1 //===- Symbols.h ------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines various types of Symbols. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLD_ELF_SYMBOLS_H 14 #define LLD_ELF_SYMBOLS_H 15 16 #include "InputFiles.h" 17 #include "InputSection.h" 18 #include "lld/Common/LLVM.h" 19 #include "lld/Common/Strings.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/Object/Archive.h" 22 #include "llvm/Object/ELF.h" 23 24 namespace lld { 25 // Returns a string representation for a symbol for diagnostics. 26 std::string toString(const elf::Symbol &); 27 28 // There are two different ways to convert an Archive::Symbol to a string: 29 // One for Microsoft name mangling and one for Itanium name mangling. 30 // Call the functions toCOFFString and toELFString, not just toString. 31 std::string toELFString(const llvm::object::Archive::Symbol &); 32 33 namespace elf { 34 class CommonSymbol; 35 class Defined; 36 class InputFile; 37 class LazyArchive; 38 class LazyObject; 39 class SharedSymbol; 40 class Symbol; 41 class Undefined; 42 43 // This is a StringRef-like container that doesn't run strlen(). 44 // 45 // ELF string tables contain a lot of null-terminated strings. Most of them 46 // are not necessary for the linker because they are names of local symbols, 47 // and the linker doesn't use local symbol names for name resolution. So, we 48 // use this class to represents strings read from string tables. 49 struct StringRefZ { 50 StringRefZ(const char *s) : data(s), size(-1) {} 51 StringRefZ(StringRef s) : data(s.data()), size(s.size()) {} 52 53 const char *data; 54 const uint32_t size; 55 }; 56 57 // The base class for real symbol classes. 58 class Symbol { 59 public: 60 enum Kind { 61 PlaceholderKind, 62 DefinedKind, 63 CommonKind, 64 SharedKind, 65 UndefinedKind, 66 LazyArchiveKind, 67 LazyObjectKind, 68 }; 69 70 Kind kind() const { return static_cast<Kind>(symbolKind); } 71 72 // The file from which this symbol was created. 73 InputFile *file; 74 75 protected: 76 const char *nameData; 77 mutable uint32_t nameSize; 78 79 public: 80 uint32_t dynsymIndex = 0; 81 uint32_t gotIndex = -1; 82 uint32_t pltIndex = -1; 83 84 uint32_t globalDynIndex = -1; 85 86 // This field is a index to the symbol's version definition. 87 uint32_t verdefIndex = -1; 88 89 // Version definition index. 90 uint16_t versionId; 91 92 // Symbol binding. This is not overwritten by replace() to track 93 // changes during resolution. In particular: 94 // - An undefined weak is still weak when it resolves to a shared library. 95 // - An undefined weak will not fetch archive members, but we have to 96 // remember it is weak. 97 uint8_t binding; 98 99 // The following fields have the same meaning as the ELF symbol attributes. 100 uint8_t type; // symbol type 101 uint8_t stOther; // st_other field value 102 103 uint8_t symbolKind; 104 105 // Symbol visibility. This is the computed minimum visibility of all 106 // observed non-DSO symbols. 107 uint8_t visibility : 2; 108 109 // True if the symbol was used for linking and thus need to be added to the 110 // output file's symbol table. This is true for all symbols except for 111 // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that 112 // are unreferenced except by other bitcode objects. 113 uint8_t isUsedInRegularObj : 1; 114 115 // Used by a Defined symbol with protected or default visibility, to record 116 // whether it is required to be exported into .dynsym. This is set when any of 117 // the following conditions hold: 118 // 119 // - If there is an interposable symbol from a DSO. 120 // - If -shared or --export-dynamic is specified, any symbol in an object 121 // file/bitcode sets this property, unless suppressed by LTO 122 // canBeOmittedFromSymbolTable(). 123 uint8_t exportDynamic : 1; 124 125 // True if the symbol is in the --dynamic-list file. A Defined symbol with 126 // protected or default visibility with this property is required to be 127 // exported into .dynsym. 128 uint8_t inDynamicList : 1; 129 130 // False if LTO shouldn't inline whatever this symbol points to. If a symbol 131 // is overwritten after LTO, LTO shouldn't inline the symbol because it 132 // doesn't know the final contents of the symbol. 133 uint8_t canInline : 1; 134 135 // Used to track if there has been at least one undefined reference to the 136 // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK 137 // if the first undefined reference from a non-shared object is weak. 138 // 139 // This is also used to retain __wrap_foo when foo is referenced. 140 uint8_t referenced : 1; 141 142 // True if this symbol is specified by --trace-symbol option. 143 uint8_t traced : 1; 144 145 inline void replace(const Symbol &newSym); 146 147 bool includeInDynsym() const; 148 uint8_t computeBinding() const; 149 bool isWeak() const { return binding == llvm::ELF::STB_WEAK; } 150 151 bool isUndefined() const { return symbolKind == UndefinedKind; } 152 bool isCommon() const { return symbolKind == CommonKind; } 153 bool isDefined() const { return symbolKind == DefinedKind; } 154 bool isShared() const { return symbolKind == SharedKind; } 155 bool isPlaceholder() const { return symbolKind == PlaceholderKind; } 156 157 bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; } 158 159 bool isLazy() const { 160 return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind; 161 } 162 163 // True if this is an undefined weak symbol. This only works once 164 // all input files have been added. 165 bool isUndefWeak() const { 166 // See comment on lazy symbols for details. 167 return isWeak() && (isUndefined() || isLazy()); 168 } 169 170 StringRef getName() const { 171 if (nameSize == (uint32_t)-1) 172 nameSize = strlen(nameData); 173 return {nameData, nameSize}; 174 } 175 176 void setName(StringRef s) { 177 nameData = s.data(); 178 nameSize = s.size(); 179 } 180 181 void parseSymbolVersion(); 182 183 // Get the NUL-terminated version suffix ("", "@...", or "@@..."). 184 // 185 // For @@, the name has been truncated by insert(). For @, the name has been 186 // truncated by Symbol::parseSymbolVersion(). 187 const char *getVersionSuffix() const { 188 (void)getName(); 189 return nameData + nameSize; 190 } 191 192 bool isInGot() const { return gotIndex != -1U; } 193 bool isInPlt() const { return pltIndex != -1U; } 194 195 uint64_t getVA(int64_t addend = 0) const; 196 197 uint64_t getGotOffset() const; 198 uint64_t getGotVA() const; 199 uint64_t getGotPltOffset() const; 200 uint64_t getGotPltVA() const; 201 uint64_t getPltVA() const; 202 uint64_t getSize() const; 203 OutputSection *getOutputSection() const; 204 205 // The following two functions are used for symbol resolution. 206 // 207 // You are expected to call mergeProperties for all symbols in input 208 // files so that attributes that are attached to names rather than 209 // indivisual symbol (such as visibility) are merged together. 210 // 211 // Every time you read a new symbol from an input, you are supposed 212 // to call resolve() with the new symbol. That function replaces 213 // "this" object as a result of name resolution if the new symbol is 214 // more appropriate to be included in the output. 215 // 216 // For example, if "this" is an undefined symbol and a new symbol is 217 // a defined symbol, "this" is replaced with the new symbol. 218 void mergeProperties(const Symbol &other); 219 void resolve(const Symbol &other); 220 221 // If this is a lazy symbol, fetch an input file and add the symbol 222 // in the file to the symbol table. Calling this function on 223 // non-lazy object causes a runtime error. 224 void fetch() const; 225 226 static bool isExportDynamic(Kind k, uint8_t visibility) { 227 if (k == SharedKind) 228 return visibility == llvm::ELF::STV_DEFAULT; 229 return config->shared || config->exportDynamic; 230 } 231 232 private: 233 void resolveUndefined(const Undefined &other); 234 void resolveCommon(const CommonSymbol &other); 235 void resolveDefined(const Defined &other); 236 template <class LazyT> void resolveLazy(const LazyT &other); 237 void resolveShared(const SharedSymbol &other); 238 239 int compare(const Symbol *other) const; 240 241 inline size_t getSymbolSize() const; 242 243 protected: 244 Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding, 245 uint8_t stOther, uint8_t type) 246 : file(file), nameData(name.data), nameSize(name.size), binding(binding), 247 type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3), 248 isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind), 249 exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false), 250 canInline(false), referenced(false), traced(false), needsPltAddr(false), 251 isInIplt(false), gotInIgot(false), isPreemptible(false), 252 used(!config->gcSections), needsTocRestore(false), 253 scriptDefined(false) {} 254 255 public: 256 // True the symbol should point to its PLT entry. 257 // For SharedSymbol only. 258 uint8_t needsPltAddr : 1; 259 260 // True if this symbol is in the Iplt sub-section of the Plt and the Igot 261 // sub-section of the .got.plt or .got. 262 uint8_t isInIplt : 1; 263 264 // True if this symbol needs a GOT entry and its GOT entry is actually in 265 // Igot. This will be true only for certain non-preemptible ifuncs. 266 uint8_t gotInIgot : 1; 267 268 // True if this symbol is preemptible at load time. 269 uint8_t isPreemptible : 1; 270 271 // True if an undefined or shared symbol is used from a live section. 272 // 273 // NOTE: In Writer.cpp the field is used to mark local defined symbols 274 // which are referenced by relocations when -r or --emit-relocs is given. 275 uint8_t used : 1; 276 277 // True if a call to this symbol needs to be followed by a restore of the 278 // PPC64 toc pointer. 279 uint8_t needsTocRestore : 1; 280 281 // True if this symbol is defined by a linker script. 282 uint8_t scriptDefined : 1; 283 284 // The partition whose dynamic symbol table contains this symbol's definition. 285 uint8_t partition = 1; 286 287 bool isSection() const { return type == llvm::ELF::STT_SECTION; } 288 bool isTls() const { return type == llvm::ELF::STT_TLS; } 289 bool isFunc() const { return type == llvm::ELF::STT_FUNC; } 290 bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; } 291 bool isObject() const { return type == llvm::ELF::STT_OBJECT; } 292 bool isFile() const { return type == llvm::ELF::STT_FILE; } 293 }; 294 295 // Represents a symbol that is defined in the current output file. 296 class Defined : public Symbol { 297 public: 298 Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, 299 uint8_t type, uint64_t value, uint64_t size, SectionBase *section) 300 : Symbol(DefinedKind, file, name, binding, stOther, type), value(value), 301 size(size), section(section) {} 302 303 static bool classof(const Symbol *s) { return s->isDefined(); } 304 305 uint64_t value; 306 uint64_t size; 307 SectionBase *section; 308 }; 309 310 // Represents a common symbol. 311 // 312 // On Unix, it is traditionally allowed to write variable definitions 313 // without initialization expressions (such as "int foo;") to header 314 // files. Such definition is called "tentative definition". 315 // 316 // Using tentative definition is usually considered a bad practice 317 // because you should write only declarations (such as "extern int 318 // foo;") to header files. Nevertheless, the linker and the compiler 319 // have to do something to support bad code by allowing duplicate 320 // definitions for this particular case. 321 // 322 // Common symbols represent variable definitions without initializations. 323 // The compiler creates common symbols when it sees variable definitions 324 // without initialization (you can suppress this behavior and let the 325 // compiler create a regular defined symbol by -fno-common). 326 // 327 // The linker allows common symbols to be replaced by regular defined 328 // symbols. If there are remaining common symbols after name resolution is 329 // complete, they are converted to regular defined symbols in a .bss 330 // section. (Therefore, the later passes don't see any CommonSymbols.) 331 class CommonSymbol : public Symbol { 332 public: 333 CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding, 334 uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size) 335 : Symbol(CommonKind, file, name, binding, stOther, type), 336 alignment(alignment), size(size) {} 337 338 static bool classof(const Symbol *s) { return s->isCommon(); } 339 340 uint32_t alignment; 341 uint64_t size; 342 }; 343 344 class Undefined : public Symbol { 345 public: 346 Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, 347 uint8_t type, uint32_t discardedSecIdx = 0) 348 : Symbol(UndefinedKind, file, name, binding, stOther, type), 349 discardedSecIdx(discardedSecIdx) {} 350 351 static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } 352 353 // The section index if in a discarded section, 0 otherwise. 354 uint32_t discardedSecIdx; 355 }; 356 357 class SharedSymbol : public Symbol { 358 public: 359 static bool classof(const Symbol *s) { return s->kind() == SharedKind; } 360 361 SharedSymbol(InputFile &file, StringRef name, uint8_t binding, 362 uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, 363 uint32_t alignment, uint32_t verdefIndex) 364 : Symbol(SharedKind, &file, name, binding, stOther, type), value(value), 365 size(size), alignment(alignment) { 366 this->verdefIndex = verdefIndex; 367 // GNU ifunc is a mechanism to allow user-supplied functions to 368 // resolve PLT slot values at load-time. This is contrary to the 369 // regular symbol resolution scheme in which symbols are resolved just 370 // by name. Using this hook, you can program how symbols are solved 371 // for you program. For example, you can make "memcpy" to be resolved 372 // to a SSE-enabled version of memcpy only when a machine running the 373 // program supports the SSE instruction set. 374 // 375 // Naturally, such symbols should always be called through their PLT 376 // slots. What GNU ifunc symbols point to are resolver functions, and 377 // calling them directly doesn't make sense (unless you are writing a 378 // loader). 379 // 380 // For DSO symbols, we always call them through PLT slots anyway. 381 // So there's no difference between GNU ifunc and regular function 382 // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. 383 if (this->type == llvm::ELF::STT_GNU_IFUNC) 384 this->type = llvm::ELF::STT_FUNC; 385 } 386 387 SharedFile &getFile() const { return *cast<SharedFile>(file); } 388 389 uint64_t value; // st_value 390 uint64_t size; // st_size 391 uint32_t alignment; 392 }; 393 394 // LazyArchive and LazyObject represent a symbols that is not yet in the link, 395 // but we know where to find it if needed. If the resolver finds both Undefined 396 // and Lazy for the same name, it will ask the Lazy to load a file. 397 // 398 // A special complication is the handling of weak undefined symbols. They should 399 // not load a file, but we have to remember we have seen both the weak undefined 400 // and the lazy. We represent that with a lazy symbol with a weak binding. This 401 // means that code looking for undefined symbols normally also has to take lazy 402 // symbols into consideration. 403 404 // This class represents a symbol defined in an archive file. It is 405 // created from an archive file header, and it knows how to load an 406 // object file from an archive to replace itself with a defined 407 // symbol. 408 class LazyArchive : public Symbol { 409 public: 410 LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s) 411 : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL, 412 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE), 413 sym(s) {} 414 415 static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; } 416 417 MemoryBufferRef getMemberBuffer(); 418 419 const llvm::object::Archive::Symbol sym; 420 }; 421 422 // LazyObject symbols represents symbols in object files between 423 // --start-lib and --end-lib options. 424 class LazyObject : public Symbol { 425 public: 426 LazyObject(InputFile &file, StringRef name) 427 : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL, 428 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {} 429 430 static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; } 431 }; 432 433 // Some linker-generated symbols need to be created as 434 // Defined symbols. 435 struct ElfSym { 436 // __bss_start 437 static Defined *bss; 438 439 // etext and _etext 440 static Defined *etext1; 441 static Defined *etext2; 442 443 // edata and _edata 444 static Defined *edata1; 445 static Defined *edata2; 446 447 // end and _end 448 static Defined *end1; 449 static Defined *end2; 450 451 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to 452 // be at some offset from the base of the .got section, usually 0 or 453 // the end of the .got. 454 static Defined *globalOffsetTable; 455 456 // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. 457 static Defined *mipsGp; 458 static Defined *mipsGpDisp; 459 static Defined *mipsLocalGp; 460 461 // __rel{,a}_iplt_{start,end} symbols. 462 static Defined *relaIpltStart; 463 static Defined *relaIpltEnd; 464 465 // __global_pointer$ for RISC-V. 466 static Defined *riscvGlobalPointer; 467 468 // _TLS_MODULE_BASE_ on targets that support TLSDESC. 469 static Defined *tlsModuleBase; 470 }; 471 472 // A buffer class that is large enough to hold any Symbol-derived 473 // object. We allocate memory using this class and instantiate a symbol 474 // using the placement new. 475 union SymbolUnion { 476 alignas(Defined) char a[sizeof(Defined)]; 477 alignas(CommonSymbol) char b[sizeof(CommonSymbol)]; 478 alignas(Undefined) char c[sizeof(Undefined)]; 479 alignas(SharedSymbol) char d[sizeof(SharedSymbol)]; 480 alignas(LazyArchive) char e[sizeof(LazyArchive)]; 481 alignas(LazyObject) char f[sizeof(LazyObject)]; 482 }; 483 484 // It is important to keep the size of SymbolUnion small for performance and 485 // memory usage reasons. 80 bytes is a soft limit based on the size of Defined 486 // on a 64-bit system. 487 static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large"); 488 489 template <typename T> struct AssertSymbol { 490 static_assert(std::is_trivially_destructible<T>(), 491 "Symbol types must be trivially destructible"); 492 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); 493 static_assert(alignof(T) <= alignof(SymbolUnion), 494 "SymbolUnion not aligned enough"); 495 }; 496 497 static inline void assertSymbols() { 498 AssertSymbol<Defined>(); 499 AssertSymbol<CommonSymbol>(); 500 AssertSymbol<Undefined>(); 501 AssertSymbol<SharedSymbol>(); 502 AssertSymbol<LazyArchive>(); 503 AssertSymbol<LazyObject>(); 504 } 505 506 void printTraceSymbol(const Symbol *sym); 507 508 size_t Symbol::getSymbolSize() const { 509 switch (kind()) { 510 case CommonKind: 511 return sizeof(CommonSymbol); 512 case DefinedKind: 513 return sizeof(Defined); 514 case LazyArchiveKind: 515 return sizeof(LazyArchive); 516 case LazyObjectKind: 517 return sizeof(LazyObject); 518 case SharedKind: 519 return sizeof(SharedSymbol); 520 case UndefinedKind: 521 return sizeof(Undefined); 522 case PlaceholderKind: 523 return sizeof(Symbol); 524 } 525 llvm_unreachable("unknown symbol kind"); 526 } 527 528 // replace() replaces "this" object with a given symbol by memcpy'ing 529 // it over to "this". This function is called as a result of name 530 // resolution, e.g. to replace an undefind symbol with a defined symbol. 531 void Symbol::replace(const Symbol &newSym) { 532 using llvm::ELF::STT_TLS; 533 534 // st_value of STT_TLS represents the assigned offset, not the actual address 535 // which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can only be 536 // referenced by special TLS relocations. It is usually an error if a STT_TLS 537 // symbol is replaced by a non-STT_TLS symbol, vice versa. There are two 538 // exceptions: (a) a STT_NOTYPE lazy/undefined symbol can be replaced by a 539 // STT_TLS symbol, (b) a STT_TLS undefined symbol can be replaced by a 540 // STT_NOTYPE lazy symbol. 541 if (symbolKind != PlaceholderKind && !newSym.isLazy() && 542 (type == STT_TLS) != (newSym.type == STT_TLS) && 543 type != llvm::ELF::STT_NOTYPE) 544 error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " + 545 toString(newSym.file) + "\n>>> defined in " + toString(file)); 546 547 Symbol old = *this; 548 memcpy(this, &newSym, newSym.getSymbolSize()); 549 550 // old may be a placeholder. The referenced fields must be initialized in 551 // SymbolTable::insert. 552 versionId = old.versionId; 553 visibility = old.visibility; 554 isUsedInRegularObj = old.isUsedInRegularObj; 555 exportDynamic = old.exportDynamic; 556 inDynamicList = old.inDynamicList; 557 canInline = old.canInline; 558 referenced = old.referenced; 559 traced = old.traced; 560 isPreemptible = old.isPreemptible; 561 scriptDefined = old.scriptDefined; 562 partition = old.partition; 563 564 // Symbol length is computed lazily. If we already know a symbol length, 565 // propagate it. 566 if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0) 567 nameSize = old.nameSize; 568 569 // Print out a log message if --trace-symbol was specified. 570 // This is for debugging. 571 if (traced) 572 printTraceSymbol(this); 573 } 574 575 void maybeWarnUnorderableSymbol(const Symbol *sym); 576 bool computeIsPreemptible(const Symbol &sym); 577 void reportBackrefs(); 578 579 // A mapping from a symbol to an InputFile referencing it backward. Used by 580 // --warn-backrefs. 581 extern llvm::DenseMap<const Symbol *, 582 std::pair<const InputFile *, const InputFile *>> 583 backwardReferences; 584 585 } // namespace elf 586 } // namespace lld 587 588 #endif 589