1 //===- Symbols.h ------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines various types of Symbols. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLD_ELF_SYMBOLS_H 14 #define LLD_ELF_SYMBOLS_H 15 16 #include "InputFiles.h" 17 #include "InputSection.h" 18 #include "lld/Common/LLVM.h" 19 #include "lld/Common/Strings.h" 20 #include "llvm/Object/Archive.h" 21 #include "llvm/Object/ELF.h" 22 23 namespace lld { 24 std::string toString(const elf::Symbol &); 25 26 // There are two different ways to convert an Archive::Symbol to a string: 27 // One for Microsoft name mangling and one for Itanium name mangling. 28 // Call the functions toCOFFString and toELFString, not just toString. 29 std::string toELFString(const llvm::object::Archive::Symbol &); 30 31 namespace elf { 32 class CommonSymbol; 33 class Defined; 34 class InputFile; 35 class LazyArchive; 36 class LazyObject; 37 class SharedSymbol; 38 class Symbol; 39 class Undefined; 40 41 // This is a StringRef-like container that doesn't run strlen(). 42 // 43 // ELF string tables contain a lot of null-terminated strings. Most of them 44 // are not necessary for the linker because they are names of local symbols, 45 // and the linker doesn't use local symbol names for name resolution. So, we 46 // use this class to represents strings read from string tables. 47 struct StringRefZ { 48 StringRefZ(const char *s) : data(s), size(-1) {} 49 StringRefZ(StringRef s) : data(s.data()), size(s.size()) {} 50 51 const char *data; 52 const uint32_t size; 53 }; 54 55 // The base class for real symbol classes. 56 class Symbol { 57 public: 58 enum Kind { 59 PlaceholderKind, 60 DefinedKind, 61 CommonKind, 62 SharedKind, 63 UndefinedKind, 64 LazyArchiveKind, 65 LazyObjectKind, 66 }; 67 68 Kind kind() const { return static_cast<Kind>(symbolKind); } 69 70 // The file from which this symbol was created. 71 InputFile *file; 72 73 protected: 74 const char *nameData; 75 mutable uint32_t nameSize; 76 77 public: 78 uint32_t dynsymIndex = 0; 79 uint32_t gotIndex = -1; 80 uint32_t pltIndex = -1; 81 82 uint32_t globalDynIndex = -1; 83 84 // This field is a index to the symbol's version definition. 85 uint32_t verdefIndex = -1; 86 87 // Version definition index. 88 uint16_t versionId; 89 90 // Symbol binding. This is not overwritten by replace() to track 91 // changes during resolution. In particular: 92 // - An undefined weak is still weak when it resolves to a shared library. 93 // - An undefined weak will not fetch archive members, but we have to 94 // remember it is weak. 95 uint8_t binding; 96 97 // The following fields have the same meaning as the ELF symbol attributes. 98 uint8_t type; // symbol type 99 uint8_t stOther; // st_other field value 100 101 uint8_t symbolKind; 102 103 // Symbol visibility. This is the computed minimum visibility of all 104 // observed non-DSO symbols. 105 uint8_t visibility : 2; 106 107 // True if the symbol was used for linking and thus need to be added to the 108 // output file's symbol table. This is true for all symbols except for 109 // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that 110 // are unreferenced except by other bitcode objects. 111 uint8_t isUsedInRegularObj : 1; 112 113 // Used by a Defined symbol with protected or default visibility, to record 114 // whether it is required to be exported into .dynsym. This is set when any of 115 // the following conditions hold: 116 // 117 // - If there is an interposable symbol from a DSO. 118 // - If -shared or --export-dynamic is specified, any symbol in an object 119 // file/bitcode sets this property, unless suppressed by LTO 120 // canBeOmittedFromSymbolTable(). 121 uint8_t exportDynamic : 1; 122 123 // True if the symbol is in the --dynamic-list file. A Defined symbol with 124 // protected or default visibility with this property is required to be 125 // exported into .dynsym. 126 uint8_t inDynamicList : 1; 127 128 // False if LTO shouldn't inline whatever this symbol points to. If a symbol 129 // is overwritten after LTO, LTO shouldn't inline the symbol because it 130 // doesn't know the final contents of the symbol. 131 uint8_t canInline : 1; 132 133 // Used by Undefined and SharedSymbol to track if there has been at least one 134 // undefined reference to the symbol. The binding may change to STB_WEAK if 135 // the first undefined reference from a non-shared object is weak. 136 uint8_t referenced : 1; 137 138 // True if this symbol is specified by --trace-symbol option. 139 uint8_t traced : 1; 140 141 inline void replace(const Symbol &newSym); 142 143 bool includeInDynsym() const; 144 uint8_t computeBinding() const; 145 bool isWeak() const { return binding == llvm::ELF::STB_WEAK; } 146 147 bool isUndefined() const { return symbolKind == UndefinedKind; } 148 bool isCommon() const { return symbolKind == CommonKind; } 149 bool isDefined() const { return symbolKind == DefinedKind; } 150 bool isShared() const { return symbolKind == SharedKind; } 151 bool isPlaceholder() const { return symbolKind == PlaceholderKind; } 152 153 bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; } 154 155 bool isLazy() const { 156 return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind; 157 } 158 159 // True if this is an undefined weak symbol. This only works once 160 // all input files have been added. 161 bool isUndefWeak() const { 162 // See comment on lazy symbols for details. 163 return isWeak() && (isUndefined() || isLazy()); 164 } 165 166 StringRef getName() const { 167 if (nameSize == (uint32_t)-1) 168 nameSize = strlen(nameData); 169 return {nameData, nameSize}; 170 } 171 172 void setName(StringRef s) { 173 nameData = s.data(); 174 nameSize = s.size(); 175 } 176 177 void parseSymbolVersion(); 178 179 bool isInGot() const { return gotIndex != -1U; } 180 bool isInPlt() const { return pltIndex != -1U; } 181 182 uint64_t getVA(int64_t addend = 0) const; 183 184 uint64_t getGotOffset() const; 185 uint64_t getGotVA() const; 186 uint64_t getGotPltOffset() const; 187 uint64_t getGotPltVA() const; 188 uint64_t getPltVA() const; 189 uint64_t getSize() const; 190 OutputSection *getOutputSection() const; 191 192 // The following two functions are used for symbol resolution. 193 // 194 // You are expected to call mergeProperties for all symbols in input 195 // files so that attributes that are attached to names rather than 196 // indivisual symbol (such as visibility) are merged together. 197 // 198 // Every time you read a new symbol from an input, you are supposed 199 // to call resolve() with the new symbol. That function replaces 200 // "this" object as a result of name resolution if the new symbol is 201 // more appropriate to be included in the output. 202 // 203 // For example, if "this" is an undefined symbol and a new symbol is 204 // a defined symbol, "this" is replaced with the new symbol. 205 void mergeProperties(const Symbol &other); 206 void resolve(const Symbol &other); 207 208 // If this is a lazy symbol, fetch an input file and add the symbol 209 // in the file to the symbol table. Calling this function on 210 // non-lazy object causes a runtime error. 211 void fetch() const; 212 213 private: 214 static bool isExportDynamic(Kind k, uint8_t visibility) { 215 if (k == SharedKind) 216 return visibility == llvm::ELF::STV_DEFAULT; 217 return config->shared || config->exportDynamic; 218 } 219 220 void resolveUndefined(const Undefined &other); 221 void resolveCommon(const CommonSymbol &other); 222 void resolveDefined(const Defined &other); 223 template <class LazyT> void resolveLazy(const LazyT &other); 224 void resolveShared(const SharedSymbol &other); 225 226 int compare(const Symbol *other) const; 227 228 inline size_t getSymbolSize() const; 229 230 protected: 231 Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding, 232 uint8_t stOther, uint8_t type) 233 : file(file), nameData(name.data), nameSize(name.size), binding(binding), 234 type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3), 235 isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind), 236 exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false), 237 canInline(false), referenced(false), traced(false), needsPltAddr(false), 238 isInIplt(false), gotInIgot(false), isPreemptible(false), 239 used(!config->gcSections), needsTocRestore(false), 240 scriptDefined(false) {} 241 242 public: 243 // True the symbol should point to its PLT entry. 244 // For SharedSymbol only. 245 uint8_t needsPltAddr : 1; 246 247 // True if this symbol is in the Iplt sub-section of the Plt and the Igot 248 // sub-section of the .got.plt or .got. 249 uint8_t isInIplt : 1; 250 251 // True if this symbol needs a GOT entry and its GOT entry is actually in 252 // Igot. This will be true only for certain non-preemptible ifuncs. 253 uint8_t gotInIgot : 1; 254 255 // True if this symbol is preemptible at load time. 256 uint8_t isPreemptible : 1; 257 258 // True if an undefined or shared symbol is used from a live section. 259 uint8_t used : 1; 260 261 // True if a call to this symbol needs to be followed by a restore of the 262 // PPC64 toc pointer. 263 uint8_t needsTocRestore : 1; 264 265 // True if this symbol is defined by a linker script. 266 uint8_t scriptDefined : 1; 267 268 // The partition whose dynamic symbol table contains this symbol's definition. 269 uint8_t partition = 1; 270 271 bool isSection() const { return type == llvm::ELF::STT_SECTION; } 272 bool isTls() const { return type == llvm::ELF::STT_TLS; } 273 bool isFunc() const { return type == llvm::ELF::STT_FUNC; } 274 bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; } 275 bool isObject() const { return type == llvm::ELF::STT_OBJECT; } 276 bool isFile() const { return type == llvm::ELF::STT_FILE; } 277 }; 278 279 // Represents a symbol that is defined in the current output file. 280 class Defined : public Symbol { 281 public: 282 Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, 283 uint8_t type, uint64_t value, uint64_t size, SectionBase *section) 284 : Symbol(DefinedKind, file, name, binding, stOther, type), value(value), 285 size(size), section(section) {} 286 287 static bool classof(const Symbol *s) { return s->isDefined(); } 288 289 uint64_t value; 290 uint64_t size; 291 SectionBase *section; 292 }; 293 294 // Represents a common symbol. 295 // 296 // On Unix, it is traditionally allowed to write variable definitions 297 // without initialization expressions (such as "int foo;") to header 298 // files. Such definition is called "tentative definition". 299 // 300 // Using tentative definition is usually considered a bad practice 301 // because you should write only declarations (such as "extern int 302 // foo;") to header files. Nevertheless, the linker and the compiler 303 // have to do something to support bad code by allowing duplicate 304 // definitions for this particular case. 305 // 306 // Common symbols represent variable definitions without initializations. 307 // The compiler creates common symbols when it sees variable definitions 308 // without initialization (you can suppress this behavior and let the 309 // compiler create a regular defined symbol by -fno-common). 310 // 311 // The linker allows common symbols to be replaced by regular defined 312 // symbols. If there are remaining common symbols after name resolution is 313 // complete, they are converted to regular defined symbols in a .bss 314 // section. (Therefore, the later passes don't see any CommonSymbols.) 315 class CommonSymbol : public Symbol { 316 public: 317 CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding, 318 uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size) 319 : Symbol(CommonKind, file, name, binding, stOther, type), 320 alignment(alignment), size(size) {} 321 322 static bool classof(const Symbol *s) { return s->isCommon(); } 323 324 uint32_t alignment; 325 uint64_t size; 326 }; 327 328 class Undefined : public Symbol { 329 public: 330 Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, 331 uint8_t type, uint32_t discardedSecIdx = 0) 332 : Symbol(UndefinedKind, file, name, binding, stOther, type), 333 discardedSecIdx(discardedSecIdx) {} 334 335 static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } 336 337 // The section index if in a discarded section, 0 otherwise. 338 uint32_t discardedSecIdx; 339 }; 340 341 class SharedSymbol : public Symbol { 342 public: 343 static bool classof(const Symbol *s) { return s->kind() == SharedKind; } 344 345 SharedSymbol(InputFile &file, StringRef name, uint8_t binding, 346 uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, 347 uint32_t alignment, uint32_t verdefIndex) 348 : Symbol(SharedKind, &file, name, binding, stOther, type), value(value), 349 size(size), alignment(alignment) { 350 this->verdefIndex = verdefIndex; 351 // GNU ifunc is a mechanism to allow user-supplied functions to 352 // resolve PLT slot values at load-time. This is contrary to the 353 // regular symbol resolution scheme in which symbols are resolved just 354 // by name. Using this hook, you can program how symbols are solved 355 // for you program. For example, you can make "memcpy" to be resolved 356 // to a SSE-enabled version of memcpy only when a machine running the 357 // program supports the SSE instruction set. 358 // 359 // Naturally, such symbols should always be called through their PLT 360 // slots. What GNU ifunc symbols point to are resolver functions, and 361 // calling them directly doesn't make sense (unless you are writing a 362 // loader). 363 // 364 // For DSO symbols, we always call them through PLT slots anyway. 365 // So there's no difference between GNU ifunc and regular function 366 // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. 367 if (this->type == llvm::ELF::STT_GNU_IFUNC) 368 this->type = llvm::ELF::STT_FUNC; 369 } 370 371 SharedFile &getFile() const { return *cast<SharedFile>(file); } 372 373 uint64_t value; // st_value 374 uint64_t size; // st_size 375 uint32_t alignment; 376 }; 377 378 // LazyArchive and LazyObject represent a symbols that is not yet in the link, 379 // but we know where to find it if needed. If the resolver finds both Undefined 380 // and Lazy for the same name, it will ask the Lazy to load a file. 381 // 382 // A special complication is the handling of weak undefined symbols. They should 383 // not load a file, but we have to remember we have seen both the weak undefined 384 // and the lazy. We represent that with a lazy symbol with a weak binding. This 385 // means that code looking for undefined symbols normally also has to take lazy 386 // symbols into consideration. 387 388 // This class represents a symbol defined in an archive file. It is 389 // created from an archive file header, and it knows how to load an 390 // object file from an archive to replace itself with a defined 391 // symbol. 392 class LazyArchive : public Symbol { 393 public: 394 LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s) 395 : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL, 396 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE), 397 sym(s) {} 398 399 static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; } 400 401 MemoryBufferRef getMemberBuffer(); 402 403 const llvm::object::Archive::Symbol sym; 404 }; 405 406 // LazyObject symbols represents symbols in object files between 407 // --start-lib and --end-lib options. 408 class LazyObject : public Symbol { 409 public: 410 LazyObject(InputFile &file, StringRef name) 411 : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL, 412 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {} 413 414 static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; } 415 }; 416 417 // Some linker-generated symbols need to be created as 418 // Defined symbols. 419 struct ElfSym { 420 // __bss_start 421 static Defined *bss; 422 423 // etext and _etext 424 static Defined *etext1; 425 static Defined *etext2; 426 427 // edata and _edata 428 static Defined *edata1; 429 static Defined *edata2; 430 431 // end and _end 432 static Defined *end1; 433 static Defined *end2; 434 435 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to 436 // be at some offset from the base of the .got section, usually 0 or 437 // the end of the .got. 438 static Defined *globalOffsetTable; 439 440 // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. 441 static Defined *mipsGp; 442 static Defined *mipsGpDisp; 443 static Defined *mipsLocalGp; 444 445 // __rel{,a}_iplt_{start,end} symbols. 446 static Defined *relaIpltStart; 447 static Defined *relaIpltEnd; 448 449 // __global_pointer$ for RISC-V. 450 static Defined *riscvGlobalPointer; 451 452 // _TLS_MODULE_BASE_ on targets that support TLSDESC. 453 static Defined *tlsModuleBase; 454 }; 455 456 // A buffer class that is large enough to hold any Symbol-derived 457 // object. We allocate memory using this class and instantiate a symbol 458 // using the placement new. 459 union SymbolUnion { 460 alignas(Defined) char a[sizeof(Defined)]; 461 alignas(CommonSymbol) char b[sizeof(CommonSymbol)]; 462 alignas(Undefined) char c[sizeof(Undefined)]; 463 alignas(SharedSymbol) char d[sizeof(SharedSymbol)]; 464 alignas(LazyArchive) char e[sizeof(LazyArchive)]; 465 alignas(LazyObject) char f[sizeof(LazyObject)]; 466 }; 467 468 // It is important to keep the size of SymbolUnion small for performance and 469 // memory usage reasons. 80 bytes is a soft limit based on the size of Defined 470 // on a 64-bit system. 471 static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large"); 472 473 template <typename T> struct AssertSymbol { 474 static_assert(std::is_trivially_destructible<T>(), 475 "Symbol types must be trivially destructible"); 476 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); 477 static_assert(alignof(T) <= alignof(SymbolUnion), 478 "SymbolUnion not aligned enough"); 479 }; 480 481 static inline void assertSymbols() { 482 AssertSymbol<Defined>(); 483 AssertSymbol<CommonSymbol>(); 484 AssertSymbol<Undefined>(); 485 AssertSymbol<SharedSymbol>(); 486 AssertSymbol<LazyArchive>(); 487 AssertSymbol<LazyObject>(); 488 } 489 490 void printTraceSymbol(const Symbol *sym); 491 492 size_t Symbol::getSymbolSize() const { 493 switch (kind()) { 494 case CommonKind: 495 return sizeof(CommonSymbol); 496 case DefinedKind: 497 return sizeof(Defined); 498 case LazyArchiveKind: 499 return sizeof(LazyArchive); 500 case LazyObjectKind: 501 return sizeof(LazyObject); 502 case SharedKind: 503 return sizeof(SharedSymbol); 504 case UndefinedKind: 505 return sizeof(Undefined); 506 case PlaceholderKind: 507 return sizeof(Symbol); 508 } 509 llvm_unreachable("unknown symbol kind"); 510 } 511 512 // replace() replaces "this" object with a given symbol by memcpy'ing 513 // it over to "this". This function is called as a result of name 514 // resolution, e.g. to replace an undefind symbol with a defined symbol. 515 void Symbol::replace(const Symbol &newSym) { 516 using llvm::ELF::STT_TLS; 517 518 // Symbols representing thread-local variables must be referenced by 519 // TLS-aware relocations, and non-TLS symbols must be reference by 520 // non-TLS relocations, so there's a clear distinction between TLS 521 // and non-TLS symbols. It is an error if the same symbol is defined 522 // as a TLS symbol in one file and as a non-TLS symbol in other file. 523 if (symbolKind != PlaceholderKind && !isLazy() && !newSym.isLazy() && 524 (type == STT_TLS) != (newSym.type == STT_TLS)) 525 error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " + 526 toString(newSym.file) + "\n>>> defined in " + toString(file)); 527 528 Symbol old = *this; 529 memcpy(this, &newSym, newSym.getSymbolSize()); 530 531 // old may be a placeholder. The referenced fields must be initialized in 532 // SymbolTable::insert. 533 versionId = old.versionId; 534 visibility = old.visibility; 535 isUsedInRegularObj = old.isUsedInRegularObj; 536 exportDynamic = old.exportDynamic; 537 inDynamicList = old.inDynamicList; 538 canInline = old.canInline; 539 referenced = old.referenced; 540 traced = old.traced; 541 isPreemptible = old.isPreemptible; 542 scriptDefined = old.scriptDefined; 543 partition = old.partition; 544 545 // Symbol length is computed lazily. If we already know a symbol length, 546 // propagate it. 547 if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0) 548 nameSize = old.nameSize; 549 550 // Print out a log message if --trace-symbol was specified. 551 // This is for debugging. 552 if (traced) 553 printTraceSymbol(this); 554 } 555 556 void maybeWarnUnorderableSymbol(const Symbol *sym); 557 bool computeIsPreemptible(const Symbol &sym); 558 559 } // namespace elf 560 } // namespace lld 561 562 #endif 563