1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "InputFiles.h" 19 #include "LinkerScript.h" 20 #include "OutputSections.h" 21 #include "SymbolTable.h" 22 #include "Symbols.h" 23 #include "Target.h" 24 #include "Writer.h" 25 #include "lld/Common/CommonLinkerContext.h" 26 #include "lld/Common/DWARF.h" 27 #include "lld/Common/Strings.h" 28 #include "lld/Common/Version.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 33 #include "llvm/Object/ELFObjectFile.h" 34 #include "llvm/Support/Compression.h" 35 #include "llvm/Support/Endian.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/MD5.h" 38 #include "llvm/Support/Parallel.h" 39 #include "llvm/Support/TimeProfiler.h" 40 #include <cstdlib> 41 #include <thread> 42 43 using namespace llvm; 44 using namespace llvm::dwarf; 45 using namespace llvm::ELF; 46 using namespace llvm::object; 47 using namespace llvm::support; 48 using namespace lld; 49 using namespace lld::elf; 50 51 using llvm::support::endian::read32le; 52 using llvm::support::endian::write32le; 53 using llvm::support::endian::write64le; 54 55 constexpr size_t MergeNoTailSection::numShards; 56 57 static uint64_t readUint(uint8_t *buf) { 58 return config->is64 ? read64(buf) : read32(buf); 59 } 60 61 static void writeUint(uint8_t *buf, uint64_t val) { 62 if (config->is64) 63 write64(buf, val); 64 else 65 write32(buf, val); 66 } 67 68 // Returns an LLD version string. 69 static ArrayRef<uint8_t> getVersion() { 70 // Check LLD_VERSION first for ease of testing. 71 // You can get consistent output by using the environment variable. 72 // This is only for testing. 73 StringRef s = getenv("LLD_VERSION"); 74 if (s.empty()) 75 s = saver().save(Twine("Linker: ") + getLLDVersion()); 76 77 // +1 to include the terminating '\0'. 78 return {(const uint8_t *)s.data(), s.size() + 1}; 79 } 80 81 // Creates a .comment section containing LLD version info. 82 // With this feature, you can identify LLD-generated binaries easily 83 // by "readelf --string-dump .comment <file>". 84 // The returned object is a mergeable string section. 85 MergeInputSection *elf::createCommentSection() { 86 return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 87 getVersion(), ".comment"); 88 } 89 90 // .MIPS.abiflags section. 91 template <class ELFT> 92 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 93 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 94 flags(flags) { 95 this->entsize = sizeof(Elf_Mips_ABIFlags); 96 } 97 98 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 99 memcpy(buf, &flags, sizeof(flags)); 100 } 101 102 template <class ELFT> 103 MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() { 104 Elf_Mips_ABIFlags flags = {}; 105 bool create = false; 106 107 for (InputSectionBase *sec : inputSections) { 108 if (sec->type != SHT_MIPS_ABIFLAGS) 109 continue; 110 sec->markDead(); 111 create = true; 112 113 std::string filename = toString(sec->file); 114 const size_t size = sec->data().size(); 115 // Older version of BFD (such as the default FreeBSD linker) concatenate 116 // .MIPS.abiflags instead of merging. To allow for this case (or potential 117 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 118 if (size < sizeof(Elf_Mips_ABIFlags)) { 119 error(filename + ": invalid size of .MIPS.abiflags section: got " + 120 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 121 return nullptr; 122 } 123 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data()); 124 if (s->version != 0) { 125 error(filename + ": unexpected .MIPS.abiflags version " + 126 Twine(s->version)); 127 return nullptr; 128 } 129 130 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 131 // select the highest number of ISA/Rev/Ext. 132 flags.isa_level = std::max(flags.isa_level, s->isa_level); 133 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 134 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 135 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 136 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 137 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 138 flags.ases |= s->ases; 139 flags.flags1 |= s->flags1; 140 flags.flags2 |= s->flags2; 141 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 142 }; 143 144 if (create) 145 return make<MipsAbiFlagsSection<ELFT>>(flags); 146 return nullptr; 147 } 148 149 // .MIPS.options section. 150 template <class ELFT> 151 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 152 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 153 reginfo(reginfo) { 154 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 155 } 156 157 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 158 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 159 options->kind = ODK_REGINFO; 160 options->size = getSize(); 161 162 if (!config->relocatable) 163 reginfo.ri_gp_value = in.mipsGot->getGp(); 164 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 165 } 166 167 template <class ELFT> 168 MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() { 169 // N64 ABI only. 170 if (!ELFT::Is64Bits) 171 return nullptr; 172 173 SmallVector<InputSectionBase *, 0> sections; 174 for (InputSectionBase *sec : inputSections) 175 if (sec->type == SHT_MIPS_OPTIONS) 176 sections.push_back(sec); 177 178 if (sections.empty()) 179 return nullptr; 180 181 Elf_Mips_RegInfo reginfo = {}; 182 for (InputSectionBase *sec : sections) { 183 sec->markDead(); 184 185 std::string filename = toString(sec->file); 186 ArrayRef<uint8_t> d = sec->data(); 187 188 while (!d.empty()) { 189 if (d.size() < sizeof(Elf_Mips_Options)) { 190 error(filename + ": invalid size of .MIPS.options section"); 191 break; 192 } 193 194 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 195 if (opt->kind == ODK_REGINFO) { 196 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 197 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 198 break; 199 } 200 201 if (!opt->size) 202 fatal(filename + ": zero option descriptor size"); 203 d = d.slice(opt->size); 204 } 205 }; 206 207 return make<MipsOptionsSection<ELFT>>(reginfo); 208 } 209 210 // MIPS .reginfo section. 211 template <class ELFT> 212 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 213 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 214 reginfo(reginfo) { 215 this->entsize = sizeof(Elf_Mips_RegInfo); 216 } 217 218 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 219 if (!config->relocatable) 220 reginfo.ri_gp_value = in.mipsGot->getGp(); 221 memcpy(buf, ®info, sizeof(reginfo)); 222 } 223 224 template <class ELFT> 225 MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() { 226 // Section should be alive for O32 and N32 ABIs only. 227 if (ELFT::Is64Bits) 228 return nullptr; 229 230 SmallVector<InputSectionBase *, 0> sections; 231 for (InputSectionBase *sec : inputSections) 232 if (sec->type == SHT_MIPS_REGINFO) 233 sections.push_back(sec); 234 235 if (sections.empty()) 236 return nullptr; 237 238 Elf_Mips_RegInfo reginfo = {}; 239 for (InputSectionBase *sec : sections) { 240 sec->markDead(); 241 242 if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) { 243 error(toString(sec->file) + ": invalid size of .reginfo section"); 244 return nullptr; 245 } 246 247 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data()); 248 reginfo.ri_gprmask |= r->ri_gprmask; 249 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 250 }; 251 252 return make<MipsReginfoSection<ELFT>>(reginfo); 253 } 254 255 InputSection *elf::createInterpSection() { 256 // StringSaver guarantees that the returned string ends with '\0'. 257 StringRef s = saver().save(config->dynamicLinker); 258 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 259 260 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 261 ".interp"); 262 } 263 264 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 265 uint64_t size, InputSectionBase §ion) { 266 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type, 267 value, size, §ion); 268 if (in.symTab) 269 in.symTab->addSymbol(s); 270 return s; 271 } 272 273 static size_t getHashSize() { 274 switch (config->buildId) { 275 case BuildIdKind::Fast: 276 return 8; 277 case BuildIdKind::Md5: 278 case BuildIdKind::Uuid: 279 return 16; 280 case BuildIdKind::Sha1: 281 return 20; 282 case BuildIdKind::Hexstring: 283 return config->buildIdVector.size(); 284 default: 285 llvm_unreachable("unknown BuildIdKind"); 286 } 287 } 288 289 // This class represents a linker-synthesized .note.gnu.property section. 290 // 291 // In x86 and AArch64, object files may contain feature flags indicating the 292 // features that they have used. The flags are stored in a .note.gnu.property 293 // section. 294 // 295 // lld reads the sections from input files and merges them by computing AND of 296 // the flags. The result is written as a new .note.gnu.property section. 297 // 298 // If the flag is zero (which indicates that the intersection of the feature 299 // sets is empty, or some input files didn't have .note.gnu.property sections), 300 // we don't create this section. 301 GnuPropertySection::GnuPropertySection() 302 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 303 config->wordsize, ".note.gnu.property") {} 304 305 void GnuPropertySection::writeTo(uint8_t *buf) { 306 uint32_t featureAndType = config->emachine == EM_AARCH64 307 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 308 : GNU_PROPERTY_X86_FEATURE_1_AND; 309 310 write32(buf, 4); // Name size 311 write32(buf + 4, config->is64 ? 16 : 12); // Content size 312 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 313 memcpy(buf + 12, "GNU", 4); // Name string 314 write32(buf + 16, featureAndType); // Feature type 315 write32(buf + 20, 4); // Feature size 316 write32(buf + 24, config->andFeatures); // Feature flags 317 if (config->is64) 318 write32(buf + 28, 0); // Padding 319 } 320 321 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 322 323 BuildIdSection::BuildIdSection() 324 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 325 hashSize(getHashSize()) {} 326 327 void BuildIdSection::writeTo(uint8_t *buf) { 328 write32(buf, 4); // Name size 329 write32(buf + 4, hashSize); // Content size 330 write32(buf + 8, NT_GNU_BUILD_ID); // Type 331 memcpy(buf + 12, "GNU", 4); // Name string 332 hashBuf = buf + 16; 333 } 334 335 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 336 assert(buf.size() == hashSize); 337 memcpy(hashBuf, buf.data(), hashSize); 338 } 339 340 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 341 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 342 this->bss = true; 343 this->size = size; 344 } 345 346 EhFrameSection::EhFrameSection() 347 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 348 349 // Search for an existing CIE record or create a new one. 350 // CIE records from input object files are uniquified by their contents 351 // and where their relocations point to. 352 template <class ELFT, class RelTy> 353 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 354 Symbol *personality = nullptr; 355 unsigned firstRelI = cie.firstRelocation; 356 if (firstRelI != (unsigned)-1) 357 personality = 358 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 359 360 // Search for an existing CIE by CIE contents/relocation target pair. 361 CieRecord *&rec = cieMap[{cie.data(), personality}]; 362 363 // If not found, create a new one. 364 if (!rec) { 365 rec = make<CieRecord>(); 366 rec->cie = &cie; 367 cieRecords.push_back(rec); 368 } 369 return rec; 370 } 371 372 // There is one FDE per function. Returns a non-null pointer to the function 373 // symbol if the given FDE points to a live function. 374 template <class ELFT, class RelTy> 375 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 376 auto *sec = cast<EhInputSection>(fde.sec); 377 unsigned firstRelI = fde.firstRelocation; 378 379 // An FDE should point to some function because FDEs are to describe 380 // functions. That's however not always the case due to an issue of 381 // ld.gold with -r. ld.gold may discard only functions and leave their 382 // corresponding FDEs, which results in creating bad .eh_frame sections. 383 // To deal with that, we ignore such FDEs. 384 if (firstRelI == (unsigned)-1) 385 return nullptr; 386 387 const RelTy &rel = rels[firstRelI]; 388 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 389 390 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 391 // another partition, are dead. 392 if (auto *d = dyn_cast<Defined>(&b)) 393 if (!d->folded && d->section && d->section->partition == partition) 394 return d; 395 return nullptr; 396 } 397 398 // .eh_frame is a sequence of CIE or FDE records. In general, there 399 // is one CIE record per input object file which is followed by 400 // a list of FDEs. This function searches an existing CIE or create a new 401 // one and associates FDEs to the CIE. 402 template <class ELFT, class RelTy> 403 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 404 offsetToCie.clear(); 405 for (EhSectionPiece &piece : sec->pieces) { 406 // The empty record is the end marker. 407 if (piece.size == 4) 408 return; 409 410 size_t offset = piece.inputOff; 411 uint32_t id = read32(piece.data().data() + 4); 412 if (id == 0) { 413 offsetToCie[offset] = addCie<ELFT>(piece, rels); 414 continue; 415 } 416 417 uint32_t cieOffset = offset + 4 - id; 418 CieRecord *rec = offsetToCie[cieOffset]; 419 if (!rec) 420 fatal(toString(sec) + ": invalid CIE reference"); 421 422 if (!isFdeLive<ELFT>(piece, rels)) 423 continue; 424 rec->fdes.push_back(&piece); 425 numFdes++; 426 } 427 } 428 429 template <class ELFT> 430 void EhFrameSection::addSectionAux(EhInputSection *sec) { 431 if (!sec->isLive()) 432 return; 433 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 434 if (rels.areRelocsRel()) 435 addRecords<ELFT>(sec, rels.rels); 436 else 437 addRecords<ELFT>(sec, rels.relas); 438 } 439 440 void EhFrameSection::addSection(EhInputSection *sec) { 441 sec->parent = this; 442 443 alignment = std::max(alignment, sec->alignment); 444 sections.push_back(sec); 445 446 for (auto *ds : sec->dependentSections) 447 dependentSections.push_back(ds); 448 } 449 450 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to 451 // EhFrameSection::addRecords(). 452 template <class ELFT, class RelTy> 453 void EhFrameSection::iterateFDEWithLSDAAux( 454 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, 455 llvm::function_ref<void(InputSection &)> fn) { 456 for (EhSectionPiece &piece : sec.pieces) { 457 // Skip ZERO terminator. 458 if (piece.size == 4) 459 continue; 460 461 size_t offset = piece.inputOff; 462 uint32_t id = 463 endian::read32<ELFT::TargetEndianness>(piece.data().data() + 4); 464 if (id == 0) { 465 if (hasLSDA(piece)) 466 ciesWithLSDA.insert(offset); 467 continue; 468 } 469 uint32_t cieOffset = offset + 4 - id; 470 if (ciesWithLSDA.count(cieOffset) == 0) 471 continue; 472 473 // The CIE has a LSDA argument. Call fn with d's section. 474 if (Defined *d = isFdeLive<ELFT>(piece, rels)) 475 if (auto *s = dyn_cast_or_null<InputSection>(d->section)) 476 fn(*s); 477 } 478 } 479 480 template <class ELFT> 481 void EhFrameSection::iterateFDEWithLSDA( 482 llvm::function_ref<void(InputSection &)> fn) { 483 DenseSet<size_t> ciesWithLSDA; 484 for (EhInputSection *sec : sections) { 485 ciesWithLSDA.clear(); 486 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 487 if (rels.areRelocsRel()) 488 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); 489 else 490 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); 491 } 492 } 493 494 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 495 memcpy(buf, d.data(), d.size()); 496 497 size_t aligned = alignTo(d.size(), config->wordsize); 498 assert(std::all_of(buf + d.size(), buf + aligned, 499 [](uint8_t c) { return c == 0; })); 500 501 // Fix the size field. -4 since size does not include the size field itself. 502 write32(buf, aligned - 4); 503 } 504 505 void EhFrameSection::finalizeContents() { 506 assert(!this->size); // Not finalized. 507 508 switch (config->ekind) { 509 case ELFNoneKind: 510 llvm_unreachable("invalid ekind"); 511 case ELF32LEKind: 512 for (EhInputSection *sec : sections) 513 addSectionAux<ELF32LE>(sec); 514 break; 515 case ELF32BEKind: 516 for (EhInputSection *sec : sections) 517 addSectionAux<ELF32BE>(sec); 518 break; 519 case ELF64LEKind: 520 for (EhInputSection *sec : sections) 521 addSectionAux<ELF64LE>(sec); 522 break; 523 case ELF64BEKind: 524 for (EhInputSection *sec : sections) 525 addSectionAux<ELF64BE>(sec); 526 break; 527 } 528 529 size_t off = 0; 530 for (CieRecord *rec : cieRecords) { 531 rec->cie->outputOff = off; 532 off += alignTo(rec->cie->size, config->wordsize); 533 534 for (EhSectionPiece *fde : rec->fdes) { 535 fde->outputOff = off; 536 off += alignTo(fde->size, config->wordsize); 537 } 538 } 539 540 // The LSB standard does not allow a .eh_frame section with zero 541 // Call Frame Information records. glibc unwind-dw2-fde.c 542 // classify_object_over_fdes expects there is a CIE record length 0 as a 543 // terminator. Thus we add one unconditionally. 544 off += 4; 545 546 this->size = off; 547 } 548 549 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 550 // to get an FDE from an address to which FDE is applied. This function 551 // returns a list of such pairs. 552 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { 553 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 554 SmallVector<FdeData, 0> ret; 555 556 uint64_t va = getPartition().ehFrameHdr->getVA(); 557 for (CieRecord *rec : cieRecords) { 558 uint8_t enc = getFdeEncoding(rec->cie); 559 for (EhSectionPiece *fde : rec->fdes) { 560 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 561 uint64_t fdeVA = getParent()->addr + fde->outputOff; 562 if (!isInt<32>(pc - va)) 563 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 564 Twine::utohexstr(pc - va)); 565 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 566 } 567 } 568 569 // Sort the FDE list by their PC and uniqueify. Usually there is only 570 // one FDE for a PC (i.e. function), but if ICF merges two functions 571 // into one, there can be more than one FDEs pointing to the address. 572 auto less = [](const FdeData &a, const FdeData &b) { 573 return a.pcRel < b.pcRel; 574 }; 575 llvm::stable_sort(ret, less); 576 auto eq = [](const FdeData &a, const FdeData &b) { 577 return a.pcRel == b.pcRel; 578 }; 579 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 580 581 return ret; 582 } 583 584 static uint64_t readFdeAddr(uint8_t *buf, int size) { 585 switch (size) { 586 case DW_EH_PE_udata2: 587 return read16(buf); 588 case DW_EH_PE_sdata2: 589 return (int16_t)read16(buf); 590 case DW_EH_PE_udata4: 591 return read32(buf); 592 case DW_EH_PE_sdata4: 593 return (int32_t)read32(buf); 594 case DW_EH_PE_udata8: 595 case DW_EH_PE_sdata8: 596 return read64(buf); 597 case DW_EH_PE_absptr: 598 return readUint(buf); 599 } 600 fatal("unknown FDE size encoding"); 601 } 602 603 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 604 // We need it to create .eh_frame_hdr section. 605 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 606 uint8_t enc) const { 607 // The starting address to which this FDE applies is 608 // stored at FDE + 8 byte. 609 size_t off = fdeOff + 8; 610 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 611 if ((enc & 0x70) == DW_EH_PE_absptr) 612 return addr; 613 if ((enc & 0x70) == DW_EH_PE_pcrel) 614 return addr + getParent()->addr + off; 615 fatal("unknown FDE size relative encoding"); 616 } 617 618 void EhFrameSection::writeTo(uint8_t *buf) { 619 // Write CIE and FDE records. 620 for (CieRecord *rec : cieRecords) { 621 size_t cieOffset = rec->cie->outputOff; 622 writeCieFde(buf + cieOffset, rec->cie->data()); 623 624 for (EhSectionPiece *fde : rec->fdes) { 625 size_t off = fde->outputOff; 626 writeCieFde(buf + off, fde->data()); 627 628 // FDE's second word should have the offset to an associated CIE. 629 // Write it. 630 write32(buf + off + 4, off + 4 - cieOffset); 631 } 632 } 633 634 // Apply relocations. .eh_frame section contents are not contiguous 635 // in the output buffer, but relocateAlloc() still works because 636 // getOffset() takes care of discontiguous section pieces. 637 for (EhInputSection *s : sections) 638 s->relocateAlloc(buf, nullptr); 639 640 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 641 getPartition().ehFrameHdr->write(); 642 } 643 644 GotSection::GotSection() 645 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 646 target->gotEntrySize, ".got") { 647 numEntries = target->gotHeaderEntriesNum; 648 } 649 650 void GotSection::addEntry(Symbol &sym) { 651 assert(sym.auxIdx == symAux.size() - 1); 652 symAux.back().gotIdx = numEntries++; 653 } 654 655 bool GotSection::addTlsDescEntry(Symbol &sym) { 656 assert(sym.auxIdx == symAux.size() - 1); 657 symAux.back().tlsDescIdx = numEntries; 658 numEntries += 2; 659 return true; 660 } 661 662 bool GotSection::addDynTlsEntry(Symbol &sym) { 663 assert(sym.auxIdx == symAux.size() - 1); 664 symAux.back().tlsGdIdx = numEntries; 665 // Global Dynamic TLS entries take two GOT slots. 666 numEntries += 2; 667 return true; 668 } 669 670 // Reserves TLS entries for a TLS module ID and a TLS block offset. 671 // In total it takes two GOT slots. 672 bool GotSection::addTlsIndex() { 673 if (tlsIndexOff != uint32_t(-1)) 674 return false; 675 tlsIndexOff = numEntries * config->wordsize; 676 numEntries += 2; 677 return true; 678 } 679 680 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { 681 return sym.getTlsDescIdx() * config->wordsize; 682 } 683 684 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { 685 return getVA() + getTlsDescOffset(sym); 686 } 687 688 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 689 return this->getVA() + b.getTlsGdIdx() * config->wordsize; 690 } 691 692 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 693 return b.getTlsGdIdx() * config->wordsize; 694 } 695 696 void GotSection::finalizeContents() { 697 if (config->emachine == EM_PPC64 && 698 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable) 699 size = 0; 700 else 701 size = numEntries * config->wordsize; 702 } 703 704 bool GotSection::isNeeded() const { 705 // Needed if the GOT symbol is used or the number of entries is more than just 706 // the header. A GOT with just the header may not be needed. 707 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum; 708 } 709 710 void GotSection::writeTo(uint8_t *buf) { 711 target->writeGotHeader(buf); 712 relocateAlloc(buf, buf + size); 713 } 714 715 static uint64_t getMipsPageAddr(uint64_t addr) { 716 return (addr + 0x8000) & ~0xffff; 717 } 718 719 static uint64_t getMipsPageCount(uint64_t size) { 720 return (size + 0xfffe) / 0xffff + 1; 721 } 722 723 MipsGotSection::MipsGotSection() 724 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 725 ".got") {} 726 727 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 728 RelExpr expr) { 729 FileGot &g = getGot(file); 730 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 731 if (const OutputSection *os = sym.getOutputSection()) 732 g.pagesMap.insert({os, {}}); 733 else 734 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 735 } else if (sym.isTls()) 736 g.tls.insert({&sym, 0}); 737 else if (sym.isPreemptible && expr == R_ABS) 738 g.relocs.insert({&sym, 0}); 739 else if (sym.isPreemptible) 740 g.global.insert({&sym, 0}); 741 else if (expr == R_MIPS_GOT_OFF32) 742 g.local32.insert({{&sym, addend}, 0}); 743 else 744 g.local16.insert({{&sym, addend}, 0}); 745 } 746 747 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 748 getGot(file).dynTlsSymbols.insert({&sym, 0}); 749 } 750 751 void MipsGotSection::addTlsIndex(InputFile &file) { 752 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 753 } 754 755 size_t MipsGotSection::FileGot::getEntriesNum() const { 756 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 757 tls.size() + dynTlsSymbols.size() * 2; 758 } 759 760 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 761 size_t num = 0; 762 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 763 num += p.second.count; 764 return num; 765 } 766 767 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 768 size_t count = getPageEntriesNum() + local16.size() + global.size(); 769 // If there are relocation-only entries in the GOT, TLS entries 770 // are allocated after them. TLS entries should be addressable 771 // by 16-bit index so count both reloc-only and TLS entries. 772 if (!tls.empty() || !dynTlsSymbols.empty()) 773 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 774 return count; 775 } 776 777 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 778 if (f.mipsGotIndex == uint32_t(-1)) { 779 gots.emplace_back(); 780 gots.back().file = &f; 781 f.mipsGotIndex = gots.size() - 1; 782 } 783 return gots[f.mipsGotIndex]; 784 } 785 786 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 787 const Symbol &sym, 788 int64_t addend) const { 789 const FileGot &g = gots[f->mipsGotIndex]; 790 uint64_t index = 0; 791 if (const OutputSection *outSec = sym.getOutputSection()) { 792 uint64_t secAddr = getMipsPageAddr(outSec->addr); 793 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 794 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 795 } else { 796 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 797 } 798 return index * config->wordsize; 799 } 800 801 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 802 int64_t addend) const { 803 const FileGot &g = gots[f->mipsGotIndex]; 804 Symbol *sym = const_cast<Symbol *>(&s); 805 if (sym->isTls()) 806 return g.tls.lookup(sym) * config->wordsize; 807 if (sym->isPreemptible) 808 return g.global.lookup(sym) * config->wordsize; 809 return g.local16.lookup({sym, addend}) * config->wordsize; 810 } 811 812 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 813 const FileGot &g = gots[f->mipsGotIndex]; 814 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 815 } 816 817 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 818 const Symbol &s) const { 819 const FileGot &g = gots[f->mipsGotIndex]; 820 Symbol *sym = const_cast<Symbol *>(&s); 821 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 822 } 823 824 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 825 if (gots.empty()) 826 return nullptr; 827 const FileGot &primGot = gots.front(); 828 if (!primGot.global.empty()) 829 return primGot.global.front().first; 830 if (!primGot.relocs.empty()) 831 return primGot.relocs.front().first; 832 return nullptr; 833 } 834 835 unsigned MipsGotSection::getLocalEntriesNum() const { 836 if (gots.empty()) 837 return headerEntriesNum; 838 return headerEntriesNum + gots.front().getPageEntriesNum() + 839 gots.front().local16.size(); 840 } 841 842 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 843 FileGot tmp = dst; 844 set_union(tmp.pagesMap, src.pagesMap); 845 set_union(tmp.local16, src.local16); 846 set_union(tmp.global, src.global); 847 set_union(tmp.relocs, src.relocs); 848 set_union(tmp.tls, src.tls); 849 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 850 851 size_t count = isPrimary ? headerEntriesNum : 0; 852 count += tmp.getIndexedEntriesNum(); 853 854 if (count * config->wordsize > config->mipsGotSize) 855 return false; 856 857 std::swap(tmp, dst); 858 return true; 859 } 860 861 void MipsGotSection::finalizeContents() { updateAllocSize(); } 862 863 bool MipsGotSection::updateAllocSize() { 864 size = headerEntriesNum * config->wordsize; 865 for (const FileGot &g : gots) 866 size += g.getEntriesNum() * config->wordsize; 867 return false; 868 } 869 870 void MipsGotSection::build() { 871 if (gots.empty()) 872 return; 873 874 std::vector<FileGot> mergedGots(1); 875 876 // For each GOT move non-preemptible symbols from the `Global` 877 // to `Local16` list. Preemptible symbol might become non-preemptible 878 // one if, for example, it gets a related copy relocation. 879 for (FileGot &got : gots) { 880 for (auto &p: got.global) 881 if (!p.first->isPreemptible) 882 got.local16.insert({{p.first, 0}, 0}); 883 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 884 return !p.first->isPreemptible; 885 }); 886 } 887 888 // For each GOT remove "reloc-only" entry if there is "global" 889 // entry for the same symbol. And add local entries which indexed 890 // using 32-bit value at the end of 16-bit entries. 891 for (FileGot &got : gots) { 892 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 893 return got.global.count(p.first); 894 }); 895 set_union(got.local16, got.local32); 896 got.local32.clear(); 897 } 898 899 // Evaluate number of "reloc-only" entries in the resulting GOT. 900 // To do that put all unique "reloc-only" and "global" entries 901 // from all GOTs to the future primary GOT. 902 FileGot *primGot = &mergedGots.front(); 903 for (FileGot &got : gots) { 904 set_union(primGot->relocs, got.global); 905 set_union(primGot->relocs, got.relocs); 906 got.relocs.clear(); 907 } 908 909 // Evaluate number of "page" entries in each GOT. 910 for (FileGot &got : gots) { 911 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 912 got.pagesMap) { 913 const OutputSection *os = p.first; 914 uint64_t secSize = 0; 915 for (SectionCommand *cmd : os->commands) { 916 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 917 for (InputSection *isec : isd->sections) { 918 uint64_t off = alignTo(secSize, isec->alignment); 919 secSize = off + isec->getSize(); 920 } 921 } 922 p.second.count = getMipsPageCount(secSize); 923 } 924 } 925 926 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 927 // maximum GOT size. At first, try to fill the primary GOT because 928 // the primary GOT can be accessed in the most effective way. If it 929 // is not possible, try to fill the last GOT in the list, and finally 930 // create a new GOT if both attempts failed. 931 for (FileGot &srcGot : gots) { 932 InputFile *file = srcGot.file; 933 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 934 file->mipsGotIndex = 0; 935 } else { 936 // If this is the first time we failed to merge with the primary GOT, 937 // MergedGots.back() will also be the primary GOT. We must make sure not 938 // to try to merge again with isPrimary=false, as otherwise, if the 939 // inputs are just right, we could allow the primary GOT to become 1 or 2 940 // words bigger due to ignoring the header size. 941 if (mergedGots.size() == 1 || 942 !tryMergeGots(mergedGots.back(), srcGot, false)) { 943 mergedGots.emplace_back(); 944 std::swap(mergedGots.back(), srcGot); 945 } 946 file->mipsGotIndex = mergedGots.size() - 1; 947 } 948 } 949 std::swap(gots, mergedGots); 950 951 // Reduce number of "reloc-only" entries in the primary GOT 952 // by subtracting "global" entries in the primary GOT. 953 primGot = &gots.front(); 954 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 955 return primGot->global.count(p.first); 956 }); 957 958 // Calculate indexes for each GOT entry. 959 size_t index = headerEntriesNum; 960 for (FileGot &got : gots) { 961 got.startIndex = &got == primGot ? 0 : index; 962 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 963 got.pagesMap) { 964 // For each output section referenced by GOT page relocations calculate 965 // and save into pagesMap an upper bound of MIPS GOT entries required 966 // to store page addresses of local symbols. We assume the worst case - 967 // each 64kb page of the output section has at least one GOT relocation 968 // against it. And take in account the case when the section intersects 969 // page boundaries. 970 p.second.firstIndex = index; 971 index += p.second.count; 972 } 973 for (auto &p: got.local16) 974 p.second = index++; 975 for (auto &p: got.global) 976 p.second = index++; 977 for (auto &p: got.relocs) 978 p.second = index++; 979 for (auto &p: got.tls) 980 p.second = index++; 981 for (auto &p: got.dynTlsSymbols) { 982 p.second = index; 983 index += 2; 984 } 985 } 986 987 // Update SymbolAux::gotIdx field to use this 988 // value later in the `sortMipsSymbols` function. 989 for (auto &p : primGot->global) { 990 if (p.first->auxIdx == uint32_t(-1)) 991 p.first->allocateAux(); 992 symAux.back().gotIdx = p.second; 993 } 994 for (auto &p : primGot->relocs) { 995 if (p.first->auxIdx == uint32_t(-1)) 996 p.first->allocateAux(); 997 symAux.back().gotIdx = p.second; 998 } 999 1000 // Create dynamic relocations. 1001 for (FileGot &got : gots) { 1002 // Create dynamic relocations for TLS entries. 1003 for (std::pair<Symbol *, size_t> &p : got.tls) { 1004 Symbol *s = p.first; 1005 uint64_t offset = p.second * config->wordsize; 1006 // When building a shared library we still need a dynamic relocation 1007 // for the TP-relative offset as we don't know how much other data will 1008 // be allocated before us in the static TLS block. 1009 if (s->isPreemptible || config->shared) 1010 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset, 1011 DynamicReloc::AgainstSymbolWithTargetVA, 1012 *s, 0, R_ABS}); 1013 } 1014 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 1015 Symbol *s = p.first; 1016 uint64_t offset = p.second * config->wordsize; 1017 if (s == nullptr) { 1018 if (!config->shared) 1019 continue; 1020 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset}); 1021 } else { 1022 // When building a shared library we still need a dynamic relocation 1023 // for the module index. Therefore only checking for 1024 // S->isPreemptible is not sufficient (this happens e.g. for 1025 // thread-locals that have been marked as local through a linker script) 1026 if (!s->isPreemptible && !config->shared) 1027 continue; 1028 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this, 1029 offset, *s); 1030 // However, we can skip writing the TLS offset reloc for non-preemptible 1031 // symbols since it is known even in shared libraries 1032 if (!s->isPreemptible) 1033 continue; 1034 offset += config->wordsize; 1035 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset, 1036 *s); 1037 } 1038 } 1039 1040 // Do not create dynamic relocations for non-TLS 1041 // entries in the primary GOT. 1042 if (&got == primGot) 1043 continue; 1044 1045 // Dynamic relocations for "global" entries. 1046 for (const std::pair<Symbol *, size_t> &p : got.global) { 1047 uint64_t offset = p.second * config->wordsize; 1048 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset, 1049 *p.first); 1050 } 1051 if (!config->isPic) 1052 continue; 1053 // Dynamic relocations for "local" entries in case of PIC. 1054 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1055 got.pagesMap) { 1056 size_t pageCount = l.second.count; 1057 for (size_t pi = 0; pi < pageCount; ++pi) { 1058 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 1059 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 1060 int64_t(pi * 0x10000)}); 1061 } 1062 } 1063 for (const std::pair<GotEntry, size_t> &p : got.local16) { 1064 uint64_t offset = p.second * config->wordsize; 1065 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, 1066 DynamicReloc::AddendOnlyWithTargetVA, 1067 *p.first.first, p.first.second, R_ABS}); 1068 } 1069 } 1070 } 1071 1072 bool MipsGotSection::isNeeded() const { 1073 // We add the .got section to the result for dynamic MIPS target because 1074 // its address and properties are mentioned in the .dynamic section. 1075 return !config->relocatable; 1076 } 1077 1078 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1079 // For files without related GOT or files refer a primary GOT 1080 // returns "common" _gp value. For secondary GOTs calculate 1081 // individual _gp values. 1082 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) 1083 return ElfSym::mipsGp->getVA(0); 1084 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0; 1085 } 1086 1087 void MipsGotSection::writeTo(uint8_t *buf) { 1088 // Set the MSB of the second GOT slot. This is not required by any 1089 // MIPS ABI documentation, though. 1090 // 1091 // There is a comment in glibc saying that "The MSB of got[1] of a 1092 // gnu object is set to identify gnu objects," and in GNU gold it 1093 // says "the second entry will be used by some runtime loaders". 1094 // But how this field is being used is unclear. 1095 // 1096 // We are not really willing to mimic other linkers behaviors 1097 // without understanding why they do that, but because all files 1098 // generated by GNU tools have this special GOT value, and because 1099 // we've been doing this for years, it is probably a safe bet to 1100 // keep doing this for now. We really need to revisit this to see 1101 // if we had to do this. 1102 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1103 for (const FileGot &g : gots) { 1104 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1105 uint64_t va = a; 1106 if (s) 1107 va = s->getVA(a); 1108 writeUint(buf + i * config->wordsize, va); 1109 }; 1110 // Write 'page address' entries to the local part of the GOT. 1111 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1112 g.pagesMap) { 1113 size_t pageCount = l.second.count; 1114 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1115 for (size_t pi = 0; pi < pageCount; ++pi) 1116 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1117 } 1118 // Local, global, TLS, reloc-only entries. 1119 // If TLS entry has a corresponding dynamic relocations, leave it 1120 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1121 // To calculate the adjustments use offsets for thread-local storage. 1122 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL 1123 for (const std::pair<GotEntry, size_t> &p : g.local16) 1124 write(p.second, p.first.first, p.first.second); 1125 // Write VA to the primary GOT only. For secondary GOTs that 1126 // will be done by REL32 dynamic relocations. 1127 if (&g == &gots.front()) 1128 for (const std::pair<Symbol *, size_t> &p : g.global) 1129 write(p.second, p.first, 0); 1130 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1131 write(p.second, p.first, 0); 1132 for (const std::pair<Symbol *, size_t> &p : g.tls) 1133 write(p.second, p.first, 1134 p.first->isPreemptible || config->shared ? 0 : -0x7000); 1135 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1136 if (p.first == nullptr && !config->shared) 1137 write(p.second, nullptr, 1); 1138 else if (p.first && !p.first->isPreemptible) { 1139 // If we are emitting a shared library with relocations we mustn't write 1140 // anything to the GOT here. When using Elf_Rel relocations the value 1141 // one will be treated as an addend and will cause crashes at runtime 1142 if (!config->shared) 1143 write(p.second, nullptr, 1); 1144 write(p.second + 1, p.first, -0x8000); 1145 } 1146 } 1147 } 1148 } 1149 1150 // On PowerPC the .plt section is used to hold the table of function addresses 1151 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1152 // section. I don't know why we have a BSS style type for the section but it is 1153 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1154 GotPltSection::GotPltSection() 1155 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1156 ".got.plt") { 1157 if (config->emachine == EM_PPC) { 1158 name = ".plt"; 1159 } else if (config->emachine == EM_PPC64) { 1160 type = SHT_NOBITS; 1161 name = ".plt"; 1162 } 1163 } 1164 1165 void GotPltSection::addEntry(Symbol &sym) { 1166 assert(sym.auxIdx == symAux.size() - 1 && 1167 symAux.back().pltIdx == entries.size()); 1168 entries.push_back(&sym); 1169 } 1170 1171 size_t GotPltSection::getSize() const { 1172 return (target->gotPltHeaderEntriesNum + entries.size()) * 1173 target->gotEntrySize; 1174 } 1175 1176 void GotPltSection::writeTo(uint8_t *buf) { 1177 target->writeGotPltHeader(buf); 1178 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize; 1179 for (const Symbol *b : entries) { 1180 target->writeGotPlt(buf, *b); 1181 buf += target->gotEntrySize; 1182 } 1183 } 1184 1185 bool GotPltSection::isNeeded() const { 1186 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1187 // to it. 1188 return !entries.empty() || hasGotPltOffRel; 1189 } 1190 1191 static StringRef getIgotPltName() { 1192 // On ARM the IgotPltSection is part of the GotSection. 1193 if (config->emachine == EM_ARM) 1194 return ".got"; 1195 1196 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1197 // needs to be named the same. 1198 if (config->emachine == EM_PPC64) 1199 return ".plt"; 1200 1201 return ".got.plt"; 1202 } 1203 1204 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1205 // with the IgotPltSection. 1206 IgotPltSection::IgotPltSection() 1207 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1208 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1209 target->gotEntrySize, getIgotPltName()) {} 1210 1211 void IgotPltSection::addEntry(Symbol &sym) { 1212 assert(symAux.back().pltIdx == entries.size()); 1213 entries.push_back(&sym); 1214 } 1215 1216 size_t IgotPltSection::getSize() const { 1217 return entries.size() * target->gotEntrySize; 1218 } 1219 1220 void IgotPltSection::writeTo(uint8_t *buf) { 1221 for (const Symbol *b : entries) { 1222 target->writeIgotPlt(buf, *b); 1223 buf += target->gotEntrySize; 1224 } 1225 } 1226 1227 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1228 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1229 dynamic(dynamic) { 1230 // ELF string tables start with a NUL byte. 1231 addString(""); 1232 } 1233 1234 // Adds a string to the string table. If `hashIt` is true we hash and check for 1235 // duplicates. It is optional because the name of global symbols are already 1236 // uniqued and hashing them again has a big cost for a small value: uniquing 1237 // them with some other string that happens to be the same. 1238 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1239 if (hashIt) { 1240 auto r = stringMap.try_emplace(CachedHashStringRef(s), size); 1241 if (!r.second) 1242 return r.first->second; 1243 } 1244 unsigned ret = this->size; 1245 this->size = this->size + s.size() + 1; 1246 strings.push_back(s); 1247 return ret; 1248 } 1249 1250 void StringTableSection::writeTo(uint8_t *buf) { 1251 for (StringRef s : strings) { 1252 memcpy(buf, s.data(), s.size()); 1253 buf[s.size()] = '\0'; 1254 buf += s.size() + 1; 1255 } 1256 } 1257 1258 // Returns the number of entries in .gnu.version_d: the number of 1259 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1260 // Note that we don't support vd_cnt > 1 yet. 1261 static unsigned getVerDefNum() { 1262 return namedVersionDefs().size() + 1; 1263 } 1264 1265 template <class ELFT> 1266 DynamicSection<ELFT>::DynamicSection() 1267 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1268 ".dynamic") { 1269 this->entsize = ELFT::Is64Bits ? 16 : 8; 1270 1271 // .dynamic section is not writable on MIPS and on Fuchsia OS 1272 // which passes -z rodynamic. 1273 // See "Special Section" in Chapter 4 in the following document: 1274 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1275 if (config->emachine == EM_MIPS || config->zRodynamic) 1276 this->flags = SHF_ALLOC; 1277 } 1278 1279 // The output section .rela.dyn may include these synthetic sections: 1280 // 1281 // - part.relaDyn 1282 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1283 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1284 // .rela.dyn 1285 // 1286 // DT_RELASZ is the total size of the included sections. 1287 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) { 1288 size_t size = relaDyn.getSize(); 1289 if (in.relaIplt->getParent() == relaDyn.getParent()) 1290 size += in.relaIplt->getSize(); 1291 if (in.relaPlt->getParent() == relaDyn.getParent()) 1292 size += in.relaPlt->getSize(); 1293 return size; 1294 } 1295 1296 // A Linker script may assign the RELA relocation sections to the same 1297 // output section. When this occurs we cannot just use the OutputSection 1298 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1299 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1300 static uint64_t addPltRelSz() { 1301 size_t size = in.relaPlt->getSize(); 1302 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1303 in.relaIplt->name == in.relaPlt->name) 1304 size += in.relaIplt->getSize(); 1305 return size; 1306 } 1307 1308 // Add remaining entries to complete .dynamic contents. 1309 template <class ELFT> 1310 std::vector<std::pair<int32_t, uint64_t>> 1311 DynamicSection<ELFT>::computeContents() { 1312 elf::Partition &part = getPartition(); 1313 bool isMain = part.name.empty(); 1314 std::vector<std::pair<int32_t, uint64_t>> entries; 1315 1316 auto addInt = [&](int32_t tag, uint64_t val) { 1317 entries.emplace_back(tag, val); 1318 }; 1319 auto addInSec = [&](int32_t tag, const InputSection &sec) { 1320 entries.emplace_back(tag, sec.getVA()); 1321 }; 1322 1323 for (StringRef s : config->filterList) 1324 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1325 for (StringRef s : config->auxiliaryList) 1326 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1327 1328 if (!config->rpath.empty()) 1329 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1330 part.dynStrTab->addString(config->rpath)); 1331 1332 for (SharedFile *file : sharedFiles) 1333 if (file->isNeeded) 1334 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1335 1336 if (isMain) { 1337 if (!config->soName.empty()) 1338 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1339 } else { 1340 if (!config->soName.empty()) 1341 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1342 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1343 } 1344 1345 // Set DT_FLAGS and DT_FLAGS_1. 1346 uint32_t dtFlags = 0; 1347 uint32_t dtFlags1 = 0; 1348 if (config->bsymbolic == BsymbolicKind::All) 1349 dtFlags |= DF_SYMBOLIC; 1350 if (config->zGlobal) 1351 dtFlags1 |= DF_1_GLOBAL; 1352 if (config->zInitfirst) 1353 dtFlags1 |= DF_1_INITFIRST; 1354 if (config->zInterpose) 1355 dtFlags1 |= DF_1_INTERPOSE; 1356 if (config->zNodefaultlib) 1357 dtFlags1 |= DF_1_NODEFLIB; 1358 if (config->zNodelete) 1359 dtFlags1 |= DF_1_NODELETE; 1360 if (config->zNodlopen) 1361 dtFlags1 |= DF_1_NOOPEN; 1362 if (config->pie) 1363 dtFlags1 |= DF_1_PIE; 1364 if (config->zNow) { 1365 dtFlags |= DF_BIND_NOW; 1366 dtFlags1 |= DF_1_NOW; 1367 } 1368 if (config->zOrigin) { 1369 dtFlags |= DF_ORIGIN; 1370 dtFlags1 |= DF_1_ORIGIN; 1371 } 1372 if (!config->zText) 1373 dtFlags |= DF_TEXTREL; 1374 if (config->hasTlsIe && config->shared) 1375 dtFlags |= DF_STATIC_TLS; 1376 1377 if (dtFlags) 1378 addInt(DT_FLAGS, dtFlags); 1379 if (dtFlags1) 1380 addInt(DT_FLAGS_1, dtFlags1); 1381 1382 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1383 // need it for each process, so we don't write it for DSOs. The loader writes 1384 // the pointer into this entry. 1385 // 1386 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1387 // systems (currently only Fuchsia OS) provide other means to give the 1388 // debugger this information. Such systems may choose make .dynamic read-only. 1389 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1390 if (!config->shared && !config->relocatable && !config->zRodynamic) 1391 addInt(DT_DEBUG, 0); 1392 1393 if (part.relaDyn->isNeeded() || 1394 (in.relaIplt->isNeeded() && 1395 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1396 addInSec(part.relaDyn->dynamicTag, *part.relaDyn); 1397 entries.emplace_back(part.relaDyn->sizeDynamicTag, 1398 addRelaSz(*part.relaDyn)); 1399 1400 bool isRela = config->isRela; 1401 addInt(isRela ? DT_RELAENT : DT_RELENT, 1402 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1403 1404 // MIPS dynamic loader does not support RELCOUNT tag. 1405 // The problem is in the tight relation between dynamic 1406 // relocations and GOT. So do not emit this tag on MIPS. 1407 if (config->emachine != EM_MIPS) { 1408 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1409 if (config->zCombreloc && numRelativeRels) 1410 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1411 } 1412 } 1413 if (part.relrDyn && part.relrDyn->getParent() && 1414 !part.relrDyn->relocs.empty()) { 1415 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1416 *part.relrDyn); 1417 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1418 part.relrDyn->getParent()->size); 1419 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1420 sizeof(Elf_Relr)); 1421 } 1422 // .rel[a].plt section usually consists of two parts, containing plt and 1423 // iplt relocations. It is possible to have only iplt relocations in the 1424 // output. In that case relaPlt is empty and have zero offset, the same offset 1425 // as relaIplt has. And we still want to emit proper dynamic tags for that 1426 // case, so here we always use relaPlt as marker for the beginning of 1427 // .rel[a].plt section. 1428 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1429 addInSec(DT_JMPREL, *in.relaPlt); 1430 entries.emplace_back(DT_PLTRELSZ, addPltRelSz()); 1431 switch (config->emachine) { 1432 case EM_MIPS: 1433 addInSec(DT_MIPS_PLTGOT, *in.gotPlt); 1434 break; 1435 case EM_SPARCV9: 1436 addInSec(DT_PLTGOT, *in.plt); 1437 break; 1438 case EM_AARCH64: 1439 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) { 1440 return r.type == target->pltRel && 1441 r.sym->stOther & STO_AARCH64_VARIANT_PCS; 1442 }) != in.relaPlt->relocs.end()) 1443 addInt(DT_AARCH64_VARIANT_PCS, 0); 1444 LLVM_FALLTHROUGH; 1445 default: 1446 addInSec(DT_PLTGOT, *in.gotPlt); 1447 break; 1448 } 1449 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1450 } 1451 1452 if (config->emachine == EM_AARCH64) { 1453 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1454 addInt(DT_AARCH64_BTI_PLT, 0); 1455 if (config->zPacPlt) 1456 addInt(DT_AARCH64_PAC_PLT, 0); 1457 } 1458 1459 addInSec(DT_SYMTAB, *part.dynSymTab); 1460 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1461 addInSec(DT_STRTAB, *part.dynStrTab); 1462 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1463 if (!config->zText) 1464 addInt(DT_TEXTREL, 0); 1465 if (part.gnuHashTab && part.gnuHashTab->getParent()) 1466 addInSec(DT_GNU_HASH, *part.gnuHashTab); 1467 if (part.hashTab && part.hashTab->getParent()) 1468 addInSec(DT_HASH, *part.hashTab); 1469 1470 if (isMain) { 1471 if (Out::preinitArray) { 1472 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr); 1473 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size); 1474 } 1475 if (Out::initArray) { 1476 addInt(DT_INIT_ARRAY, Out::initArray->addr); 1477 addInt(DT_INIT_ARRAYSZ, Out::initArray->size); 1478 } 1479 if (Out::finiArray) { 1480 addInt(DT_FINI_ARRAY, Out::finiArray->addr); 1481 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size); 1482 } 1483 1484 if (Symbol *b = symtab->find(config->init)) 1485 if (b->isDefined()) 1486 addInt(DT_INIT, b->getVA()); 1487 if (Symbol *b = symtab->find(config->fini)) 1488 if (b->isDefined()) 1489 addInt(DT_FINI, b->getVA()); 1490 } 1491 1492 if (part.verSym && part.verSym->isNeeded()) 1493 addInSec(DT_VERSYM, *part.verSym); 1494 if (part.verDef && part.verDef->isLive()) { 1495 addInSec(DT_VERDEF, *part.verDef); 1496 addInt(DT_VERDEFNUM, getVerDefNum()); 1497 } 1498 if (part.verNeed && part.verNeed->isNeeded()) { 1499 addInSec(DT_VERNEED, *part.verNeed); 1500 unsigned needNum = 0; 1501 for (SharedFile *f : sharedFiles) 1502 if (!f->vernauxs.empty()) 1503 ++needNum; 1504 addInt(DT_VERNEEDNUM, needNum); 1505 } 1506 1507 if (config->emachine == EM_MIPS) { 1508 addInt(DT_MIPS_RLD_VERSION, 1); 1509 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1510 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1511 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1512 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum()); 1513 1514 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1515 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1516 else 1517 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1518 addInSec(DT_PLTGOT, *in.mipsGot); 1519 if (in.mipsRldMap) { 1520 if (!config->pie) 1521 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap); 1522 // Store the offset to the .rld_map section 1523 // relative to the address of the tag. 1524 addInt(DT_MIPS_RLD_MAP_REL, 1525 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); 1526 } 1527 } 1528 1529 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1530 // glibc assumes the old-style BSS PLT layout which we don't support. 1531 if (config->emachine == EM_PPC) 1532 addInSec(DT_PPC_GOT, *in.got); 1533 1534 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1535 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1536 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1537 // stub, which starts directly after the header. 1538 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32); 1539 } 1540 1541 addInt(DT_NULL, 0); 1542 return entries; 1543 } 1544 1545 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1546 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 1547 getParent()->link = sec->sectionIndex; 1548 this->size = computeContents().size() * this->entsize; 1549 } 1550 1551 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1552 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1553 1554 for (std::pair<int32_t, uint64_t> kv : computeContents()) { 1555 p->d_tag = kv.first; 1556 p->d_un.d_val = kv.second; 1557 ++p; 1558 } 1559 } 1560 1561 uint64_t DynamicReloc::getOffset() const { 1562 return inputSec->getVA(offsetInSec); 1563 } 1564 1565 int64_t DynamicReloc::computeAddend() const { 1566 switch (kind) { 1567 case AddendOnly: 1568 assert(sym == nullptr); 1569 return addend; 1570 case AgainstSymbol: 1571 assert(sym != nullptr); 1572 return addend; 1573 case AddendOnlyWithTargetVA: 1574 case AgainstSymbolWithTargetVA: 1575 return InputSection::getRelocTargetVA(inputSec->file, type, addend, 1576 getOffset(), *sym, expr); 1577 case MipsMultiGotPage: 1578 assert(sym == nullptr); 1579 return getMipsPageAddr(outputSec->addr) + addend; 1580 } 1581 llvm_unreachable("Unknown DynamicReloc::Kind enum"); 1582 } 1583 1584 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1585 if (needsDynSymIndex()) 1586 return symTab->getSymbolIndex(sym); 1587 return 0; 1588 } 1589 1590 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1591 int32_t dynamicTag, 1592 int32_t sizeDynamicTag) 1593 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1594 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {} 1595 1596 void RelocationBaseSection::addSymbolReloc(RelType dynType, 1597 InputSectionBase &isec, 1598 uint64_t offsetInSec, Symbol &sym, 1599 int64_t addend, 1600 Optional<RelType> addendRelType) { 1601 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, 1602 R_ADDEND, addendRelType ? *addendRelType : target->noneRel); 1603 } 1604 1605 void RelocationBaseSection::addRelativeReloc( 1606 RelType dynType, InputSectionBase &inputSec, uint64_t offsetInSec, 1607 Symbol &sym, int64_t addend, RelType addendRelType, RelExpr expr) { 1608 // This function should only be called for non-preemptible symbols or 1609 // RelExpr values that refer to an address inside the output file (e.g. the 1610 // address of the GOT entry for a potentially preemptible symbol). 1611 assert((!sym.isPreemptible || expr == R_GOT) && 1612 "cannot add relative relocation against preemptible symbol"); 1613 assert(expr != R_ADDEND && "expected non-addend relocation expression"); 1614 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, inputSec, offsetInSec, 1615 sym, addend, expr, addendRelType); 1616 } 1617 1618 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( 1619 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, 1620 RelType addendRelType) { 1621 // No need to write an addend to the section for preemptible symbols. 1622 if (sym.isPreemptible) 1623 addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, 1624 R_ABS}); 1625 else 1626 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, 1627 sym, 0, R_ABS, addendRelType); 1628 } 1629 1630 void RelocationBaseSection::addReloc(DynamicReloc::Kind kind, RelType dynType, 1631 InputSectionBase &inputSec, 1632 uint64_t offsetInSec, Symbol &sym, 1633 int64_t addend, RelExpr expr, 1634 RelType addendRelType) { 1635 // Write the addends to the relocated address if required. We skip 1636 // it if the written value would be zero. 1637 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1638 inputSec.relocations.push_back( 1639 {expr, addendRelType, offsetInSec, addend, &sym}); 1640 addReloc({dynType, &inputSec, offsetInSec, kind, sym, addend, expr}); 1641 } 1642 1643 void RelocationBaseSection::addReloc(const DynamicReloc &reloc) { 1644 if (reloc.type == target->relativeRel) 1645 ++numRelativeRelocs; 1646 relocs.push_back(reloc); 1647 } 1648 1649 void RelocationBaseSection::finalizeContents() { 1650 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1651 1652 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1653 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1654 // case. 1655 if (symTab && symTab->getParent()) 1656 getParent()->link = symTab->getParent()->sectionIndex; 1657 else 1658 getParent()->link = 0; 1659 1660 if (in.relaPlt.get() == this && in.gotPlt->getParent()) { 1661 getParent()->flags |= ELF::SHF_INFO_LINK; 1662 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1663 } 1664 if (in.relaIplt.get() == this && in.igotPlt->getParent()) { 1665 getParent()->flags |= ELF::SHF_INFO_LINK; 1666 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1667 } 1668 } 1669 1670 RelrBaseSection::RelrBaseSection() 1671 : SyntheticSection(SHF_ALLOC, 1672 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1673 config->wordsize, ".relr.dyn") {} 1674 1675 template <class ELFT> 1676 static void encodeDynamicReloc(typename ELFT::Rela *p, 1677 const DynamicReloc &rel) { 1678 p->r_offset = rel.r_offset; 1679 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL); 1680 if (config->isRela) 1681 p->r_addend = rel.addend; 1682 } 1683 1684 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) { 1685 r_offset = getOffset(); 1686 r_sym = getSymIndex(symtab); 1687 addend = computeAddend(); 1688 kind = AddendOnly; // Catch errors 1689 } 1690 1691 template <class ELFT> 1692 RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort) 1693 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1694 config->isRela ? DT_RELA : DT_REL, 1695 config->isRela ? DT_RELASZ : DT_RELSZ), 1696 sort(sort) { 1697 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1698 } 1699 1700 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1701 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 1702 1703 parallelForEach(relocs, 1704 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); }); 1705 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1706 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1707 // is to make results easier to read. 1708 if (sort) { 1709 const RelType relativeRel = target->relativeRel; 1710 auto nonRelative = 1711 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }); 1712 parallelSort(relocs.begin(), nonRelative, 1713 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); 1714 // Non-relative relocations are few, so don't bother with parallelSort. 1715 std::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) { 1716 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); 1717 }); 1718 } 1719 1720 for (const DynamicReloc &rel : relocs) { 1721 encodeDynamicReloc<ELFT>(reinterpret_cast<Elf_Rela *>(buf), rel); 1722 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1723 } 1724 } 1725 1726 template <class ELFT> 1727 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1728 StringRef name) 1729 : RelocationBaseSection( 1730 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1731 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1732 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) { 1733 this->entsize = 1; 1734 } 1735 1736 template <class ELFT> 1737 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1738 // This function computes the contents of an Android-format packed relocation 1739 // section. 1740 // 1741 // This format compresses relocations by using relocation groups to factor out 1742 // fields that are common between relocations and storing deltas from previous 1743 // relocations in SLEB128 format (which has a short representation for small 1744 // numbers). A good example of a relocation type with common fields is 1745 // R_*_RELATIVE, which is normally used to represent function pointers in 1746 // vtables. In the REL format, each relative relocation has the same r_info 1747 // field, and is only different from other relative relocations in terms of 1748 // the r_offset field. By sorting relocations by offset, grouping them by 1749 // r_info and representing each relocation with only the delta from the 1750 // previous offset, each 8-byte relocation can be compressed to as little as 1 1751 // byte (or less with run-length encoding). This relocation packer was able to 1752 // reduce the size of the relocation section in an Android Chromium DSO from 1753 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1754 // 1755 // A relocation section consists of a header containing the literal bytes 1756 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1757 // elements are the total number of relocations in the section and an initial 1758 // r_offset value. The remaining elements define a sequence of relocation 1759 // groups. Each relocation group starts with a header consisting of the 1760 // following elements: 1761 // 1762 // - the number of relocations in the relocation group 1763 // - flags for the relocation group 1764 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1765 // for each relocation in the group. 1766 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1767 // field for each relocation in the group. 1768 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1769 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1770 // each relocation in the group. 1771 // 1772 // Following the relocation group header are descriptions of each of the 1773 // relocations in the group. They consist of the following elements: 1774 // 1775 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1776 // delta for this relocation. 1777 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1778 // field for this relocation. 1779 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1780 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1781 // this relocation. 1782 1783 size_t oldSize = relocData.size(); 1784 1785 relocData = {'A', 'P', 'S', '2'}; 1786 raw_svector_ostream os(relocData); 1787 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1788 1789 // The format header includes the number of relocations and the initial 1790 // offset (we set this to zero because the first relocation group will 1791 // perform the initial adjustment). 1792 add(relocs.size()); 1793 add(0); 1794 1795 std::vector<Elf_Rela> relatives, nonRelatives; 1796 1797 for (const DynamicReloc &rel : relocs) { 1798 Elf_Rela r; 1799 r.r_offset = rel.getOffset(); 1800 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()), 1801 rel.type, false); 1802 if (config->isRela) 1803 r.r_addend = rel.computeAddend(); 1804 1805 if (r.getType(config->isMips64EL) == target->relativeRel) 1806 relatives.push_back(r); 1807 else 1808 nonRelatives.push_back(r); 1809 } 1810 1811 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1812 return a.r_offset < b.r_offset; 1813 }); 1814 1815 // Try to find groups of relative relocations which are spaced one word 1816 // apart from one another. These generally correspond to vtable entries. The 1817 // format allows these groups to be encoded using a sort of run-length 1818 // encoding, but each group will cost 7 bytes in addition to the offset from 1819 // the previous group, so it is only profitable to do this for groups of 1820 // size 8 or larger. 1821 std::vector<Elf_Rela> ungroupedRelatives; 1822 std::vector<std::vector<Elf_Rela>> relativeGroups; 1823 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1824 std::vector<Elf_Rela> group; 1825 do { 1826 group.push_back(*i++); 1827 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1828 1829 if (group.size() < 8) 1830 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1831 group.end()); 1832 else 1833 relativeGroups.emplace_back(std::move(group)); 1834 } 1835 1836 // For non-relative relocations, we would like to: 1837 // 1. Have relocations with the same symbol offset to be consecutive, so 1838 // that the runtime linker can speed-up symbol lookup by implementing an 1839 // 1-entry cache. 1840 // 2. Group relocations by r_info to reduce the size of the relocation 1841 // section. 1842 // Since the symbol offset is the high bits in r_info, sorting by r_info 1843 // allows us to do both. 1844 // 1845 // For Rela, we also want to sort by r_addend when r_info is the same. This 1846 // enables us to group by r_addend as well. 1847 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1848 if (a.r_info != b.r_info) 1849 return a.r_info < b.r_info; 1850 if (config->isRela) 1851 return a.r_addend < b.r_addend; 1852 return false; 1853 }); 1854 1855 // Group relocations with the same r_info. Note that each group emits a group 1856 // header and that may make the relocation section larger. It is hard to 1857 // estimate the size of a group header as the encoded size of that varies 1858 // based on r_info. However, we can approximate this trade-off by the number 1859 // of values encoded. Each group header contains 3 values, and each relocation 1860 // in a group encodes one less value, as compared to when it is not grouped. 1861 // Therefore, we only group relocations if there are 3 or more of them with 1862 // the same r_info. 1863 // 1864 // For Rela, the addend for most non-relative relocations is zero, and thus we 1865 // can usually get a smaller relocation section if we group relocations with 0 1866 // addend as well. 1867 std::vector<Elf_Rela> ungroupedNonRelatives; 1868 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1869 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1870 auto j = i + 1; 1871 while (j != e && i->r_info == j->r_info && 1872 (!config->isRela || i->r_addend == j->r_addend)) 1873 ++j; 1874 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1875 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1876 else 1877 nonRelativeGroups.emplace_back(i, j); 1878 i = j; 1879 } 1880 1881 // Sort ungrouped relocations by offset to minimize the encoded length. 1882 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1883 return a.r_offset < b.r_offset; 1884 }); 1885 1886 unsigned hasAddendIfRela = 1887 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1888 1889 uint64_t offset = 0; 1890 uint64_t addend = 0; 1891 1892 // Emit the run-length encoding for the groups of adjacent relative 1893 // relocations. Each group is represented using two groups in the packed 1894 // format. The first is used to set the current offset to the start of the 1895 // group (and also encodes the first relocation), and the second encodes the 1896 // remaining relocations. 1897 for (std::vector<Elf_Rela> &g : relativeGroups) { 1898 // The first relocation in the group. 1899 add(1); 1900 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1901 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1902 add(g[0].r_offset - offset); 1903 add(target->relativeRel); 1904 if (config->isRela) { 1905 add(g[0].r_addend - addend); 1906 addend = g[0].r_addend; 1907 } 1908 1909 // The remaining relocations. 1910 add(g.size() - 1); 1911 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1912 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1913 add(config->wordsize); 1914 add(target->relativeRel); 1915 if (config->isRela) { 1916 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1917 add(i->r_addend - addend); 1918 addend = i->r_addend; 1919 } 1920 } 1921 1922 offset = g.back().r_offset; 1923 } 1924 1925 // Now the ungrouped relatives. 1926 if (!ungroupedRelatives.empty()) { 1927 add(ungroupedRelatives.size()); 1928 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1929 add(target->relativeRel); 1930 for (Elf_Rela &r : ungroupedRelatives) { 1931 add(r.r_offset - offset); 1932 offset = r.r_offset; 1933 if (config->isRela) { 1934 add(r.r_addend - addend); 1935 addend = r.r_addend; 1936 } 1937 } 1938 } 1939 1940 // Grouped non-relatives. 1941 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1942 add(g.size()); 1943 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1944 add(g[0].r_info); 1945 for (const Elf_Rela &r : g) { 1946 add(r.r_offset - offset); 1947 offset = r.r_offset; 1948 } 1949 addend = 0; 1950 } 1951 1952 // Finally the ungrouped non-relative relocations. 1953 if (!ungroupedNonRelatives.empty()) { 1954 add(ungroupedNonRelatives.size()); 1955 add(hasAddendIfRela); 1956 for (Elf_Rela &r : ungroupedNonRelatives) { 1957 add(r.r_offset - offset); 1958 offset = r.r_offset; 1959 add(r.r_info); 1960 if (config->isRela) { 1961 add(r.r_addend - addend); 1962 addend = r.r_addend; 1963 } 1964 } 1965 } 1966 1967 // Don't allow the section to shrink; otherwise the size of the section can 1968 // oscillate infinitely. 1969 if (relocData.size() < oldSize) 1970 relocData.append(oldSize - relocData.size(), 0); 1971 1972 // Returns whether the section size changed. We need to keep recomputing both 1973 // section layout and the contents of this section until the size converges 1974 // because changing this section's size can affect section layout, which in 1975 // turn can affect the sizes of the LEB-encoded integers stored in this 1976 // section. 1977 return relocData.size() != oldSize; 1978 } 1979 1980 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1981 this->entsize = config->wordsize; 1982 } 1983 1984 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1985 // This function computes the contents of an SHT_RELR packed relocation 1986 // section. 1987 // 1988 // Proposal for adding SHT_RELR sections to generic-abi is here: 1989 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1990 // 1991 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 1992 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 1993 // 1994 // i.e. start with an address, followed by any number of bitmaps. The address 1995 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 1996 // relocations each, at subsequent offsets following the last address entry. 1997 // 1998 // The bitmap entries must have 1 in the least significant bit. The assumption 1999 // here is that an address cannot have 1 in lsb. Odd addresses are not 2000 // supported. 2001 // 2002 // Excluding the least significant bit in the bitmap, each non-zero bit in 2003 // the bitmap represents a relocation to be applied to a corresponding machine 2004 // word that follows the base address word. The second least significant bit 2005 // represents the machine word immediately following the initial address, and 2006 // each bit that follows represents the next word, in linear order. As such, 2007 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 2008 // 63 relocations in a 64-bit object. 2009 // 2010 // This encoding has a couple of interesting properties: 2011 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 2012 // even means address, odd means bitmap. 2013 // 2. Just a simple list of addresses is a valid encoding. 2014 2015 size_t oldSize = relrRelocs.size(); 2016 relrRelocs.clear(); 2017 2018 // Same as Config->Wordsize but faster because this is a compile-time 2019 // constant. 2020 const size_t wordsize = sizeof(typename ELFT::uint); 2021 2022 // Number of bits to use for the relocation offsets bitmap. 2023 // Must be either 63 or 31. 2024 const size_t nBits = wordsize * 8 - 1; 2025 2026 // Get offsets for all relative relocations and sort them. 2027 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); 2028 for (auto it : llvm::enumerate(relocs)) 2029 offsets[it.index()] = it.value().getOffset(); 2030 std::sort(offsets.get(), offsets.get() + relocs.size()); 2031 2032 // For each leading relocation, find following ones that can be folded 2033 // as a bitmap and fold them. 2034 for (size_t i = 0, e = relocs.size(); i != e;) { 2035 // Add a leading relocation. 2036 relrRelocs.push_back(Elf_Relr(offsets[i])); 2037 uint64_t base = offsets[i] + wordsize; 2038 ++i; 2039 2040 // Find foldable relocations to construct bitmaps. 2041 for (;;) { 2042 uint64_t bitmap = 0; 2043 for (; i != e; ++i) { 2044 uint64_t d = offsets[i] - base; 2045 if (d >= nBits * wordsize || d % wordsize) 2046 break; 2047 bitmap |= uint64_t(1) << (d / wordsize); 2048 } 2049 if (!bitmap) 2050 break; 2051 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 2052 base += nBits * wordsize; 2053 } 2054 } 2055 2056 // Don't allow the section to shrink; otherwise the size of the section can 2057 // oscillate infinitely. Trailing 1s do not decode to more relocations. 2058 if (relrRelocs.size() < oldSize) { 2059 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 2060 " padding word(s)"); 2061 relrRelocs.resize(oldSize, Elf_Relr(1)); 2062 } 2063 2064 return relrRelocs.size() != oldSize; 2065 } 2066 2067 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 2068 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 2069 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 2070 config->wordsize, 2071 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 2072 strTabSec(strTabSec) {} 2073 2074 // Orders symbols according to their positions in the GOT, 2075 // in compliance with MIPS ABI rules. 2076 // See "Global Offset Table" in Chapter 5 in the following document 2077 // for detailed description: 2078 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2079 static bool sortMipsSymbols(const SymbolTableEntry &l, 2080 const SymbolTableEntry &r) { 2081 // Sort entries related to non-local preemptible symbols by GOT indexes. 2082 // All other entries go to the beginning of a dynsym in arbitrary order. 2083 if (l.sym->isInGot() && r.sym->isInGot()) 2084 return l.sym->getGotIdx() < r.sym->getGotIdx(); 2085 if (!l.sym->isInGot() && !r.sym->isInGot()) 2086 return false; 2087 return !l.sym->isInGot(); 2088 } 2089 2090 void SymbolTableBaseSection::finalizeContents() { 2091 if (OutputSection *sec = strTabSec.getParent()) 2092 getParent()->link = sec->sectionIndex; 2093 2094 if (this->type != SHT_DYNSYM) { 2095 sortSymTabSymbols(); 2096 return; 2097 } 2098 2099 // If it is a .dynsym, there should be no local symbols, but we need 2100 // to do a few things for the dynamic linker. 2101 2102 // Section's Info field has the index of the first non-local symbol. 2103 // Because the first symbol entry is a null entry, 1 is the first. 2104 getParent()->info = 1; 2105 2106 if (getPartition().gnuHashTab) { 2107 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2108 getPartition().gnuHashTab->addSymbols(symbols); 2109 } else if (config->emachine == EM_MIPS) { 2110 llvm::stable_sort(symbols, sortMipsSymbols); 2111 } 2112 2113 // Only the main partition's dynsym indexes are stored in the symbols 2114 // themselves. All other partitions use a lookup table. 2115 if (this == mainPart->dynSymTab.get()) { 2116 size_t i = 0; 2117 for (const SymbolTableEntry &s : symbols) 2118 s.sym->dynsymIndex = ++i; 2119 } 2120 } 2121 2122 // The ELF spec requires that all local symbols precede global symbols, so we 2123 // sort symbol entries in this function. (For .dynsym, we don't do that because 2124 // symbols for dynamic linking are inherently all globals.) 2125 // 2126 // Aside from above, we put local symbols in groups starting with the STT_FILE 2127 // symbol. That is convenient for purpose of identifying where are local symbols 2128 // coming from. 2129 void SymbolTableBaseSection::sortSymTabSymbols() { 2130 // Move all local symbols before global symbols. 2131 auto e = std::stable_partition( 2132 symbols.begin(), symbols.end(), 2133 [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); 2134 size_t numLocals = e - symbols.begin(); 2135 getParent()->info = numLocals + 1; 2136 2137 // We want to group the local symbols by file. For that we rebuild the local 2138 // part of the symbols vector. We do not need to care about the STT_FILE 2139 // symbols, they are already naturally placed first in each group. That 2140 // happens because STT_FILE is always the first symbol in the object and hence 2141 // precede all other local symbols we add for a file. 2142 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; 2143 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2144 arr[s.sym->file].push_back(s); 2145 2146 auto i = symbols.begin(); 2147 for (auto &p : arr) 2148 for (SymbolTableEntry &entry : p.second) 2149 *i++ = entry; 2150 } 2151 2152 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2153 // Adding a local symbol to a .dynsym is a bug. 2154 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2155 2156 bool hashIt = b->isLocal(); 2157 symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)}); 2158 } 2159 2160 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2161 if (this == mainPart->dynSymTab.get()) 2162 return sym->dynsymIndex; 2163 2164 // Initializes symbol lookup tables lazily. This is used only for -r, 2165 // --emit-relocs and dynsyms in partitions other than the main one. 2166 llvm::call_once(onceFlag, [&] { 2167 symbolIndexMap.reserve(symbols.size()); 2168 size_t i = 0; 2169 for (const SymbolTableEntry &e : symbols) { 2170 if (e.sym->type == STT_SECTION) 2171 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2172 else 2173 symbolIndexMap[e.sym] = ++i; 2174 } 2175 }); 2176 2177 // Section symbols are mapped based on their output sections 2178 // to maintain their semantics. 2179 if (sym->type == STT_SECTION) 2180 return sectionIndexMap.lookup(sym->getOutputSection()); 2181 return symbolIndexMap.lookup(sym); 2182 } 2183 2184 template <class ELFT> 2185 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2186 : SymbolTableBaseSection(strTabSec) { 2187 this->entsize = sizeof(Elf_Sym); 2188 } 2189 2190 static BssSection *getCommonSec(Symbol *sym) { 2191 if (!config->defineCommon) 2192 if (auto *d = dyn_cast<Defined>(sym)) 2193 return dyn_cast_or_null<BssSection>(d->section); 2194 return nullptr; 2195 } 2196 2197 static uint32_t getSymSectionIndex(Symbol *sym) { 2198 assert(!(sym->needsCopy && sym->isObject())); 2199 if (!isa<Defined>(sym) || sym->needsCopy) 2200 return SHN_UNDEF; 2201 if (const OutputSection *os = sym->getOutputSection()) 2202 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2203 : os->sectionIndex; 2204 return SHN_ABS; 2205 } 2206 2207 // Write the internal symbol table contents to the output symbol table. 2208 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2209 // The first entry is a null entry as per the ELF spec. 2210 buf += sizeof(Elf_Sym); 2211 2212 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2213 2214 for (SymbolTableEntry &ent : symbols) { 2215 Symbol *sym = ent.sym; 2216 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2217 2218 // Set st_name, st_info and st_other. 2219 eSym->st_name = ent.strTabOffset; 2220 eSym->setBindingAndType(sym->binding, sym->type); 2221 eSym->st_other = sym->visibility; 2222 2223 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2224 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2225 if (config->emachine == EM_PPC64) 2226 eSym->st_other |= sym->stOther & 0xe0; 2227 // The most significant bit of st_other is used by AArch64 ABI for the 2228 // variant PCS. 2229 else if (config->emachine == EM_AARCH64) 2230 eSym->st_other |= sym->stOther & STO_AARCH64_VARIANT_PCS; 2231 2232 if (BssSection *commonSec = getCommonSec(sym)) { 2233 // st_value is usually an address of a symbol, but that has a special 2234 // meaning for uninstantiated common symbols (--no-define-common). 2235 eSym->st_shndx = SHN_COMMON; 2236 eSym->st_value = commonSec->alignment; 2237 eSym->st_size = cast<Defined>(sym)->size; 2238 } else { 2239 const uint32_t shndx = getSymSectionIndex(sym); 2240 if (isDefinedHere) { 2241 eSym->st_shndx = shndx; 2242 eSym->st_value = sym->getVA(); 2243 // Copy symbol size if it is a defined symbol. st_size is not 2244 // significant for undefined symbols, so whether copying it or not is up 2245 // to us if that's the case. We'll leave it as zero because by not 2246 // setting a value, we can get the exact same outputs for two sets of 2247 // input files that differ only in undefined symbol size in DSOs. 2248 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; 2249 } else { 2250 eSym->st_shndx = 0; 2251 eSym->st_value = 0; 2252 eSym->st_size = 0; 2253 } 2254 } 2255 2256 ++eSym; 2257 } 2258 2259 // On MIPS we need to mark symbol which has a PLT entry and requires 2260 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2261 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2262 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2263 if (config->emachine == EM_MIPS) { 2264 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2265 2266 for (SymbolTableEntry &ent : symbols) { 2267 Symbol *sym = ent.sym; 2268 if (sym->isInPlt() && sym->needsCopy) 2269 eSym->st_other |= STO_MIPS_PLT; 2270 if (isMicroMips()) { 2271 // We already set the less-significant bit for symbols 2272 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2273 // records. That allows us to distinguish such symbols in 2274 // the `MIPS<ELFT>::relocate()` routine. Now we should 2275 // clear that bit for non-dynamic symbol table, so tools 2276 // like `objdump` will be able to deal with a correct 2277 // symbol position. 2278 if (sym->isDefined() && 2279 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsCopy)) { 2280 if (!strTabSec.isDynamic()) 2281 eSym->st_value &= ~1; 2282 eSym->st_other |= STO_MIPS_MICROMIPS; 2283 } 2284 } 2285 if (config->relocatable) 2286 if (auto *d = dyn_cast<Defined>(sym)) 2287 if (isMipsPIC<ELFT>(d)) 2288 eSym->st_other |= STO_MIPS_PIC; 2289 ++eSym; 2290 } 2291 } 2292 } 2293 2294 SymtabShndxSection::SymtabShndxSection() 2295 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2296 this->entsize = 4; 2297 } 2298 2299 void SymtabShndxSection::writeTo(uint8_t *buf) { 2300 // We write an array of 32 bit values, where each value has 1:1 association 2301 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2302 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2303 buf += 4; // Ignore .symtab[0] entry. 2304 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2305 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX) 2306 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2307 buf += 4; 2308 } 2309 } 2310 2311 bool SymtabShndxSection::isNeeded() const { 2312 // SHT_SYMTAB can hold symbols with section indices values up to 2313 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2314 // section. Problem is that we reveal the final section indices a bit too 2315 // late, and we do not know them here. For simplicity, we just always create 2316 // a .symtab_shndx section when the amount of output sections is huge. 2317 size_t size = 0; 2318 for (SectionCommand *cmd : script->sectionCommands) 2319 if (isa<OutputSection>(cmd)) 2320 ++size; 2321 return size >= SHN_LORESERVE; 2322 } 2323 2324 void SymtabShndxSection::finalizeContents() { 2325 getParent()->link = in.symTab->getParent()->sectionIndex; 2326 } 2327 2328 size_t SymtabShndxSection::getSize() const { 2329 return in.symTab->getNumSymbols() * 4; 2330 } 2331 2332 // .hash and .gnu.hash sections contain on-disk hash tables that map 2333 // symbol names to their dynamic symbol table indices. Their purpose 2334 // is to help the dynamic linker resolve symbols quickly. If ELF files 2335 // don't have them, the dynamic linker has to do linear search on all 2336 // dynamic symbols, which makes programs slower. Therefore, a .hash 2337 // section is added to a DSO by default. 2338 // 2339 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2340 // Each ELF file has a list of DSOs that the ELF file depends on and a 2341 // list of dynamic symbols that need to be resolved from any of the 2342 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2343 // where m is the number of DSOs and n is the number of dynamic 2344 // symbols. For modern large programs, both m and n are large. So 2345 // making each step faster by using hash tables substantially 2346 // improves time to load programs. 2347 // 2348 // (Note that this is not the only way to design the shared library. 2349 // For instance, the Windows DLL takes a different approach. On 2350 // Windows, each dynamic symbol has a name of DLL from which the symbol 2351 // has to be resolved. That makes the cost of symbol resolution O(n). 2352 // This disables some hacky techniques you can use on Unix such as 2353 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2354 // 2355 // Due to historical reasons, we have two different hash tables, .hash 2356 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2357 // and better version of .hash. .hash is just an on-disk hash table, but 2358 // .gnu.hash has a bloom filter in addition to a hash table to skip 2359 // DSOs very quickly. If you are sure that your dynamic linker knows 2360 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a 2361 // safe bet is to specify --hash-style=both for backward compatibility. 2362 GnuHashTableSection::GnuHashTableSection() 2363 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2364 } 2365 2366 void GnuHashTableSection::finalizeContents() { 2367 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2368 getParent()->link = sec->sectionIndex; 2369 2370 // Computes bloom filter size in word size. We want to allocate 12 2371 // bits for each symbol. It must be a power of two. 2372 if (symbols.empty()) { 2373 maskWords = 1; 2374 } else { 2375 uint64_t numBits = symbols.size() * 12; 2376 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2377 } 2378 2379 size = 16; // Header 2380 size += config->wordsize * maskWords; // Bloom filter 2381 size += nBuckets * 4; // Hash buckets 2382 size += symbols.size() * 4; // Hash values 2383 } 2384 2385 void GnuHashTableSection::writeTo(uint8_t *buf) { 2386 // Write a header. 2387 write32(buf, nBuckets); 2388 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2389 write32(buf + 8, maskWords); 2390 write32(buf + 12, Shift2); 2391 buf += 16; 2392 2393 // Write the 2-bit bloom filter. 2394 const unsigned c = config->is64 ? 64 : 32; 2395 for (const Entry &sym : symbols) { 2396 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2397 // the word using bits [0:5] and [26:31]. 2398 size_t i = (sym.hash / c) & (maskWords - 1); 2399 uint64_t val = readUint(buf + i * config->wordsize); 2400 val |= uint64_t(1) << (sym.hash % c); 2401 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2402 writeUint(buf + i * config->wordsize, val); 2403 } 2404 buf += config->wordsize * maskWords; 2405 2406 // Write the hash table. 2407 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2408 uint32_t oldBucket = -1; 2409 uint32_t *values = buckets + nBuckets; 2410 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2411 // Write a hash value. It represents a sequence of chains that share the 2412 // same hash modulo value. The last element of each chain is terminated by 2413 // LSB 1. 2414 uint32_t hash = i->hash; 2415 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2416 hash = isLastInChain ? hash | 1 : hash & ~1; 2417 write32(values++, hash); 2418 2419 if (i->bucketIdx == oldBucket) 2420 continue; 2421 // Write a hash bucket. Hash buckets contain indices in the following hash 2422 // value table. 2423 write32(buckets + i->bucketIdx, 2424 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2425 oldBucket = i->bucketIdx; 2426 } 2427 } 2428 2429 static uint32_t hashGnu(StringRef name) { 2430 uint32_t h = 5381; 2431 for (uint8_t c : name) 2432 h = (h << 5) + h + c; 2433 return h; 2434 } 2435 2436 // Add symbols to this symbol hash table. Note that this function 2437 // destructively sort a given vector -- which is needed because 2438 // GNU-style hash table places some sorting requirements. 2439 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { 2440 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2441 // its type correctly. 2442 auto mid = 2443 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2444 return !s.sym->isDefined() || s.sym->partition != partition; 2445 }); 2446 2447 // We chose load factor 4 for the on-disk hash table. For each hash 2448 // collision, the dynamic linker will compare a uint32_t hash value. 2449 // Since the integer comparison is quite fast, we believe we can 2450 // make the load factor even larger. 4 is just a conservative choice. 2451 // 2452 // Note that we don't want to create a zero-sized hash table because 2453 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2454 // table. If that's the case, we create a hash table with one unused 2455 // dummy slot. 2456 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2457 2458 if (mid == v.end()) 2459 return; 2460 2461 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2462 Symbol *b = ent.sym; 2463 uint32_t hash = hashGnu(b->getName()); 2464 uint32_t bucketIdx = hash % nBuckets; 2465 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2466 } 2467 2468 llvm::sort(symbols, [](const Entry &l, const Entry &r) { 2469 return std::tie(l.bucketIdx, l.strTabOffset) < 2470 std::tie(r.bucketIdx, r.strTabOffset); 2471 }); 2472 2473 v.erase(mid, v.end()); 2474 for (const Entry &ent : symbols) 2475 v.push_back({ent.sym, ent.strTabOffset}); 2476 } 2477 2478 HashTableSection::HashTableSection() 2479 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2480 this->entsize = 4; 2481 } 2482 2483 void HashTableSection::finalizeContents() { 2484 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2485 2486 if (OutputSection *sec = symTab->getParent()) 2487 getParent()->link = sec->sectionIndex; 2488 2489 unsigned numEntries = 2; // nbucket and nchain. 2490 numEntries += symTab->getNumSymbols(); // The chain entries. 2491 2492 // Create as many buckets as there are symbols. 2493 numEntries += symTab->getNumSymbols(); 2494 this->size = numEntries * 4; 2495 } 2496 2497 void HashTableSection::writeTo(uint8_t *buf) { 2498 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get(); 2499 unsigned numSymbols = symTab->getNumSymbols(); 2500 2501 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2502 write32(p++, numSymbols); // nbucket 2503 write32(p++, numSymbols); // nchain 2504 2505 uint32_t *buckets = p; 2506 uint32_t *chains = p + numSymbols; 2507 2508 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2509 Symbol *sym = s.sym; 2510 StringRef name = sym->getName(); 2511 unsigned i = sym->dynsymIndex; 2512 uint32_t hash = hashSysV(name) % numSymbols; 2513 chains[i] = buckets[hash]; 2514 write32(buckets + hash, i); 2515 } 2516 } 2517 2518 PltSection::PltSection() 2519 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2520 headerSize(target->pltHeaderSize) { 2521 // On PowerPC, this section contains lazy symbol resolvers. 2522 if (config->emachine == EM_PPC64) { 2523 name = ".glink"; 2524 alignment = 4; 2525 } 2526 2527 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2528 // symbol resolvers). 2529 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2530 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2531 name = ".plt.sec"; 2532 2533 // The PLT needs to be writable on SPARC as the dynamic linker will 2534 // modify the instructions in the PLT entries. 2535 if (config->emachine == EM_SPARCV9) 2536 this->flags |= SHF_WRITE; 2537 } 2538 2539 void PltSection::writeTo(uint8_t *buf) { 2540 // At beginning of PLT, we have code to call the dynamic 2541 // linker to resolve dynsyms at runtime. Write such code. 2542 target->writePltHeader(buf); 2543 size_t off = headerSize; 2544 2545 for (const Symbol *sym : entries) { 2546 target->writePlt(buf + off, *sym, getVA() + off); 2547 off += target->pltEntrySize; 2548 } 2549 } 2550 2551 void PltSection::addEntry(Symbol &sym) { 2552 assert(sym.auxIdx == symAux.size() - 1); 2553 symAux.back().pltIdx = entries.size(); 2554 entries.push_back(&sym); 2555 } 2556 2557 size_t PltSection::getSize() const { 2558 return headerSize + entries.size() * target->pltEntrySize; 2559 } 2560 2561 bool PltSection::isNeeded() const { 2562 // For -z retpolineplt, .iplt needs the .plt header. 2563 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2564 } 2565 2566 // Used by ARM to add mapping symbols in the PLT section, which aid 2567 // disassembly. 2568 void PltSection::addSymbols() { 2569 target->addPltHeaderSymbols(*this); 2570 2571 size_t off = headerSize; 2572 for (size_t i = 0; i < entries.size(); ++i) { 2573 target->addPltSymbols(*this, off); 2574 off += target->pltEntrySize; 2575 } 2576 } 2577 2578 IpltSection::IpltSection() 2579 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2580 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2581 name = ".glink"; 2582 alignment = 4; 2583 } 2584 } 2585 2586 void IpltSection::writeTo(uint8_t *buf) { 2587 uint32_t off = 0; 2588 for (const Symbol *sym : entries) { 2589 target->writeIplt(buf + off, *sym, getVA() + off); 2590 off += target->ipltEntrySize; 2591 } 2592 } 2593 2594 size_t IpltSection::getSize() const { 2595 return entries.size() * target->ipltEntrySize; 2596 } 2597 2598 void IpltSection::addEntry(Symbol &sym) { 2599 assert(sym.auxIdx == symAux.size() - 1); 2600 symAux.back().pltIdx = entries.size(); 2601 entries.push_back(&sym); 2602 } 2603 2604 // ARM uses mapping symbols to aid disassembly. 2605 void IpltSection::addSymbols() { 2606 size_t off = 0; 2607 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2608 target->addPltSymbols(*this, off); 2609 off += target->pltEntrySize; 2610 } 2611 } 2612 2613 PPC32GlinkSection::PPC32GlinkSection() { 2614 name = ".glink"; 2615 alignment = 4; 2616 } 2617 2618 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2619 writePPC32GlinkSection(buf, entries.size()); 2620 } 2621 2622 size_t PPC32GlinkSection::getSize() const { 2623 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2624 } 2625 2626 // This is an x86-only extra PLT section and used only when a security 2627 // enhancement feature called CET is enabled. In this comment, I'll explain what 2628 // the feature is and why we have two PLT sections if CET is enabled. 2629 // 2630 // So, what does CET do? CET introduces a new restriction to indirect jump 2631 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2632 // execute an indirect jump instruction, the processor verifies that a special 2633 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2634 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2635 // does not start with that instruction, the processor raises an exception 2636 // instead of continuing executing code. 2637 // 2638 // If CET is enabled, the compiler emits endbr to all locations where indirect 2639 // jumps may jump to. 2640 // 2641 // This mechanism makes it extremely hard to transfer the control to a middle of 2642 // a function that is not supporsed to be a indirect jump target, preventing 2643 // certain types of attacks such as ROP or JOP. 2644 // 2645 // Note that the processors in the market as of 2019 don't actually support the 2646 // feature. Only the spec is available at the moment. 2647 // 2648 // Now, I'll explain why we have this extra PLT section for CET. 2649 // 2650 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2651 // start with endbr. The problem is there's no extra space for endbr (which is 4 2652 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2653 // used. 2654 // 2655 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2656 // Remember that each PLT entry contains code to jump to an address read from 2657 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2658 // the former code is written to .plt.sec, and the latter code is written to 2659 // .plt. 2660 // 2661 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2662 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2663 // contain only code for lazy symbol resolution. 2664 // 2665 // In other words, this is how the 2-PLT scheme works. Application code is 2666 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2667 // entry contains code to read an address from a corresponding .got.plt entry 2668 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2669 // when an application calls an external function for the first time, the 2670 // control is transferred to a function that resolves a symbol name from 2671 // external shared object files. That function then rewrites a .got.plt entry 2672 // with a resolved address, so that the subsequent function calls directly jump 2673 // to a desired location from .plt.sec. 2674 // 2675 // There is an open question as to whether the 2-PLT scheme was desirable or 2676 // not. We could have simply extended the PLT entry size to 32-bytes to 2677 // accommodate endbr, and that scheme would have been much simpler than the 2678 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2679 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2680 // that the optimization actually makes a difference. 2681 // 2682 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2683 // depend on it, so we implement the ABI. 2684 IBTPltSection::IBTPltSection() 2685 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2686 2687 void IBTPltSection::writeTo(uint8_t *buf) { 2688 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2689 } 2690 2691 size_t IBTPltSection::getSize() const { 2692 // 16 is the header size of .plt. 2693 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2694 } 2695 2696 // The string hash function for .gdb_index. 2697 static uint32_t computeGdbHash(StringRef s) { 2698 uint32_t h = 0; 2699 for (uint8_t c : s) 2700 h = h * 67 + toLower(c) - 113; 2701 return h; 2702 } 2703 2704 GdbIndexSection::GdbIndexSection() 2705 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2706 2707 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2708 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2709 size_t GdbIndexSection::computeSymtabSize() const { 2710 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2711 } 2712 2713 // Compute the output section size. 2714 void GdbIndexSection::initOutputSize() { 2715 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2716 2717 for (GdbChunk &chunk : chunks) 2718 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2719 2720 // Add the constant pool size if exists. 2721 if (!symbols.empty()) { 2722 GdbSymbol &sym = symbols.back(); 2723 size += sym.nameOff + sym.name.size() + 1; 2724 } 2725 } 2726 2727 static SmallVector<GdbIndexSection::CuEntry, 0> 2728 readCuList(DWARFContext &dwarf) { 2729 SmallVector<GdbIndexSection::CuEntry, 0> ret; 2730 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2731 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2732 return ret; 2733 } 2734 2735 static SmallVector<GdbIndexSection::AddressEntry, 0> 2736 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2737 SmallVector<GdbIndexSection::AddressEntry, 0> ret; 2738 2739 uint32_t cuIdx = 0; 2740 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2741 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2742 warn(toString(sec) + ": " + toString(std::move(e))); 2743 return {}; 2744 } 2745 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2746 if (!ranges) { 2747 warn(toString(sec) + ": " + toString(ranges.takeError())); 2748 return {}; 2749 } 2750 2751 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2752 for (DWARFAddressRange &r : *ranges) { 2753 if (r.SectionIndex == -1ULL) 2754 continue; 2755 // Range list with zero size has no effect. 2756 InputSectionBase *s = sections[r.SectionIndex]; 2757 if (s && s != &InputSection::discarded && s->isLive()) 2758 if (r.LowPC != r.HighPC) 2759 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2760 } 2761 ++cuIdx; 2762 } 2763 2764 return ret; 2765 } 2766 2767 template <class ELFT> 2768 static std::vector<GdbIndexSection::NameAttrEntry> 2769 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2770 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { 2771 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2772 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2773 2774 std::vector<GdbIndexSection::NameAttrEntry> ret; 2775 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2776 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2777 DWARFDebugPubTable table; 2778 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2779 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2780 }); 2781 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2782 // The value written into the constant pool is kind << 24 | cuIndex. As we 2783 // don't know how many compilation units precede this object to compute 2784 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2785 // the number of preceding compilation units later. 2786 uint32_t i = llvm::partition_point(cus, 2787 [&](GdbIndexSection::CuEntry cu) { 2788 return cu.cuOffset < set.Offset; 2789 }) - 2790 cus.begin(); 2791 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2792 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2793 (ent.Descriptor.toBits() << 24) | i}); 2794 } 2795 } 2796 return ret; 2797 } 2798 2799 // Create a list of symbols from a given list of symbol names and types 2800 // by uniquifying them by name. 2801 static std::vector<GdbIndexSection::GdbSymbol> 2802 createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs, 2803 const std::vector<GdbIndexSection::GdbChunk> &chunks) { 2804 using GdbSymbol = GdbIndexSection::GdbSymbol; 2805 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2806 2807 // For each chunk, compute the number of compilation units preceding it. 2808 uint32_t cuIdx = 0; 2809 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); 2810 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2811 cuIdxs[i] = cuIdx; 2812 cuIdx += chunks[i].compilationUnits.size(); 2813 } 2814 2815 // The number of symbols we will handle in this function is of the order 2816 // of millions for very large executables, so we use multi-threading to 2817 // speed it up. 2818 constexpr size_t numShards = 32; 2819 size_t concurrency = PowerOf2Floor( 2820 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 2821 .compute_thread_count(), 2822 numShards)); 2823 2824 // A sharded map to uniquify symbols by name. 2825 auto map = 2826 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards); 2827 size_t shift = 32 - countTrailingZeros(numShards); 2828 2829 // Instantiate GdbSymbols while uniqufying them by name. 2830 auto symbols = std::make_unique<std::vector<GdbSymbol>[]>(numShards); 2831 2832 parallelForEachN(0, concurrency, [&](size_t threadId) { 2833 uint32_t i = 0; 2834 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2835 for (const NameAttrEntry &ent : entries) { 2836 size_t shardId = ent.name.hash() >> shift; 2837 if ((shardId & (concurrency - 1)) != threadId) 2838 continue; 2839 2840 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2841 size_t &idx = map[shardId][ent.name]; 2842 if (idx) { 2843 symbols[shardId][idx - 1].cuVector.push_back(v); 2844 continue; 2845 } 2846 2847 idx = symbols[shardId].size() + 1; 2848 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2849 } 2850 ++i; 2851 } 2852 }); 2853 2854 size_t numSymbols = 0; 2855 for (ArrayRef<GdbSymbol> v : makeArrayRef(symbols.get(), numShards)) 2856 numSymbols += v.size(); 2857 2858 // The return type is a flattened vector, so we'll copy each vector 2859 // contents to Ret. 2860 std::vector<GdbSymbol> ret; 2861 ret.reserve(numSymbols); 2862 for (std::vector<GdbSymbol> &vec : 2863 makeMutableArrayRef(symbols.get(), numShards)) 2864 for (GdbSymbol &sym : vec) 2865 ret.push_back(std::move(sym)); 2866 2867 // CU vectors and symbol names are adjacent in the output file. 2868 // We can compute their offsets in the output file now. 2869 size_t off = 0; 2870 for (GdbSymbol &sym : ret) { 2871 sym.cuVectorOff = off; 2872 off += (sym.cuVector.size() + 1) * 4; 2873 } 2874 for (GdbSymbol &sym : ret) { 2875 sym.nameOff = off; 2876 off += sym.name.size() + 1; 2877 } 2878 2879 return ret; 2880 } 2881 2882 // Returns a newly-created .gdb_index section. 2883 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2884 // Collect InputFiles with .debug_info. See the comment in 2885 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2886 // note that isec->data() may uncompress the full content, which should be 2887 // parallelized. 2888 SetVector<InputFile *> files; 2889 for (InputSectionBase *s : inputSections) { 2890 InputSection *isec = dyn_cast<InputSection>(s); 2891 if (!isec) 2892 continue; 2893 // .debug_gnu_pub{names,types} are useless in executables. 2894 // They are present in input object files solely for creating 2895 // a .gdb_index. So we can remove them from the output. 2896 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2897 s->markDead(); 2898 else if (isec->name == ".debug_info") 2899 files.insert(isec->file); 2900 } 2901 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. 2902 llvm::erase_if(inputSections, [](InputSectionBase *s) { 2903 if (auto *isec = dyn_cast<InputSection>(s)) 2904 if (InputSectionBase *rel = isec->getRelocatedSection()) 2905 return !rel->isLive(); 2906 return !s->isLive(); 2907 }); 2908 2909 std::vector<GdbChunk> chunks(files.size()); 2910 std::vector<std::vector<NameAttrEntry>> nameAttrs(files.size()); 2911 2912 parallelForEachN(0, files.size(), [&](size_t i) { 2913 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2914 // avoid getDwarf() here. 2915 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2916 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2917 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2918 2919 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2920 // this only picks the last one. Other address ranges are lost. 2921 chunks[i].sec = dobj.getInfoSection(); 2922 chunks[i].compilationUnits = readCuList(dwarf); 2923 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2924 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2925 }); 2926 2927 auto *ret = make<GdbIndexSection>(); 2928 ret->chunks = std::move(chunks); 2929 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2930 ret->initOutputSize(); 2931 return ret; 2932 } 2933 2934 void GdbIndexSection::writeTo(uint8_t *buf) { 2935 // Write the header. 2936 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2937 uint8_t *start = buf; 2938 hdr->version = 7; 2939 buf += sizeof(*hdr); 2940 2941 // Write the CU list. 2942 hdr->cuListOff = buf - start; 2943 for (GdbChunk &chunk : chunks) { 2944 for (CuEntry &cu : chunk.compilationUnits) { 2945 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2946 write64le(buf + 8, cu.cuLength); 2947 buf += 16; 2948 } 2949 } 2950 2951 // Write the address area. 2952 hdr->cuTypesOff = buf - start; 2953 hdr->addressAreaOff = buf - start; 2954 uint32_t cuOff = 0; 2955 for (GdbChunk &chunk : chunks) { 2956 for (AddressEntry &e : chunk.addressAreas) { 2957 // In the case of ICF there may be duplicate address range entries. 2958 const uint64_t baseAddr = e.section->repl->getVA(0); 2959 write64le(buf, baseAddr + e.lowAddress); 2960 write64le(buf + 8, baseAddr + e.highAddress); 2961 write32le(buf + 16, e.cuIndex + cuOff); 2962 buf += 20; 2963 } 2964 cuOff += chunk.compilationUnits.size(); 2965 } 2966 2967 // Write the on-disk open-addressing hash table containing symbols. 2968 hdr->symtabOff = buf - start; 2969 size_t symtabSize = computeSymtabSize(); 2970 uint32_t mask = symtabSize - 1; 2971 2972 for (GdbSymbol &sym : symbols) { 2973 uint32_t h = sym.name.hash(); 2974 uint32_t i = h & mask; 2975 uint32_t step = ((h * 17) & mask) | 1; 2976 2977 while (read32le(buf + i * 8)) 2978 i = (i + step) & mask; 2979 2980 write32le(buf + i * 8, sym.nameOff); 2981 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2982 } 2983 2984 buf += symtabSize * 8; 2985 2986 // Write the string pool. 2987 hdr->constantPoolOff = buf - start; 2988 parallelForEach(symbols, [&](GdbSymbol &sym) { 2989 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 2990 }); 2991 2992 // Write the CU vectors. 2993 for (GdbSymbol &sym : symbols) { 2994 write32le(buf, sym.cuVector.size()); 2995 buf += 4; 2996 for (uint32_t val : sym.cuVector) { 2997 write32le(buf, val); 2998 buf += 4; 2999 } 3000 } 3001 } 3002 3003 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 3004 3005 EhFrameHeader::EhFrameHeader() 3006 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 3007 3008 void EhFrameHeader::writeTo(uint8_t *buf) { 3009 // Unlike most sections, the EhFrameHeader section is written while writing 3010 // another section, namely EhFrameSection, which calls the write() function 3011 // below from its writeTo() function. This is necessary because the contents 3012 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 3013 // don't know which order the sections will be written in. 3014 } 3015 3016 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 3017 // Each entry of the search table consists of two values, 3018 // the starting PC from where FDEs covers, and the FDE's address. 3019 // It is sorted by PC. 3020 void EhFrameHeader::write() { 3021 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 3022 using FdeData = EhFrameSection::FdeData; 3023 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData(); 3024 3025 buf[0] = 1; 3026 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 3027 buf[2] = DW_EH_PE_udata4; 3028 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 3029 write32(buf + 4, 3030 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 3031 write32(buf + 8, fdes.size()); 3032 buf += 12; 3033 3034 for (FdeData &fde : fdes) { 3035 write32(buf, fde.pcRel); 3036 write32(buf + 4, fde.fdeVARel); 3037 buf += 8; 3038 } 3039 } 3040 3041 size_t EhFrameHeader::getSize() const { 3042 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 3043 return 12 + getPartition().ehFrame->numFdes * 8; 3044 } 3045 3046 bool EhFrameHeader::isNeeded() const { 3047 return isLive() && getPartition().ehFrame->isNeeded(); 3048 } 3049 3050 VersionDefinitionSection::VersionDefinitionSection() 3051 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 3052 ".gnu.version_d") {} 3053 3054 StringRef VersionDefinitionSection::getFileDefName() { 3055 if (!getPartition().name.empty()) 3056 return getPartition().name; 3057 if (!config->soName.empty()) 3058 return config->soName; 3059 return config->outputFile; 3060 } 3061 3062 void VersionDefinitionSection::finalizeContents() { 3063 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 3064 for (const VersionDefinition &v : namedVersionDefs()) 3065 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 3066 3067 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3068 getParent()->link = sec->sectionIndex; 3069 3070 // sh_info should be set to the number of definitions. This fact is missed in 3071 // documentation, but confirmed by binutils community: 3072 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 3073 getParent()->info = getVerDefNum(); 3074 } 3075 3076 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 3077 StringRef name, size_t nameOff) { 3078 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3079 3080 // Write a verdef. 3081 write16(buf, 1); // vd_version 3082 write16(buf + 2, flags); // vd_flags 3083 write16(buf + 4, index); // vd_ndx 3084 write16(buf + 6, 1); // vd_cnt 3085 write32(buf + 8, hashSysV(name)); // vd_hash 3086 write32(buf + 12, 20); // vd_aux 3087 write32(buf + 16, 28); // vd_next 3088 3089 // Write a veraux. 3090 write32(buf + 20, nameOff); // vda_name 3091 write32(buf + 24, 0); // vda_next 3092 } 3093 3094 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3095 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3096 3097 auto nameOffIt = verDefNameOffs.begin(); 3098 for (const VersionDefinition &v : namedVersionDefs()) { 3099 buf += EntrySize; 3100 writeOne(buf, v.id, v.name, *nameOffIt++); 3101 } 3102 3103 // Need to terminate the last version definition. 3104 write32(buf + 16, 0); // vd_next 3105 } 3106 3107 size_t VersionDefinitionSection::getSize() const { 3108 return EntrySize * getVerDefNum(); 3109 } 3110 3111 // .gnu.version is a table where each entry is 2 byte long. 3112 VersionTableSection::VersionTableSection() 3113 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3114 ".gnu.version") { 3115 this->entsize = 2; 3116 } 3117 3118 void VersionTableSection::finalizeContents() { 3119 // At the moment of june 2016 GNU docs does not mention that sh_link field 3120 // should be set, but Sun docs do. Also readelf relies on this field. 3121 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3122 } 3123 3124 size_t VersionTableSection::getSize() const { 3125 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3126 } 3127 3128 void VersionTableSection::writeTo(uint8_t *buf) { 3129 buf += 2; 3130 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3131 // For an unextracted lazy symbol (undefined weak), it must have been 3132 // converted to Undefined and have VER_NDX_GLOBAL version here. 3133 assert(!s.sym->isLazy()); 3134 write16(buf, s.sym->versionId); 3135 buf += 2; 3136 } 3137 } 3138 3139 bool VersionTableSection::isNeeded() const { 3140 return isLive() && 3141 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3142 } 3143 3144 void elf::addVerneed(Symbol *ss) { 3145 auto &file = cast<SharedFile>(*ss->file); 3146 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3147 ss->versionId = VER_NDX_GLOBAL; 3148 return; 3149 } 3150 3151 if (file.vernauxs.empty()) 3152 file.vernauxs.resize(file.verdefs.size()); 3153 3154 // Select a version identifier for the vernaux data structure, if we haven't 3155 // already allocated one. The verdef identifiers cover the range 3156 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3157 // getVerDefNum()+1. 3158 if (file.vernauxs[ss->verdefIndex] == 0) 3159 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3160 3161 ss->versionId = file.vernauxs[ss->verdefIndex]; 3162 } 3163 3164 template <class ELFT> 3165 VersionNeedSection<ELFT>::VersionNeedSection() 3166 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3167 ".gnu.version_r") {} 3168 3169 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3170 for (SharedFile *f : sharedFiles) { 3171 if (f->vernauxs.empty()) 3172 continue; 3173 verneeds.emplace_back(); 3174 Verneed &vn = verneeds.back(); 3175 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3176 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3177 if (f->vernauxs[i] == 0) 3178 continue; 3179 auto *verdef = 3180 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3181 vn.vernauxs.push_back( 3182 {verdef->vd_hash, f->vernauxs[i], 3183 getPartition().dynStrTab->addString(f->getStringTable().data() + 3184 verdef->getAux()->vda_name)}); 3185 } 3186 } 3187 3188 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3189 getParent()->link = sec->sectionIndex; 3190 getParent()->info = verneeds.size(); 3191 } 3192 3193 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3194 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3195 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3196 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3197 3198 for (auto &vn : verneeds) { 3199 // Create an Elf_Verneed for this DSO. 3200 verneed->vn_version = 1; 3201 verneed->vn_cnt = vn.vernauxs.size(); 3202 verneed->vn_file = vn.nameStrTab; 3203 verneed->vn_aux = 3204 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3205 verneed->vn_next = sizeof(Elf_Verneed); 3206 ++verneed; 3207 3208 // Create the Elf_Vernauxs for this Elf_Verneed. 3209 for (auto &vna : vn.vernauxs) { 3210 vernaux->vna_hash = vna.hash; 3211 vernaux->vna_flags = 0; 3212 vernaux->vna_other = vna.verneedIndex; 3213 vernaux->vna_name = vna.nameStrTab; 3214 vernaux->vna_next = sizeof(Elf_Vernaux); 3215 ++vernaux; 3216 } 3217 3218 vernaux[-1].vna_next = 0; 3219 } 3220 verneed[-1].vn_next = 0; 3221 } 3222 3223 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3224 return verneeds.size() * sizeof(Elf_Verneed) + 3225 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3226 } 3227 3228 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3229 return isLive() && SharedFile::vernauxNum != 0; 3230 } 3231 3232 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3233 ms->parent = this; 3234 sections.push_back(ms); 3235 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3236 alignment = std::max(alignment, ms->alignment); 3237 } 3238 3239 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3240 uint64_t flags, uint32_t alignment) 3241 : MergeSyntheticSection(name, type, flags, alignment), 3242 builder(StringTableBuilder::RAW, alignment) {} 3243 3244 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3245 3246 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3247 3248 void MergeTailSection::finalizeContents() { 3249 // Add all string pieces to the string table builder to create section 3250 // contents. 3251 for (MergeInputSection *sec : sections) 3252 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3253 if (sec->pieces[i].live) 3254 builder.add(sec->getData(i)); 3255 3256 // Fix the string table content. After this, the contents will never change. 3257 builder.finalize(); 3258 3259 // finalize() fixed tail-optimized strings, so we can now get 3260 // offsets of strings. Get an offset for each string and save it 3261 // to a corresponding SectionPiece for easy access. 3262 for (MergeInputSection *sec : sections) 3263 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3264 if (sec->pieces[i].live) 3265 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3266 } 3267 3268 void MergeNoTailSection::writeTo(uint8_t *buf) { 3269 parallelForEachN(0, numShards, 3270 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); 3271 } 3272 3273 // This function is very hot (i.e. it can take several seconds to finish) 3274 // because sometimes the number of inputs is in an order of magnitude of 3275 // millions. So, we use multi-threading. 3276 // 3277 // For any strings S and T, we know S is not mergeable with T if S's hash 3278 // value is different from T's. If that's the case, we can safely put S and 3279 // T into different string builders without worrying about merge misses. 3280 // We do it in parallel. 3281 void MergeNoTailSection::finalizeContents() { 3282 // Initializes string table builders. 3283 for (size_t i = 0; i < numShards; ++i) 3284 shards.emplace_back(StringTableBuilder::RAW, alignment); 3285 3286 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3287 // operations in the following tight loop. 3288 size_t concurrency = PowerOf2Floor( 3289 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 3290 .compute_thread_count(), 3291 numShards)); 3292 3293 // Add section pieces to the builders. 3294 parallelForEachN(0, concurrency, [&](size_t threadId) { 3295 for (MergeInputSection *sec : sections) { 3296 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3297 if (!sec->pieces[i].live) 3298 continue; 3299 size_t shardId = getShardId(sec->pieces[i].hash); 3300 if ((shardId & (concurrency - 1)) == threadId) 3301 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3302 } 3303 } 3304 }); 3305 3306 // Compute an in-section offset for each shard. 3307 size_t off = 0; 3308 for (size_t i = 0; i < numShards; ++i) { 3309 shards[i].finalizeInOrder(); 3310 if (shards[i].getSize() > 0) 3311 off = alignTo(off, alignment); 3312 shardOffsets[i] = off; 3313 off += shards[i].getSize(); 3314 } 3315 size = off; 3316 3317 // So far, section pieces have offsets from beginning of shards, but 3318 // we want offsets from beginning of the whole section. Fix them. 3319 parallelForEach(sections, [&](MergeInputSection *sec) { 3320 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3321 if (sec->pieces[i].live) 3322 sec->pieces[i].outputOff += 3323 shardOffsets[getShardId(sec->pieces[i].hash)]; 3324 }); 3325 } 3326 3327 template <class ELFT> void elf::splitSections() { 3328 llvm::TimeTraceScope timeScope("Split sections"); 3329 // splitIntoPieces needs to be called on each MergeInputSection 3330 // before calling finalizeContents(). 3331 parallelForEach(inputSections, [](InputSectionBase *sec) { 3332 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3333 s->splitIntoPieces(); 3334 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3335 eh->split<ELFT>(); 3336 }); 3337 } 3338 3339 MipsRldMapSection::MipsRldMapSection() 3340 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3341 ".rld_map") {} 3342 3343 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3344 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3345 config->wordsize, ".ARM.exidx") {} 3346 3347 static InputSection *findExidxSection(InputSection *isec) { 3348 for (InputSection *d : isec->dependentSections) 3349 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3350 return d; 3351 return nullptr; 3352 } 3353 3354 static bool isValidExidxSectionDep(InputSection *isec) { 3355 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3356 isec->getSize() > 0; 3357 } 3358 3359 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3360 if (isec->type == SHT_ARM_EXIDX) { 3361 if (InputSection *dep = isec->getLinkOrderDep()) 3362 if (isValidExidxSectionDep(dep)) { 3363 exidxSections.push_back(isec); 3364 // Every exidxSection is 8 bytes, we need an estimate of 3365 // size before assignAddresses can be called. Final size 3366 // will only be known after finalize is called. 3367 size += 8; 3368 } 3369 return true; 3370 } 3371 3372 if (isValidExidxSectionDep(isec)) { 3373 executableSections.push_back(isec); 3374 return false; 3375 } 3376 3377 // FIXME: we do not output a relocation section when --emit-relocs is used 3378 // as we do not have relocation sections for linker generated table entries 3379 // and we would have to erase at a late stage relocations from merged entries. 3380 // Given that exception tables are already position independent and a binary 3381 // analyzer could derive the relocations we choose to erase the relocations. 3382 if (config->emitRelocs && isec->type == SHT_REL) 3383 if (InputSectionBase *ex = isec->getRelocatedSection()) 3384 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3385 return true; 3386 3387 return false; 3388 } 3389 3390 // References to .ARM.Extab Sections have bit 31 clear and are not the 3391 // special EXIDX_CANTUNWIND bit-pattern. 3392 static bool isExtabRef(uint32_t unwind) { 3393 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3394 } 3395 3396 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3397 // section Prev, where Cur follows Prev in the table. This can be done if the 3398 // unwinding instructions in Cur are identical to Prev. Linker generated 3399 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3400 // InputSection. 3401 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3402 3403 struct ExidxEntry { 3404 ulittle32_t fn; 3405 ulittle32_t unwind; 3406 }; 3407 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3408 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3409 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3410 if (prev) 3411 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3412 if (isExtabRef(prevEntry.unwind)) 3413 return false; 3414 3415 // We consider the unwind instructions of an .ARM.exidx table entry 3416 // a duplicate if the previous unwind instructions if: 3417 // - Both are the special EXIDX_CANTUNWIND. 3418 // - Both are the same inline unwind instructions. 3419 // We do not attempt to follow and check links into .ARM.extab tables as 3420 // consecutive identical entries are rare and the effort to check that they 3421 // are identical is high. 3422 3423 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3424 if (cur == nullptr) 3425 return prevEntry.unwind == 1; 3426 3427 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3428 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3429 return false; 3430 3431 // All table entries in this .ARM.exidx Section can be merged into the 3432 // previous Section. 3433 return true; 3434 } 3435 3436 // The .ARM.exidx table must be sorted in ascending order of the address of the 3437 // functions the table describes. Optionally duplicate adjacent table entries 3438 // can be removed. At the end of the function the executableSections must be 3439 // sorted in ascending order of address, Sentinel is set to the InputSection 3440 // with the highest address and any InputSections that have mergeable 3441 // .ARM.exidx table entries are removed from it. 3442 void ARMExidxSyntheticSection::finalizeContents() { 3443 // The executableSections and exidxSections that we use to derive the final 3444 // contents of this SyntheticSection are populated before 3445 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3446 // ICF may remove executable InputSections and their dependent .ARM.exidx 3447 // section that we recorded earlier. 3448 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3449 llvm::erase_if(exidxSections, isDiscarded); 3450 // We need to remove discarded InputSections and InputSections without 3451 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3452 // of range. 3453 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3454 if (!isec->isLive()) 3455 return true; 3456 if (findExidxSection(isec)) 3457 return false; 3458 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3459 return off != llvm::SignExtend64(off, 31); 3460 }; 3461 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3462 3463 // Sort the executable sections that may or may not have associated 3464 // .ARM.exidx sections by order of ascending address. This requires the 3465 // relative positions of InputSections and OutputSections to be known. 3466 auto compareByFilePosition = [](const InputSection *a, 3467 const InputSection *b) { 3468 OutputSection *aOut = a->getParent(); 3469 OutputSection *bOut = b->getParent(); 3470 3471 if (aOut != bOut) 3472 return aOut->addr < bOut->addr; 3473 return a->outSecOff < b->outSecOff; 3474 }; 3475 llvm::stable_sort(executableSections, compareByFilePosition); 3476 sentinel = executableSections.back(); 3477 // Optionally merge adjacent duplicate entries. 3478 if (config->mergeArmExidx) { 3479 std::vector<InputSection *> selectedSections; 3480 selectedSections.reserve(executableSections.size()); 3481 selectedSections.push_back(executableSections[0]); 3482 size_t prev = 0; 3483 for (size_t i = 1; i < executableSections.size(); ++i) { 3484 InputSection *ex1 = findExidxSection(executableSections[prev]); 3485 InputSection *ex2 = findExidxSection(executableSections[i]); 3486 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3487 selectedSections.push_back(executableSections[i]); 3488 prev = i; 3489 } 3490 } 3491 executableSections = std::move(selectedSections); 3492 } 3493 3494 size_t offset = 0; 3495 size = 0; 3496 for (InputSection *isec : executableSections) { 3497 if (InputSection *d = findExidxSection(isec)) { 3498 d->outSecOff = offset; 3499 d->parent = getParent(); 3500 offset += d->getSize(); 3501 } else { 3502 offset += 8; 3503 } 3504 } 3505 // Size includes Sentinel. 3506 size = offset + 8; 3507 } 3508 3509 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3510 return executableSections.front(); 3511 } 3512 3513 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3514 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3515 // We write the .ARM.exidx section contents and apply its relocations. 3516 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3517 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3518 // start of the InputSection as the purpose of the linker generated 3519 // section is to terminate the address range of the previous entry. 3520 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3521 // the table to terminate the address range of the final entry. 3522 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3523 3524 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3525 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3526 3527 uint64_t offset = 0; 3528 for (InputSection *isec : executableSections) { 3529 assert(isec->getParent() != nullptr); 3530 if (InputSection *d = findExidxSection(isec)) { 3531 memcpy(buf + offset, d->data().data(), d->data().size()); 3532 d->relocateAlloc(buf + d->outSecOff, buf + d->outSecOff + d->getSize()); 3533 offset += d->getSize(); 3534 } else { 3535 // A Linker generated CANTUNWIND section. 3536 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3537 uint64_t s = isec->getVA(); 3538 uint64_t p = getVA() + offset; 3539 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3540 offset += 8; 3541 } 3542 } 3543 // Write Sentinel. 3544 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3545 uint64_t s = sentinel->getVA(sentinel->getSize()); 3546 uint64_t p = getVA() + offset; 3547 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3548 assert(size == offset + 8); 3549 } 3550 3551 bool ARMExidxSyntheticSection::isNeeded() const { 3552 return llvm::any_of(exidxSections, 3553 [](InputSection *isec) { return isec->isLive(); }); 3554 } 3555 3556 bool ARMExidxSyntheticSection::classof(const SectionBase *d) { 3557 return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX; 3558 } 3559 3560 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3561 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 3562 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") { 3563 this->parent = os; 3564 this->outSecOff = off; 3565 } 3566 3567 size_t ThunkSection::getSize() const { 3568 if (roundUpSizeForErrata) 3569 return alignTo(size, 4096); 3570 return size; 3571 } 3572 3573 void ThunkSection::addThunk(Thunk *t) { 3574 thunks.push_back(t); 3575 t->addSymbols(*this); 3576 } 3577 3578 void ThunkSection::writeTo(uint8_t *buf) { 3579 for (Thunk *t : thunks) 3580 t->writeTo(buf + t->offset); 3581 } 3582 3583 InputSection *ThunkSection::getTargetInputSection() const { 3584 if (thunks.empty()) 3585 return nullptr; 3586 const Thunk *t = thunks.front(); 3587 return t->getTargetInputSection(); 3588 } 3589 3590 bool ThunkSection::assignOffsets() { 3591 uint64_t off = 0; 3592 for (Thunk *t : thunks) { 3593 off = alignTo(off, t->alignment); 3594 t->setOffset(off); 3595 uint32_t size = t->size(); 3596 t->getThunkTargetSym()->size = size; 3597 off += size; 3598 } 3599 bool changed = off != size; 3600 size = off; 3601 return changed; 3602 } 3603 3604 PPC32Got2Section::PPC32Got2Section() 3605 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3606 3607 bool PPC32Got2Section::isNeeded() const { 3608 // See the comment below. This is not needed if there is no other 3609 // InputSection. 3610 for (SectionCommand *cmd : getParent()->commands) 3611 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 3612 for (InputSection *isec : isd->sections) 3613 if (isec != this) 3614 return true; 3615 return false; 3616 } 3617 3618 void PPC32Got2Section::finalizeContents() { 3619 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3620 // .got2 . This function computes outSecOff of each .got2 to be used in 3621 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3622 // to collect input sections named ".got2". 3623 for (SectionCommand *cmd : getParent()->commands) 3624 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 3625 for (InputSection *isec : isd->sections) { 3626 // isec->file may be nullptr for MergeSyntheticSection. 3627 if (isec != this && isec->file) 3628 isec->file->ppc32Got2 = isec; 3629 } 3630 } 3631 } 3632 3633 // If linking position-dependent code then the table will store the addresses 3634 // directly in the binary so the section has type SHT_PROGBITS. If linking 3635 // position-independent code the section has type SHT_NOBITS since it will be 3636 // allocated and filled in by the dynamic linker. 3637 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3638 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3639 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3640 ".branch_lt") {} 3641 3642 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3643 int64_t addend) { 3644 return getVA() + entry_index.find({sym, addend})->second * 8; 3645 } 3646 3647 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3648 int64_t addend) { 3649 auto res = 3650 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3651 if (!res.second) 3652 return None; 3653 entries.emplace_back(sym, addend); 3654 return res.first->second; 3655 } 3656 3657 size_t PPC64LongBranchTargetSection::getSize() const { 3658 return entries.size() * 8; 3659 } 3660 3661 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3662 // If linking non-pic we have the final addresses of the targets and they get 3663 // written to the table directly. For pic the dynamic linker will allocate 3664 // the section and fill it it. 3665 if (config->isPic) 3666 return; 3667 3668 for (auto entry : entries) { 3669 const Symbol *sym = entry.first; 3670 int64_t addend = entry.second; 3671 assert(sym->getVA()); 3672 // Need calls to branch to the local entry-point since a long-branch 3673 // must be a local-call. 3674 write64(buf, sym->getVA(addend) + 3675 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3676 buf += 8; 3677 } 3678 } 3679 3680 bool PPC64LongBranchTargetSection::isNeeded() const { 3681 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3682 // is too early to determine if this section will be empty or not. We need 3683 // Finalized to keep the section alive until after thunk creation. Finalized 3684 // only gets set to true once `finalizeSections()` is called after thunk 3685 // creation. Because of this, if we don't create any long-branch thunks we end 3686 // up with an empty .branch_lt section in the binary. 3687 return !finalized || !entries.empty(); 3688 } 3689 3690 static uint8_t getAbiVersion() { 3691 // MIPS non-PIC executable gets ABI version 1. 3692 if (config->emachine == EM_MIPS) { 3693 if (!config->isPic && !config->relocatable && 3694 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3695 return 1; 3696 return 0; 3697 } 3698 3699 if (config->emachine == EM_AMDGPU) { 3700 uint8_t ver = objectFiles[0]->abiVersion; 3701 for (InputFile *file : makeArrayRef(objectFiles).slice(1)) 3702 if (file->abiVersion != ver) 3703 error("incompatible ABI version: " + toString(file)); 3704 return ver; 3705 } 3706 3707 return 0; 3708 } 3709 3710 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3711 memcpy(buf, "\177ELF", 4); 3712 3713 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3714 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3715 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3716 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3717 eHdr->e_ident[EI_OSABI] = config->osabi; 3718 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3719 eHdr->e_machine = config->emachine; 3720 eHdr->e_version = EV_CURRENT; 3721 eHdr->e_flags = config->eflags; 3722 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3723 eHdr->e_phnum = part.phdrs.size(); 3724 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3725 3726 if (!config->relocatable) { 3727 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3728 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3729 } 3730 } 3731 3732 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3733 // Write the program header table. 3734 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3735 for (PhdrEntry *p : part.phdrs) { 3736 hBuf->p_type = p->p_type; 3737 hBuf->p_flags = p->p_flags; 3738 hBuf->p_offset = p->p_offset; 3739 hBuf->p_vaddr = p->p_vaddr; 3740 hBuf->p_paddr = p->p_paddr; 3741 hBuf->p_filesz = p->p_filesz; 3742 hBuf->p_memsz = p->p_memsz; 3743 hBuf->p_align = p->p_align; 3744 ++hBuf; 3745 } 3746 } 3747 3748 template <typename ELFT> 3749 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3750 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3751 3752 template <typename ELFT> 3753 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3754 return sizeof(typename ELFT::Ehdr); 3755 } 3756 3757 template <typename ELFT> 3758 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3759 writeEhdr<ELFT>(buf, getPartition()); 3760 3761 // Loadable partitions are always ET_DYN. 3762 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3763 eHdr->e_type = ET_DYN; 3764 } 3765 3766 template <typename ELFT> 3767 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3768 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3769 3770 template <typename ELFT> 3771 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3772 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3773 } 3774 3775 template <typename ELFT> 3776 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3777 writePhdrs<ELFT>(buf, getPartition()); 3778 } 3779 3780 PartitionIndexSection::PartitionIndexSection() 3781 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3782 3783 size_t PartitionIndexSection::getSize() const { 3784 return 12 * (partitions.size() - 1); 3785 } 3786 3787 void PartitionIndexSection::finalizeContents() { 3788 for (size_t i = 1; i != partitions.size(); ++i) 3789 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3790 } 3791 3792 void PartitionIndexSection::writeTo(uint8_t *buf) { 3793 uint64_t va = getVA(); 3794 for (size_t i = 1; i != partitions.size(); ++i) { 3795 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3796 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3797 3798 SyntheticSection *next = i == partitions.size() - 1 3799 ? in.partEnd.get() 3800 : partitions[i + 1].elfHeader.get(); 3801 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3802 3803 va += 12; 3804 buf += 12; 3805 } 3806 } 3807 3808 void InStruct::reset() { 3809 attributes.reset(); 3810 bss.reset(); 3811 bssRelRo.reset(); 3812 got.reset(); 3813 gotPlt.reset(); 3814 igotPlt.reset(); 3815 ppc64LongBranchTarget.reset(); 3816 mipsGot.reset(); 3817 mipsRldMap.reset(); 3818 partEnd.reset(); 3819 partIndex.reset(); 3820 plt.reset(); 3821 iplt.reset(); 3822 ppc32Got2.reset(); 3823 ibtPlt.reset(); 3824 relaPlt.reset(); 3825 relaIplt.reset(); 3826 shStrTab.reset(); 3827 strTab.reset(); 3828 symTab.reset(); 3829 symTabShndx.reset(); 3830 } 3831 3832 InStruct elf::in; 3833 3834 std::vector<Partition> elf::partitions; 3835 Partition *elf::mainPart; 3836 3837 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3838 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3839 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3840 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3841 3842 template void elf::splitSections<ELF32LE>(); 3843 template void elf::splitSections<ELF32BE>(); 3844 template void elf::splitSections<ELF64LE>(); 3845 template void elf::splitSections<ELF64BE>(); 3846 3847 template class elf::MipsAbiFlagsSection<ELF32LE>; 3848 template class elf::MipsAbiFlagsSection<ELF32BE>; 3849 template class elf::MipsAbiFlagsSection<ELF64LE>; 3850 template class elf::MipsAbiFlagsSection<ELF64BE>; 3851 3852 template class elf::MipsOptionsSection<ELF32LE>; 3853 template class elf::MipsOptionsSection<ELF32BE>; 3854 template class elf::MipsOptionsSection<ELF64LE>; 3855 template class elf::MipsOptionsSection<ELF64BE>; 3856 3857 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( 3858 function_ref<void(InputSection &)>); 3859 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( 3860 function_ref<void(InputSection &)>); 3861 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( 3862 function_ref<void(InputSection &)>); 3863 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( 3864 function_ref<void(InputSection &)>); 3865 3866 template class elf::MipsReginfoSection<ELF32LE>; 3867 template class elf::MipsReginfoSection<ELF32BE>; 3868 template class elf::MipsReginfoSection<ELF64LE>; 3869 template class elf::MipsReginfoSection<ELF64BE>; 3870 3871 template class elf::DynamicSection<ELF32LE>; 3872 template class elf::DynamicSection<ELF32BE>; 3873 template class elf::DynamicSection<ELF64LE>; 3874 template class elf::DynamicSection<ELF64BE>; 3875 3876 template class elf::RelocationSection<ELF32LE>; 3877 template class elf::RelocationSection<ELF32BE>; 3878 template class elf::RelocationSection<ELF64LE>; 3879 template class elf::RelocationSection<ELF64BE>; 3880 3881 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3882 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3883 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3884 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3885 3886 template class elf::RelrSection<ELF32LE>; 3887 template class elf::RelrSection<ELF32BE>; 3888 template class elf::RelrSection<ELF64LE>; 3889 template class elf::RelrSection<ELF64BE>; 3890 3891 template class elf::SymbolTableSection<ELF32LE>; 3892 template class elf::SymbolTableSection<ELF32BE>; 3893 template class elf::SymbolTableSection<ELF64LE>; 3894 template class elf::SymbolTableSection<ELF64BE>; 3895 3896 template class elf::VersionNeedSection<ELF32LE>; 3897 template class elf::VersionNeedSection<ELF32BE>; 3898 template class elf::VersionNeedSection<ELF64LE>; 3899 template class elf::VersionNeedSection<ELF64BE>; 3900 3901 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3902 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3903 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3904 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3905 3906 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3907 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3908 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3909 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3910 3911 template class elf::PartitionElfHeaderSection<ELF32LE>; 3912 template class elf::PartitionElfHeaderSection<ELF32BE>; 3913 template class elf::PartitionElfHeaderSection<ELF64LE>; 3914 template class elf::PartitionElfHeaderSection<ELF64BE>; 3915 3916 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3917 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3918 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3919 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3920