xref: /freebsd/contrib/llvm-project/lld/ELF/Symbols.h (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various types of Symbols.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLD_ELF_SYMBOLS_H
14 #define LLD_ELF_SYMBOLS_H
15 
16 #include "InputFiles.h"
17 #include "InputSection.h"
18 #include "lld/Common/LLVM.h"
19 #include "lld/Common/Strings.h"
20 #include "llvm/Object/Archive.h"
21 #include "llvm/Object/ELF.h"
22 
23 namespace lld {
24 std::string toString(const elf::Symbol &);
25 
26 // There are two different ways to convert an Archive::Symbol to a string:
27 // One for Microsoft name mangling and one for Itanium name mangling.
28 // Call the functions toCOFFString and toELFString, not just toString.
29 std::string toELFString(const llvm::object::Archive::Symbol &);
30 
31 namespace elf {
32 class CommonSymbol;
33 class Defined;
34 class InputFile;
35 class LazyArchive;
36 class LazyObject;
37 class SharedSymbol;
38 class Symbol;
39 class Undefined;
40 
41 // This is a StringRef-like container that doesn't run strlen().
42 //
43 // ELF string tables contain a lot of null-terminated strings. Most of them
44 // are not necessary for the linker because they are names of local symbols,
45 // and the linker doesn't use local symbol names for name resolution. So, we
46 // use this class to represents strings read from string tables.
47 struct StringRefZ {
48   StringRefZ(const char *s) : data(s), size(-1) {}
49   StringRefZ(StringRef s) : data(s.data()), size(s.size()) {}
50 
51   const char *data;
52   const uint32_t size;
53 };
54 
55 // The base class for real symbol classes.
56 class Symbol {
57 public:
58   enum Kind {
59     PlaceholderKind,
60     DefinedKind,
61     CommonKind,
62     SharedKind,
63     UndefinedKind,
64     LazyArchiveKind,
65     LazyObjectKind,
66   };
67 
68   Kind kind() const { return static_cast<Kind>(symbolKind); }
69 
70   // The file from which this symbol was created.
71   InputFile *file;
72 
73 protected:
74   const char *nameData;
75   mutable uint32_t nameSize;
76 
77 public:
78   uint32_t dynsymIndex = 0;
79   uint32_t gotIndex = -1;
80   uint32_t pltIndex = -1;
81 
82   uint32_t globalDynIndex = -1;
83 
84   // This field is a index to the symbol's version definition.
85   uint32_t verdefIndex = -1;
86 
87   // Version definition index.
88   uint16_t versionId;
89 
90   // Symbol binding. This is not overwritten by replace() to track
91   // changes during resolution. In particular:
92   //  - An undefined weak is still weak when it resolves to a shared library.
93   //  - An undefined weak will not fetch archive members, but we have to
94   //    remember it is weak.
95   uint8_t binding;
96 
97   // The following fields have the same meaning as the ELF symbol attributes.
98   uint8_t type;    // symbol type
99   uint8_t stOther; // st_other field value
100 
101   uint8_t symbolKind;
102 
103   // Symbol visibility. This is the computed minimum visibility of all
104   // observed non-DSO symbols.
105   uint8_t visibility : 2;
106 
107   // True if the symbol was used for linking and thus need to be added to the
108   // output file's symbol table. This is true for all symbols except for
109   // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
110   // are unreferenced except by other bitcode objects.
111   uint8_t isUsedInRegularObj : 1;
112 
113   // Used by a Defined symbol with protected or default visibility, to record
114   // whether it is required to be exported into .dynsym. This is set when any of
115   // the following conditions hold:
116   //
117   // - If there is an interposable symbol from a DSO.
118   // - If -shared or --export-dynamic is specified, any symbol in an object
119   //   file/bitcode sets this property, unless suppressed by LTO
120   //   canBeOmittedFromSymbolTable().
121   uint8_t exportDynamic : 1;
122 
123   // True if the symbol is in the --dynamic-list file. A Defined symbol with
124   // protected or default visibility with this property is required to be
125   // exported into .dynsym.
126   uint8_t inDynamicList : 1;
127 
128   // False if LTO shouldn't inline whatever this symbol points to. If a symbol
129   // is overwritten after LTO, LTO shouldn't inline the symbol because it
130   // doesn't know the final contents of the symbol.
131   uint8_t canInline : 1;
132 
133   // Used by Undefined and SharedSymbol to track if there has been at least one
134   // undefined reference to the symbol. The binding may change to STB_WEAK if
135   // the first undefined reference from a non-shared object is weak.
136   uint8_t referenced : 1;
137 
138   // True if this symbol is specified by --trace-symbol option.
139   uint8_t traced : 1;
140 
141   inline void replace(const Symbol &newSym);
142 
143   bool includeInDynsym() const;
144   uint8_t computeBinding() const;
145   bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
146 
147   bool isUndefined() const { return symbolKind == UndefinedKind; }
148   bool isCommon() const { return symbolKind == CommonKind; }
149   bool isDefined() const { return symbolKind == DefinedKind; }
150   bool isShared() const { return symbolKind == SharedKind; }
151   bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
152 
153   bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
154 
155   bool isLazy() const {
156     return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
157   }
158 
159   // True if this is an undefined weak symbol. This only works once
160   // all input files have been added.
161   bool isUndefWeak() const {
162     // See comment on lazy symbols for details.
163     return isWeak() && (isUndefined() || isLazy());
164   }
165 
166   StringRef getName() const {
167     if (nameSize == (uint32_t)-1)
168       nameSize = strlen(nameData);
169     return {nameData, nameSize};
170   }
171 
172   void setName(StringRef s) {
173     nameData = s.data();
174     nameSize = s.size();
175   }
176 
177   void parseSymbolVersion();
178 
179   bool isInGot() const { return gotIndex != -1U; }
180   bool isInPlt() const { return pltIndex != -1U; }
181 
182   uint64_t getVA(int64_t addend = 0) const;
183 
184   uint64_t getGotOffset() const;
185   uint64_t getGotVA() const;
186   uint64_t getGotPltOffset() const;
187   uint64_t getGotPltVA() const;
188   uint64_t getPltVA() const;
189   uint64_t getSize() const;
190   OutputSection *getOutputSection() const;
191 
192   // The following two functions are used for symbol resolution.
193   //
194   // You are expected to call mergeProperties for all symbols in input
195   // files so that attributes that are attached to names rather than
196   // indivisual symbol (such as visibility) are merged together.
197   //
198   // Every time you read a new symbol from an input, you are supposed
199   // to call resolve() with the new symbol. That function replaces
200   // "this" object as a result of name resolution if the new symbol is
201   // more appropriate to be included in the output.
202   //
203   // For example, if "this" is an undefined symbol and a new symbol is
204   // a defined symbol, "this" is replaced with the new symbol.
205   void mergeProperties(const Symbol &other);
206   void resolve(const Symbol &other);
207 
208   // If this is a lazy symbol, fetch an input file and add the symbol
209   // in the file to the symbol table. Calling this function on
210   // non-lazy object causes a runtime error.
211   void fetch() const;
212 
213 private:
214   static bool isExportDynamic(Kind k, uint8_t visibility) {
215     if (k == SharedKind)
216       return visibility == llvm::ELF::STV_DEFAULT;
217     return config->shared || config->exportDynamic;
218   }
219 
220   void resolveUndefined(const Undefined &other);
221   void resolveCommon(const CommonSymbol &other);
222   void resolveDefined(const Defined &other);
223   template <class LazyT> void resolveLazy(const LazyT &other);
224   void resolveShared(const SharedSymbol &other);
225 
226   int compare(const Symbol *other) const;
227 
228   inline size_t getSymbolSize() const;
229 
230 protected:
231   Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding,
232          uint8_t stOther, uint8_t type)
233       : file(file), nameData(name.data), nameSize(name.size), binding(binding),
234         type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3),
235         isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
236         exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false),
237         canInline(false), referenced(false), traced(false), needsPltAddr(false),
238         isInIplt(false), gotInIgot(false), isPreemptible(false),
239         used(!config->gcSections), needsTocRestore(false),
240         scriptDefined(false) {}
241 
242 public:
243   // True the symbol should point to its PLT entry.
244   // For SharedSymbol only.
245   uint8_t needsPltAddr : 1;
246 
247   // True if this symbol is in the Iplt sub-section of the Plt and the Igot
248   // sub-section of the .got.plt or .got.
249   uint8_t isInIplt : 1;
250 
251   // True if this symbol needs a GOT entry and its GOT entry is actually in
252   // Igot. This will be true only for certain non-preemptible ifuncs.
253   uint8_t gotInIgot : 1;
254 
255   // True if this symbol is preemptible at load time.
256   uint8_t isPreemptible : 1;
257 
258   // True if an undefined or shared symbol is used from a live section.
259   uint8_t used : 1;
260 
261   // True if a call to this symbol needs to be followed by a restore of the
262   // PPC64 toc pointer.
263   uint8_t needsTocRestore : 1;
264 
265   // True if this symbol is defined by a linker script.
266   uint8_t scriptDefined : 1;
267 
268   // The partition whose dynamic symbol table contains this symbol's definition.
269   uint8_t partition = 1;
270 
271   bool isSection() const { return type == llvm::ELF::STT_SECTION; }
272   bool isTls() const { return type == llvm::ELF::STT_TLS; }
273   bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
274   bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
275   bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
276   bool isFile() const { return type == llvm::ELF::STT_FILE; }
277 };
278 
279 // Represents a symbol that is defined in the current output file.
280 class Defined : public Symbol {
281 public:
282   Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
283           uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
284       : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
285         size(size), section(section) {}
286 
287   static bool classof(const Symbol *s) { return s->isDefined(); }
288 
289   uint64_t value;
290   uint64_t size;
291   SectionBase *section;
292 };
293 
294 // Represents a common symbol.
295 //
296 // On Unix, it is traditionally allowed to write variable definitions
297 // without initialization expressions (such as "int foo;") to header
298 // files. Such definition is called "tentative definition".
299 //
300 // Using tentative definition is usually considered a bad practice
301 // because you should write only declarations (such as "extern int
302 // foo;") to header files. Nevertheless, the linker and the compiler
303 // have to do something to support bad code by allowing duplicate
304 // definitions for this particular case.
305 //
306 // Common symbols represent variable definitions without initializations.
307 // The compiler creates common symbols when it sees variable definitions
308 // without initialization (you can suppress this behavior and let the
309 // compiler create a regular defined symbol by -fno-common).
310 //
311 // The linker allows common symbols to be replaced by regular defined
312 // symbols. If there are remaining common symbols after name resolution is
313 // complete, they are converted to regular defined symbols in a .bss
314 // section. (Therefore, the later passes don't see any CommonSymbols.)
315 class CommonSymbol : public Symbol {
316 public:
317   CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding,
318                uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
319       : Symbol(CommonKind, file, name, binding, stOther, type),
320         alignment(alignment), size(size) {}
321 
322   static bool classof(const Symbol *s) { return s->isCommon(); }
323 
324   uint32_t alignment;
325   uint64_t size;
326 };
327 
328 class Undefined : public Symbol {
329 public:
330   Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
331             uint8_t type, uint32_t discardedSecIdx = 0)
332       : Symbol(UndefinedKind, file, name, binding, stOther, type),
333         discardedSecIdx(discardedSecIdx) {}
334 
335   static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
336 
337   // The section index if in a discarded section, 0 otherwise.
338   uint32_t discardedSecIdx;
339 };
340 
341 class SharedSymbol : public Symbol {
342 public:
343   static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
344 
345   SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
346                uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
347                uint32_t alignment, uint32_t verdefIndex)
348       : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
349         size(size), alignment(alignment) {
350     this->verdefIndex = verdefIndex;
351     // GNU ifunc is a mechanism to allow user-supplied functions to
352     // resolve PLT slot values at load-time. This is contrary to the
353     // regular symbol resolution scheme in which symbols are resolved just
354     // by name. Using this hook, you can program how symbols are solved
355     // for you program. For example, you can make "memcpy" to be resolved
356     // to a SSE-enabled version of memcpy only when a machine running the
357     // program supports the SSE instruction set.
358     //
359     // Naturally, such symbols should always be called through their PLT
360     // slots. What GNU ifunc symbols point to are resolver functions, and
361     // calling them directly doesn't make sense (unless you are writing a
362     // loader).
363     //
364     // For DSO symbols, we always call them through PLT slots anyway.
365     // So there's no difference between GNU ifunc and regular function
366     // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
367     if (this->type == llvm::ELF::STT_GNU_IFUNC)
368       this->type = llvm::ELF::STT_FUNC;
369   }
370 
371   SharedFile &getFile() const { return *cast<SharedFile>(file); }
372 
373   uint64_t value; // st_value
374   uint64_t size;  // st_size
375   uint32_t alignment;
376 };
377 
378 // LazyArchive and LazyObject represent a symbols that is not yet in the link,
379 // but we know where to find it if needed. If the resolver finds both Undefined
380 // and Lazy for the same name, it will ask the Lazy to load a file.
381 //
382 // A special complication is the handling of weak undefined symbols. They should
383 // not load a file, but we have to remember we have seen both the weak undefined
384 // and the lazy. We represent that with a lazy symbol with a weak binding. This
385 // means that code looking for undefined symbols normally also has to take lazy
386 // symbols into consideration.
387 
388 // This class represents a symbol defined in an archive file. It is
389 // created from an archive file header, and it knows how to load an
390 // object file from an archive to replace itself with a defined
391 // symbol.
392 class LazyArchive : public Symbol {
393 public:
394   LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
395       : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
396                llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
397         sym(s) {}
398 
399   static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
400 
401   MemoryBufferRef getMemberBuffer();
402 
403   const llvm::object::Archive::Symbol sym;
404 };
405 
406 // LazyObject symbols represents symbols in object files between
407 // --start-lib and --end-lib options.
408 class LazyObject : public Symbol {
409 public:
410   LazyObject(InputFile &file, StringRef name)
411       : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
412                llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
413 
414   static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
415 };
416 
417 // Some linker-generated symbols need to be created as
418 // Defined symbols.
419 struct ElfSym {
420   // __bss_start
421   static Defined *bss;
422 
423   // etext and _etext
424   static Defined *etext1;
425   static Defined *etext2;
426 
427   // edata and _edata
428   static Defined *edata1;
429   static Defined *edata2;
430 
431   // end and _end
432   static Defined *end1;
433   static Defined *end2;
434 
435   // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
436   // be at some offset from the base of the .got section, usually 0 or
437   // the end of the .got.
438   static Defined *globalOffsetTable;
439 
440   // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
441   static Defined *mipsGp;
442   static Defined *mipsGpDisp;
443   static Defined *mipsLocalGp;
444 
445   // __rel{,a}_iplt_{start,end} symbols.
446   static Defined *relaIpltStart;
447   static Defined *relaIpltEnd;
448 
449   // __global_pointer$ for RISC-V.
450   static Defined *riscvGlobalPointer;
451 
452   // _TLS_MODULE_BASE_ on targets that support TLSDESC.
453   static Defined *tlsModuleBase;
454 };
455 
456 // A buffer class that is large enough to hold any Symbol-derived
457 // object. We allocate memory using this class and instantiate a symbol
458 // using the placement new.
459 union SymbolUnion {
460   alignas(Defined) char a[sizeof(Defined)];
461   alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
462   alignas(Undefined) char c[sizeof(Undefined)];
463   alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
464   alignas(LazyArchive) char e[sizeof(LazyArchive)];
465   alignas(LazyObject) char f[sizeof(LazyObject)];
466 };
467 
468 // It is important to keep the size of SymbolUnion small for performance and
469 // memory usage reasons. 80 bytes is a soft limit based on the size of Defined
470 // on a 64-bit system.
471 static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large");
472 
473 template <typename T> struct AssertSymbol {
474   static_assert(std::is_trivially_destructible<T>(),
475                 "Symbol types must be trivially destructible");
476   static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
477   static_assert(alignof(T) <= alignof(SymbolUnion),
478                 "SymbolUnion not aligned enough");
479 };
480 
481 static inline void assertSymbols() {
482   AssertSymbol<Defined>();
483   AssertSymbol<CommonSymbol>();
484   AssertSymbol<Undefined>();
485   AssertSymbol<SharedSymbol>();
486   AssertSymbol<LazyArchive>();
487   AssertSymbol<LazyObject>();
488 }
489 
490 void printTraceSymbol(const Symbol *sym);
491 
492 size_t Symbol::getSymbolSize() const {
493   switch (kind()) {
494   case CommonKind:
495     return sizeof(CommonSymbol);
496   case DefinedKind:
497     return sizeof(Defined);
498   case LazyArchiveKind:
499     return sizeof(LazyArchive);
500   case LazyObjectKind:
501     return sizeof(LazyObject);
502   case SharedKind:
503     return sizeof(SharedSymbol);
504   case UndefinedKind:
505     return sizeof(Undefined);
506   case PlaceholderKind:
507     return sizeof(Symbol);
508   }
509   llvm_unreachable("unknown symbol kind");
510 }
511 
512 // replace() replaces "this" object with a given symbol by memcpy'ing
513 // it over to "this". This function is called as a result of name
514 // resolution, e.g. to replace an undefind symbol with a defined symbol.
515 void Symbol::replace(const Symbol &newSym) {
516   using llvm::ELF::STT_TLS;
517 
518   // Symbols representing thread-local variables must be referenced by
519   // TLS-aware relocations, and non-TLS symbols must be reference by
520   // non-TLS relocations, so there's a clear distinction between TLS
521   // and non-TLS symbols. It is an error if the same symbol is defined
522   // as a TLS symbol in one file and as a non-TLS symbol in other file.
523   if (symbolKind != PlaceholderKind && !isLazy() && !newSym.isLazy() &&
524       (type == STT_TLS) != (newSym.type == STT_TLS))
525     error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
526           toString(newSym.file) + "\n>>> defined in " + toString(file));
527 
528   Symbol old = *this;
529   memcpy(this, &newSym, newSym.getSymbolSize());
530 
531   // old may be a placeholder. The referenced fields must be initialized in
532   // SymbolTable::insert.
533   versionId = old.versionId;
534   visibility = old.visibility;
535   isUsedInRegularObj = old.isUsedInRegularObj;
536   exportDynamic = old.exportDynamic;
537   inDynamicList = old.inDynamicList;
538   canInline = old.canInline;
539   referenced = old.referenced;
540   traced = old.traced;
541   isPreemptible = old.isPreemptible;
542   scriptDefined = old.scriptDefined;
543   partition = old.partition;
544 
545   // Symbol length is computed lazily. If we already know a symbol length,
546   // propagate it.
547   if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0)
548     nameSize = old.nameSize;
549 
550   // Print out a log message if --trace-symbol was specified.
551   // This is for debugging.
552   if (traced)
553     printTraceSymbol(this);
554 }
555 
556 void maybeWarnUnorderableSymbol(const Symbol *sym);
557 bool computeIsPreemptible(const Symbol &sym);
558 
559 } // namespace elf
560 } // namespace lld
561 
562 #endif
563