xref: /freebsd/contrib/llvm-project/lld/ELF/Symbols.h (revision 094517119c62c23369d545a7475ae982d86330a3)
1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various types of Symbols.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLD_ELF_SYMBOLS_H
14 #define LLD_ELF_SYMBOLS_H
15 
16 #include "InputFiles.h"
17 #include "InputSection.h"
18 #include "lld/Common/LLVM.h"
19 #include "lld/Common/Memory.h"
20 #include "lld/Common/Strings.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/Object/Archive.h"
23 #include "llvm/Object/ELF.h"
24 #include <tuple>
25 
26 namespace lld {
27 // Returns a string representation for a symbol for diagnostics.
28 std::string toString(const elf::Symbol &);
29 
30 // There are two different ways to convert an Archive::Symbol to a string:
31 // One for Microsoft name mangling and one for Itanium name mangling.
32 // Call the functions toCOFFString and toELFString, not just toString.
33 std::string toELFString(const llvm::object::Archive::Symbol &);
34 
35 namespace elf {
36 class CommonSymbol;
37 class Defined;
38 class InputFile;
39 class LazyArchive;
40 class LazyObject;
41 class SharedSymbol;
42 class Symbol;
43 class Undefined;
44 
45 // Some index properties of a symbol are stored separately in this auxiliary
46 // struct to decrease sizeof(SymbolUnion) in the majority of cases.
47 struct SymbolAux {
48   uint32_t gotIdx = -1;
49   uint32_t pltIdx = -1;
50   uint32_t tlsDescIdx = -1;
51   uint32_t tlsGdIdx = -1;
52 };
53 
54 extern SmallVector<SymbolAux, 0> symAux;
55 
56 // The base class for real symbol classes.
57 class Symbol {
58 public:
59   enum Kind {
60     PlaceholderKind,
61     DefinedKind,
62     CommonKind,
63     SharedKind,
64     UndefinedKind,
65     LazyArchiveKind,
66     LazyObjectKind,
67   };
68 
69   Kind kind() const { return static_cast<Kind>(symbolKind); }
70 
71   // The file from which this symbol was created.
72   InputFile *file;
73 
74 protected:
75   const char *nameData;
76   // 32-bit size saves space.
77   uint32_t nameSize;
78 
79 public:
80   // A symAux index used to access GOT/PLT entry indexes. This is allocated in
81   // postScanRelocations().
82   uint32_t auxIdx = -1;
83   uint32_t dynsymIndex = 0;
84 
85   // This field is a index to the symbol's version definition.
86   uint16_t verdefIndex = -1;
87 
88   // Version definition index.
89   uint16_t versionId;
90 
91   // Symbol binding. This is not overwritten by replace() to track
92   // changes during resolution. In particular:
93   //  - An undefined weak is still weak when it resolves to a shared library.
94   //  - An undefined weak will not extract archive members, but we have to
95   //    remember it is weak.
96   uint8_t binding;
97 
98   // The following fields have the same meaning as the ELF symbol attributes.
99   uint8_t type;    // symbol type
100   uint8_t stOther; // st_other field value
101 
102   uint8_t symbolKind;
103 
104   // Symbol visibility. This is the computed minimum visibility of all
105   // observed non-DSO symbols.
106   uint8_t visibility : 2;
107 
108   // True if the symbol was used for linking and thus need to be added to the
109   // output file's symbol table. This is true for all symbols except for
110   // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
111   // are unreferenced except by other bitcode objects.
112   uint8_t isUsedInRegularObj : 1;
113 
114   // Used by a Defined symbol with protected or default visibility, to record
115   // whether it is required to be exported into .dynsym. This is set when any of
116   // the following conditions hold:
117   //
118   // - If there is an interposable symbol from a DSO.
119   // - If -shared or --export-dynamic is specified, any symbol in an object
120   //   file/bitcode sets this property, unless suppressed by LTO
121   //   canBeOmittedFromSymbolTable().
122   uint8_t exportDynamic : 1;
123 
124   // True if the symbol is in the --dynamic-list file. A Defined symbol with
125   // protected or default visibility with this property is required to be
126   // exported into .dynsym.
127   uint8_t inDynamicList : 1;
128 
129   // False if LTO shouldn't inline whatever this symbol points to. If a symbol
130   // is overwritten after LTO, LTO shouldn't inline the symbol because it
131   // doesn't know the final contents of the symbol.
132   uint8_t canInline : 1;
133 
134   // Used to track if there has been at least one undefined reference to the
135   // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK
136   // if the first undefined reference from a non-shared object is weak.
137   //
138   // This is also used to retain __wrap_foo when foo is referenced.
139   uint8_t referenced : 1;
140 
141   // True if this symbol is specified by --trace-symbol option.
142   uint8_t traced : 1;
143 
144   // True if the name contains '@'.
145   uint8_t hasVersionSuffix : 1;
146 
147   inline void replace(const Symbol &newSym);
148 
149   bool includeInDynsym() const;
150   uint8_t computeBinding() const;
151   bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
152 
153   bool isUndefined() const { return symbolKind == UndefinedKind; }
154   bool isCommon() const { return symbolKind == CommonKind; }
155   bool isDefined() const { return symbolKind == DefinedKind; }
156   bool isShared() const { return symbolKind == SharedKind; }
157   bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
158 
159   bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
160 
161   bool isLazy() const {
162     return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
163   }
164 
165   // True if this is an undefined weak symbol. This only works once
166   // all input files have been added.
167   bool isUndefWeak() const { return isWeak() && isUndefined(); }
168 
169   StringRef getName() const { return {nameData, nameSize}; }
170 
171   void setName(StringRef s) {
172     nameData = s.data();
173     nameSize = s.size();
174   }
175 
176   void parseSymbolVersion();
177 
178   // Get the NUL-terminated version suffix ("", "@...", or "@@...").
179   //
180   // For @@, the name has been truncated by insert(). For @, the name has been
181   // truncated by Symbol::parseSymbolVersion().
182   const char *getVersionSuffix() const { return nameData + nameSize; }
183 
184   uint32_t getGotIdx() const {
185     return auxIdx == uint32_t(-1) ? uint32_t(-1) : symAux[auxIdx].gotIdx;
186   }
187   uint32_t getPltIdx() const {
188     return auxIdx == uint32_t(-1) ? uint32_t(-1) : symAux[auxIdx].pltIdx;
189   }
190   uint32_t getTlsDescIdx() const {
191     return auxIdx == uint32_t(-1) ? uint32_t(-1) : symAux[auxIdx].tlsDescIdx;
192   }
193   uint32_t getTlsGdIdx() const {
194     return auxIdx == uint32_t(-1) ? uint32_t(-1) : symAux[auxIdx].tlsGdIdx;
195   }
196 
197   bool isInGot() const { return getGotIdx() != uint32_t(-1); }
198   bool isInPlt() const { return getPltIdx() != uint32_t(-1); }
199 
200   uint64_t getVA(int64_t addend = 0) const;
201 
202   uint64_t getGotOffset() const;
203   uint64_t getGotVA() const;
204   uint64_t getGotPltOffset() const;
205   uint64_t getGotPltVA() const;
206   uint64_t getPltVA() const;
207   uint64_t getSize() const;
208   OutputSection *getOutputSection() const;
209 
210   // The following two functions are used for symbol resolution.
211   //
212   // You are expected to call mergeProperties for all symbols in input
213   // files so that attributes that are attached to names rather than
214   // indivisual symbol (such as visibility) are merged together.
215   //
216   // Every time you read a new symbol from an input, you are supposed
217   // to call resolve() with the new symbol. That function replaces
218   // "this" object as a result of name resolution if the new symbol is
219   // more appropriate to be included in the output.
220   //
221   // For example, if "this" is an undefined symbol and a new symbol is
222   // a defined symbol, "this" is replaced with the new symbol.
223   void mergeProperties(const Symbol &other);
224   void resolve(const Symbol &other);
225 
226   // If this is a lazy symbol, extract an input file and add the symbol
227   // in the file to the symbol table. Calling this function on
228   // non-lazy object causes a runtime error.
229   void extract() const;
230 
231   static bool isExportDynamic(Kind k, uint8_t visibility) {
232     if (k == SharedKind)
233       return visibility == llvm::ELF::STV_DEFAULT;
234     return config->shared || config->exportDynamic;
235   }
236 
237 private:
238   void resolveUndefined(const Undefined &other);
239   void resolveCommon(const CommonSymbol &other);
240   void resolveDefined(const Defined &other);
241   template <class LazyT> void resolveLazy(const LazyT &other);
242   void resolveShared(const SharedSymbol &other);
243 
244   int compare(const Symbol *other) const;
245 
246   inline size_t getSymbolSize() const;
247 
248 protected:
249   Symbol(Kind k, InputFile *file, StringRef name, uint8_t binding,
250          uint8_t stOther, uint8_t type)
251       : file(file), nameData(name.data()), nameSize(name.size()),
252         binding(binding), type(type), stOther(stOther), symbolKind(k),
253         visibility(stOther & 3),
254         isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
255         exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false),
256         canInline(false), referenced(false), traced(false),
257         hasVersionSuffix(false), isInIplt(false), gotInIgot(false),
258         isPreemptible(false), used(!config->gcSections), folded(false),
259         needsTocRestore(false), scriptDefined(false), needsCopy(false),
260         needsGot(false), needsPlt(false), needsTlsDesc(false),
261         needsTlsGd(false), needsTlsGdToIe(false), needsTlsLd(false),
262         needsGotDtprel(false), needsTlsIe(false), hasDirectReloc(false) {}
263 
264 public:
265   // True if this symbol is in the Iplt sub-section of the Plt and the Igot
266   // sub-section of the .got.plt or .got.
267   uint8_t isInIplt : 1;
268 
269   // True if this symbol needs a GOT entry and its GOT entry is actually in
270   // Igot. This will be true only for certain non-preemptible ifuncs.
271   uint8_t gotInIgot : 1;
272 
273   // True if this symbol is preemptible at load time.
274   uint8_t isPreemptible : 1;
275 
276   // True if an undefined or shared symbol is used from a live section.
277   //
278   // NOTE: In Writer.cpp the field is used to mark local defined symbols
279   // which are referenced by relocations when -r or --emit-relocs is given.
280   uint8_t used : 1;
281 
282   // True if defined relative to a section discarded by ICF.
283   uint8_t folded : 1;
284 
285   // True if a call to this symbol needs to be followed by a restore of the
286   // PPC64 toc pointer.
287   uint8_t needsTocRestore : 1;
288 
289   // True if this symbol is defined by a linker script.
290   uint8_t scriptDefined : 1;
291 
292   // True if this symbol needs a canonical PLT entry, or (during
293   // postScanRelocations) a copy relocation.
294   uint8_t needsCopy : 1;
295 
296   // Temporary flags used to communicate which symbol entries need PLT and GOT
297   // entries during postScanRelocations();
298   uint8_t needsGot : 1;
299   uint8_t needsPlt : 1;
300   uint8_t needsTlsDesc : 1;
301   uint8_t needsTlsGd : 1;
302   uint8_t needsTlsGdToIe : 1;
303   uint8_t needsTlsLd : 1;
304   uint8_t needsGotDtprel : 1;
305   uint8_t needsTlsIe : 1;
306   uint8_t hasDirectReloc : 1;
307 
308   bool needsDynReloc() const {
309     return needsCopy || needsGot || needsPlt || needsTlsDesc || needsTlsGd ||
310            needsTlsGdToIe || needsTlsLd || needsGotDtprel || needsTlsIe;
311   }
312   void allocateAux() {
313     assert(auxIdx == uint32_t(-1));
314     auxIdx = symAux.size();
315     symAux.emplace_back();
316   }
317 
318   // The partition whose dynamic symbol table contains this symbol's definition.
319   uint8_t partition = 1;
320 
321   bool isSection() const { return type == llvm::ELF::STT_SECTION; }
322   bool isTls() const { return type == llvm::ELF::STT_TLS; }
323   bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
324   bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
325   bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
326   bool isFile() const { return type == llvm::ELF::STT_FILE; }
327 };
328 
329 // Represents a symbol that is defined in the current output file.
330 class Defined : public Symbol {
331 public:
332   Defined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
333           uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
334       : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
335         size(size), section(section) {}
336 
337   static bool classof(const Symbol *s) { return s->isDefined(); }
338 
339   uint64_t value;
340   uint64_t size;
341   SectionBase *section;
342 };
343 
344 // Represents a common symbol.
345 //
346 // On Unix, it is traditionally allowed to write variable definitions
347 // without initialization expressions (such as "int foo;") to header
348 // files. Such definition is called "tentative definition".
349 //
350 // Using tentative definition is usually considered a bad practice
351 // because you should write only declarations (such as "extern int
352 // foo;") to header files. Nevertheless, the linker and the compiler
353 // have to do something to support bad code by allowing duplicate
354 // definitions for this particular case.
355 //
356 // Common symbols represent variable definitions without initializations.
357 // The compiler creates common symbols when it sees variable definitions
358 // without initialization (you can suppress this behavior and let the
359 // compiler create a regular defined symbol by -fno-common).
360 //
361 // The linker allows common symbols to be replaced by regular defined
362 // symbols. If there are remaining common symbols after name resolution is
363 // complete, they are converted to regular defined symbols in a .bss
364 // section. (Therefore, the later passes don't see any CommonSymbols.)
365 class CommonSymbol : public Symbol {
366 public:
367   CommonSymbol(InputFile *file, StringRef name, uint8_t binding,
368                uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
369       : Symbol(CommonKind, file, name, binding, stOther, type),
370         alignment(alignment), size(size) {}
371 
372   static bool classof(const Symbol *s) { return s->isCommon(); }
373 
374   uint32_t alignment;
375   uint64_t size;
376 };
377 
378 class Undefined : public Symbol {
379 public:
380   Undefined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
381             uint8_t type, uint32_t discardedSecIdx = 0)
382       : Symbol(UndefinedKind, file, name, binding, stOther, type),
383         discardedSecIdx(discardedSecIdx) {}
384 
385   static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
386 
387   // The section index if in a discarded section, 0 otherwise.
388   uint32_t discardedSecIdx;
389 };
390 
391 class SharedSymbol : public Symbol {
392 public:
393   static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
394 
395   SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
396                uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
397                uint32_t alignment, uint16_t verdefIndex)
398       : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
399         size(size), alignment(alignment) {
400     this->verdefIndex = verdefIndex;
401     // GNU ifunc is a mechanism to allow user-supplied functions to
402     // resolve PLT slot values at load-time. This is contrary to the
403     // regular symbol resolution scheme in which symbols are resolved just
404     // by name. Using this hook, you can program how symbols are solved
405     // for you program. For example, you can make "memcpy" to be resolved
406     // to a SSE-enabled version of memcpy only when a machine running the
407     // program supports the SSE instruction set.
408     //
409     // Naturally, such symbols should always be called through their PLT
410     // slots. What GNU ifunc symbols point to are resolver functions, and
411     // calling them directly doesn't make sense (unless you are writing a
412     // loader).
413     //
414     // For DSO symbols, we always call them through PLT slots anyway.
415     // So there's no difference between GNU ifunc and regular function
416     // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
417     if (this->type == llvm::ELF::STT_GNU_IFUNC)
418       this->type = llvm::ELF::STT_FUNC;
419   }
420 
421   SharedFile &getFile() const { return *cast<SharedFile>(file); }
422 
423   uint64_t value; // st_value
424   uint64_t size;  // st_size
425   uint32_t alignment;
426 };
427 
428 // LazyArchive and LazyObject represent a symbols that is not yet in the link,
429 // but we know where to find it if needed. If the resolver finds both Undefined
430 // and Lazy for the same name, it will ask the Lazy to load a file.
431 //
432 // A special complication is the handling of weak undefined symbols. They should
433 // not load a file, but we have to remember we have seen both the weak undefined
434 // and the lazy. We represent that with a lazy symbol with a weak binding. This
435 // means that code looking for undefined symbols normally also has to take lazy
436 // symbols into consideration.
437 
438 // This class represents a symbol defined in an archive file. It is
439 // created from an archive file header, and it knows how to load an
440 // object file from an archive to replace itself with a defined
441 // symbol.
442 class LazyArchive : public Symbol {
443 public:
444   LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
445       : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
446                llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
447         sym(s) {}
448 
449   static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
450 
451   MemoryBufferRef getMemberBuffer();
452 
453   const llvm::object::Archive::Symbol sym;
454 };
455 
456 // LazyObject symbols represents symbols in object files between
457 // --start-lib and --end-lib options.
458 class LazyObject : public Symbol {
459 public:
460   LazyObject(InputFile &file, StringRef name)
461       : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
462                llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {
463     isUsedInRegularObj = false;
464   }
465 
466   static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
467 };
468 
469 // Some linker-generated symbols need to be created as
470 // Defined symbols.
471 struct ElfSym {
472   // __bss_start
473   static Defined *bss;
474 
475   // etext and _etext
476   static Defined *etext1;
477   static Defined *etext2;
478 
479   // edata and _edata
480   static Defined *edata1;
481   static Defined *edata2;
482 
483   // end and _end
484   static Defined *end1;
485   static Defined *end2;
486 
487   // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
488   // be at some offset from the base of the .got section, usually 0 or
489   // the end of the .got.
490   static Defined *globalOffsetTable;
491 
492   // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
493   static Defined *mipsGp;
494   static Defined *mipsGpDisp;
495   static Defined *mipsLocalGp;
496 
497   // __rel{,a}_iplt_{start,end} symbols.
498   static Defined *relaIpltStart;
499   static Defined *relaIpltEnd;
500 
501   // __global_pointer$ for RISC-V.
502   static Defined *riscvGlobalPointer;
503 
504   // _TLS_MODULE_BASE_ on targets that support TLSDESC.
505   static Defined *tlsModuleBase;
506 };
507 
508 // A buffer class that is large enough to hold any Symbol-derived
509 // object. We allocate memory using this class and instantiate a symbol
510 // using the placement new.
511 union SymbolUnion {
512   alignas(Defined) char a[sizeof(Defined)];
513   alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
514   alignas(Undefined) char c[sizeof(Undefined)];
515   alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
516   alignas(LazyArchive) char e[sizeof(LazyArchive)];
517   alignas(LazyObject) char f[sizeof(LazyObject)];
518 };
519 
520 // It is important to keep the size of SymbolUnion small for performance and
521 // memory usage reasons. 72 bytes is a soft limit based on the size of Defined
522 // on a 64-bit system.
523 static_assert(sizeof(SymbolUnion) <= 72, "SymbolUnion too large");
524 
525 template <typename T> struct AssertSymbol {
526   static_assert(std::is_trivially_destructible<T>(),
527                 "Symbol types must be trivially destructible");
528   static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
529   static_assert(alignof(T) <= alignof(SymbolUnion),
530                 "SymbolUnion not aligned enough");
531 };
532 
533 static inline void assertSymbols() {
534   AssertSymbol<Defined>();
535   AssertSymbol<CommonSymbol>();
536   AssertSymbol<Undefined>();
537   AssertSymbol<SharedSymbol>();
538   AssertSymbol<LazyArchive>();
539   AssertSymbol<LazyObject>();
540 }
541 
542 void printTraceSymbol(const Symbol *sym);
543 
544 size_t Symbol::getSymbolSize() const {
545   switch (kind()) {
546   case CommonKind:
547     return sizeof(CommonSymbol);
548   case DefinedKind:
549     return sizeof(Defined);
550   case LazyArchiveKind:
551     return sizeof(LazyArchive);
552   case LazyObjectKind:
553     return sizeof(LazyObject);
554   case SharedKind:
555     return sizeof(SharedSymbol);
556   case UndefinedKind:
557     return sizeof(Undefined);
558   case PlaceholderKind:
559     return sizeof(Symbol);
560   }
561   llvm_unreachable("unknown symbol kind");
562 }
563 
564 // replace() replaces "this" object with a given symbol by memcpy'ing
565 // it over to "this". This function is called as a result of name
566 // resolution, e.g. to replace an undefind symbol with a defined symbol.
567 void Symbol::replace(const Symbol &newSym) {
568   using llvm::ELF::STT_TLS;
569 
570   // st_value of STT_TLS represents the assigned offset, not the actual address
571   // which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can only be
572   // referenced by special TLS relocations. It is usually an error if a STT_TLS
573   // symbol is replaced by a non-STT_TLS symbol, vice versa. There are two
574   // exceptions: (a) a STT_NOTYPE lazy/undefined symbol can be replaced by a
575   // STT_TLS symbol, (b) a STT_TLS undefined symbol can be replaced by a
576   // STT_NOTYPE lazy symbol.
577   if (symbolKind != PlaceholderKind && !newSym.isLazy() &&
578       (type == STT_TLS) != (newSym.type == STT_TLS) &&
579       type != llvm::ELF::STT_NOTYPE)
580     error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
581           toString(newSym.file) + "\n>>> defined in " + toString(file));
582 
583   Symbol old = *this;
584   memcpy(this, &newSym, newSym.getSymbolSize());
585 
586   // old may be a placeholder. The referenced fields must be initialized in
587   // SymbolTable::insert.
588   versionId = old.versionId;
589   visibility = old.visibility;
590   isUsedInRegularObj = old.isUsedInRegularObj;
591   exportDynamic = old.exportDynamic;
592   inDynamicList = old.inDynamicList;
593   canInline = old.canInline;
594   referenced = old.referenced;
595   traced = old.traced;
596   hasVersionSuffix = old.hasVersionSuffix;
597   isPreemptible = old.isPreemptible;
598   scriptDefined = old.scriptDefined;
599   partition = old.partition;
600 
601   // Print out a log message if --trace-symbol was specified.
602   // This is for debugging.
603   if (traced)
604     printTraceSymbol(this);
605 }
606 
607 template <typename... T> Defined *makeDefined(T &&...args) {
608   return new (reinterpret_cast<Defined *>(
609       getSpecificAllocSingleton<SymbolUnion>().Allocate()))
610       Defined(std::forward<T>(args)...);
611 }
612 
613 void maybeWarnUnorderableSymbol(const Symbol *sym);
614 bool computeIsPreemptible(const Symbol &sym);
615 void reportBackrefs();
616 
617 // A mapping from a symbol to an InputFile referencing it backward. Used by
618 // --warn-backrefs.
619 extern llvm::DenseMap<const Symbol *,
620                       std::pair<const InputFile *, const InputFile *>>
621     backwardReferences;
622 
623 // A tuple of (reference, extractedFile, sym). Used by --why-extract=.
624 extern SmallVector<std::tuple<std::string, const InputFile *, const Symbol &>,
625                    0>
626     whyExtract;
627 
628 } // namespace elf
629 } // namespace lld
630 
631 #endif
632