1 //===- Symbols.h ------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines various types of Symbols. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLD_ELF_SYMBOLS_H 14 #define LLD_ELF_SYMBOLS_H 15 16 #include "InputFiles.h" 17 #include "InputSection.h" 18 #include "lld/Common/LLVM.h" 19 #include "lld/Common/Strings.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/Object/Archive.h" 22 #include "llvm/Object/ELF.h" 23 24 namespace lld { 25 // Returns a string representation for a symbol for diagnostics. 26 std::string toString(const elf::Symbol &); 27 28 // There are two different ways to convert an Archive::Symbol to a string: 29 // One for Microsoft name mangling and one for Itanium name mangling. 30 // Call the functions toCOFFString and toELFString, not just toString. 31 std::string toELFString(const llvm::object::Archive::Symbol &); 32 33 namespace elf { 34 class CommonSymbol; 35 class Defined; 36 class InputFile; 37 class LazyArchive; 38 class LazyObject; 39 class SharedSymbol; 40 class Symbol; 41 class Undefined; 42 43 // This is a StringRef-like container that doesn't run strlen(). 44 // 45 // ELF string tables contain a lot of null-terminated strings. Most of them 46 // are not necessary for the linker because they are names of local symbols, 47 // and the linker doesn't use local symbol names for name resolution. So, we 48 // use this class to represents strings read from string tables. 49 struct StringRefZ { 50 StringRefZ(const char *s) : data(s), size(-1) {} 51 StringRefZ(StringRef s) : data(s.data()), size(s.size()) {} 52 53 const char *data; 54 const uint32_t size; 55 }; 56 57 // The base class for real symbol classes. 58 class Symbol { 59 public: 60 enum Kind { 61 PlaceholderKind, 62 DefinedKind, 63 CommonKind, 64 SharedKind, 65 UndefinedKind, 66 LazyArchiveKind, 67 LazyObjectKind, 68 }; 69 70 Kind kind() const { return static_cast<Kind>(symbolKind); } 71 72 // The file from which this symbol was created. 73 InputFile *file; 74 75 protected: 76 const char *nameData; 77 mutable uint32_t nameSize; 78 79 public: 80 uint32_t dynsymIndex = 0; 81 uint32_t gotIndex = -1; 82 uint32_t pltIndex = -1; 83 84 uint32_t globalDynIndex = -1; 85 86 // This field is a index to the symbol's version definition. 87 uint32_t verdefIndex = -1; 88 89 // Version definition index. 90 uint16_t versionId; 91 92 // Symbol binding. This is not overwritten by replace() to track 93 // changes during resolution. In particular: 94 // - An undefined weak is still weak when it resolves to a shared library. 95 // - An undefined weak will not fetch archive members, but we have to 96 // remember it is weak. 97 uint8_t binding; 98 99 // The following fields have the same meaning as the ELF symbol attributes. 100 uint8_t type; // symbol type 101 uint8_t stOther; // st_other field value 102 103 uint8_t symbolKind; 104 105 // Symbol visibility. This is the computed minimum visibility of all 106 // observed non-DSO symbols. 107 uint8_t visibility : 2; 108 109 // True if the symbol was used for linking and thus need to be added to the 110 // output file's symbol table. This is true for all symbols except for 111 // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that 112 // are unreferenced except by other bitcode objects. 113 uint8_t isUsedInRegularObj : 1; 114 115 // Used by a Defined symbol with protected or default visibility, to record 116 // whether it is required to be exported into .dynsym. This is set when any of 117 // the following conditions hold: 118 // 119 // - If there is an interposable symbol from a DSO. 120 // - If -shared or --export-dynamic is specified, any symbol in an object 121 // file/bitcode sets this property, unless suppressed by LTO 122 // canBeOmittedFromSymbolTable(). 123 uint8_t exportDynamic : 1; 124 125 // True if the symbol is in the --dynamic-list file. A Defined symbol with 126 // protected or default visibility with this property is required to be 127 // exported into .dynsym. 128 uint8_t inDynamicList : 1; 129 130 // False if LTO shouldn't inline whatever this symbol points to. If a symbol 131 // is overwritten after LTO, LTO shouldn't inline the symbol because it 132 // doesn't know the final contents of the symbol. 133 uint8_t canInline : 1; 134 135 // Used by Undefined and SharedSymbol to track if there has been at least one 136 // undefined reference to the symbol. The binding may change to STB_WEAK if 137 // the first undefined reference from a non-shared object is weak. 138 uint8_t referenced : 1; 139 140 // True if this symbol is specified by --trace-symbol option. 141 uint8_t traced : 1; 142 143 inline void replace(const Symbol &newSym); 144 145 bool includeInDynsym() const; 146 uint8_t computeBinding() const; 147 bool isWeak() const { return binding == llvm::ELF::STB_WEAK; } 148 149 bool isUndefined() const { return symbolKind == UndefinedKind; } 150 bool isCommon() const { return symbolKind == CommonKind; } 151 bool isDefined() const { return symbolKind == DefinedKind; } 152 bool isShared() const { return symbolKind == SharedKind; } 153 bool isPlaceholder() const { return symbolKind == PlaceholderKind; } 154 155 bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; } 156 157 bool isLazy() const { 158 return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind; 159 } 160 161 // True if this is an undefined weak symbol. This only works once 162 // all input files have been added. 163 bool isUndefWeak() const { 164 // See comment on lazy symbols for details. 165 return isWeak() && (isUndefined() || isLazy()); 166 } 167 168 StringRef getName() const { 169 if (nameSize == (uint32_t)-1) 170 nameSize = strlen(nameData); 171 return {nameData, nameSize}; 172 } 173 174 void setName(StringRef s) { 175 nameData = s.data(); 176 nameSize = s.size(); 177 } 178 179 void parseSymbolVersion(); 180 181 bool isInGot() const { return gotIndex != -1U; } 182 bool isInPlt() const { return pltIndex != -1U; } 183 184 uint64_t getVA(int64_t addend = 0) const; 185 186 uint64_t getGotOffset() const; 187 uint64_t getGotVA() const; 188 uint64_t getGotPltOffset() const; 189 uint64_t getGotPltVA() const; 190 uint64_t getPltVA() const; 191 uint64_t getSize() const; 192 OutputSection *getOutputSection() const; 193 194 // The following two functions are used for symbol resolution. 195 // 196 // You are expected to call mergeProperties for all symbols in input 197 // files so that attributes that are attached to names rather than 198 // indivisual symbol (such as visibility) are merged together. 199 // 200 // Every time you read a new symbol from an input, you are supposed 201 // to call resolve() with the new symbol. That function replaces 202 // "this" object as a result of name resolution if the new symbol is 203 // more appropriate to be included in the output. 204 // 205 // For example, if "this" is an undefined symbol and a new symbol is 206 // a defined symbol, "this" is replaced with the new symbol. 207 void mergeProperties(const Symbol &other); 208 void resolve(const Symbol &other); 209 210 // If this is a lazy symbol, fetch an input file and add the symbol 211 // in the file to the symbol table. Calling this function on 212 // non-lazy object causes a runtime error. 213 void fetch() const; 214 215 private: 216 static bool isExportDynamic(Kind k, uint8_t visibility) { 217 if (k == SharedKind) 218 return visibility == llvm::ELF::STV_DEFAULT; 219 return config->shared || config->exportDynamic; 220 } 221 222 void resolveUndefined(const Undefined &other); 223 void resolveCommon(const CommonSymbol &other); 224 void resolveDefined(const Defined &other); 225 template <class LazyT> void resolveLazy(const LazyT &other); 226 void resolveShared(const SharedSymbol &other); 227 228 int compare(const Symbol *other) const; 229 230 inline size_t getSymbolSize() const; 231 232 protected: 233 Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding, 234 uint8_t stOther, uint8_t type) 235 : file(file), nameData(name.data), nameSize(name.size), binding(binding), 236 type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3), 237 isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind), 238 exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false), 239 canInline(false), referenced(false), traced(false), needsPltAddr(false), 240 isInIplt(false), gotInIgot(false), isPreemptible(false), 241 used(!config->gcSections), needsTocRestore(false), 242 scriptDefined(false) {} 243 244 public: 245 // True the symbol should point to its PLT entry. 246 // For SharedSymbol only. 247 uint8_t needsPltAddr : 1; 248 249 // True if this symbol is in the Iplt sub-section of the Plt and the Igot 250 // sub-section of the .got.plt or .got. 251 uint8_t isInIplt : 1; 252 253 // True if this symbol needs a GOT entry and its GOT entry is actually in 254 // Igot. This will be true only for certain non-preemptible ifuncs. 255 uint8_t gotInIgot : 1; 256 257 // True if this symbol is preemptible at load time. 258 uint8_t isPreemptible : 1; 259 260 // True if an undefined or shared symbol is used from a live section. 261 // 262 // NOTE: In Writer.cpp the field is used to mark local defined symbols 263 // which are referenced by relocations when -r or --emit-relocs is given. 264 uint8_t used : 1; 265 266 // True if a call to this symbol needs to be followed by a restore of the 267 // PPC64 toc pointer. 268 uint8_t needsTocRestore : 1; 269 270 // True if this symbol is defined by a linker script. 271 uint8_t scriptDefined : 1; 272 273 // The partition whose dynamic symbol table contains this symbol's definition. 274 uint8_t partition = 1; 275 276 bool isSection() const { return type == llvm::ELF::STT_SECTION; } 277 bool isTls() const { return type == llvm::ELF::STT_TLS; } 278 bool isFunc() const { return type == llvm::ELF::STT_FUNC; } 279 bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; } 280 bool isObject() const { return type == llvm::ELF::STT_OBJECT; } 281 bool isFile() const { return type == llvm::ELF::STT_FILE; } 282 }; 283 284 // Represents a symbol that is defined in the current output file. 285 class Defined : public Symbol { 286 public: 287 Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, 288 uint8_t type, uint64_t value, uint64_t size, SectionBase *section) 289 : Symbol(DefinedKind, file, name, binding, stOther, type), value(value), 290 size(size), section(section) {} 291 292 static bool classof(const Symbol *s) { return s->isDefined(); } 293 294 uint64_t value; 295 uint64_t size; 296 SectionBase *section; 297 }; 298 299 // Represents a common symbol. 300 // 301 // On Unix, it is traditionally allowed to write variable definitions 302 // without initialization expressions (such as "int foo;") to header 303 // files. Such definition is called "tentative definition". 304 // 305 // Using tentative definition is usually considered a bad practice 306 // because you should write only declarations (such as "extern int 307 // foo;") to header files. Nevertheless, the linker and the compiler 308 // have to do something to support bad code by allowing duplicate 309 // definitions for this particular case. 310 // 311 // Common symbols represent variable definitions without initializations. 312 // The compiler creates common symbols when it sees variable definitions 313 // without initialization (you can suppress this behavior and let the 314 // compiler create a regular defined symbol by -fno-common). 315 // 316 // The linker allows common symbols to be replaced by regular defined 317 // symbols. If there are remaining common symbols after name resolution is 318 // complete, they are converted to regular defined symbols in a .bss 319 // section. (Therefore, the later passes don't see any CommonSymbols.) 320 class CommonSymbol : public Symbol { 321 public: 322 CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding, 323 uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size) 324 : Symbol(CommonKind, file, name, binding, stOther, type), 325 alignment(alignment), size(size) {} 326 327 static bool classof(const Symbol *s) { return s->isCommon(); } 328 329 uint32_t alignment; 330 uint64_t size; 331 }; 332 333 class Undefined : public Symbol { 334 public: 335 Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, 336 uint8_t type, uint32_t discardedSecIdx = 0) 337 : Symbol(UndefinedKind, file, name, binding, stOther, type), 338 discardedSecIdx(discardedSecIdx) {} 339 340 static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } 341 342 // The section index if in a discarded section, 0 otherwise. 343 uint32_t discardedSecIdx; 344 }; 345 346 class SharedSymbol : public Symbol { 347 public: 348 static bool classof(const Symbol *s) { return s->kind() == SharedKind; } 349 350 SharedSymbol(InputFile &file, StringRef name, uint8_t binding, 351 uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, 352 uint32_t alignment, uint32_t verdefIndex) 353 : Symbol(SharedKind, &file, name, binding, stOther, type), value(value), 354 size(size), alignment(alignment) { 355 this->verdefIndex = verdefIndex; 356 // GNU ifunc is a mechanism to allow user-supplied functions to 357 // resolve PLT slot values at load-time. This is contrary to the 358 // regular symbol resolution scheme in which symbols are resolved just 359 // by name. Using this hook, you can program how symbols are solved 360 // for you program. For example, you can make "memcpy" to be resolved 361 // to a SSE-enabled version of memcpy only when a machine running the 362 // program supports the SSE instruction set. 363 // 364 // Naturally, such symbols should always be called through their PLT 365 // slots. What GNU ifunc symbols point to are resolver functions, and 366 // calling them directly doesn't make sense (unless you are writing a 367 // loader). 368 // 369 // For DSO symbols, we always call them through PLT slots anyway. 370 // So there's no difference between GNU ifunc and regular function 371 // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. 372 if (this->type == llvm::ELF::STT_GNU_IFUNC) 373 this->type = llvm::ELF::STT_FUNC; 374 } 375 376 SharedFile &getFile() const { return *cast<SharedFile>(file); } 377 378 uint64_t value; // st_value 379 uint64_t size; // st_size 380 uint32_t alignment; 381 }; 382 383 // LazyArchive and LazyObject represent a symbols that is not yet in the link, 384 // but we know where to find it if needed. If the resolver finds both Undefined 385 // and Lazy for the same name, it will ask the Lazy to load a file. 386 // 387 // A special complication is the handling of weak undefined symbols. They should 388 // not load a file, but we have to remember we have seen both the weak undefined 389 // and the lazy. We represent that with a lazy symbol with a weak binding. This 390 // means that code looking for undefined symbols normally also has to take lazy 391 // symbols into consideration. 392 393 // This class represents a symbol defined in an archive file. It is 394 // created from an archive file header, and it knows how to load an 395 // object file from an archive to replace itself with a defined 396 // symbol. 397 class LazyArchive : public Symbol { 398 public: 399 LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s) 400 : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL, 401 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE), 402 sym(s) {} 403 404 static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; } 405 406 MemoryBufferRef getMemberBuffer(); 407 408 const llvm::object::Archive::Symbol sym; 409 }; 410 411 // LazyObject symbols represents symbols in object files between 412 // --start-lib and --end-lib options. 413 class LazyObject : public Symbol { 414 public: 415 LazyObject(InputFile &file, StringRef name) 416 : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL, 417 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {} 418 419 static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; } 420 }; 421 422 // Some linker-generated symbols need to be created as 423 // Defined symbols. 424 struct ElfSym { 425 // __bss_start 426 static Defined *bss; 427 428 // etext and _etext 429 static Defined *etext1; 430 static Defined *etext2; 431 432 // edata and _edata 433 static Defined *edata1; 434 static Defined *edata2; 435 436 // end and _end 437 static Defined *end1; 438 static Defined *end2; 439 440 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to 441 // be at some offset from the base of the .got section, usually 0 or 442 // the end of the .got. 443 static Defined *globalOffsetTable; 444 445 // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. 446 static Defined *mipsGp; 447 static Defined *mipsGpDisp; 448 static Defined *mipsLocalGp; 449 450 // __rel{,a}_iplt_{start,end} symbols. 451 static Defined *relaIpltStart; 452 static Defined *relaIpltEnd; 453 454 // __global_pointer$ for RISC-V. 455 static Defined *riscvGlobalPointer; 456 457 // _TLS_MODULE_BASE_ on targets that support TLSDESC. 458 static Defined *tlsModuleBase; 459 }; 460 461 // A buffer class that is large enough to hold any Symbol-derived 462 // object. We allocate memory using this class and instantiate a symbol 463 // using the placement new. 464 union SymbolUnion { 465 alignas(Defined) char a[sizeof(Defined)]; 466 alignas(CommonSymbol) char b[sizeof(CommonSymbol)]; 467 alignas(Undefined) char c[sizeof(Undefined)]; 468 alignas(SharedSymbol) char d[sizeof(SharedSymbol)]; 469 alignas(LazyArchive) char e[sizeof(LazyArchive)]; 470 alignas(LazyObject) char f[sizeof(LazyObject)]; 471 }; 472 473 // It is important to keep the size of SymbolUnion small for performance and 474 // memory usage reasons. 80 bytes is a soft limit based on the size of Defined 475 // on a 64-bit system. 476 static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large"); 477 478 template <typename T> struct AssertSymbol { 479 static_assert(std::is_trivially_destructible<T>(), 480 "Symbol types must be trivially destructible"); 481 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); 482 static_assert(alignof(T) <= alignof(SymbolUnion), 483 "SymbolUnion not aligned enough"); 484 }; 485 486 static inline void assertSymbols() { 487 AssertSymbol<Defined>(); 488 AssertSymbol<CommonSymbol>(); 489 AssertSymbol<Undefined>(); 490 AssertSymbol<SharedSymbol>(); 491 AssertSymbol<LazyArchive>(); 492 AssertSymbol<LazyObject>(); 493 } 494 495 void printTraceSymbol(const Symbol *sym); 496 497 size_t Symbol::getSymbolSize() const { 498 switch (kind()) { 499 case CommonKind: 500 return sizeof(CommonSymbol); 501 case DefinedKind: 502 return sizeof(Defined); 503 case LazyArchiveKind: 504 return sizeof(LazyArchive); 505 case LazyObjectKind: 506 return sizeof(LazyObject); 507 case SharedKind: 508 return sizeof(SharedSymbol); 509 case UndefinedKind: 510 return sizeof(Undefined); 511 case PlaceholderKind: 512 return sizeof(Symbol); 513 } 514 llvm_unreachable("unknown symbol kind"); 515 } 516 517 // replace() replaces "this" object with a given symbol by memcpy'ing 518 // it over to "this". This function is called as a result of name 519 // resolution, e.g. to replace an undefind symbol with a defined symbol. 520 void Symbol::replace(const Symbol &newSym) { 521 using llvm::ELF::STT_TLS; 522 523 // st_value of STT_TLS represents the assigned offset, not the actual address 524 // which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can only be 525 // referenced by special TLS relocations. It is usually an error if a STT_TLS 526 // symbol is replaced by a non-STT_TLS symbol, vice versa. There are two 527 // exceptions: (a) a STT_NOTYPE lazy/undefined symbol can be replaced by a 528 // STT_TLS symbol, (b) a STT_TLS undefined symbol can be replaced by a 529 // STT_NOTYPE lazy symbol. 530 if (symbolKind != PlaceholderKind && !newSym.isLazy() && 531 (type == STT_TLS) != (newSym.type == STT_TLS) && 532 type != llvm::ELF::STT_NOTYPE) 533 error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " + 534 toString(newSym.file) + "\n>>> defined in " + toString(file)); 535 536 Symbol old = *this; 537 memcpy(this, &newSym, newSym.getSymbolSize()); 538 539 // old may be a placeholder. The referenced fields must be initialized in 540 // SymbolTable::insert. 541 versionId = old.versionId; 542 visibility = old.visibility; 543 isUsedInRegularObj = old.isUsedInRegularObj; 544 exportDynamic = old.exportDynamic; 545 inDynamicList = old.inDynamicList; 546 canInline = old.canInline; 547 referenced = old.referenced; 548 traced = old.traced; 549 isPreemptible = old.isPreemptible; 550 scriptDefined = old.scriptDefined; 551 partition = old.partition; 552 553 // Symbol length is computed lazily. If we already know a symbol length, 554 // propagate it. 555 if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0) 556 nameSize = old.nameSize; 557 558 // Print out a log message if --trace-symbol was specified. 559 // This is for debugging. 560 if (traced) 561 printTraceSymbol(this); 562 } 563 564 void maybeWarnUnorderableSymbol(const Symbol *sym); 565 bool computeIsPreemptible(const Symbol &sym); 566 void reportBackrefs(); 567 568 // A mapping from a symbol to an InputFile referencing it backward. Used by 569 // --warn-backrefs. 570 extern llvm::DenseMap<const Symbol *, const InputFile *> backwardReferences; 571 572 } // namespace elf 573 } // namespace lld 574 575 #endif 576