1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "DWARF.h" 19 #include "EhFrame.h" 20 #include "InputFiles.h" 21 #include "LinkerScript.h" 22 #include "OutputSections.h" 23 #include "SymbolTable.h" 24 #include "Symbols.h" 25 #include "Target.h" 26 #include "Thunks.h" 27 #include "Writer.h" 28 #include "lld/Common/CommonLinkerContext.h" 29 #include "lld/Common/DWARF.h" 30 #include "lld/Common/Strings.h" 31 #include "lld/Common/Version.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/ADT/SetOperations.h" 34 #include "llvm/ADT/StringExtras.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 38 #include "llvm/Support/Endian.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Parallel.h" 41 #include "llvm/Support/TimeProfiler.h" 42 #include <cstdlib> 43 44 using namespace llvm; 45 using namespace llvm::dwarf; 46 using namespace llvm::ELF; 47 using namespace llvm::object; 48 using namespace llvm::support; 49 using namespace lld; 50 using namespace lld::elf; 51 52 using llvm::support::endian::read32le; 53 using llvm::support::endian::write32le; 54 using llvm::support::endian::write64le; 55 56 constexpr size_t MergeNoTailSection::numShards; 57 58 static uint64_t readUint(uint8_t *buf) { 59 return config->is64 ? read64(buf) : read32(buf); 60 } 61 62 static void writeUint(uint8_t *buf, uint64_t val) { 63 if (config->is64) 64 write64(buf, val); 65 else 66 write32(buf, val); 67 } 68 69 // Returns an LLD version string. 70 static ArrayRef<uint8_t> getVersion() { 71 // Check LLD_VERSION first for ease of testing. 72 // You can get consistent output by using the environment variable. 73 // This is only for testing. 74 StringRef s = getenv("LLD_VERSION"); 75 if (s.empty()) 76 s = saver().save(Twine("Linker: ") + getLLDVersion()); 77 78 // +1 to include the terminating '\0'. 79 return {(const uint8_t *)s.data(), s.size() + 1}; 80 } 81 82 // Creates a .comment section containing LLD version info. 83 // With this feature, you can identify LLD-generated binaries easily 84 // by "readelf --string-dump .comment <file>". 85 // The returned object is a mergeable string section. 86 MergeInputSection *elf::createCommentSection() { 87 auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 88 getVersion(), ".comment"); 89 sec->splitIntoPieces(); 90 return sec; 91 } 92 93 // .MIPS.abiflags section. 94 template <class ELFT> 95 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 96 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 97 flags(flags) { 98 this->entsize = sizeof(Elf_Mips_ABIFlags); 99 } 100 101 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 102 memcpy(buf, &flags, sizeof(flags)); 103 } 104 105 template <class ELFT> 106 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() { 107 Elf_Mips_ABIFlags flags = {}; 108 bool create = false; 109 110 for (InputSectionBase *sec : ctx.inputSections) { 111 if (sec->type != SHT_MIPS_ABIFLAGS) 112 continue; 113 sec->markDead(); 114 create = true; 115 116 std::string filename = toString(sec->file); 117 const size_t size = sec->content().size(); 118 // Older version of BFD (such as the default FreeBSD linker) concatenate 119 // .MIPS.abiflags instead of merging. To allow for this case (or potential 120 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 121 if (size < sizeof(Elf_Mips_ABIFlags)) { 122 error(filename + ": invalid size of .MIPS.abiflags section: got " + 123 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 124 return nullptr; 125 } 126 auto *s = 127 reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data()); 128 if (s->version != 0) { 129 error(filename + ": unexpected .MIPS.abiflags version " + 130 Twine(s->version)); 131 return nullptr; 132 } 133 134 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 135 // select the highest number of ISA/Rev/Ext. 136 flags.isa_level = std::max(flags.isa_level, s->isa_level); 137 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 138 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 139 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 140 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 141 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 142 flags.ases |= s->ases; 143 flags.flags1 |= s->flags1; 144 flags.flags2 |= s->flags2; 145 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 146 }; 147 148 if (create) 149 return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags); 150 return nullptr; 151 } 152 153 // .MIPS.options section. 154 template <class ELFT> 155 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 156 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 157 reginfo(reginfo) { 158 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 159 } 160 161 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 162 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 163 options->kind = ODK_REGINFO; 164 options->size = getSize(); 165 166 if (!config->relocatable) 167 reginfo.ri_gp_value = in.mipsGot->getGp(); 168 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 169 } 170 171 template <class ELFT> 172 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() { 173 // N64 ABI only. 174 if (!ELFT::Is64Bits) 175 return nullptr; 176 177 SmallVector<InputSectionBase *, 0> sections; 178 for (InputSectionBase *sec : ctx.inputSections) 179 if (sec->type == SHT_MIPS_OPTIONS) 180 sections.push_back(sec); 181 182 if (sections.empty()) 183 return nullptr; 184 185 Elf_Mips_RegInfo reginfo = {}; 186 for (InputSectionBase *sec : sections) { 187 sec->markDead(); 188 189 std::string filename = toString(sec->file); 190 ArrayRef<uint8_t> d = sec->content(); 191 192 while (!d.empty()) { 193 if (d.size() < sizeof(Elf_Mips_Options)) { 194 error(filename + ": invalid size of .MIPS.options section"); 195 break; 196 } 197 198 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 199 if (opt->kind == ODK_REGINFO) { 200 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 201 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 202 break; 203 } 204 205 if (!opt->size) 206 fatal(filename + ": zero option descriptor size"); 207 d = d.slice(opt->size); 208 } 209 }; 210 211 return std::make_unique<MipsOptionsSection<ELFT>>(reginfo); 212 } 213 214 // MIPS .reginfo section. 215 template <class ELFT> 216 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 217 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 218 reginfo(reginfo) { 219 this->entsize = sizeof(Elf_Mips_RegInfo); 220 } 221 222 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 223 if (!config->relocatable) 224 reginfo.ri_gp_value = in.mipsGot->getGp(); 225 memcpy(buf, ®info, sizeof(reginfo)); 226 } 227 228 template <class ELFT> 229 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() { 230 // Section should be alive for O32 and N32 ABIs only. 231 if (ELFT::Is64Bits) 232 return nullptr; 233 234 SmallVector<InputSectionBase *, 0> sections; 235 for (InputSectionBase *sec : ctx.inputSections) 236 if (sec->type == SHT_MIPS_REGINFO) 237 sections.push_back(sec); 238 239 if (sections.empty()) 240 return nullptr; 241 242 Elf_Mips_RegInfo reginfo = {}; 243 for (InputSectionBase *sec : sections) { 244 sec->markDead(); 245 246 if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) { 247 error(toString(sec->file) + ": invalid size of .reginfo section"); 248 return nullptr; 249 } 250 251 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data()); 252 reginfo.ri_gprmask |= r->ri_gprmask; 253 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 254 }; 255 256 return std::make_unique<MipsReginfoSection<ELFT>>(reginfo); 257 } 258 259 InputSection *elf::createInterpSection() { 260 // StringSaver guarantees that the returned string ends with '\0'. 261 StringRef s = saver().save(config->dynamicLinker); 262 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 263 264 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 265 ".interp"); 266 } 267 268 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 269 uint64_t size, InputSectionBase §ion) { 270 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type, 271 value, size, §ion); 272 if (in.symTab) 273 in.symTab->addSymbol(s); 274 275 if (config->emachine == EM_ARM && !config->isLE && config->armBe8 && 276 (section.flags & SHF_EXECINSTR)) 277 // Adding Linker generated mapping symbols to the arm specific mapping 278 // symbols list. 279 addArmSyntheticSectionMappingSymbol(s); 280 281 return s; 282 } 283 284 static size_t getHashSize() { 285 switch (config->buildId) { 286 case BuildIdKind::Fast: 287 return 8; 288 case BuildIdKind::Md5: 289 case BuildIdKind::Uuid: 290 return 16; 291 case BuildIdKind::Sha1: 292 return 20; 293 case BuildIdKind::Hexstring: 294 return config->buildIdVector.size(); 295 default: 296 llvm_unreachable("unknown BuildIdKind"); 297 } 298 } 299 300 // This class represents a linker-synthesized .note.gnu.property section. 301 // 302 // In x86 and AArch64, object files may contain feature flags indicating the 303 // features that they have used. The flags are stored in a .note.gnu.property 304 // section. 305 // 306 // lld reads the sections from input files and merges them by computing AND of 307 // the flags. The result is written as a new .note.gnu.property section. 308 // 309 // If the flag is zero (which indicates that the intersection of the feature 310 // sets is empty, or some input files didn't have .note.gnu.property sections), 311 // we don't create this section. 312 GnuPropertySection::GnuPropertySection() 313 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 314 config->wordsize, ".note.gnu.property") {} 315 316 void GnuPropertySection::writeTo(uint8_t *buf) { 317 uint32_t featureAndType = config->emachine == EM_AARCH64 318 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 319 : GNU_PROPERTY_X86_FEATURE_1_AND; 320 321 write32(buf, 4); // Name size 322 write32(buf + 4, config->is64 ? 16 : 12); // Content size 323 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 324 memcpy(buf + 12, "GNU", 4); // Name string 325 write32(buf + 16, featureAndType); // Feature type 326 write32(buf + 20, 4); // Feature size 327 write32(buf + 24, config->andFeatures); // Feature flags 328 if (config->is64) 329 write32(buf + 28, 0); // Padding 330 } 331 332 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 333 334 BuildIdSection::BuildIdSection() 335 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 336 hashSize(getHashSize()) {} 337 338 void BuildIdSection::writeTo(uint8_t *buf) { 339 write32(buf, 4); // Name size 340 write32(buf + 4, hashSize); // Content size 341 write32(buf + 8, NT_GNU_BUILD_ID); // Type 342 memcpy(buf + 12, "GNU", 4); // Name string 343 hashBuf = buf + 16; 344 } 345 346 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 347 assert(buf.size() == hashSize); 348 memcpy(hashBuf, buf.data(), hashSize); 349 } 350 351 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 352 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 353 this->bss = true; 354 this->size = size; 355 } 356 357 EhFrameSection::EhFrameSection() 358 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 359 360 // Search for an existing CIE record or create a new one. 361 // CIE records from input object files are uniquified by their contents 362 // and where their relocations point to. 363 template <class ELFT, class RelTy> 364 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 365 Symbol *personality = nullptr; 366 unsigned firstRelI = cie.firstRelocation; 367 if (firstRelI != (unsigned)-1) 368 personality = 369 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 370 371 // Search for an existing CIE by CIE contents/relocation target pair. 372 CieRecord *&rec = cieMap[{cie.data(), personality}]; 373 374 // If not found, create a new one. 375 if (!rec) { 376 rec = make<CieRecord>(); 377 rec->cie = &cie; 378 cieRecords.push_back(rec); 379 } 380 return rec; 381 } 382 383 // There is one FDE per function. Returns a non-null pointer to the function 384 // symbol if the given FDE points to a live function. 385 template <class ELFT, class RelTy> 386 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 387 auto *sec = cast<EhInputSection>(fde.sec); 388 unsigned firstRelI = fde.firstRelocation; 389 390 // An FDE should point to some function because FDEs are to describe 391 // functions. That's however not always the case due to an issue of 392 // ld.gold with -r. ld.gold may discard only functions and leave their 393 // corresponding FDEs, which results in creating bad .eh_frame sections. 394 // To deal with that, we ignore such FDEs. 395 if (firstRelI == (unsigned)-1) 396 return nullptr; 397 398 const RelTy &rel = rels[firstRelI]; 399 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 400 401 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 402 // another partition, are dead. 403 if (auto *d = dyn_cast<Defined>(&b)) 404 if (!d->folded && d->section && d->section->partition == partition) 405 return d; 406 return nullptr; 407 } 408 409 // .eh_frame is a sequence of CIE or FDE records. In general, there 410 // is one CIE record per input object file which is followed by 411 // a list of FDEs. This function searches an existing CIE or create a new 412 // one and associates FDEs to the CIE. 413 template <class ELFT, class RelTy> 414 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 415 offsetToCie.clear(); 416 for (EhSectionPiece &cie : sec->cies) 417 offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels); 418 for (EhSectionPiece &fde : sec->fdes) { 419 uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4); 420 CieRecord *rec = offsetToCie[fde.inputOff + 4 - id]; 421 if (!rec) 422 fatal(toString(sec) + ": invalid CIE reference"); 423 424 if (!isFdeLive<ELFT>(fde, rels)) 425 continue; 426 rec->fdes.push_back(&fde); 427 numFdes++; 428 } 429 } 430 431 template <class ELFT> 432 void EhFrameSection::addSectionAux(EhInputSection *sec) { 433 if (!sec->isLive()) 434 return; 435 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 436 if (rels.areRelocsRel()) 437 addRecords<ELFT>(sec, rels.rels); 438 else 439 addRecords<ELFT>(sec, rels.relas); 440 } 441 442 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 443 // EhFrameSection::addRecords(). 444 template <class ELFT, class RelTy> 445 void EhFrameSection::iterateFDEWithLSDAAux( 446 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 447 llvm::function_ref<void(InputSection &)> fn) { 448 for (EhSectionPiece &cie : sec.cies) 449 if (hasLSDA(cie)) 450 ciesWithLSDA.insert(cie.inputOff); 451 for (EhSectionPiece &fde : sec.fdes) { 452 uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4); 453 if (!ciesWithLSDA.contains(fde.inputOff + 4 - id)) 454 continue; 455 456 // The CIE has a LSDA argument. Call fn with d's section. 457 if (Defined *d = isFdeLive<ELFT>(fde, rels)) 458 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 459 fn(*s); 460 } 461 } 462 463 template <class ELFT> 464 void EhFrameSection::iterateFDEWithLSDA( 465 llvm::function_ref<void(InputSection &)> fn) { 466 DenseSet<size_t> ciesWithLSDA; 467 for (EhInputSection *sec : sections) { 468 ciesWithLSDA.clear(); 469 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 470 if (rels.areRelocsRel()) 471 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); 472 else 473 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); 474 } 475 } 476 477 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 478 memcpy(buf, d.data(), d.size()); 479 // Fix the size field. -4 since size does not include the size field itself. 480 write32(buf, d.size() - 4); 481 } 482 483 void EhFrameSection::finalizeContents() { 484 assert(!this->size); // Not finalized. 485 486 switch (config->ekind) { 487 case ELFNoneKind: 488 llvm_unreachable("invalid ekind"); 489 case ELF32LEKind: 490 for (EhInputSection *sec : sections) 491 addSectionAux<ELF32LE>(sec); 492 break; 493 case ELF32BEKind: 494 for (EhInputSection *sec : sections) 495 addSectionAux<ELF32BE>(sec); 496 break; 497 case ELF64LEKind: 498 for (EhInputSection *sec : sections) 499 addSectionAux<ELF64LE>(sec); 500 break; 501 case ELF64BEKind: 502 for (EhInputSection *sec : sections) 503 addSectionAux<ELF64BE>(sec); 504 break; 505 } 506 507 size_t off = 0; 508 for (CieRecord *rec : cieRecords) { 509 rec->cie->outputOff = off; 510 off += rec->cie->size; 511 512 for (EhSectionPiece *fde : rec->fdes) { 513 fde->outputOff = off; 514 off += fde->size; 515 } 516 } 517 518 // The LSB standard does not allow a .eh_frame section with zero 519 // Call Frame Information records. glibc unwind-dw2-fde.c 520 // classify_object_over_fdes expects there is a CIE record length 0 as a 521 // terminator. Thus we add one unconditionally. 522 off += 4; 523 524 this->size = off; 525 } 526 527 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 528 // to get an FDE from an address to which FDE is applied. This function 529 // returns a list of such pairs. 530 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { 531 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 532 SmallVector<FdeData, 0> ret; 533 534 uint64_t va = getPartition().ehFrameHdr->getVA(); 535 for (CieRecord *rec : cieRecords) { 536 uint8_t enc = getFdeEncoding(rec->cie); 537 for (EhSectionPiece *fde : rec->fdes) { 538 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 539 uint64_t fdeVA = getParent()->addr + fde->outputOff; 540 if (!isInt<32>(pc - va)) 541 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 542 Twine::utohexstr(pc - va)); 543 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 544 } 545 } 546 547 // Sort the FDE list by their PC and uniqueify. Usually there is only 548 // one FDE for a PC (i.e. function), but if ICF merges two functions 549 // into one, there can be more than one FDEs pointing to the address. 550 auto less = [](const FdeData &a, const FdeData &b) { 551 return a.pcRel < b.pcRel; 552 }; 553 llvm::stable_sort(ret, less); 554 auto eq = [](const FdeData &a, const FdeData &b) { 555 return a.pcRel == b.pcRel; 556 }; 557 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 558 559 return ret; 560 } 561 562 static uint64_t readFdeAddr(uint8_t *buf, int size) { 563 switch (size) { 564 case DW_EH_PE_udata2: 565 return read16(buf); 566 case DW_EH_PE_sdata2: 567 return (int16_t)read16(buf); 568 case DW_EH_PE_udata4: 569 return read32(buf); 570 case DW_EH_PE_sdata4: 571 return (int32_t)read32(buf); 572 case DW_EH_PE_udata8: 573 case DW_EH_PE_sdata8: 574 return read64(buf); 575 case DW_EH_PE_absptr: 576 return readUint(buf); 577 } 578 fatal("unknown FDE size encoding"); 579 } 580 581 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 582 // We need it to create .eh_frame_hdr section. 583 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 584 uint8_t enc) const { 585 // The starting address to which this FDE applies is 586 // stored at FDE + 8 byte. 587 size_t off = fdeOff + 8; 588 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 589 if ((enc & 0x70) == DW_EH_PE_absptr) 590 return addr; 591 if ((enc & 0x70) == DW_EH_PE_pcrel) 592 return addr + getParent()->addr + off; 593 fatal("unknown FDE size relative encoding"); 594 } 595 596 void EhFrameSection::writeTo(uint8_t *buf) { 597 // Write CIE and FDE records. 598 for (CieRecord *rec : cieRecords) { 599 size_t cieOffset = rec->cie->outputOff; 600 writeCieFde(buf + cieOffset, rec->cie->data()); 601 602 for (EhSectionPiece *fde : rec->fdes) { 603 size_t off = fde->outputOff; 604 writeCieFde(buf + off, fde->data()); 605 606 // FDE's second word should have the offset to an associated CIE. 607 // Write it. 608 write32(buf + off + 4, off + 4 - cieOffset); 609 } 610 } 611 612 // Apply relocations. .eh_frame section contents are not contiguous 613 // in the output buffer, but relocateAlloc() still works because 614 // getOffset() takes care of discontiguous section pieces. 615 for (EhInputSection *s : sections) 616 target->relocateAlloc(*s, buf); 617 618 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 619 getPartition().ehFrameHdr->write(); 620 } 621 622 GotSection::GotSection() 623 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 624 target->gotEntrySize, ".got") { 625 numEntries = target->gotHeaderEntriesNum; 626 } 627 628 void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); } 629 void GotSection::addEntry(Symbol &sym) { 630 assert(sym.auxIdx == symAux.size() - 1); 631 symAux.back().gotIdx = numEntries++; 632 } 633 634 bool GotSection::addTlsDescEntry(Symbol &sym) { 635 assert(sym.auxIdx == symAux.size() - 1); 636 symAux.back().tlsDescIdx = numEntries; 637 numEntries += 2; 638 return true; 639 } 640 641 bool GotSection::addDynTlsEntry(Symbol &sym) { 642 assert(sym.auxIdx == symAux.size() - 1); 643 symAux.back().tlsGdIdx = numEntries; 644 // Global Dynamic TLS entries take two GOT slots. 645 numEntries += 2; 646 return true; 647 } 648 649 // Reserves TLS entries for a TLS module ID and a TLS block offset. 650 // In total it takes two GOT slots. 651 bool GotSection::addTlsIndex() { 652 if (tlsIndexOff != uint32_t(-1)) 653 return false; 654 tlsIndexOff = numEntries * config->wordsize; 655 numEntries += 2; 656 return true; 657 } 658 659 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { 660 return sym.getTlsDescIdx() * config->wordsize; 661 } 662 663 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { 664 return getVA() + getTlsDescOffset(sym); 665 } 666 667 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 668 return this->getVA() + b.getTlsGdIdx() * config->wordsize; 669 } 670 671 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 672 return b.getTlsGdIdx() * config->wordsize; 673 } 674 675 void GotSection::finalizeContents() { 676 if (config->emachine == EM_PPC64 && 677 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable) 678 size = 0; 679 else 680 size = numEntries * config->wordsize; 681 } 682 683 bool GotSection::isNeeded() const { 684 // Needed if the GOT symbol is used or the number of entries is more than just 685 // the header. A GOT with just the header may not be needed. 686 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum; 687 } 688 689 void GotSection::writeTo(uint8_t *buf) { 690 // On PPC64 .got may be needed but empty. Skip the write. 691 if (size == 0) 692 return; 693 target->writeGotHeader(buf); 694 target->relocateAlloc(*this, buf); 695 } 696 697 static uint64_t getMipsPageAddr(uint64_t addr) { 698 return (addr + 0x8000) & ~0xffff; 699 } 700 701 static uint64_t getMipsPageCount(uint64_t size) { 702 return (size + 0xfffe) / 0xffff + 1; 703 } 704 705 MipsGotSection::MipsGotSection() 706 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 707 ".got") {} 708 709 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 710 RelExpr expr) { 711 FileGot &g = getGot(file); 712 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 713 if (const OutputSection *os = sym.getOutputSection()) 714 g.pagesMap.insert({os, {}}); 715 else 716 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 717 } else if (sym.isTls()) 718 g.tls.insert({&sym, 0}); 719 else if (sym.isPreemptible && expr == R_ABS) 720 g.relocs.insert({&sym, 0}); 721 else if (sym.isPreemptible) 722 g.global.insert({&sym, 0}); 723 else if (expr == R_MIPS_GOT_OFF32) 724 g.local32.insert({{&sym, addend}, 0}); 725 else 726 g.local16.insert({{&sym, addend}, 0}); 727 } 728 729 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 730 getGot(file).dynTlsSymbols.insert({&sym, 0}); 731 } 732 733 void MipsGotSection::addTlsIndex(InputFile &file) { 734 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 735 } 736 737 size_t MipsGotSection::FileGot::getEntriesNum() const { 738 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 739 tls.size() + dynTlsSymbols.size() * 2; 740 } 741 742 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 743 size_t num = 0; 744 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 745 num += p.second.count; 746 return num; 747 } 748 749 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 750 size_t count = getPageEntriesNum() + local16.size() + global.size(); 751 // If there are relocation-only entries in the GOT, TLS entries 752 // are allocated after them. TLS entries should be addressable 753 // by 16-bit index so count both reloc-only and TLS entries. 754 if (!tls.empty() || !dynTlsSymbols.empty()) 755 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 756 return count; 757 } 758 759 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 760 if (f.mipsGotIndex == uint32_t(-1)) { 761 gots.emplace_back(); 762 gots.back().file = &f; 763 f.mipsGotIndex = gots.size() - 1; 764 } 765 return gots[f.mipsGotIndex]; 766 } 767 768 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 769 const Symbol &sym, 770 int64_t addend) const { 771 const FileGot &g = gots[f->mipsGotIndex]; 772 uint64_t index = 0; 773 if (const OutputSection *outSec = sym.getOutputSection()) { 774 uint64_t secAddr = getMipsPageAddr(outSec->addr); 775 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 776 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 777 } else { 778 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 779 } 780 return index * config->wordsize; 781 } 782 783 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 784 int64_t addend) const { 785 const FileGot &g = gots[f->mipsGotIndex]; 786 Symbol *sym = const_cast<Symbol *>(&s); 787 if (sym->isTls()) 788 return g.tls.lookup(sym) * config->wordsize; 789 if (sym->isPreemptible) 790 return g.global.lookup(sym) * config->wordsize; 791 return g.local16.lookup({sym, addend}) * config->wordsize; 792 } 793 794 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 795 const FileGot &g = gots[f->mipsGotIndex]; 796 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 797 } 798 799 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 800 const Symbol &s) const { 801 const FileGot &g = gots[f->mipsGotIndex]; 802 Symbol *sym = const_cast<Symbol *>(&s); 803 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 804 } 805 806 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 807 if (gots.empty()) 808 return nullptr; 809 const FileGot &primGot = gots.front(); 810 if (!primGot.global.empty()) 811 return primGot.global.front().first; 812 if (!primGot.relocs.empty()) 813 return primGot.relocs.front().first; 814 return nullptr; 815 } 816 817 unsigned MipsGotSection::getLocalEntriesNum() const { 818 if (gots.empty()) 819 return headerEntriesNum; 820 return headerEntriesNum + gots.front().getPageEntriesNum() + 821 gots.front().local16.size(); 822 } 823 824 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 825 FileGot tmp = dst; 826 set_union(tmp.pagesMap, src.pagesMap); 827 set_union(tmp.local16, src.local16); 828 set_union(tmp.global, src.global); 829 set_union(tmp.relocs, src.relocs); 830 set_union(tmp.tls, src.tls); 831 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 832 833 size_t count = isPrimary ? headerEntriesNum : 0; 834 count += tmp.getIndexedEntriesNum(); 835 836 if (count * config->wordsize > config->mipsGotSize) 837 return false; 838 839 std::swap(tmp, dst); 840 return true; 841 } 842 843 void MipsGotSection::finalizeContents() { updateAllocSize(); } 844 845 bool MipsGotSection::updateAllocSize() { 846 size = headerEntriesNum * config->wordsize; 847 for (const FileGot &g : gots) 848 size += g.getEntriesNum() * config->wordsize; 849 return false; 850 } 851 852 void MipsGotSection::build() { 853 if (gots.empty()) 854 return; 855 856 std::vector<FileGot> mergedGots(1); 857 858 // For each GOT move non-preemptible symbols from the `Global` 859 // to `Local16` list. Preemptible symbol might become non-preemptible 860 // one if, for example, it gets a related copy relocation. 861 for (FileGot &got : gots) { 862 for (auto &p: got.global) 863 if (!p.first->isPreemptible) 864 got.local16.insert({{p.first, 0}, 0}); 865 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 866 return !p.first->isPreemptible; 867 }); 868 } 869 870 // For each GOT remove "reloc-only" entry if there is "global" 871 // entry for the same symbol. And add local entries which indexed 872 // using 32-bit value at the end of 16-bit entries. 873 for (FileGot &got : gots) { 874 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 875 return got.global.count(p.first); 876 }); 877 set_union(got.local16, got.local32); 878 got.local32.clear(); 879 } 880 881 // Evaluate number of "reloc-only" entries in the resulting GOT. 882 // To do that put all unique "reloc-only" and "global" entries 883 // from all GOTs to the future primary GOT. 884 FileGot *primGot = &mergedGots.front(); 885 for (FileGot &got : gots) { 886 set_union(primGot->relocs, got.global); 887 set_union(primGot->relocs, got.relocs); 888 got.relocs.clear(); 889 } 890 891 // Evaluate number of "page" entries in each GOT. 892 for (FileGot &got : gots) { 893 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 894 got.pagesMap) { 895 const OutputSection *os = p.first; 896 uint64_t secSize = 0; 897 for (SectionCommand *cmd : os->commands) { 898 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 899 for (InputSection *isec : isd->sections) { 900 uint64_t off = alignToPowerOf2(secSize, isec->addralign); 901 secSize = off + isec->getSize(); 902 } 903 } 904 p.second.count = getMipsPageCount(secSize); 905 } 906 } 907 908 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 909 // maximum GOT size. At first, try to fill the primary GOT because 910 // the primary GOT can be accessed in the most effective way. If it 911 // is not possible, try to fill the last GOT in the list, and finally 912 // create a new GOT if both attempts failed. 913 for (FileGot &srcGot : gots) { 914 InputFile *file = srcGot.file; 915 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 916 file->mipsGotIndex = 0; 917 } else { 918 // If this is the first time we failed to merge with the primary GOT, 919 // MergedGots.back() will also be the primary GOT. We must make sure not 920 // to try to merge again with isPrimary=false, as otherwise, if the 921 // inputs are just right, we could allow the primary GOT to become 1 or 2 922 // words bigger due to ignoring the header size. 923 if (mergedGots.size() == 1 || 924 !tryMergeGots(mergedGots.back(), srcGot, false)) { 925 mergedGots.emplace_back(); 926 std::swap(mergedGots.back(), srcGot); 927 } 928 file->mipsGotIndex = mergedGots.size() - 1; 929 } 930 } 931 std::swap(gots, mergedGots); 932 933 // Reduce number of "reloc-only" entries in the primary GOT 934 // by subtracting "global" entries in the primary GOT. 935 primGot = &gots.front(); 936 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 937 return primGot->global.count(p.first); 938 }); 939 940 // Calculate indexes for each GOT entry. 941 size_t index = headerEntriesNum; 942 for (FileGot &got : gots) { 943 got.startIndex = &got == primGot ? 0 : index; 944 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 945 got.pagesMap) { 946 // For each output section referenced by GOT page relocations calculate 947 // and save into pagesMap an upper bound of MIPS GOT entries required 948 // to store page addresses of local symbols. We assume the worst case - 949 // each 64kb page of the output section has at least one GOT relocation 950 // against it. And take in account the case when the section intersects 951 // page boundaries. 952 p.second.firstIndex = index; 953 index += p.second.count; 954 } 955 for (auto &p: got.local16) 956 p.second = index++; 957 for (auto &p: got.global) 958 p.second = index++; 959 for (auto &p: got.relocs) 960 p.second = index++; 961 for (auto &p: got.tls) 962 p.second = index++; 963 for (auto &p: got.dynTlsSymbols) { 964 p.second = index; 965 index += 2; 966 } 967 } 968 969 // Update SymbolAux::gotIdx field to use this 970 // value later in the `sortMipsSymbols` function. 971 for (auto &p : primGot->global) { 972 if (p.first->auxIdx == 0) 973 p.first->allocateAux(); 974 symAux.back().gotIdx = p.second; 975 } 976 for (auto &p : primGot->relocs) { 977 if (p.first->auxIdx == 0) 978 p.first->allocateAux(); 979 symAux.back().gotIdx = p.second; 980 } 981 982 // Create dynamic relocations. 983 for (FileGot &got : gots) { 984 // Create dynamic relocations for TLS entries. 985 for (std::pair<Symbol *, size_t> &p : got.tls) { 986 Symbol *s = p.first; 987 uint64_t offset = p.second * config->wordsize; 988 // When building a shared library we still need a dynamic relocation 989 // for the TP-relative offset as we don't know how much other data will 990 // be allocated before us in the static TLS block. 991 if (s->isPreemptible || config->shared) 992 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset, 993 DynamicReloc::AgainstSymbolWithTargetVA, 994 *s, 0, R_ABS}); 995 } 996 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 997 Symbol *s = p.first; 998 uint64_t offset = p.second * config->wordsize; 999 if (s == nullptr) { 1000 if (!config->shared) 1001 continue; 1002 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset}); 1003 } else { 1004 // When building a shared library we still need a dynamic relocation 1005 // for the module index. Therefore only checking for 1006 // S->isPreemptible is not sufficient (this happens e.g. for 1007 // thread-locals that have been marked as local through a linker script) 1008 if (!s->isPreemptible && !config->shared) 1009 continue; 1010 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this, 1011 offset, *s); 1012 // However, we can skip writing the TLS offset reloc for non-preemptible 1013 // symbols since it is known even in shared libraries 1014 if (!s->isPreemptible) 1015 continue; 1016 offset += config->wordsize; 1017 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset, 1018 *s); 1019 } 1020 } 1021 1022 // Do not create dynamic relocations for non-TLS 1023 // entries in the primary GOT. 1024 if (&got == primGot) 1025 continue; 1026 1027 // Dynamic relocations for "global" entries. 1028 for (const std::pair<Symbol *, size_t> &p : got.global) { 1029 uint64_t offset = p.second * config->wordsize; 1030 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset, 1031 *p.first); 1032 } 1033 if (!config->isPic) 1034 continue; 1035 // Dynamic relocations for "local" entries in case of PIC. 1036 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1037 got.pagesMap) { 1038 size_t pageCount = l.second.count; 1039 for (size_t pi = 0; pi < pageCount; ++pi) { 1040 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1041 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1042 int64_t(pi * 0x10000)}); 1043 } 1044 } 1045 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1046 uint64_t offset = p.second * config->wordsize; 1047 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, 1048 DynamicReloc::AddendOnlyWithTargetVA, 1049 *p.first.first, p.first.second, R_ABS}); 1050 } 1051 } 1052 } 1053 1054 bool MipsGotSection::isNeeded() const { 1055 // We add the .got section to the result for dynamic MIPS target because 1056 // its address and properties are mentioned in the .dynamic section. 1057 return !config->relocatable; 1058 } 1059 1060 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1061 // For files without related GOT or files refer a primary GOT 1062 // returns "common" _gp value. For secondary GOTs calculate 1063 // individual _gp values. 1064 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) 1065 return ElfSym::mipsGp->getVA(0); 1066 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0; 1067 } 1068 1069 void MipsGotSection::writeTo(uint8_t *buf) { 1070 // Set the MSB of the second GOT slot. This is not required by any 1071 // MIPS ABI documentation, though. 1072 // 1073 // There is a comment in glibc saying that "The MSB of got[1] of a 1074 // gnu object is set to identify gnu objects," and in GNU gold it 1075 // says "the second entry will be used by some runtime loaders". 1076 // But how this field is being used is unclear. 1077 // 1078 // We are not really willing to mimic other linkers behaviors 1079 // without understanding why they do that, but because all files 1080 // generated by GNU tools have this special GOT value, and because 1081 // we've been doing this for years, it is probably a safe bet to 1082 // keep doing this for now. We really need to revisit this to see 1083 // if we had to do this. 1084 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1085 for (const FileGot &g : gots) { 1086 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1087 uint64_t va = a; 1088 if (s) 1089 va = s->getVA(a); 1090 writeUint(buf + i * config->wordsize, va); 1091 }; 1092 // Write 'page address' entries to the local part of the GOT. 1093 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1094 g.pagesMap) { 1095 size_t pageCount = l.second.count; 1096 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1097 for (size_t pi = 0; pi < pageCount; ++pi) 1098 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1099 } 1100 // Local, global, TLS, reloc-only entries. 1101 // If TLS entry has a corresponding dynamic relocations, leave it 1102 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1103 // To calculate the adjustments use offsets for thread-local storage. 1104 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL 1105 for (const std::pair<GotEntry, size_t> &p : g.local16) 1106 write(p.second, p.first.first, p.first.second); 1107 // Write VA to the primary GOT only. For secondary GOTs that 1108 // will be done by REL32 dynamic relocations. 1109 if (&g == &gots.front()) 1110 for (const std::pair<Symbol *, size_t> &p : g.global) 1111 write(p.second, p.first, 0); 1112 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1113 write(p.second, p.first, 0); 1114 for (const std::pair<Symbol *, size_t> &p : g.tls) 1115 write(p.second, p.first, 1116 p.first->isPreemptible || config->shared ? 0 : -0x7000); 1117 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1118 if (p.first == nullptr && !config->shared) 1119 write(p.second, nullptr, 1); 1120 else if (p.first && !p.first->isPreemptible) { 1121 // If we are emitting a shared library with relocations we mustn't write 1122 // anything to the GOT here. When using Elf_Rel relocations the value 1123 // one will be treated as an addend and will cause crashes at runtime 1124 if (!config->shared) 1125 write(p.second, nullptr, 1); 1126 write(p.second + 1, p.first, -0x8000); 1127 } 1128 } 1129 } 1130 } 1131 1132 // On PowerPC the .plt section is used to hold the table of function addresses 1133 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1134 // section. I don't know why we have a BSS style type for the section but it is 1135 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1136 GotPltSection::GotPltSection() 1137 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1138 ".got.plt") { 1139 if (config->emachine == EM_PPC) { 1140 name = ".plt"; 1141 } else if (config->emachine == EM_PPC64) { 1142 type = SHT_NOBITS; 1143 name = ".plt"; 1144 } 1145 } 1146 1147 void GotPltSection::addEntry(Symbol &sym) { 1148 assert(sym.auxIdx == symAux.size() - 1 && 1149 symAux.back().pltIdx == entries.size()); 1150 entries.push_back(&sym); 1151 } 1152 1153 size_t GotPltSection::getSize() const { 1154 return (target->gotPltHeaderEntriesNum + entries.size()) * 1155 target->gotEntrySize; 1156 } 1157 1158 void GotPltSection::writeTo(uint8_t *buf) { 1159 target->writeGotPltHeader(buf); 1160 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize; 1161 for (const Symbol *b : entries) { 1162 target->writeGotPlt(buf, *b); 1163 buf += target->gotEntrySize; 1164 } 1165 } 1166 1167 bool GotPltSection::isNeeded() const { 1168 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1169 // to it. 1170 return !entries.empty() || hasGotPltOffRel; 1171 } 1172 1173 static StringRef getIgotPltName() { 1174 // On ARM the IgotPltSection is part of the GotSection. 1175 if (config->emachine == EM_ARM) 1176 return ".got"; 1177 1178 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1179 // needs to be named the same. 1180 if (config->emachine == EM_PPC64) 1181 return ".plt"; 1182 1183 return ".got.plt"; 1184 } 1185 1186 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1187 // with the IgotPltSection. 1188 IgotPltSection::IgotPltSection() 1189 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1190 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1191 target->gotEntrySize, getIgotPltName()) {} 1192 1193 void IgotPltSection::addEntry(Symbol &sym) { 1194 assert(symAux.back().pltIdx == entries.size()); 1195 entries.push_back(&sym); 1196 } 1197 1198 size_t IgotPltSection::getSize() const { 1199 return entries.size() * target->gotEntrySize; 1200 } 1201 1202 void IgotPltSection::writeTo(uint8_t *buf) { 1203 for (const Symbol *b : entries) { 1204 target->writeIgotPlt(buf, *b); 1205 buf += target->gotEntrySize; 1206 } 1207 } 1208 1209 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1210 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1211 dynamic(dynamic) { 1212 // ELF string tables start with a NUL byte. 1213 strings.push_back(""); 1214 stringMap.try_emplace(CachedHashStringRef(""), 0); 1215 size = 1; 1216 } 1217 1218 // Adds a string to the string table. If `hashIt` is true we hash and check for 1219 // duplicates. It is optional because the name of global symbols are already 1220 // uniqued and hashing them again has a big cost for a small value: uniquing 1221 // them with some other string that happens to be the same. 1222 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1223 if (hashIt) { 1224 auto r = stringMap.try_emplace(CachedHashStringRef(s), size); 1225 if (!r.second) 1226 return r.first->second; 1227 } 1228 if (s.empty()) 1229 return 0; 1230 unsigned ret = this->size; 1231 this->size = this->size + s.size() + 1; 1232 strings.push_back(s); 1233 return ret; 1234 } 1235 1236 void StringTableSection::writeTo(uint8_t *buf) { 1237 for (StringRef s : strings) { 1238 memcpy(buf, s.data(), s.size()); 1239 buf[s.size()] = '\0'; 1240 buf += s.size() + 1; 1241 } 1242 } 1243 1244 // Returns the number of entries in .gnu.version_d: the number of 1245 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1246 // Note that we don't support vd_cnt > 1 yet. 1247 static unsigned getVerDefNum() { 1248 return namedVersionDefs().size() + 1; 1249 } 1250 1251 template <class ELFT> 1252 DynamicSection<ELFT>::DynamicSection() 1253 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1254 ".dynamic") { 1255 this->entsize = ELFT::Is64Bits ? 16 : 8; 1256 1257 // .dynamic section is not writable on MIPS and on Fuchsia OS 1258 // which passes -z rodynamic. 1259 // See "Special Section" in Chapter 4 in the following document: 1260 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1261 if (config->emachine == EM_MIPS || config->zRodynamic) 1262 this->flags = SHF_ALLOC; 1263 } 1264 1265 // The output section .rela.dyn may include these synthetic sections: 1266 // 1267 // - part.relaDyn 1268 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1269 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1270 // .rela.dyn 1271 // 1272 // DT_RELASZ is the total size of the included sections. 1273 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) { 1274 size_t size = relaDyn.getSize(); 1275 if (in.relaIplt->getParent() == relaDyn.getParent()) 1276 size += in.relaIplt->getSize(); 1277 if (in.relaPlt->getParent() == relaDyn.getParent()) 1278 size += in.relaPlt->getSize(); 1279 return size; 1280 } 1281 1282 // A Linker script may assign the RELA relocation sections to the same 1283 // output section. When this occurs we cannot just use the OutputSection 1284 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1285 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1286 static uint64_t addPltRelSz() { 1287 size_t size = in.relaPlt->getSize(); 1288 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1289 in.relaIplt->name == in.relaPlt->name) 1290 size += in.relaIplt->getSize(); 1291 return size; 1292 } 1293 1294 // Add remaining entries to complete .dynamic contents. 1295 template <class ELFT> 1296 std::vector<std::pair<int32_t, uint64_t>> 1297 DynamicSection<ELFT>::computeContents() { 1298 elf::Partition &part = getPartition(); 1299 bool isMain = part.name.empty(); 1300 std::vector<std::pair<int32_t, uint64_t>> entries; 1301 1302 auto addInt = [&](int32_t tag, uint64_t val) { 1303 entries.emplace_back(tag, val); 1304 }; 1305 auto addInSec = [&](int32_t tag, const InputSection &sec) { 1306 entries.emplace_back(tag, sec.getVA()); 1307 }; 1308 1309 for (StringRef s : config->filterList) 1310 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1311 for (StringRef s : config->auxiliaryList) 1312 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1313 1314 if (!config->rpath.empty()) 1315 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1316 part.dynStrTab->addString(config->rpath)); 1317 1318 for (SharedFile *file : ctx.sharedFiles) 1319 if (file->isNeeded) 1320 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1321 1322 if (isMain) { 1323 if (!config->soName.empty()) 1324 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1325 } else { 1326 if (!config->soName.empty()) 1327 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1328 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1329 } 1330 1331 // Set DT_FLAGS and DT_FLAGS_1. 1332 uint32_t dtFlags = 0; 1333 uint32_t dtFlags1 = 0; 1334 if (config->bsymbolic == BsymbolicKind::All) 1335 dtFlags |= DF_SYMBOLIC; 1336 if (config->zGlobal) 1337 dtFlags1 |= DF_1_GLOBAL; 1338 if (config->zInitfirst) 1339 dtFlags1 |= DF_1_INITFIRST; 1340 if (config->zInterpose) 1341 dtFlags1 |= DF_1_INTERPOSE; 1342 if (config->zNodefaultlib) 1343 dtFlags1 |= DF_1_NODEFLIB; 1344 if (config->zNodelete) 1345 dtFlags1 |= DF_1_NODELETE; 1346 if (config->zNodlopen) 1347 dtFlags1 |= DF_1_NOOPEN; 1348 if (config->pie) 1349 dtFlags1 |= DF_1_PIE; 1350 if (config->zNow) { 1351 dtFlags |= DF_BIND_NOW; 1352 dtFlags1 |= DF_1_NOW; 1353 } 1354 if (config->zOrigin) { 1355 dtFlags |= DF_ORIGIN; 1356 dtFlags1 |= DF_1_ORIGIN; 1357 } 1358 if (!config->zText) 1359 dtFlags |= DF_TEXTREL; 1360 if (ctx.hasTlsIe && config->shared) 1361 dtFlags |= DF_STATIC_TLS; 1362 1363 if (dtFlags) 1364 addInt(DT_FLAGS, dtFlags); 1365 if (dtFlags1) 1366 addInt(DT_FLAGS_1, dtFlags1); 1367 1368 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1369 // need it for each process, so we don't write it for DSOs. The loader writes 1370 // the pointer into this entry. 1371 // 1372 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1373 // systems (currently only Fuchsia OS) provide other means to give the 1374 // debugger this information. Such systems may choose make .dynamic read-only. 1375 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1376 if (!config->shared && !config->relocatable && !config->zRodynamic) 1377 addInt(DT_DEBUG, 0); 1378 1379 if (part.relaDyn->isNeeded() || 1380 (in.relaIplt->isNeeded() && 1381 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1382 addInSec(part.relaDyn->dynamicTag, *part.relaDyn); 1383 entries.emplace_back(part.relaDyn->sizeDynamicTag, 1384 addRelaSz(*part.relaDyn)); 1385 1386 bool isRela = config->isRela; 1387 addInt(isRela ? DT_RELAENT : DT_RELENT, 1388 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1389 1390 // MIPS dynamic loader does not support RELCOUNT tag. 1391 // The problem is in the tight relation between dynamic 1392 // relocations and GOT. So do not emit this tag on MIPS. 1393 if (config->emachine != EM_MIPS) { 1394 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1395 if (config->zCombreloc && numRelativeRels) 1396 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1397 } 1398 } 1399 if (part.relrDyn && part.relrDyn->getParent() && 1400 !part.relrDyn->relocs.empty()) { 1401 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1402 *part.relrDyn); 1403 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1404 part.relrDyn->getParent()->size); 1405 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1406 sizeof(Elf_Relr)); 1407 } 1408 // .rel[a].plt section usually consists of two parts, containing plt and 1409 // iplt relocations. It is possible to have only iplt relocations in the 1410 // output. In that case relaPlt is empty and have zero offset, the same offset 1411 // as relaIplt has. And we still want to emit proper dynamic tags for that 1412 // case, so here we always use relaPlt as marker for the beginning of 1413 // .rel[a].plt section. 1414 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1415 addInSec(DT_JMPREL, *in.relaPlt); 1416 entries.emplace_back(DT_PLTRELSZ, addPltRelSz()); 1417 switch (config->emachine) { 1418 case EM_MIPS: 1419 addInSec(DT_MIPS_PLTGOT, *in.gotPlt); 1420 break; 1421 case EM_SPARCV9: 1422 addInSec(DT_PLTGOT, *in.plt); 1423 break; 1424 case EM_AARCH64: 1425 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1426 return r.type == target->pltRel && 1427 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1428 }) != in.relaPlt->relocs.end()) 1429 addInt(DT_AARCH64_VARIANT_PCS, 0); 1430 addInSec(DT_PLTGOT, *in.gotPlt); 1431 break; 1432 case EM_RISCV: 1433 if (llvm::any_of(in.relaPlt->relocs, [](const DynamicReloc &r) { 1434 return r.type == target->pltRel && 1435 (r.sym->stOther & STO_RISCV_VARIANT_CC); 1436 })) 1437 addInt(DT_RISCV_VARIANT_CC, 0); 1438 [[fallthrough]]; 1439 default: 1440 addInSec(DT_PLTGOT, *in.gotPlt); 1441 break; 1442 } 1443 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1444 } 1445 1446 if (config->emachine == EM_AARCH64) { 1447 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1448 addInt(DT_AARCH64_BTI_PLT, 0); 1449 if (config->zPacPlt) 1450 addInt(DT_AARCH64_PAC_PLT, 0); 1451 1452 if (config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) { 1453 addInt(DT_AARCH64_MEMTAG_MODE, config->androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC); 1454 addInt(DT_AARCH64_MEMTAG_HEAP, config->androidMemtagHeap); 1455 addInt(DT_AARCH64_MEMTAG_STACK, config->androidMemtagStack); 1456 } 1457 } 1458 1459 addInSec(DT_SYMTAB, *part.dynSymTab); 1460 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1461 addInSec(DT_STRTAB, *part.dynStrTab); 1462 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1463 if (!config->zText) 1464 addInt(DT_TEXTREL, 0); 1465 if (part.gnuHashTab && part.gnuHashTab->getParent()) 1466 addInSec(DT_GNU_HASH, *part.gnuHashTab); 1467 if (part.hashTab && part.hashTab->getParent()) 1468 addInSec(DT_HASH, *part.hashTab); 1469 1470 if (isMain) { 1471 if (Out::preinitArray) { 1472 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr); 1473 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size); 1474 } 1475 if (Out::initArray) { 1476 addInt(DT_INIT_ARRAY, Out::initArray->addr); 1477 addInt(DT_INIT_ARRAYSZ, Out::initArray->size); 1478 } 1479 if (Out::finiArray) { 1480 addInt(DT_FINI_ARRAY, Out::finiArray->addr); 1481 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size); 1482 } 1483 1484 if (Symbol *b = symtab.find(config->init)) 1485 if (b->isDefined()) 1486 addInt(DT_INIT, b->getVA()); 1487 if (Symbol *b = symtab.find(config->fini)) 1488 if (b->isDefined()) 1489 addInt(DT_FINI, b->getVA()); 1490 } 1491 1492 if (part.verSym && part.verSym->isNeeded()) 1493 addInSec(DT_VERSYM, *part.verSym); 1494 if (part.verDef && part.verDef->isLive()) { 1495 addInSec(DT_VERDEF, *part.verDef); 1496 addInt(DT_VERDEFNUM, getVerDefNum()); 1497 } 1498 if (part.verNeed && part.verNeed->isNeeded()) { 1499 addInSec(DT_VERNEED, *part.verNeed); 1500 unsigned needNum = 0; 1501 for (SharedFile *f : ctx.sharedFiles) 1502 if (!f->vernauxs.empty()) 1503 ++needNum; 1504 addInt(DT_VERNEEDNUM, needNum); 1505 } 1506 1507 if (config->emachine == EM_MIPS) { 1508 addInt(DT_MIPS_RLD_VERSION, 1); 1509 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1510 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1511 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1512 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum()); 1513 1514 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1515 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1516 else 1517 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1518 addInSec(DT_PLTGOT, *in.mipsGot); 1519 if (in.mipsRldMap) { 1520 if (!config->pie) 1521 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap); 1522 // Store the offset to the .rld_map section 1523 // relative to the address of the tag. 1524 addInt(DT_MIPS_RLD_MAP_REL, 1525 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); 1526 } 1527 } 1528 1529 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1530 // glibc assumes the old-style BSS PLT layout which we don't support. 1531 if (config->emachine == EM_PPC) 1532 addInSec(DT_PPC_GOT, *in.got); 1533 1534 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1535 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1536 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1537 // stub, which starts directly after the header. 1538 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32); 1539 } 1540 1541 if (config->emachine == EM_PPC64) 1542 addInt(DT_PPC64_OPT, getPPC64TargetInfo()->ppc64DynamicSectionOpt); 1543 1544 addInt(DT_NULL, 0); 1545 return entries; 1546 } 1547 1548 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1549 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 1550 getParent()->link = sec->sectionIndex; 1551 this->size = computeContents().size() * this->entsize; 1552 } 1553 1554 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1555 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1556 1557 for (std::pair<int32_t, uint64_t> kv : computeContents()) { 1558 p->d_tag = kv.first; 1559 p->d_un.d_val = kv.second; 1560 ++p; 1561 } 1562 } 1563 1564 uint64_t DynamicReloc::getOffset() const { 1565 return inputSec->getVA(offsetInSec); 1566 } 1567 1568 int64_t DynamicReloc::computeAddend() const { 1569 switch (kind) { 1570 case AddendOnly: 1571 assert(sym == nullptr); 1572 return addend; 1573 case AgainstSymbol: 1574 assert(sym != nullptr); 1575 return addend; 1576 case AddendOnlyWithTargetVA: 1577 case AgainstSymbolWithTargetVA: { 1578 uint64_t ca = InputSection::getRelocTargetVA(inputSec->file, type, addend, 1579 getOffset(), *sym, expr); 1580 return config->is64 ? ca : SignExtend64<32>(ca); 1581 } 1582 case MipsMultiGotPage: 1583 assert(sym == nullptr); 1584 return getMipsPageAddr(outputSec->addr) + addend; 1585 } 1586 llvm_unreachable("Unknown DynamicReloc::Kind enum"); 1587 } 1588 1589 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1590 if (!needsDynSymIndex()) 1591 return 0; 1592 1593 size_t index = symTab->getSymbolIndex(sym); 1594 assert((index != 0 || (type != target->gotRel && type != target->pltRel) || 1595 !mainPart->dynSymTab->getParent()) && 1596 "GOT or PLT relocation must refer to symbol in dynamic symbol table"); 1597 return index; 1598 } 1599 1600 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1601 int32_t dynamicTag, 1602 int32_t sizeDynamicTag, 1603 bool combreloc, 1604 unsigned concurrency) 1605 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1606 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), 1607 relocsVec(concurrency), combreloc(combreloc) {} 1608 1609 void RelocationBaseSection::addSymbolReloc( 1610 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, 1611 int64_t addend, std::optional<RelType> addendRelType) { 1612 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, 1613 R_ADDEND, addendRelType ? *addendRelType : target->noneRel); 1614 } 1615 1616 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( 1617 RelType dynType, GotSection &sec, uint64_t offsetInSec, Symbol &sym, 1618 RelType addendRelType) { 1619 // No need to write an addend to the section for preemptible symbols. 1620 if (sym.isPreemptible) 1621 addReloc({dynType, &sec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, 1622 R_ABS}); 1623 else 1624 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, sec, offsetInSec, 1625 sym, 0, R_ABS, addendRelType); 1626 } 1627 1628 void RelocationBaseSection::mergeRels() { 1629 size_t newSize = relocs.size(); 1630 for (const auto &v : relocsVec) 1631 newSize += v.size(); 1632 relocs.reserve(newSize); 1633 for (const auto &v : relocsVec) 1634 llvm::append_range(relocs, v); 1635 relocsVec.clear(); 1636 } 1637 1638 void RelocationBaseSection::partitionRels() { 1639 if (!combreloc) 1640 return; 1641 const RelType relativeRel = target->relativeRel; 1642 numRelativeRelocs = 1643 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) - 1644 relocs.begin(); 1645 } 1646 1647 void RelocationBaseSection::finalizeContents() { 1648 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1649 1650 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1651 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1652 // case. 1653 if (symTab && symTab->getParent()) 1654 getParent()->link = symTab->getParent()->sectionIndex; 1655 else 1656 getParent()->link = 0; 1657 1658 if (in.relaPlt.get() == this && in.gotPlt->getParent()) { 1659 getParent()->flags |= ELF::SHF_INFO_LINK; 1660 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1661 } 1662 if (in.relaIplt.get() == this && in.igotPlt->getParent()) { 1663 getParent()->flags |= ELF::SHF_INFO_LINK; 1664 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1665 } 1666 } 1667 1668 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) { 1669 r_offset = getOffset(); 1670 r_sym = getSymIndex(symtab); 1671 addend = computeAddend(); 1672 kind = AddendOnly; // Catch errors 1673 } 1674 1675 void RelocationBaseSection::computeRels() { 1676 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1677 parallelForEach(relocs, 1678 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); }); 1679 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1680 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1681 // is to make results easier to read. 1682 if (combreloc) { 1683 auto nonRelative = relocs.begin() + numRelativeRelocs; 1684 parallelSort(relocs.begin(), nonRelative, 1685 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); 1686 // Non-relative relocations are few, so don't bother with parallelSort. 1687 llvm::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) { 1688 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); 1689 }); 1690 } 1691 } 1692 1693 template <class ELFT> 1694 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc, 1695 unsigned concurrency) 1696 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1697 config->isRela ? DT_RELA : DT_REL, 1698 config->isRela ? DT_RELASZ : DT_RELSZ, combreloc, 1699 concurrency) { 1700 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1701 } 1702 1703 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1704 computeRels(); 1705 for (const DynamicReloc &rel : relocs) { 1706 auto *p = reinterpret_cast<Elf_Rela *>(buf); 1707 p->r_offset = rel.r_offset; 1708 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL); 1709 if (config->isRela) 1710 p->r_addend = rel.addend; 1711 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1712 } 1713 } 1714 1715 RelrBaseSection::RelrBaseSection(unsigned concurrency) 1716 : SyntheticSection(SHF_ALLOC, 1717 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1718 config->wordsize, ".relr.dyn"), 1719 relocsVec(concurrency) {} 1720 1721 void RelrBaseSection::mergeRels() { 1722 size_t newSize = relocs.size(); 1723 for (const auto &v : relocsVec) 1724 newSize += v.size(); 1725 relocs.reserve(newSize); 1726 for (const auto &v : relocsVec) 1727 llvm::append_range(relocs, v); 1728 relocsVec.clear(); 1729 } 1730 1731 template <class ELFT> 1732 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1733 StringRef name, unsigned concurrency) 1734 : RelocationBaseSection( 1735 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1736 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1737 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, 1738 /*combreloc=*/false, concurrency) { 1739 this->entsize = 1; 1740 } 1741 1742 template <class ELFT> 1743 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1744 // This function computes the contents of an Android-format packed relocation 1745 // section. 1746 // 1747 // This format compresses relocations by using relocation groups to factor out 1748 // fields that are common between relocations and storing deltas from previous 1749 // relocations in SLEB128 format (which has a short representation for small 1750 // numbers). A good example of a relocation type with common fields is 1751 // R_*_RELATIVE, which is normally used to represent function pointers in 1752 // vtables. In the REL format, each relative relocation has the same r_info 1753 // field, and is only different from other relative relocations in terms of 1754 // the r_offset field. By sorting relocations by offset, grouping them by 1755 // r_info and representing each relocation with only the delta from the 1756 // previous offset, each 8-byte relocation can be compressed to as little as 1 1757 // byte (or less with run-length encoding). This relocation packer was able to 1758 // reduce the size of the relocation section in an Android Chromium DSO from 1759 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1760 // 1761 // A relocation section consists of a header containing the literal bytes 1762 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1763 // elements are the total number of relocations in the section and an initial 1764 // r_offset value. The remaining elements define a sequence of relocation 1765 // groups. Each relocation group starts with a header consisting of the 1766 // following elements: 1767 // 1768 // - the number of relocations in the relocation group 1769 // - flags for the relocation group 1770 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1771 // for each relocation in the group. 1772 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1773 // field for each relocation in the group. 1774 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1775 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1776 // each relocation in the group. 1777 // 1778 // Following the relocation group header are descriptions of each of the 1779 // relocations in the group. They consist of the following elements: 1780 // 1781 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1782 // delta for this relocation. 1783 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1784 // field for this relocation. 1785 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1786 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1787 // this relocation. 1788 1789 size_t oldSize = relocData.size(); 1790 1791 relocData = {'A', 'P', 'S', '2'}; 1792 raw_svector_ostream os(relocData); 1793 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1794 1795 // The format header includes the number of relocations and the initial 1796 // offset (we set this to zero because the first relocation group will 1797 // perform the initial adjustment). 1798 add(relocs.size()); 1799 add(0); 1800 1801 std::vector<Elf_Rela> relatives, nonRelatives; 1802 1803 for (const DynamicReloc &rel : relocs) { 1804 Elf_Rela r; 1805 r.r_offset = rel.getOffset(); 1806 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()), 1807 rel.type, false); 1808 r.r_addend = config->isRela ? rel.computeAddend() : 0; 1809 1810 if (r.getType(config->isMips64EL) == target->relativeRel) 1811 relatives.push_back(r); 1812 else 1813 nonRelatives.push_back(r); 1814 } 1815 1816 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1817 return a.r_offset < b.r_offset; 1818 }); 1819 1820 // Try to find groups of relative relocations which are spaced one word 1821 // apart from one another. These generally correspond to vtable entries. The 1822 // format allows these groups to be encoded using a sort of run-length 1823 // encoding, but each group will cost 7 bytes in addition to the offset from 1824 // the previous group, so it is only profitable to do this for groups of 1825 // size 8 or larger. 1826 std::vector<Elf_Rela> ungroupedRelatives; 1827 std::vector<std::vector<Elf_Rela>> relativeGroups; 1828 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1829 std::vector<Elf_Rela> group; 1830 do { 1831 group.push_back(*i++); 1832 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1833 1834 if (group.size() < 8) 1835 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1836 group.end()); 1837 else 1838 relativeGroups.emplace_back(std::move(group)); 1839 } 1840 1841 // For non-relative relocations, we would like to: 1842 // 1. Have relocations with the same symbol offset to be consecutive, so 1843 // that the runtime linker can speed-up symbol lookup by implementing an 1844 // 1-entry cache. 1845 // 2. Group relocations by r_info to reduce the size of the relocation 1846 // section. 1847 // Since the symbol offset is the high bits in r_info, sorting by r_info 1848 // allows us to do both. 1849 // 1850 // For Rela, we also want to sort by r_addend when r_info is the same. This 1851 // enables us to group by r_addend as well. 1852 llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1853 if (a.r_info != b.r_info) 1854 return a.r_info < b.r_info; 1855 if (a.r_addend != b.r_addend) 1856 return a.r_addend < b.r_addend; 1857 return a.r_offset < b.r_offset; 1858 }); 1859 1860 // Group relocations with the same r_info. Note that each group emits a group 1861 // header and that may make the relocation section larger. It is hard to 1862 // estimate the size of a group header as the encoded size of that varies 1863 // based on r_info. However, we can approximate this trade-off by the number 1864 // of values encoded. Each group header contains 3 values, and each relocation 1865 // in a group encodes one less value, as compared to when it is not grouped. 1866 // Therefore, we only group relocations if there are 3 or more of them with 1867 // the same r_info. 1868 // 1869 // For Rela, the addend for most non-relative relocations is zero, and thus we 1870 // can usually get a smaller relocation section if we group relocations with 0 1871 // addend as well. 1872 std::vector<Elf_Rela> ungroupedNonRelatives; 1873 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1874 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1875 auto j = i + 1; 1876 while (j != e && i->r_info == j->r_info && 1877 (!config->isRela || i->r_addend == j->r_addend)) 1878 ++j; 1879 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1880 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1881 else 1882 nonRelativeGroups.emplace_back(i, j); 1883 i = j; 1884 } 1885 1886 // Sort ungrouped relocations by offset to minimize the encoded length. 1887 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1888 return a.r_offset < b.r_offset; 1889 }); 1890 1891 unsigned hasAddendIfRela = 1892 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1893 1894 uint64_t offset = 0; 1895 uint64_t addend = 0; 1896 1897 // Emit the run-length encoding for the groups of adjacent relative 1898 // relocations. Each group is represented using two groups in the packed 1899 // format. The first is used to set the current offset to the start of the 1900 // group (and also encodes the first relocation), and the second encodes the 1901 // remaining relocations. 1902 for (std::vector<Elf_Rela> &g : relativeGroups) { 1903 // The first relocation in the group. 1904 add(1); 1905 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1906 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1907 add(g[0].r_offset - offset); 1908 add(target->relativeRel); 1909 if (config->isRela) { 1910 add(g[0].r_addend - addend); 1911 addend = g[0].r_addend; 1912 } 1913 1914 // The remaining relocations. 1915 add(g.size() - 1); 1916 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1917 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1918 add(config->wordsize); 1919 add(target->relativeRel); 1920 if (config->isRela) { 1921 for (const auto &i : llvm::drop_begin(g)) { 1922 add(i.r_addend - addend); 1923 addend = i.r_addend; 1924 } 1925 } 1926 1927 offset = g.back().r_offset; 1928 } 1929 1930 // Now the ungrouped relatives. 1931 if (!ungroupedRelatives.empty()) { 1932 add(ungroupedRelatives.size()); 1933 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1934 add(target->relativeRel); 1935 for (Elf_Rela &r : ungroupedRelatives) { 1936 add(r.r_offset - offset); 1937 offset = r.r_offset; 1938 if (config->isRela) { 1939 add(r.r_addend - addend); 1940 addend = r.r_addend; 1941 } 1942 } 1943 } 1944 1945 // Grouped non-relatives. 1946 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1947 add(g.size()); 1948 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1949 add(g[0].r_info); 1950 for (const Elf_Rela &r : g) { 1951 add(r.r_offset - offset); 1952 offset = r.r_offset; 1953 } 1954 addend = 0; 1955 } 1956 1957 // Finally the ungrouped non-relative relocations. 1958 if (!ungroupedNonRelatives.empty()) { 1959 add(ungroupedNonRelatives.size()); 1960 add(hasAddendIfRela); 1961 for (Elf_Rela &r : ungroupedNonRelatives) { 1962 add(r.r_offset - offset); 1963 offset = r.r_offset; 1964 add(r.r_info); 1965 if (config->isRela) { 1966 add(r.r_addend - addend); 1967 addend = r.r_addend; 1968 } 1969 } 1970 } 1971 1972 // Don't allow the section to shrink; otherwise the size of the section can 1973 // oscillate infinitely. 1974 if (relocData.size() < oldSize) 1975 relocData.append(oldSize - relocData.size(), 0); 1976 1977 // Returns whether the section size changed. We need to keep recomputing both 1978 // section layout and the contents of this section until the size converges 1979 // because changing this section's size can affect section layout, which in 1980 // turn can affect the sizes of the LEB-encoded integers stored in this 1981 // section. 1982 return relocData.size() != oldSize; 1983 } 1984 1985 template <class ELFT> 1986 RelrSection<ELFT>::RelrSection(unsigned concurrency) 1987 : RelrBaseSection(concurrency) { 1988 this->entsize = config->wordsize; 1989 } 1990 1991 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1992 // This function computes the contents of an SHT_RELR packed relocation 1993 // section. 1994 // 1995 // Proposal for adding SHT_RELR sections to generic-abi is here: 1996 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1997 // 1998 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 1999 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 2000 // 2001 // i.e. start with an address, followed by any number of bitmaps. The address 2002 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 2003 // relocations each, at subsequent offsets following the last address entry. 2004 // 2005 // The bitmap entries must have 1 in the least significant bit. The assumption 2006 // here is that an address cannot have 1 in lsb. Odd addresses are not 2007 // supported. 2008 // 2009 // Excluding the least significant bit in the bitmap, each non-zero bit in 2010 // the bitmap represents a relocation to be applied to a corresponding machine 2011 // word that follows the base address word. The second least significant bit 2012 // represents the machine word immediately following the initial address, and 2013 // each bit that follows represents the next word, in linear order. As such, 2014 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 2015 // 63 relocations in a 64-bit object. 2016 // 2017 // This encoding has a couple of interesting properties: 2018 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 2019 // even means address, odd means bitmap. 2020 // 2. Just a simple list of addresses is a valid encoding. 2021 2022 size_t oldSize = relrRelocs.size(); 2023 relrRelocs.clear(); 2024 2025 // Same as Config->Wordsize but faster because this is a compile-time 2026 // constant. 2027 const size_t wordsize = sizeof(typename ELFT::uint); 2028 2029 // Number of bits to use for the relocation offsets bitmap. 2030 // Must be either 63 or 31. 2031 const size_t nBits = wordsize * 8 - 1; 2032 2033 // Get offsets for all relative relocations and sort them. 2034 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); 2035 for (auto [i, r] : llvm::enumerate(relocs)) 2036 offsets[i] = r.getOffset(); 2037 llvm::sort(offsets.get(), offsets.get() + relocs.size()); 2038 2039 // For each leading relocation, find following ones that can be folded 2040 // as a bitmap and fold them. 2041 for (size_t i = 0, e = relocs.size(); i != e;) { 2042 // Add a leading relocation. 2043 relrRelocs.push_back(Elf_Relr(offsets[i])); 2044 uint64_t base = offsets[i] + wordsize; 2045 ++i; 2046 2047 // Find foldable relocations to construct bitmaps. 2048 for (;;) { 2049 uint64_t bitmap = 0; 2050 for (; i != e; ++i) { 2051 uint64_t d = offsets[i] - base; 2052 if (d >= nBits * wordsize || d % wordsize) 2053 break; 2054 bitmap |= uint64_t(1) << (d / wordsize); 2055 } 2056 if (!bitmap) 2057 break; 2058 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2059 base += nBits * wordsize; 2060 } 2061 } 2062 2063 // Don't allow the section to shrink; otherwise the size of the section can 2064 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2065 if (relrRelocs.size() < oldSize) { 2066 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2067 " padding word(s)"); 2068 relrRelocs.resize(oldSize, Elf_Relr(1)); 2069 } 2070 2071 return relrRelocs.size() != oldSize; 2072 } 2073 2074 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2075 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2076 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2077 config->wordsize, 2078 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2079 strTabSec(strTabSec) {} 2080 2081 // Orders symbols according to their positions in the GOT, 2082 // in compliance with MIPS ABI rules. 2083 // See "Global Offset Table" in Chapter 5 in the following document 2084 // for detailed description: 2085 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2086 static bool sortMipsSymbols(const SymbolTableEntry &l, 2087 const SymbolTableEntry &r) { 2088 // Sort entries related to non-local preemptible symbols by GOT indexes. 2089 // All other entries go to the beginning of a dynsym in arbitrary order. 2090 if (l.sym->isInGot() && r.sym->isInGot()) 2091 return l.sym->getGotIdx() < r.sym->getGotIdx(); 2092 if (!l.sym->isInGot() && !r.sym->isInGot()) 2093 return false; 2094 return !l.sym->isInGot(); 2095 } 2096 2097 void SymbolTableBaseSection::finalizeContents() { 2098 if (OutputSection *sec = strTabSec.getParent()) 2099 getParent()->link = sec->sectionIndex; 2100 2101 if (this->type != SHT_DYNSYM) { 2102 sortSymTabSymbols(); 2103 return; 2104 } 2105 2106 // If it is a .dynsym, there should be no local symbols, but we need 2107 // to do a few things for the dynamic linker. 2108 2109 // Section's Info field has the index of the first non-local symbol. 2110 // Because the first symbol entry is a null entry, 1 is the first. 2111 getParent()->info = 1; 2112 2113 if (getPartition().gnuHashTab) { 2114 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2115 getPartition().gnuHashTab->addSymbols(symbols); 2116 } else if (config->emachine == EM_MIPS) { 2117 llvm::stable_sort(symbols, sortMipsSymbols); 2118 } 2119 2120 // Only the main partition's dynsym indexes are stored in the symbols 2121 // themselves. All other partitions use a lookup table. 2122 if (this == mainPart->dynSymTab.get()) { 2123 size_t i = 0; 2124 for (const SymbolTableEntry &s : symbols) 2125 s.sym->dynsymIndex = ++i; 2126 } 2127 } 2128 2129 // The ELF spec requires that all local symbols precede global symbols, so we 2130 // sort symbol entries in this function. (For .dynsym, we don't do that because 2131 // symbols for dynamic linking are inherently all globals.) 2132 // 2133 // Aside from above, we put local symbols in groups starting with the STT_FILE 2134 // symbol. That is convenient for purpose of identifying where are local symbols 2135 // coming from. 2136 void SymbolTableBaseSection::sortSymTabSymbols() { 2137 // Move all local symbols before global symbols. 2138 auto e = std::stable_partition( 2139 symbols.begin(), symbols.end(), 2140 [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); 2141 size_t numLocals = e - symbols.begin(); 2142 getParent()->info = numLocals + 1; 2143 2144 // We want to group the local symbols by file. For that we rebuild the local 2145 // part of the symbols vector. We do not need to care about the STT_FILE 2146 // symbols, they are already naturally placed first in each group. That 2147 // happens because STT_FILE is always the first symbol in the object and hence 2148 // precede all other local symbols we add for a file. 2149 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; 2150 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2151 arr[s.sym->file].push_back(s); 2152 2153 auto i = symbols.begin(); 2154 for (auto &p : arr) 2155 for (SymbolTableEntry &entry : p.second) 2156 *i++ = entry; 2157 } 2158 2159 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2160 // Adding a local symbol to a .dynsym is a bug. 2161 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2162 symbols.push_back({b, strTabSec.addString(b->getName(), false)}); 2163 } 2164 2165 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2166 if (this == mainPart->dynSymTab.get()) 2167 return sym->dynsymIndex; 2168 2169 // Initializes symbol lookup tables lazily. This is used only for -r, 2170 // --emit-relocs and dynsyms in partitions other than the main one. 2171 llvm::call_once(onceFlag, [&] { 2172 symbolIndexMap.reserve(symbols.size()); 2173 size_t i = 0; 2174 for (const SymbolTableEntry &e : symbols) { 2175 if (e.sym->type == STT_SECTION) 2176 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2177 else 2178 symbolIndexMap[e.sym] = ++i; 2179 } 2180 }); 2181 2182 // Section symbols are mapped based on their output sections 2183 // to maintain their semantics. 2184 if (sym->type == STT_SECTION) 2185 return sectionIndexMap.lookup(sym->getOutputSection()); 2186 return symbolIndexMap.lookup(sym); 2187 } 2188 2189 template <class ELFT> 2190 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2191 : SymbolTableBaseSection(strTabSec) { 2192 this->entsize = sizeof(Elf_Sym); 2193 } 2194 2195 static BssSection *getCommonSec(Symbol *sym) { 2196 if (config->relocatable) 2197 if (auto *d = dyn_cast<Defined>(sym)) 2198 return dyn_cast_or_null<BssSection>(d->section); 2199 return nullptr; 2200 } 2201 2202 static uint32_t getSymSectionIndex(Symbol *sym) { 2203 assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject())); 2204 if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY)) 2205 return SHN_UNDEF; 2206 if (const OutputSection *os = sym->getOutputSection()) 2207 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2208 : os->sectionIndex; 2209 return SHN_ABS; 2210 } 2211 2212 // Write the internal symbol table contents to the output symbol table. 2213 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2214 // The first entry is a null entry as per the ELF spec. 2215 buf += sizeof(Elf_Sym); 2216 2217 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2218 2219 for (SymbolTableEntry &ent : symbols) { 2220 Symbol *sym = ent.sym; 2221 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2222 2223 // Set st_name, st_info and st_other. 2224 eSym->st_name = ent.strTabOffset; 2225 eSym->setBindingAndType(sym->binding, sym->type); 2226 eSym->st_other = sym->stOther; 2227 2228 if (BssSection *commonSec = getCommonSec(sym)) { 2229 // When -r is specified, a COMMON symbol is not allocated. Its st_shndx 2230 // holds SHN_COMMON and st_value holds the alignment. 2231 eSym->st_shndx = SHN_COMMON; 2232 eSym->st_value = commonSec->addralign; 2233 eSym->st_size = cast<Defined>(sym)->size; 2234 } else { 2235 const uint32_t shndx = getSymSectionIndex(sym); 2236 if (isDefinedHere) { 2237 eSym->st_shndx = shndx; 2238 eSym->st_value = sym->getVA(); 2239 // Copy symbol size if it is a defined symbol. st_size is not 2240 // significant for undefined symbols, so whether copying it or not is up 2241 // to us if that's the case. We'll leave it as zero because by not 2242 // setting a value, we can get the exact same outputs for two sets of 2243 // input files that differ only in undefined symbol size in DSOs. 2244 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; 2245 } else { 2246 eSym->st_shndx = 0; 2247 eSym->st_value = 0; 2248 eSym->st_size = 0; 2249 } 2250 } 2251 2252 ++eSym; 2253 } 2254 2255 // On MIPS we need to mark symbol which has a PLT entry and requires 2256 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2257 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2258 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2259 if (config->emachine == EM_MIPS) { 2260 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2261 2262 for (SymbolTableEntry &ent : symbols) { 2263 Symbol *sym = ent.sym; 2264 if (sym->isInPlt() && sym->hasFlag(NEEDS_COPY)) 2265 eSym->st_other |= STO_MIPS_PLT; 2266 if (isMicroMips()) { 2267 // We already set the less-significant bit for symbols 2268 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2269 // records. That allows us to distinguish such symbols in 2270 // the `MIPS<ELFT>::relocate()` routine. Now we should 2271 // clear that bit for non-dynamic symbol table, so tools 2272 // like `objdump` will be able to deal with a correct 2273 // symbol position. 2274 if (sym->isDefined() && 2275 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) { 2276 if (!strTabSec.isDynamic()) 2277 eSym->st_value &= ~1; 2278 eSym->st_other |= STO_MIPS_MICROMIPS; 2279 } 2280 } 2281 if (config->relocatable) 2282 if (auto *d = dyn_cast<Defined>(sym)) 2283 if (isMipsPIC<ELFT>(d)) 2284 eSym->st_other |= STO_MIPS_PIC; 2285 ++eSym; 2286 } 2287 } 2288 } 2289 2290 SymtabShndxSection::SymtabShndxSection() 2291 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2292 this->entsize = 4; 2293 } 2294 2295 void SymtabShndxSection::writeTo(uint8_t *buf) { 2296 // We write an array of 32 bit values, where each value has 1:1 association 2297 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2298 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2299 buf += 4; // Ignore .symtab[0] entry. 2300 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2301 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX) 2302 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2303 buf += 4; 2304 } 2305 } 2306 2307 bool SymtabShndxSection::isNeeded() const { 2308 // SHT_SYMTAB can hold symbols with section indices values up to 2309 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2310 // section. Problem is that we reveal the final section indices a bit too 2311 // late, and we do not know them here. For simplicity, we just always create 2312 // a .symtab_shndx section when the amount of output sections is huge. 2313 size_t size = 0; 2314 for (SectionCommand *cmd : script->sectionCommands) 2315 if (isa<OutputDesc>(cmd)) 2316 ++size; 2317 return size >= SHN_LORESERVE; 2318 } 2319 2320 void SymtabShndxSection::finalizeContents() { 2321 getParent()->link = in.symTab->getParent()->sectionIndex; 2322 } 2323 2324 size_t SymtabShndxSection::getSize() const { 2325 return in.symTab->getNumSymbols() * 4; 2326 } 2327 2328 // .hash and .gnu.hash sections contain on-disk hash tables that map 2329 // symbol names to their dynamic symbol table indices. Their purpose 2330 // is to help the dynamic linker resolve symbols quickly. If ELF files 2331 // don't have them, the dynamic linker has to do linear search on all 2332 // dynamic symbols, which makes programs slower. Therefore, a .hash 2333 // section is added to a DSO by default. 2334 // 2335 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2336 // Each ELF file has a list of DSOs that the ELF file depends on and a 2337 // list of dynamic symbols that need to be resolved from any of the 2338 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2339 // where m is the number of DSOs and n is the number of dynamic 2340 // symbols. For modern large programs, both m and n are large. So 2341 // making each step faster by using hash tables substantially 2342 // improves time to load programs. 2343 // 2344 // (Note that this is not the only way to design the shared library. 2345 // For instance, the Windows DLL takes a different approach. On 2346 // Windows, each dynamic symbol has a name of DLL from which the symbol 2347 // has to be resolved. That makes the cost of symbol resolution O(n). 2348 // This disables some hacky techniques you can use on Unix such as 2349 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2350 // 2351 // Due to historical reasons, we have two different hash tables, .hash 2352 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2353 // and better version of .hash. .hash is just an on-disk hash table, but 2354 // .gnu.hash has a bloom filter in addition to a hash table to skip 2355 // DSOs very quickly. If you are sure that your dynamic linker knows 2356 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a 2357 // safe bet is to specify --hash-style=both for backward compatibility. 2358 GnuHashTableSection::GnuHashTableSection() 2359 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2360 } 2361 2362 void GnuHashTableSection::finalizeContents() { 2363 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2364 getParent()->link = sec->sectionIndex; 2365 2366 // Computes bloom filter size in word size. We want to allocate 12 2367 // bits for each symbol. It must be a power of two. 2368 if (symbols.empty()) { 2369 maskWords = 1; 2370 } else { 2371 uint64_t numBits = symbols.size() * 12; 2372 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2373 } 2374 2375 size = 16; // Header 2376 size += config->wordsize * maskWords; // Bloom filter 2377 size += nBuckets * 4; // Hash buckets 2378 size += symbols.size() * 4; // Hash values 2379 } 2380 2381 void GnuHashTableSection::writeTo(uint8_t *buf) { 2382 // Write a header. 2383 write32(buf, nBuckets); 2384 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2385 write32(buf + 8, maskWords); 2386 write32(buf + 12, Shift2); 2387 buf += 16; 2388 2389 // Write the 2-bit bloom filter. 2390 const unsigned c = config->is64 ? 64 : 32; 2391 for (const Entry &sym : symbols) { 2392 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2393 // the word using bits [0:5] and [26:31]. 2394 size_t i = (sym.hash / c) & (maskWords - 1); 2395 uint64_t val = readUint(buf + i * config->wordsize); 2396 val |= uint64_t(1) << (sym.hash % c); 2397 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2398 writeUint(buf + i * config->wordsize, val); 2399 } 2400 buf += config->wordsize * maskWords; 2401 2402 // Write the hash table. 2403 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2404 uint32_t oldBucket = -1; 2405 uint32_t *values = buckets + nBuckets; 2406 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2407 // Write a hash value. It represents a sequence of chains that share the 2408 // same hash modulo value. The last element of each chain is terminated by 2409 // LSB 1. 2410 uint32_t hash = i->hash; 2411 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2412 hash = isLastInChain ? hash | 1 : hash & ~1; 2413 write32(values++, hash); 2414 2415 if (i->bucketIdx == oldBucket) 2416 continue; 2417 // Write a hash bucket. Hash buckets contain indices in the following hash 2418 // value table. 2419 write32(buckets + i->bucketIdx, 2420 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2421 oldBucket = i->bucketIdx; 2422 } 2423 } 2424 2425 // Add symbols to this symbol hash table. Note that this function 2426 // destructively sort a given vector -- which is needed because 2427 // GNU-style hash table places some sorting requirements. 2428 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { 2429 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2430 // its type correctly. 2431 auto mid = 2432 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2433 return !s.sym->isDefined() || s.sym->partition != partition; 2434 }); 2435 2436 // We chose load factor 4 for the on-disk hash table. For each hash 2437 // collision, the dynamic linker will compare a uint32_t hash value. 2438 // Since the integer comparison is quite fast, we believe we can 2439 // make the load factor even larger. 4 is just a conservative choice. 2440 // 2441 // Note that we don't want to create a zero-sized hash table because 2442 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2443 // table. If that's the case, we create a hash table with one unused 2444 // dummy slot. 2445 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2446 2447 if (mid == v.end()) 2448 return; 2449 2450 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2451 Symbol *b = ent.sym; 2452 uint32_t hash = hashGnu(b->getName()); 2453 uint32_t bucketIdx = hash % nBuckets; 2454 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2455 } 2456 2457 llvm::sort(symbols, [](const Entry &l, const Entry &r) { 2458 return std::tie(l.bucketIdx, l.strTabOffset) < 2459 std::tie(r.bucketIdx, r.strTabOffset); 2460 }); 2461 2462 v.erase(mid, v.end()); 2463 for (const Entry &ent : symbols) 2464 v.push_back({ent.sym, ent.strTabOffset}); 2465 } 2466 2467 HashTableSection::HashTableSection() 2468 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2469 this->entsize = 4; 2470 } 2471 2472 void HashTableSection::finalizeContents() { 2473 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2474 2475 if (OutputSection *sec = symTab->getParent()) 2476 getParent()->link = sec->sectionIndex; 2477 2478 unsigned numEntries = 2; // nbucket and nchain. 2479 numEntries += symTab->getNumSymbols(); // The chain entries. 2480 2481 // Create as many buckets as there are symbols. 2482 numEntries += symTab->getNumSymbols(); 2483 this->size = numEntries * 4; 2484 } 2485 2486 void HashTableSection::writeTo(uint8_t *buf) { 2487 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2488 unsigned numSymbols = symTab->getNumSymbols(); 2489 2490 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2491 write32(p++, numSymbols); // nbucket 2492 write32(p++, numSymbols); // nchain 2493 2494 uint32_t *buckets = p; 2495 uint32_t *chains = p + numSymbols; 2496 2497 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2498 Symbol *sym = s.sym; 2499 StringRef name = sym->getName(); 2500 unsigned i = sym->dynsymIndex; 2501 uint32_t hash = hashSysV(name) % numSymbols; 2502 chains[i] = buckets[hash]; 2503 write32(buckets + hash, i); 2504 } 2505 } 2506 2507 PltSection::PltSection() 2508 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2509 headerSize(target->pltHeaderSize) { 2510 // On PowerPC, this section contains lazy symbol resolvers. 2511 if (config->emachine == EM_PPC64) { 2512 name = ".glink"; 2513 addralign = 4; 2514 } 2515 2516 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2517 // symbol resolvers). 2518 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2519 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2520 name = ".plt.sec"; 2521 2522 // The PLT needs to be writable on SPARC as the dynamic linker will 2523 // modify the instructions in the PLT entries. 2524 if (config->emachine == EM_SPARCV9) 2525 this->flags |= SHF_WRITE; 2526 } 2527 2528 void PltSection::writeTo(uint8_t *buf) { 2529 // At beginning of PLT, we have code to call the dynamic 2530 // linker to resolve dynsyms at runtime. Write such code. 2531 target->writePltHeader(buf); 2532 size_t off = headerSize; 2533 2534 for (const Symbol *sym : entries) { 2535 target->writePlt(buf + off, *sym, getVA() + off); 2536 off += target->pltEntrySize; 2537 } 2538 } 2539 2540 void PltSection::addEntry(Symbol &sym) { 2541 assert(sym.auxIdx == symAux.size() - 1); 2542 symAux.back().pltIdx = entries.size(); 2543 entries.push_back(&sym); 2544 } 2545 2546 size_t PltSection::getSize() const { 2547 return headerSize + entries.size() * target->pltEntrySize; 2548 } 2549 2550 bool PltSection::isNeeded() const { 2551 // For -z retpolineplt, .iplt needs the .plt header. 2552 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2553 } 2554 2555 // Used by ARM to add mapping symbols in the PLT section, which aid 2556 // disassembly. 2557 void PltSection::addSymbols() { 2558 target->addPltHeaderSymbols(*this); 2559 2560 size_t off = headerSize; 2561 for (size_t i = 0; i < entries.size(); ++i) { 2562 target->addPltSymbols(*this, off); 2563 off += target->pltEntrySize; 2564 } 2565 } 2566 2567 IpltSection::IpltSection() 2568 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2569 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2570 name = ".glink"; 2571 addralign = 4; 2572 } 2573 } 2574 2575 void IpltSection::writeTo(uint8_t *buf) { 2576 uint32_t off = 0; 2577 for (const Symbol *sym : entries) { 2578 target->writeIplt(buf + off, *sym, getVA() + off); 2579 off += target->ipltEntrySize; 2580 } 2581 } 2582 2583 size_t IpltSection::getSize() const { 2584 return entries.size() * target->ipltEntrySize; 2585 } 2586 2587 void IpltSection::addEntry(Symbol &sym) { 2588 assert(sym.auxIdx == symAux.size() - 1); 2589 symAux.back().pltIdx = entries.size(); 2590 entries.push_back(&sym); 2591 } 2592 2593 // ARM uses mapping symbols to aid disassembly. 2594 void IpltSection::addSymbols() { 2595 size_t off = 0; 2596 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2597 target->addPltSymbols(*this, off); 2598 off += target->pltEntrySize; 2599 } 2600 } 2601 2602 PPC32GlinkSection::PPC32GlinkSection() { 2603 name = ".glink"; 2604 addralign = 4; 2605 } 2606 2607 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2608 writePPC32GlinkSection(buf, entries.size()); 2609 } 2610 2611 size_t PPC32GlinkSection::getSize() const { 2612 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2613 } 2614 2615 // This is an x86-only extra PLT section and used only when a security 2616 // enhancement feature called CET is enabled. In this comment, I'll explain what 2617 // the feature is and why we have two PLT sections if CET is enabled. 2618 // 2619 // So, what does CET do? CET introduces a new restriction to indirect jump 2620 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2621 // execute an indirect jump instruction, the processor verifies that a special 2622 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2623 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2624 // does not start with that instruction, the processor raises an exception 2625 // instead of continuing executing code. 2626 // 2627 // If CET is enabled, the compiler emits endbr to all locations where indirect 2628 // jumps may jump to. 2629 // 2630 // This mechanism makes it extremely hard to transfer the control to a middle of 2631 // a function that is not supporsed to be a indirect jump target, preventing 2632 // certain types of attacks such as ROP or JOP. 2633 // 2634 // Note that the processors in the market as of 2019 don't actually support the 2635 // feature. Only the spec is available at the moment. 2636 // 2637 // Now, I'll explain why we have this extra PLT section for CET. 2638 // 2639 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2640 // start with endbr. The problem is there's no extra space for endbr (which is 4 2641 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2642 // used. 2643 // 2644 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2645 // Remember that each PLT entry contains code to jump to an address read from 2646 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2647 // the former code is written to .plt.sec, and the latter code is written to 2648 // .plt. 2649 // 2650 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2651 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2652 // contain only code for lazy symbol resolution. 2653 // 2654 // In other words, this is how the 2-PLT scheme works. Application code is 2655 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2656 // entry contains code to read an address from a corresponding .got.plt entry 2657 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2658 // when an application calls an external function for the first time, the 2659 // control is transferred to a function that resolves a symbol name from 2660 // external shared object files. That function then rewrites a .got.plt entry 2661 // with a resolved address, so that the subsequent function calls directly jump 2662 // to a desired location from .plt.sec. 2663 // 2664 // There is an open question as to whether the 2-PLT scheme was desirable or 2665 // not. We could have simply extended the PLT entry size to 32-bytes to 2666 // accommodate endbr, and that scheme would have been much simpler than the 2667 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2668 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2669 // that the optimization actually makes a difference. 2670 // 2671 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2672 // depend on it, so we implement the ABI. 2673 IBTPltSection::IBTPltSection() 2674 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2675 2676 void IBTPltSection::writeTo(uint8_t *buf) { 2677 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2678 } 2679 2680 size_t IBTPltSection::getSize() const { 2681 // 16 is the header size of .plt. 2682 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2683 } 2684 2685 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; } 2686 2687 // The string hash function for .gdb_index. 2688 static uint32_t computeGdbHash(StringRef s) { 2689 uint32_t h = 0; 2690 for (uint8_t c : s) 2691 h = h * 67 + toLower(c) - 113; 2692 return h; 2693 } 2694 2695 GdbIndexSection::GdbIndexSection() 2696 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2697 2698 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2699 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2700 size_t GdbIndexSection::computeSymtabSize() const { 2701 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2702 } 2703 2704 static SmallVector<GdbIndexSection::CuEntry, 0> 2705 readCuList(DWARFContext &dwarf) { 2706 SmallVector<GdbIndexSection::CuEntry, 0> ret; 2707 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2708 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2709 return ret; 2710 } 2711 2712 static SmallVector<GdbIndexSection::AddressEntry, 0> 2713 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2714 SmallVector<GdbIndexSection::AddressEntry, 0> ret; 2715 2716 uint32_t cuIdx = 0; 2717 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2718 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2719 warn(toString(sec) + ": " + toString(std::move(e))); 2720 return {}; 2721 } 2722 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2723 if (!ranges) { 2724 warn(toString(sec) + ": " + toString(ranges.takeError())); 2725 return {}; 2726 } 2727 2728 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2729 for (DWARFAddressRange &r : *ranges) { 2730 if (r.SectionIndex == -1ULL) 2731 continue; 2732 // Range list with zero size has no effect. 2733 InputSectionBase *s = sections[r.SectionIndex]; 2734 if (s && s != &InputSection::discarded && s->isLive()) 2735 if (r.LowPC != r.HighPC) 2736 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2737 } 2738 ++cuIdx; 2739 } 2740 2741 return ret; 2742 } 2743 2744 template <class ELFT> 2745 static SmallVector<GdbIndexSection::NameAttrEntry, 0> 2746 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2747 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { 2748 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2749 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2750 2751 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret; 2752 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2753 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2754 DWARFDebugPubTable table; 2755 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2756 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2757 }); 2758 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2759 // The value written into the constant pool is kind << 24 | cuIndex. As we 2760 // don't know how many compilation units precede this object to compute 2761 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2762 // the number of preceding compilation units later. 2763 uint32_t i = llvm::partition_point(cus, 2764 [&](GdbIndexSection::CuEntry cu) { 2765 return cu.cuOffset < set.Offset; 2766 }) - 2767 cus.begin(); 2768 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2769 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2770 (ent.Descriptor.toBits() << 24) | i}); 2771 } 2772 } 2773 return ret; 2774 } 2775 2776 // Create a list of symbols from a given list of symbol names and types 2777 // by uniquifying them by name. 2778 static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t> 2779 createSymbols( 2780 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs, 2781 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) { 2782 using GdbSymbol = GdbIndexSection::GdbSymbol; 2783 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2784 2785 // For each chunk, compute the number of compilation units preceding it. 2786 uint32_t cuIdx = 0; 2787 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); 2788 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2789 cuIdxs[i] = cuIdx; 2790 cuIdx += chunks[i].compilationUnits.size(); 2791 } 2792 2793 // The number of symbols we will handle in this function is of the order 2794 // of millions for very large executables, so we use multi-threading to 2795 // speed it up. 2796 constexpr size_t numShards = 32; 2797 const size_t concurrency = 2798 llvm::bit_floor(std::min<size_t>(config->threadCount, numShards)); 2799 2800 // A sharded map to uniquify symbols by name. 2801 auto map = 2802 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards); 2803 size_t shift = 32 - llvm::countr_zero(numShards); 2804 2805 // Instantiate GdbSymbols while uniqufying them by name. 2806 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards); 2807 2808 parallelFor(0, concurrency, [&](size_t threadId) { 2809 uint32_t i = 0; 2810 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2811 for (const NameAttrEntry &ent : entries) { 2812 size_t shardId = ent.name.hash() >> shift; 2813 if ((shardId & (concurrency - 1)) != threadId) 2814 continue; 2815 2816 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2817 size_t &idx = map[shardId][ent.name]; 2818 if (idx) { 2819 symbols[shardId][idx - 1].cuVector.push_back(v); 2820 continue; 2821 } 2822 2823 idx = symbols[shardId].size() + 1; 2824 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2825 } 2826 ++i; 2827 } 2828 }); 2829 2830 size_t numSymbols = 0; 2831 for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards)) 2832 numSymbols += v.size(); 2833 2834 // The return type is a flattened vector, so we'll copy each vector 2835 // contents to Ret. 2836 SmallVector<GdbSymbol, 0> ret; 2837 ret.reserve(numSymbols); 2838 for (SmallVector<GdbSymbol, 0> &vec : 2839 MutableArrayRef(symbols.get(), numShards)) 2840 for (GdbSymbol &sym : vec) 2841 ret.push_back(std::move(sym)); 2842 2843 // CU vectors and symbol names are adjacent in the output file. 2844 // We can compute their offsets in the output file now. 2845 size_t off = 0; 2846 for (GdbSymbol &sym : ret) { 2847 sym.cuVectorOff = off; 2848 off += (sym.cuVector.size() + 1) * 4; 2849 } 2850 for (GdbSymbol &sym : ret) { 2851 sym.nameOff = off; 2852 off += sym.name.size() + 1; 2853 } 2854 // If off overflows, the last symbol's nameOff likely overflows. 2855 if (!isUInt<32>(off)) 2856 errorOrWarn("--gdb-index: constant pool size (" + Twine(off) + 2857 ") exceeds UINT32_MAX"); 2858 2859 return {ret, off}; 2860 } 2861 2862 // Returns a newly-created .gdb_index section. 2863 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2864 llvm::TimeTraceScope timeScope("Create gdb index"); 2865 2866 // Collect InputFiles with .debug_info. See the comment in 2867 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2868 // note that isec->data() may uncompress the full content, which should be 2869 // parallelized. 2870 SetVector<InputFile *> files; 2871 for (InputSectionBase *s : ctx.inputSections) { 2872 InputSection *isec = dyn_cast<InputSection>(s); 2873 if (!isec) 2874 continue; 2875 // .debug_gnu_pub{names,types} are useless in executables. 2876 // They are present in input object files solely for creating 2877 // a .gdb_index. So we can remove them from the output. 2878 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2879 s->markDead(); 2880 else if (isec->name == ".debug_info") 2881 files.insert(isec->file); 2882 } 2883 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 2884 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) { 2885 if (auto *isec = dyn_cast<InputSection>(s)) 2886 if (InputSectionBase *rel = isec->getRelocatedSection()) 2887 return !rel->isLive(); 2888 return !s->isLive(); 2889 }); 2890 2891 SmallVector<GdbChunk, 0> chunks(files.size()); 2892 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size()); 2893 2894 parallelFor(0, files.size(), [&](size_t i) { 2895 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2896 // avoid getDwarf() here. 2897 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2898 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2899 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2900 2901 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2902 // this only picks the last one. Other address ranges are lost. 2903 chunks[i].sec = dobj.getInfoSection(); 2904 chunks[i].compilationUnits = readCuList(dwarf); 2905 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2906 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2907 }); 2908 2909 auto *ret = make<GdbIndexSection>(); 2910 ret->chunks = std::move(chunks); 2911 std::tie(ret->symbols, ret->size) = createSymbols(nameAttrs, ret->chunks); 2912 2913 // Count the areas other than the constant pool. 2914 ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8; 2915 for (GdbChunk &chunk : ret->chunks) 2916 ret->size += 2917 chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2918 2919 return ret; 2920 } 2921 2922 void GdbIndexSection::writeTo(uint8_t *buf) { 2923 // Write the header. 2924 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2925 uint8_t *start = buf; 2926 hdr->version = 7; 2927 buf += sizeof(*hdr); 2928 2929 // Write the CU list. 2930 hdr->cuListOff = buf - start; 2931 for (GdbChunk &chunk : chunks) { 2932 for (CuEntry &cu : chunk.compilationUnits) { 2933 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2934 write64le(buf + 8, cu.cuLength); 2935 buf += 16; 2936 } 2937 } 2938 2939 // Write the address area. 2940 hdr->cuTypesOff = buf - start; 2941 hdr->addressAreaOff = buf - start; 2942 uint32_t cuOff = 0; 2943 for (GdbChunk &chunk : chunks) { 2944 for (AddressEntry &e : chunk.addressAreas) { 2945 // In the case of ICF there may be duplicate address range entries. 2946 const uint64_t baseAddr = e.section->repl->getVA(0); 2947 write64le(buf, baseAddr + e.lowAddress); 2948 write64le(buf + 8, baseAddr + e.highAddress); 2949 write32le(buf + 16, e.cuIndex + cuOff); 2950 buf += 20; 2951 } 2952 cuOff += chunk.compilationUnits.size(); 2953 } 2954 2955 // Write the on-disk open-addressing hash table containing symbols. 2956 hdr->symtabOff = buf - start; 2957 size_t symtabSize = computeSymtabSize(); 2958 uint32_t mask = symtabSize - 1; 2959 2960 for (GdbSymbol &sym : symbols) { 2961 uint32_t h = sym.name.hash(); 2962 uint32_t i = h & mask; 2963 uint32_t step = ((h * 17) & mask) | 1; 2964 2965 while (read32le(buf + i * 8)) 2966 i = (i + step) & mask; 2967 2968 write32le(buf + i * 8, sym.nameOff); 2969 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2970 } 2971 2972 buf += symtabSize * 8; 2973 2974 // Write the string pool. 2975 hdr->constantPoolOff = buf - start; 2976 parallelForEach(symbols, [&](GdbSymbol &sym) { 2977 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 2978 }); 2979 2980 // Write the CU vectors. 2981 for (GdbSymbol &sym : symbols) { 2982 write32le(buf, sym.cuVector.size()); 2983 buf += 4; 2984 for (uint32_t val : sym.cuVector) { 2985 write32le(buf, val); 2986 buf += 4; 2987 } 2988 } 2989 } 2990 2991 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 2992 2993 EhFrameHeader::EhFrameHeader() 2994 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 2995 2996 void EhFrameHeader::writeTo(uint8_t *buf) { 2997 // Unlike most sections, the EhFrameHeader section is written while writing 2998 // another section, namely EhFrameSection, which calls the write() function 2999 // below from its writeTo() function. This is necessary because the contents 3000 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 3001 // don't know which order the sections will be written in. 3002 } 3003 3004 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 3005 // Each entry of the search table consists of two values, 3006 // the starting PC from where FDEs covers, and the FDE's address. 3007 // It is sorted by PC. 3008 void EhFrameHeader::write() { 3009 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3010 using FdeData = EhFrameSection::FdeData; 3011 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData(); 3012 3013 buf[0] = 1; 3014 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3015 buf[2] = DW_EH_PE_udata4; 3016 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3017 write32(buf + 4, 3018 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3019 write32(buf + 8, fdes.size()); 3020 buf += 12; 3021 3022 for (FdeData &fde : fdes) { 3023 write32(buf, fde.pcRel); 3024 write32(buf + 4, fde.fdeVARel); 3025 buf += 8; 3026 } 3027 } 3028 3029 size_t EhFrameHeader::getSize() const { 3030 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3031 return 12 + getPartition().ehFrame->numFdes * 8; 3032 } 3033 3034 bool EhFrameHeader::isNeeded() const { 3035 return isLive() && getPartition().ehFrame->isNeeded(); 3036 } 3037 3038 VersionDefinitionSection::VersionDefinitionSection() 3039 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3040 ".gnu.version_d") {} 3041 3042 StringRef VersionDefinitionSection::getFileDefName() { 3043 if (!getPartition().name.empty()) 3044 return getPartition().name; 3045 if (!config->soName.empty()) 3046 return config->soName; 3047 return config->outputFile; 3048 } 3049 3050 void VersionDefinitionSection::finalizeContents() { 3051 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3052 for (const VersionDefinition &v : namedVersionDefs()) 3053 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3054 3055 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3056 getParent()->link = sec->sectionIndex; 3057 3058 // sh_info should be set to the number of definitions. This fact is missed in 3059 // documentation, but confirmed by binutils community: 3060 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3061 getParent()->info = getVerDefNum(); 3062 } 3063 3064 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3065 StringRef name, size_t nameOff) { 3066 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3067 3068 // Write a verdef. 3069 write16(buf, 1); // vd_version 3070 write16(buf + 2, flags); // vd_flags 3071 write16(buf + 4, index); // vd_ndx 3072 write16(buf + 6, 1); // vd_cnt 3073 write32(buf + 8, hashSysV(name)); // vd_hash 3074 write32(buf + 12, 20); // vd_aux 3075 write32(buf + 16, 28); // vd_next 3076 3077 // Write a veraux. 3078 write32(buf + 20, nameOff); // vda_name 3079 write32(buf + 24, 0); // vda_next 3080 } 3081 3082 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3083 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3084 3085 auto nameOffIt = verDefNameOffs.begin(); 3086 for (const VersionDefinition &v : namedVersionDefs()) { 3087 buf += EntrySize; 3088 writeOne(buf, v.id, v.name, *nameOffIt++); 3089 } 3090 3091 // Need to terminate the last version definition. 3092 write32(buf + 16, 0); // vd_next 3093 } 3094 3095 size_t VersionDefinitionSection::getSize() const { 3096 return EntrySize * getVerDefNum(); 3097 } 3098 3099 // .gnu.version is a table where each entry is 2 byte long. 3100 VersionTableSection::VersionTableSection() 3101 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3102 ".gnu.version") { 3103 this->entsize = 2; 3104 } 3105 3106 void VersionTableSection::finalizeContents() { 3107 // At the moment of june 2016 GNU docs does not mention that sh_link field 3108 // should be set, but Sun docs do. Also readelf relies on this field. 3109 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3110 } 3111 3112 size_t VersionTableSection::getSize() const { 3113 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3114 } 3115 3116 void VersionTableSection::writeTo(uint8_t *buf) { 3117 buf += 2; 3118 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3119 // For an unextracted lazy symbol (undefined weak), it must have been 3120 // converted to Undefined and have VER_NDX_GLOBAL version here. 3121 assert(!s.sym->isLazy()); 3122 write16(buf, s.sym->versionId); 3123 buf += 2; 3124 } 3125 } 3126 3127 bool VersionTableSection::isNeeded() const { 3128 return isLive() && 3129 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3130 } 3131 3132 void elf::addVerneed(Symbol *ss) { 3133 auto &file = cast<SharedFile>(*ss->file); 3134 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3135 ss->versionId = VER_NDX_GLOBAL; 3136 return; 3137 } 3138 3139 if (file.vernauxs.empty()) 3140 file.vernauxs.resize(file.verdefs.size()); 3141 3142 // Select a version identifier for the vernaux data structure, if we haven't 3143 // already allocated one. The verdef identifiers cover the range 3144 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3145 // getVerDefNum()+1. 3146 if (file.vernauxs[ss->verdefIndex] == 0) 3147 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3148 3149 ss->versionId = file.vernauxs[ss->verdefIndex]; 3150 } 3151 3152 template <class ELFT> 3153 VersionNeedSection<ELFT>::VersionNeedSection() 3154 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3155 ".gnu.version_r") {} 3156 3157 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3158 for (SharedFile *f : ctx.sharedFiles) { 3159 if (f->vernauxs.empty()) 3160 continue; 3161 verneeds.emplace_back(); 3162 Verneed &vn = verneeds.back(); 3163 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3164 bool isLibc = config->relrGlibc && f->soName.starts_with("libc.so."); 3165 bool isGlibc2 = false; 3166 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3167 if (f->vernauxs[i] == 0) 3168 continue; 3169 auto *verdef = 3170 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3171 StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name); 3172 if (isLibc && ver.starts_with("GLIBC_2.")) 3173 isGlibc2 = true; 3174 vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i], 3175 getPartition().dynStrTab->addString(ver)}); 3176 } 3177 if (isGlibc2) { 3178 const char *ver = "GLIBC_ABI_DT_RELR"; 3179 vn.vernauxs.push_back({hashSysV(ver), 3180 ++SharedFile::vernauxNum + getVerDefNum(), 3181 getPartition().dynStrTab->addString(ver)}); 3182 } 3183 } 3184 3185 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3186 getParent()->link = sec->sectionIndex; 3187 getParent()->info = verneeds.size(); 3188 } 3189 3190 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3191 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3192 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3193 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3194 3195 for (auto &vn : verneeds) { 3196 // Create an Elf_Verneed for this DSO. 3197 verneed->vn_version = 1; 3198 verneed->vn_cnt = vn.vernauxs.size(); 3199 verneed->vn_file = vn.nameStrTab; 3200 verneed->vn_aux = 3201 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3202 verneed->vn_next = sizeof(Elf_Verneed); 3203 ++verneed; 3204 3205 // Create the Elf_Vernauxs for this Elf_Verneed. 3206 for (auto &vna : vn.vernauxs) { 3207 vernaux->vna_hash = vna.hash; 3208 vernaux->vna_flags = 0; 3209 vernaux->vna_other = vna.verneedIndex; 3210 vernaux->vna_name = vna.nameStrTab; 3211 vernaux->vna_next = sizeof(Elf_Vernaux); 3212 ++vernaux; 3213 } 3214 3215 vernaux[-1].vna_next = 0; 3216 } 3217 verneed[-1].vn_next = 0; 3218 } 3219 3220 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3221 return verneeds.size() * sizeof(Elf_Verneed) + 3222 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3223 } 3224 3225 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3226 return isLive() && SharedFile::vernauxNum != 0; 3227 } 3228 3229 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3230 ms->parent = this; 3231 sections.push_back(ms); 3232 assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS)); 3233 addralign = std::max(addralign, ms->addralign); 3234 } 3235 3236 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3237 uint64_t flags, uint32_t alignment) 3238 : MergeSyntheticSection(name, type, flags, alignment), 3239 builder(StringTableBuilder::RAW, llvm::Align(alignment)) {} 3240 3241 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3242 3243 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3244 3245 void MergeTailSection::finalizeContents() { 3246 // Add all string pieces to the string table builder to create section 3247 // contents. 3248 for (MergeInputSection *sec : sections) 3249 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3250 if (sec->pieces[i].live) 3251 builder.add(sec->getData(i)); 3252 3253 // Fix the string table content. After this, the contents will never change. 3254 builder.finalize(); 3255 3256 // finalize() fixed tail-optimized strings, so we can now get 3257 // offsets of strings. Get an offset for each string and save it 3258 // to a corresponding SectionPiece for easy access. 3259 for (MergeInputSection *sec : sections) 3260 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3261 if (sec->pieces[i].live) 3262 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3263 } 3264 3265 void MergeNoTailSection::writeTo(uint8_t *buf) { 3266 parallelFor(0, numShards, 3267 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); 3268 } 3269 3270 // This function is very hot (i.e. it can take several seconds to finish) 3271 // because sometimes the number of inputs is in an order of magnitude of 3272 // millions. So, we use multi-threading. 3273 // 3274 // For any strings S and T, we know S is not mergeable with T if S's hash 3275 // value is different from T's. If that's the case, we can safely put S and 3276 // T into different string builders without worrying about merge misses. 3277 // We do it in parallel. 3278 void MergeNoTailSection::finalizeContents() { 3279 // Initializes string table builders. 3280 for (size_t i = 0; i < numShards; ++i) 3281 shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign)); 3282 3283 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3284 // operations in the following tight loop. 3285 const size_t concurrency = 3286 llvm::bit_floor(std::min<size_t>(config->threadCount, numShards)); 3287 3288 // Add section pieces to the builders. 3289 parallelFor(0, concurrency, [&](size_t threadId) { 3290 for (MergeInputSection *sec : sections) { 3291 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3292 if (!sec->pieces[i].live) 3293 continue; 3294 size_t shardId = getShardId(sec->pieces[i].hash); 3295 if ((shardId & (concurrency - 1)) == threadId) 3296 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3297 } 3298 } 3299 }); 3300 3301 // Compute an in-section offset for each shard. 3302 size_t off = 0; 3303 for (size_t i = 0; i < numShards; ++i) { 3304 shards[i].finalizeInOrder(); 3305 if (shards[i].getSize() > 0) 3306 off = alignToPowerOf2(off, addralign); 3307 shardOffsets[i] = off; 3308 off += shards[i].getSize(); 3309 } 3310 size = off; 3311 3312 // So far, section pieces have offsets from beginning of shards, but 3313 // we want offsets from beginning of the whole section. Fix them. 3314 parallelForEach(sections, [&](MergeInputSection *sec) { 3315 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3316 if (sec->pieces[i].live) 3317 sec->pieces[i].outputOff += 3318 shardOffsets[getShardId(sec->pieces[i].hash)]; 3319 }); 3320 } 3321 3322 template <class ELFT> void elf::splitSections() { 3323 llvm::TimeTraceScope timeScope("Split sections"); 3324 // splitIntoPieces needs to be called on each MergeInputSection 3325 // before calling finalizeContents(). 3326 parallelForEach(ctx.objectFiles, [](ELFFileBase *file) { 3327 for (InputSectionBase *sec : file->getSections()) { 3328 if (!sec) 3329 continue; 3330 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3331 s->splitIntoPieces(); 3332 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3333 eh->split<ELFT>(); 3334 } 3335 }); 3336 } 3337 3338 void elf::combineEhSections() { 3339 llvm::TimeTraceScope timeScope("Combine EH sections"); 3340 for (EhInputSection *sec : ctx.ehInputSections) { 3341 EhFrameSection &eh = *sec->getPartition().ehFrame; 3342 sec->parent = &eh; 3343 eh.addralign = std::max(eh.addralign, sec->addralign); 3344 eh.sections.push_back(sec); 3345 llvm::append_range(eh.dependentSections, sec->dependentSections); 3346 } 3347 3348 if (!mainPart->armExidx) 3349 return; 3350 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) { 3351 // Ignore dead sections and the partition end marker (.part.end), 3352 // whose partition number is out of bounds. 3353 if (!s->isLive() || s->partition == 255) 3354 return false; 3355 Partition &part = s->getPartition(); 3356 return s->kind() == SectionBase::Regular && part.armExidx && 3357 part.armExidx->addSection(cast<InputSection>(s)); 3358 }); 3359 } 3360 3361 MipsRldMapSection::MipsRldMapSection() 3362 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3363 ".rld_map") {} 3364 3365 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3366 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3367 config->wordsize, ".ARM.exidx") {} 3368 3369 static InputSection *findExidxSection(InputSection *isec) { 3370 for (InputSection *d : isec->dependentSections) 3371 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3372 return d; 3373 return nullptr; 3374 } 3375 3376 static bool isValidExidxSectionDep(InputSection *isec) { 3377 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3378 isec->getSize() > 0; 3379 } 3380 3381 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3382 if (isec->type == SHT_ARM_EXIDX) { 3383 if (InputSection *dep = isec->getLinkOrderDep()) 3384 if (isValidExidxSectionDep(dep)) { 3385 exidxSections.push_back(isec); 3386 // Every exidxSection is 8 bytes, we need an estimate of 3387 // size before assignAddresses can be called. Final size 3388 // will only be known after finalize is called. 3389 size += 8; 3390 } 3391 return true; 3392 } 3393 3394 if (isValidExidxSectionDep(isec)) { 3395 executableSections.push_back(isec); 3396 return false; 3397 } 3398 3399 // FIXME: we do not output a relocation section when --emit-relocs is used 3400 // as we do not have relocation sections for linker generated table entries 3401 // and we would have to erase at a late stage relocations from merged entries. 3402 // Given that exception tables are already position independent and a binary 3403 // analyzer could derive the relocations we choose to erase the relocations. 3404 if (config->emitRelocs && isec->type == SHT_REL) 3405 if (InputSectionBase *ex = isec->getRelocatedSection()) 3406 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3407 return true; 3408 3409 return false; 3410 } 3411 3412 // References to .ARM.Extab Sections have bit 31 clear and are not the 3413 // special EXIDX_CANTUNWIND bit-pattern. 3414 static bool isExtabRef(uint32_t unwind) { 3415 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3416 } 3417 3418 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3419 // section Prev, where Cur follows Prev in the table. This can be done if the 3420 // unwinding instructions in Cur are identical to Prev. Linker generated 3421 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3422 // InputSection. 3423 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3424 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3425 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3426 uint32_t prevUnwind = 1; 3427 if (prev) 3428 prevUnwind = read32(prev->content().data() + prev->content().size() - 4); 3429 if (isExtabRef(prevUnwind)) 3430 return false; 3431 3432 // We consider the unwind instructions of an .ARM.exidx table entry 3433 // a duplicate if the previous unwind instructions if: 3434 // - Both are the special EXIDX_CANTUNWIND. 3435 // - Both are the same inline unwind instructions. 3436 // We do not attempt to follow and check links into .ARM.extab tables as 3437 // consecutive identical entries are rare and the effort to check that they 3438 // are identical is high. 3439 3440 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3441 if (cur == nullptr) 3442 return prevUnwind == 1; 3443 3444 for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) { 3445 uint32_t curUnwind = read32(cur->content().data() + offset); 3446 if (isExtabRef(curUnwind) || curUnwind != prevUnwind) 3447 return false; 3448 } 3449 // All table entries in this .ARM.exidx Section can be merged into the 3450 // previous Section. 3451 return true; 3452 } 3453 3454 // The .ARM.exidx table must be sorted in ascending order of the address of the 3455 // functions the table describes. std::optionally duplicate adjacent table 3456 // entries can be removed. At the end of the function the executableSections 3457 // must be sorted in ascending order of address, Sentinel is set to the 3458 // InputSection with the highest address and any InputSections that have 3459 // mergeable .ARM.exidx table entries are removed from it. 3460 void ARMExidxSyntheticSection::finalizeContents() { 3461 // The executableSections and exidxSections that we use to derive the final 3462 // contents of this SyntheticSection are populated before 3463 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3464 // ICF may remove executable InputSections and their dependent .ARM.exidx 3465 // section that we recorded earlier. 3466 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3467 llvm::erase_if(exidxSections, isDiscarded); 3468 // We need to remove discarded InputSections and InputSections without 3469 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3470 // of range. 3471 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3472 if (!isec->isLive()) 3473 return true; 3474 if (findExidxSection(isec)) 3475 return false; 3476 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3477 return off != llvm::SignExtend64(off, 31); 3478 }; 3479 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3480 3481 // Sort the executable sections that may or may not have associated 3482 // .ARM.exidx sections by order of ascending address. This requires the 3483 // relative positions of InputSections and OutputSections to be known. 3484 auto compareByFilePosition = [](const InputSection *a, 3485 const InputSection *b) { 3486 OutputSection *aOut = a->getParent(); 3487 OutputSection *bOut = b->getParent(); 3488 3489 if (aOut != bOut) 3490 return aOut->addr < bOut->addr; 3491 return a->outSecOff < b->outSecOff; 3492 }; 3493 llvm::stable_sort(executableSections, compareByFilePosition); 3494 sentinel = executableSections.back(); 3495 // std::optionally merge adjacent duplicate entries. 3496 if (config->mergeArmExidx) { 3497 SmallVector<InputSection *, 0> selectedSections; 3498 selectedSections.reserve(executableSections.size()); 3499 selectedSections.push_back(executableSections[0]); 3500 size_t prev = 0; 3501 for (size_t i = 1; i < executableSections.size(); ++i) { 3502 InputSection *ex1 = findExidxSection(executableSections[prev]); 3503 InputSection *ex2 = findExidxSection(executableSections[i]); 3504 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3505 selectedSections.push_back(executableSections[i]); 3506 prev = i; 3507 } 3508 } 3509 executableSections = std::move(selectedSections); 3510 } 3511 // offset is within the SyntheticSection. 3512 size_t offset = 0; 3513 size = 0; 3514 for (InputSection *isec : executableSections) { 3515 if (InputSection *d = findExidxSection(isec)) { 3516 d->outSecOff = offset; 3517 d->parent = getParent(); 3518 offset += d->getSize(); 3519 } else { 3520 offset += 8; 3521 } 3522 } 3523 // Size includes Sentinel. 3524 size = offset + 8; 3525 } 3526 3527 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3528 return executableSections.front(); 3529 } 3530 3531 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3532 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3533 // We write the .ARM.exidx section contents and apply its relocations. 3534 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3535 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3536 // start of the InputSection as the purpose of the linker generated 3537 // section is to terminate the address range of the previous entry. 3538 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3539 // the table to terminate the address range of the final entry. 3540 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3541 3542 // A linker generated CANTUNWIND entry is made up of two words: 3543 // 0x0 with R_ARM_PREL31 relocation to target. 3544 // 0x1 with EXIDX_CANTUNWIND. 3545 uint64_t offset = 0; 3546 for (InputSection *isec : executableSections) { 3547 assert(isec->getParent() != nullptr); 3548 if (InputSection *d = findExidxSection(isec)) { 3549 for (int dataOffset = 0; dataOffset != (int)d->content().size(); 3550 dataOffset += 4) 3551 write32(buf + offset + dataOffset, 3552 read32(d->content().data() + dataOffset)); 3553 // Recalculate outSecOff as finalizeAddressDependentContent() 3554 // may have altered syntheticSection outSecOff. 3555 d->outSecOff = offset + outSecOff; 3556 target->relocateAlloc(*d, buf + offset); 3557 offset += d->getSize(); 3558 } else { 3559 // A Linker generated CANTUNWIND section. 3560 write32(buf + offset + 0, 0x0); 3561 write32(buf + offset + 4, 0x1); 3562 uint64_t s = isec->getVA(); 3563 uint64_t p = getVA() + offset; 3564 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3565 offset += 8; 3566 } 3567 } 3568 // Write Sentinel CANTUNWIND entry. 3569 write32(buf + offset + 0, 0x0); 3570 write32(buf + offset + 4, 0x1); 3571 uint64_t s = sentinel->getVA(sentinel->getSize()); 3572 uint64_t p = getVA() + offset; 3573 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3574 assert(size == offset + 8); 3575 } 3576 3577 bool ARMExidxSyntheticSection::isNeeded() const { 3578 return llvm::any_of(exidxSections, 3579 [](InputSection *isec) { return isec->isLive(); }); 3580 } 3581 3582 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3583 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 3584 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 3585 this->parent = os; 3586 this->outSecOff = off; 3587 } 3588 3589 size_t ThunkSection::getSize() const { 3590 if (roundUpSizeForErrata) 3591 return alignTo(size, 4096); 3592 return size; 3593 } 3594 3595 void ThunkSection::addThunk(Thunk *t) { 3596 thunks.push_back(t); 3597 t->addSymbols(*this); 3598 } 3599 3600 void ThunkSection::writeTo(uint8_t *buf) { 3601 for (Thunk *t : thunks) 3602 t->writeTo(buf + t->offset); 3603 } 3604 3605 InputSection *ThunkSection::getTargetInputSection() const { 3606 if (thunks.empty()) 3607 return nullptr; 3608 const Thunk *t = thunks.front(); 3609 return t->getTargetInputSection(); 3610 } 3611 3612 bool ThunkSection::assignOffsets() { 3613 uint64_t off = 0; 3614 for (Thunk *t : thunks) { 3615 off = alignToPowerOf2(off, t->alignment); 3616 t->setOffset(off); 3617 uint32_t size = t->size(); 3618 t->getThunkTargetSym()->size = size; 3619 off += size; 3620 } 3621 bool changed = off != size; 3622 size = off; 3623 return changed; 3624 } 3625 3626 PPC32Got2Section::PPC32Got2Section() 3627 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3628 3629 bool PPC32Got2Section::isNeeded() const { 3630 // See the comment below. This is not needed if there is no other 3631 // InputSection. 3632 for (SectionCommand *cmd : getParent()->commands) 3633 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 3634 for (InputSection *isec : isd->sections) 3635 if (isec != this) 3636 return true; 3637 return false; 3638 } 3639 3640 void PPC32Got2Section::finalizeContents() { 3641 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3642 // .got2 . This function computes outSecOff of each .got2 to be used in 3643 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3644 // to collect input sections named ".got2". 3645 for (SectionCommand *cmd : getParent()->commands) 3646 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 3647 for (InputSection *isec : isd->sections) { 3648 // isec->file may be nullptr for MergeSyntheticSection. 3649 if (isec != this && isec->file) 3650 isec->file->ppc32Got2 = isec; 3651 } 3652 } 3653 } 3654 3655 // If linking position-dependent code then the table will store the addresses 3656 // directly in the binary so the section has type SHT_PROGBITS. If linking 3657 // position-independent code the section has type SHT_NOBITS since it will be 3658 // allocated and filled in by the dynamic linker. 3659 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3660 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3661 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3662 ".branch_lt") {} 3663 3664 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3665 int64_t addend) { 3666 return getVA() + entry_index.find({sym, addend})->second * 8; 3667 } 3668 3669 std::optional<uint32_t> 3670 PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) { 3671 auto res = 3672 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3673 if (!res.second) 3674 return std::nullopt; 3675 entries.emplace_back(sym, addend); 3676 return res.first->second; 3677 } 3678 3679 size_t PPC64LongBranchTargetSection::getSize() const { 3680 return entries.size() * 8; 3681 } 3682 3683 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3684 // If linking non-pic we have the final addresses of the targets and they get 3685 // written to the table directly. For pic the dynamic linker will allocate 3686 // the section and fill it. 3687 if (config->isPic) 3688 return; 3689 3690 for (auto entry : entries) { 3691 const Symbol *sym = entry.first; 3692 int64_t addend = entry.second; 3693 assert(sym->getVA()); 3694 // Need calls to branch to the local entry-point since a long-branch 3695 // must be a local-call. 3696 write64(buf, sym->getVA(addend) + 3697 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3698 buf += 8; 3699 } 3700 } 3701 3702 bool PPC64LongBranchTargetSection::isNeeded() const { 3703 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3704 // is too early to determine if this section will be empty or not. We need 3705 // Finalized to keep the section alive until after thunk creation. Finalized 3706 // only gets set to true once `finalizeSections()` is called after thunk 3707 // creation. Because of this, if we don't create any long-branch thunks we end 3708 // up with an empty .branch_lt section in the binary. 3709 return !finalized || !entries.empty(); 3710 } 3711 3712 static uint8_t getAbiVersion() { 3713 // MIPS non-PIC executable gets ABI version 1. 3714 if (config->emachine == EM_MIPS) { 3715 if (!config->isPic && !config->relocatable && 3716 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3717 return 1; 3718 return 0; 3719 } 3720 3721 if (config->emachine == EM_AMDGPU && !ctx.objectFiles.empty()) { 3722 uint8_t ver = ctx.objectFiles[0]->abiVersion; 3723 for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1)) 3724 if (file->abiVersion != ver) 3725 error("incompatible ABI version: " + toString(file)); 3726 return ver; 3727 } 3728 3729 return 0; 3730 } 3731 3732 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3733 memcpy(buf, "\177ELF", 4); 3734 3735 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3736 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3737 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3738 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3739 eHdr->e_ident[EI_OSABI] = config->osabi; 3740 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3741 eHdr->e_machine = config->emachine; 3742 eHdr->e_version = EV_CURRENT; 3743 eHdr->e_flags = config->eflags; 3744 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3745 eHdr->e_phnum = part.phdrs.size(); 3746 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3747 3748 if (!config->relocatable) { 3749 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3750 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3751 } 3752 } 3753 3754 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3755 // Write the program header table. 3756 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3757 for (PhdrEntry *p : part.phdrs) { 3758 hBuf->p_type = p->p_type; 3759 hBuf->p_flags = p->p_flags; 3760 hBuf->p_offset = p->p_offset; 3761 hBuf->p_vaddr = p->p_vaddr; 3762 hBuf->p_paddr = p->p_paddr; 3763 hBuf->p_filesz = p->p_filesz; 3764 hBuf->p_memsz = p->p_memsz; 3765 hBuf->p_align = p->p_align; 3766 ++hBuf; 3767 } 3768 } 3769 3770 template <typename ELFT> 3771 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3772 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3773 3774 template <typename ELFT> 3775 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3776 return sizeof(typename ELFT::Ehdr); 3777 } 3778 3779 template <typename ELFT> 3780 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3781 writeEhdr<ELFT>(buf, getPartition()); 3782 3783 // Loadable partitions are always ET_DYN. 3784 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3785 eHdr->e_type = ET_DYN; 3786 } 3787 3788 template <typename ELFT> 3789 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3790 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3791 3792 template <typename ELFT> 3793 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3794 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3795 } 3796 3797 template <typename ELFT> 3798 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3799 writePhdrs<ELFT>(buf, getPartition()); 3800 } 3801 3802 PartitionIndexSection::PartitionIndexSection() 3803 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3804 3805 size_t PartitionIndexSection::getSize() const { 3806 return 12 * (partitions.size() - 1); 3807 } 3808 3809 void PartitionIndexSection::finalizeContents() { 3810 for (size_t i = 1; i != partitions.size(); ++i) 3811 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3812 } 3813 3814 void PartitionIndexSection::writeTo(uint8_t *buf) { 3815 uint64_t va = getVA(); 3816 for (size_t i = 1; i != partitions.size(); ++i) { 3817 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3818 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3819 3820 SyntheticSection *next = i == partitions.size() - 1 3821 ? in.partEnd.get() 3822 : partitions[i + 1].elfHeader.get(); 3823 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3824 3825 va += 12; 3826 buf += 12; 3827 } 3828 } 3829 3830 void InStruct::reset() { 3831 attributes.reset(); 3832 riscvAttributes.reset(); 3833 bss.reset(); 3834 bssRelRo.reset(); 3835 got.reset(); 3836 gotPlt.reset(); 3837 igotPlt.reset(); 3838 armCmseSGSection.reset(); 3839 ppc64LongBranchTarget.reset(); 3840 mipsAbiFlags.reset(); 3841 mipsGot.reset(); 3842 mipsOptions.reset(); 3843 mipsReginfo.reset(); 3844 mipsRldMap.reset(); 3845 partEnd.reset(); 3846 partIndex.reset(); 3847 plt.reset(); 3848 iplt.reset(); 3849 ppc32Got2.reset(); 3850 ibtPlt.reset(); 3851 relaPlt.reset(); 3852 relaIplt.reset(); 3853 shStrTab.reset(); 3854 strTab.reset(); 3855 symTab.reset(); 3856 symTabShndx.reset(); 3857 } 3858 3859 constexpr char kMemtagAndroidNoteName[] = "Android"; 3860 void MemtagAndroidNote::writeTo(uint8_t *buf) { 3861 static_assert( 3862 sizeof(kMemtagAndroidNoteName) == 8, 3863 "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it " 3864 "that way for backwards compatibility."); 3865 3866 write32(buf, sizeof(kMemtagAndroidNoteName)); 3867 write32(buf + 4, sizeof(uint32_t)); 3868 write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG); 3869 memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName)); 3870 buf += 12 + alignTo(sizeof(kMemtagAndroidNoteName), 4); 3871 3872 uint32_t value = 0; 3873 value |= config->androidMemtagMode; 3874 if (config->androidMemtagHeap) 3875 value |= ELF::NT_MEMTAG_HEAP; 3876 // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled 3877 // binary on Android 11 or 12 will result in a checkfail in the loader. 3878 if (config->androidMemtagStack) 3879 value |= ELF::NT_MEMTAG_STACK; 3880 write32(buf, value); // note value 3881 } 3882 3883 size_t MemtagAndroidNote::getSize() const { 3884 return sizeof(llvm::ELF::Elf64_Nhdr) + 3885 /*namesz=*/alignTo(sizeof(kMemtagAndroidNoteName), 4) + 3886 /*descsz=*/sizeof(uint32_t); 3887 } 3888 3889 void PackageMetadataNote::writeTo(uint8_t *buf) { 3890 write32(buf, 4); 3891 write32(buf + 4, config->packageMetadata.size() + 1); 3892 write32(buf + 8, FDO_PACKAGING_METADATA); 3893 memcpy(buf + 12, "FDO", 4); 3894 memcpy(buf + 16, config->packageMetadata.data(), 3895 config->packageMetadata.size()); 3896 } 3897 3898 size_t PackageMetadataNote::getSize() const { 3899 return sizeof(llvm::ELF::Elf64_Nhdr) + 4 + 3900 alignTo(config->packageMetadata.size() + 1, 4); 3901 } 3902 3903 InStruct elf::in; 3904 3905 std::vector<Partition> elf::partitions; 3906 Partition *elf::mainPart; 3907 3908 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3909 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3910 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3911 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3912 3913 template void elf::splitSections<ELF32LE>(); 3914 template void elf::splitSections<ELF32BE>(); 3915 template void elf::splitSections<ELF64LE>(); 3916 template void elf::splitSections<ELF64BE>(); 3917 3918 template class elf::MipsAbiFlagsSection<ELF32LE>; 3919 template class elf::MipsAbiFlagsSection<ELF32BE>; 3920 template class elf::MipsAbiFlagsSection<ELF64LE>; 3921 template class elf::MipsAbiFlagsSection<ELF64BE>; 3922 3923 template class elf::MipsOptionsSection<ELF32LE>; 3924 template class elf::MipsOptionsSection<ELF32BE>; 3925 template class elf::MipsOptionsSection<ELF64LE>; 3926 template class elf::MipsOptionsSection<ELF64BE>; 3927 3928 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 3929 function_ref<void(InputSection &)>); 3930 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 3931 function_ref<void(InputSection &)>); 3932 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 3933 function_ref<void(InputSection &)>); 3934 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 3935 function_ref<void(InputSection &)>); 3936 3937 template class elf::MipsReginfoSection<ELF32LE>; 3938 template class elf::MipsReginfoSection<ELF32BE>; 3939 template class elf::MipsReginfoSection<ELF64LE>; 3940 template class elf::MipsReginfoSection<ELF64BE>; 3941 3942 template class elf::DynamicSection<ELF32LE>; 3943 template class elf::DynamicSection<ELF32BE>; 3944 template class elf::DynamicSection<ELF64LE>; 3945 template class elf::DynamicSection<ELF64BE>; 3946 3947 template class elf::RelocationSection<ELF32LE>; 3948 template class elf::RelocationSection<ELF32BE>; 3949 template class elf::RelocationSection<ELF64LE>; 3950 template class elf::RelocationSection<ELF64BE>; 3951 3952 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3953 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3954 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3955 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3956 3957 template class elf::RelrSection<ELF32LE>; 3958 template class elf::RelrSection<ELF32BE>; 3959 template class elf::RelrSection<ELF64LE>; 3960 template class elf::RelrSection<ELF64BE>; 3961 3962 template class elf::SymbolTableSection<ELF32LE>; 3963 template class elf::SymbolTableSection<ELF32BE>; 3964 template class elf::SymbolTableSection<ELF64LE>; 3965 template class elf::SymbolTableSection<ELF64BE>; 3966 3967 template class elf::VersionNeedSection<ELF32LE>; 3968 template class elf::VersionNeedSection<ELF32BE>; 3969 template class elf::VersionNeedSection<ELF64LE>; 3970 template class elf::VersionNeedSection<ELF64BE>; 3971 3972 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3973 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3974 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3975 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3976 3977 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3978 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3979 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3980 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3981 3982 template class elf::PartitionElfHeaderSection<ELF32LE>; 3983 template class elf::PartitionElfHeaderSection<ELF32BE>; 3984 template class elf::PartitionElfHeaderSection<ELF64LE>; 3985 template class elf::PartitionElfHeaderSection<ELF64BE>; 3986 3987 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3988 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3989 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3990 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3991