765 add(*part.verDef); 4766 } 4767 4768 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 4769 add(*part.verNeed); 4770 4771 if (config->gnuHash) { 4772 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 4773 add(*part.gnuHashTab); 4774 } 4775 4776 if (config->sysvHash) { 4777 part.hashTab = std::make_unique<HashTableSection>(); 4778 add(*part.hashTab); 4779 } 4780 4781 add(*part.dynamic); 4782 add(*part.dynStrTab); 4783 } 4784 add(*part.relaDyn); 4785 4786 if (config->relrPackDynRelocs) { 4787 part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount); 4788 add(*part.relrDyn); 4789 part.relrAuthDyn = std::make_unique<RelrSection<ELFT>>( 4790 threadCount, /*isAArch64Auth=*/true); 4791 add(*part.relrAuthDyn); 4792 } 4793 4794 if (config->ehFrameHdr) { 4795 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 4796 add(*part.ehFrameHdr); 4797 } 4798 part.ehFrame = std::make_unique<EhFrameSection>(); 4799 add(*part.ehFrame); 4800 4801 if (config->emachine == EM_ARM) { 4802 // This section replaces all the individual .ARM.exidx InputSections. 4803 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 4804 add(*part.armExidx); 4805 } 4806 4807 if (!config->packageMetadata.empty()) { 4808 part.packageMetadataNote = std::make_unique<PackageMetadataNote>(); 4809 add(*part.packageMetadataNote); 4810 } 4811 } 4812 4813 if (partitions.size() != 1) { 4814 // Create the partition end marker. This needs to be in partition number 255 4815 // so that it is sorted after all other partitions. It also has other 4816 // special handling (see createPhdrs() and combineEhSections()). 4817 in.partEnd = 4818 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 4819 in.partEnd->partition = 255; 4820 add(*in.partEnd); 4821 4822 in.partIndex = std::make_unique<PartitionIndexSection>(); 4823 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 4824 addOptionalRegular("__part_index_end", in.partIndex.get(), 4825 in.partIndex->getSize()); 4826 add(*in.partIndex); 4827 } 4828 4829 // Add .got. MIPS' .got is so different from the other archs, 4830 // it has its own class. 4831 if (config->emachine == EM_MIPS) { 4832 in.mipsGot = std::make_unique<MipsGotSection>(); 4833 add(*in.mipsGot); 4834 } else { 4835 in.got = std::make_unique<GotSection>(); 4836 add(*in.got); 4837 } 4838 4839 if (config->emachine == EM_PPC) { 4840 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 4841 add(*in.ppc32Got2); 4842 } 4843 4844 if (config->emachine == EM_PPC64) { 4845 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 4846 add(*in.ppc64LongBranchTarget); 4847 } 4848 4849 in.gotPlt = std::make_unique<GotPltSection>(); 4850 add(*in.gotPlt); 4851 in.igotPlt = std::make_unique<IgotPltSection>(); 4852 add(*in.igotPlt); 4853 // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the 4854 // section in the absence of PHDRS/SECTIONS commands. 4855 if (config->zRelro && 4856 ((script->phdrsCommands.empty() && !script->hasSectionsCommand) || 4857 script->seenRelroEnd)) { 4858 in.relroPadding = std::make_unique<RelroPaddingSection>(); 4859 add(*in.relroPadding); 4860 } 4861 4862 if (config->emachine == EM_ARM) { 4863 in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(); 4864 add(*in.armCmseSGSection); 4865 } 4866 4867 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 4868 // it as a relocation and ensure the referenced section is created. 4869 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 4870 if (target->gotBaseSymInGotPlt) 4871 in.gotPlt->hasGotPltOffRel = true; 4872 else 4873 in.got->hasGotOffRel = true; 4874 } 4875 4876 // We always need to add rel[a].plt to output if it has entries. 4877 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 4878 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 4879 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false, 4880 /*threadCount=*/1); 4881 add(*in.relaPlt); 4882 4883 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 4884 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 4885 in.ibtPlt = std::make_unique<IBTPltSection>(); 4886 add(*in.ibtPlt); 4887 } 4888 4889 if (config->emachine == EM_PPC) 4890 in.plt = std::make_unique<PPC32GlinkSection>(); 4891 else 4892 in.plt = std::make_unique<PltSection>(); 4893 add(*in.plt); 4894 in.iplt = std::make_unique<IpltSection>(); 4895 add(*in.iplt); 4896 4897 if (config->andFeatures || !ctx.aarch64PauthAbiCoreInfo.empty()) 4898 add(*make<GnuPropertySection>()); 4899 4900 if (config->debugNames) { 4901 in.debugNames = std::make_unique<DebugNamesSection<ELFT>>(); 4902 add(*in.debugNames); 4903 } 4904 4905 if (config->gdbIndex) { 4906 in.gdbIndex = GdbIndexSection::create<ELFT>(); 4907 add(*in.gdbIndex); 4908 } 4909 4910 // .note.GNU-stack is always added when we are creating a re-linkable 4911 // object file. Other linkers are using the presence of this marker 4912 // section to control the executable-ness of the stack area, but that 4913 // is irrelevant these days. Stack area should always be non-executable 4914 // by default. So we emit this section unconditionally. 4915 if (config->relocatable) 4916 add(*make<GnuStackSection>()); 4917 4918 if (in.symTab) 4919 add(*in.symTab); 4920 if (in.symTabShndx) 4921 add(*in.symTabShndx); 4922 add(*in.shStrTab); 4923 if (in.strTab) 4924 add(*in.strTab); 4925 } 4926 4927 InStruct elf::in; 4928 4929 std::vector<Partition> elf::partitions; 4930 Partition *elf::mainPart; 4931 4932 template void elf::splitSections<ELF32LE>(); 4933 template void elf::splitSections<ELF32BE>(); 4934 template void elf::splitSections<ELF64LE>(); 4935 template void elf::splitSections<ELF64BE>(); 4936 4937 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 4938 function_ref<void(InputSection &)>); 4939 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 4940 function_ref<void(InputSection &)>); 4941 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 4942 function_ref<void(InputSection &)>); 4943 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 4944 function_ref<void(InputSection &)>); 4945 4946 template class elf::SymbolTableSection<ELF32LE>; 4947 template class elf::SymbolTableSection<ELF32BE>; 4948 template class elf::SymbolTableSection<ELF64LE>; 4949 template class elf::SymbolTableSection<ELF64BE>; 4950 4951 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 4952 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 4953 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 4954 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 4955 4956 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 4957 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 4958 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 4959 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 4960 4961 template void elf::createSyntheticSections<ELF32LE>(); 4962 template void elf::createSyntheticSections<ELF32BE>(); 4963 template void elf::createSyntheticSections<ELF64LE>(); 4964 template void elf::createSyntheticSections<ELF64BE>(); 4965