1 //===- Symbols.h ------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines various types of Symbols. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLD_ELF_SYMBOLS_H 14 #define LLD_ELF_SYMBOLS_H 15 16 #include "Config.h" 17 #include "lld/Common/LLVM.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/Object/ELF.h" 21 #include "llvm/Support/Compiler.h" 22 #include <tuple> 23 24 namespace lld { 25 namespace elf { 26 class Symbol; 27 } 28 // Returns a string representation for a symbol for diagnostics. 29 std::string toString(const elf::Symbol &); 30 31 namespace elf { 32 class CommonSymbol; 33 class Defined; 34 class OutputSection; 35 class SectionBase; 36 class InputSectionBase; 37 class SharedSymbol; 38 class Symbol; 39 class Undefined; 40 class LazyObject; 41 class InputFile; 42 43 void printTraceSymbol(const Symbol &sym, StringRef name); 44 45 enum { 46 NEEDS_GOT = 1 << 0, 47 NEEDS_PLT = 1 << 1, 48 HAS_DIRECT_RELOC = 1 << 2, 49 // True if this symbol needs a canonical PLT entry, or (during 50 // postScanRelocations) a copy relocation. 51 NEEDS_COPY = 1 << 3, 52 NEEDS_TLSDESC = 1 << 4, 53 NEEDS_TLSGD = 1 << 5, 54 NEEDS_TLSGD_TO_IE = 1 << 6, 55 NEEDS_GOT_DTPREL = 1 << 7, 56 NEEDS_TLSIE = 1 << 8, 57 }; 58 59 // Some index properties of a symbol are stored separately in this auxiliary 60 // struct to decrease sizeof(SymbolUnion) in the majority of cases. 61 struct SymbolAux { 62 uint32_t gotIdx = -1; 63 uint32_t pltIdx = -1; 64 uint32_t tlsDescIdx = -1; 65 uint32_t tlsGdIdx = -1; 66 }; 67 68 LLVM_LIBRARY_VISIBILITY extern SmallVector<SymbolAux, 0> symAux; 69 70 // The base class for real symbol classes. 71 class Symbol { 72 public: 73 enum Kind { 74 PlaceholderKind, 75 DefinedKind, 76 CommonKind, 77 SharedKind, 78 UndefinedKind, 79 LazyObjectKind, 80 }; 81 82 Kind kind() const { return static_cast<Kind>(symbolKind); } 83 84 // The file from which this symbol was created. 85 InputFile *file; 86 87 // The default copy constructor is deleted due to atomic flags. Define one for 88 // places where no atomic is needed. 89 Symbol(const Symbol &o) { memcpy(this, &o, sizeof(o)); } 90 91 protected: 92 const char *nameData; 93 // 32-bit size saves space. 94 uint32_t nameSize; 95 96 public: 97 // The next three fields have the same meaning as the ELF symbol attributes. 98 // type and binding are placed in this order to optimize generating st_info, 99 // which is defined as (binding << 4) + (type & 0xf), on a little-endian 100 // system. 101 uint8_t type : 4; // symbol type 102 103 // Symbol binding. This is not overwritten by replace() to track 104 // changes during resolution. In particular: 105 // - An undefined weak is still weak when it resolves to a shared library. 106 // - An undefined weak will not extract archive members, but we have to 107 // remember it is weak. 108 uint8_t binding : 4; 109 110 uint8_t stOther; // st_other field value 111 112 uint8_t symbolKind; 113 114 // The partition whose dynamic symbol table contains this symbol's definition. 115 uint8_t partition; 116 117 // True if this symbol is preemptible at load time. 118 uint8_t isPreemptible : 1; 119 120 // True if the symbol was used for linking and thus need to be added to the 121 // output file's symbol table. This is true for all symbols except for 122 // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that 123 // are unreferenced except by other bitcode objects. 124 uint8_t isUsedInRegularObj : 1; 125 126 // True if an undefined or shared symbol is used from a live section. 127 // 128 // NOTE: In Writer.cpp the field is used to mark local defined symbols 129 // which are referenced by relocations when -r or --emit-relocs is given. 130 uint8_t used : 1; 131 132 // Used by a Defined symbol with protected or default visibility, to record 133 // whether it is required to be exported into .dynsym. This is set when any of 134 // the following conditions hold: 135 // 136 // - If there is an interposable symbol from a DSO. Note: We also do this for 137 // STV_PROTECTED symbols which can't be interposed (to match BFD behavior). 138 // - If -shared or --export-dynamic is specified, any symbol in an object 139 // file/bitcode sets this property, unless suppressed by LTO 140 // canBeOmittedFromSymbolTable(). 141 uint8_t exportDynamic : 1; 142 143 // True if the symbol is in the --dynamic-list file. A Defined symbol with 144 // protected or default visibility with this property is required to be 145 // exported into .dynsym. 146 uint8_t inDynamicList : 1; 147 148 // Used to track if there has been at least one undefined reference to the 149 // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK 150 // if the first undefined reference from a non-shared object is weak. 151 uint8_t referenced : 1; 152 153 // Used to track if this symbol will be referenced after wrapping is performed 154 // (i.e. this will be true for foo if __real_foo is referenced, and will be 155 // true for __wrap_foo if foo is referenced). 156 uint8_t referencedAfterWrap : 1; 157 158 // True if this symbol is specified by --trace-symbol option. 159 uint8_t traced : 1; 160 161 // True if the name contains '@'. 162 uint8_t hasVersionSuffix : 1; 163 164 // Symbol visibility. This is the computed minimum visibility of all 165 // observed non-DSO symbols. 166 uint8_t visibility() const { return stOther & 3; } 167 void setVisibility(uint8_t visibility) { 168 stOther = (stOther & ~3) | visibility; 169 } 170 171 bool includeInDynsym() const; 172 uint8_t computeBinding() const; 173 bool isGlobal() const { return binding == llvm::ELF::STB_GLOBAL; } 174 bool isWeak() const { return binding == llvm::ELF::STB_WEAK; } 175 176 bool isUndefined() const { return symbolKind == UndefinedKind; } 177 bool isCommon() const { return symbolKind == CommonKind; } 178 bool isDefined() const { return symbolKind == DefinedKind; } 179 bool isShared() const { return symbolKind == SharedKind; } 180 bool isPlaceholder() const { return symbolKind == PlaceholderKind; } 181 182 bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; } 183 184 bool isLazy() const { return symbolKind == LazyObjectKind; } 185 186 // True if this is an undefined weak symbol. This only works once 187 // all input files have been added. 188 bool isUndefWeak() const { return isWeak() && isUndefined(); } 189 190 StringRef getName() const { return {nameData, nameSize}; } 191 192 void setName(StringRef s) { 193 nameData = s.data(); 194 nameSize = s.size(); 195 } 196 197 void parseSymbolVersion(); 198 199 // Get the NUL-terminated version suffix ("", "@...", or "@@..."). 200 // 201 // For @@, the name has been truncated by insert(). For @, the name has been 202 // truncated by Symbol::parseSymbolVersion(). 203 const char *getVersionSuffix() const { return nameData + nameSize; } 204 205 uint32_t getGotIdx() const { return symAux[auxIdx].gotIdx; } 206 uint32_t getPltIdx() const { return symAux[auxIdx].pltIdx; } 207 uint32_t getTlsDescIdx() const { return symAux[auxIdx].tlsDescIdx; } 208 uint32_t getTlsGdIdx() const { return symAux[auxIdx].tlsGdIdx; } 209 210 bool isInGot() const { return getGotIdx() != uint32_t(-1); } 211 bool isInPlt() const { return getPltIdx() != uint32_t(-1); } 212 213 uint64_t getVA(int64_t addend = 0) const; 214 215 uint64_t getGotOffset() const; 216 uint64_t getGotVA() const; 217 uint64_t getGotPltOffset() const; 218 uint64_t getGotPltVA() const; 219 uint64_t getPltVA() const; 220 uint64_t getSize() const; 221 OutputSection *getOutputSection() const; 222 223 // The following two functions are used for symbol resolution. 224 // 225 // You are expected to call mergeProperties for all symbols in input 226 // files so that attributes that are attached to names rather than 227 // indivisual symbol (such as visibility) are merged together. 228 // 229 // Every time you read a new symbol from an input, you are supposed 230 // to call resolve() with the new symbol. That function replaces 231 // "this" object as a result of name resolution if the new symbol is 232 // more appropriate to be included in the output. 233 // 234 // For example, if "this" is an undefined symbol and a new symbol is 235 // a defined symbol, "this" is replaced with the new symbol. 236 void mergeProperties(const Symbol &other); 237 void resolve(const Undefined &other); 238 void resolve(const CommonSymbol &other); 239 void resolve(const Defined &other); 240 void resolve(const LazyObject &other); 241 void resolve(const SharedSymbol &other); 242 243 // If this is a lazy symbol, extract an input file and add the symbol 244 // in the file to the symbol table. Calling this function on 245 // non-lazy object causes a runtime error. 246 void extract() const; 247 248 void checkDuplicate(const Defined &other) const; 249 250 private: 251 bool shouldReplace(const Defined &other) const; 252 253 protected: 254 Symbol(Kind k, InputFile *file, StringRef name, uint8_t binding, 255 uint8_t stOther, uint8_t type) 256 : file(file), nameData(name.data()), nameSize(name.size()), type(type), 257 binding(binding), stOther(stOther), symbolKind(k), 258 exportDynamic(false) {} 259 260 void overwrite(Symbol &sym, Kind k) const { 261 if (sym.traced) 262 printTraceSymbol(*this, sym.getName()); 263 sym.file = file; 264 sym.type = type; 265 sym.binding = binding; 266 sym.stOther = (stOther & ~3) | sym.visibility(); 267 sym.symbolKind = k; 268 } 269 270 public: 271 // True if this symbol is in the Iplt sub-section of the Plt and the Igot 272 // sub-section of the .got.plt or .got. 273 uint8_t isInIplt : 1; 274 275 // True if this symbol needs a GOT entry and its GOT entry is actually in 276 // Igot. This will be true only for certain non-preemptible ifuncs. 277 uint8_t gotInIgot : 1; 278 279 // True if defined relative to a section discarded by ICF. 280 uint8_t folded : 1; 281 282 // True if a call to this symbol needs to be followed by a restore of the 283 // PPC64 toc pointer. 284 uint8_t needsTocRestore : 1; 285 286 // True if this symbol is defined by a symbol assignment or wrapped by --wrap. 287 // 288 // LTO shouldn't inline the symbol because it doesn't know the final content 289 // of the symbol. 290 uint8_t scriptDefined : 1; 291 292 // True if defined in a DSO as protected visibility. 293 uint8_t dsoProtected : 1; 294 295 // True if targeted by a range extension thunk. 296 uint8_t thunkAccessed : 1; 297 298 // Temporary flags used to communicate which symbol entries need PLT and GOT 299 // entries during postScanRelocations(); 300 std::atomic<uint16_t> flags; 301 302 // A symAux index used to access GOT/PLT entry indexes. This is allocated in 303 // postScanRelocations(). 304 uint32_t auxIdx; 305 uint32_t dynsymIndex; 306 307 // This field is a index to the symbol's version definition. 308 uint16_t verdefIndex; 309 310 // Version definition index. 311 uint16_t versionId; 312 313 void setFlags(uint16_t bits) { 314 flags.fetch_or(bits, std::memory_order_relaxed); 315 } 316 bool hasFlag(uint16_t bit) const { 317 assert(bit && (bit & (bit - 1)) == 0 && "bit must be a power of 2"); 318 return flags.load(std::memory_order_relaxed) & bit; 319 } 320 321 bool needsDynReloc() const { 322 return flags.load(std::memory_order_relaxed) & 323 (NEEDS_COPY | NEEDS_GOT | NEEDS_PLT | NEEDS_TLSDESC | NEEDS_TLSGD | 324 NEEDS_TLSGD_TO_IE | NEEDS_GOT_DTPREL | NEEDS_TLSIE); 325 } 326 void allocateAux() { 327 assert(auxIdx == 0); 328 auxIdx = symAux.size(); 329 symAux.emplace_back(); 330 } 331 332 bool isSection() const { return type == llvm::ELF::STT_SECTION; } 333 bool isTls() const { return type == llvm::ELF::STT_TLS; } 334 bool isFunc() const { return type == llvm::ELF::STT_FUNC; } 335 bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; } 336 bool isObject() const { return type == llvm::ELF::STT_OBJECT; } 337 bool isFile() const { return type == llvm::ELF::STT_FILE; } 338 }; 339 340 // Represents a symbol that is defined in the current output file. 341 class Defined : public Symbol { 342 public: 343 Defined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther, 344 uint8_t type, uint64_t value, uint64_t size, SectionBase *section) 345 : Symbol(DefinedKind, file, name, binding, stOther, type), value(value), 346 size(size), section(section) { 347 exportDynamic = config->exportDynamic; 348 } 349 void overwrite(Symbol &sym) const { 350 Symbol::overwrite(sym, DefinedKind); 351 sym.verdefIndex = -1; 352 auto &s = static_cast<Defined &>(sym); 353 s.value = value; 354 s.size = size; 355 s.section = section; 356 } 357 358 static bool classof(const Symbol *s) { return s->isDefined(); } 359 360 uint64_t value; 361 uint64_t size; 362 SectionBase *section; 363 }; 364 365 // Represents a common symbol. 366 // 367 // On Unix, it is traditionally allowed to write variable definitions 368 // without initialization expressions (such as "int foo;") to header 369 // files. Such definition is called "tentative definition". 370 // 371 // Using tentative definition is usually considered a bad practice 372 // because you should write only declarations (such as "extern int 373 // foo;") to header files. Nevertheless, the linker and the compiler 374 // have to do something to support bad code by allowing duplicate 375 // definitions for this particular case. 376 // 377 // Common symbols represent variable definitions without initializations. 378 // The compiler creates common symbols when it sees variable definitions 379 // without initialization (you can suppress this behavior and let the 380 // compiler create a regular defined symbol by -fno-common). 381 // 382 // The linker allows common symbols to be replaced by regular defined 383 // symbols. If there are remaining common symbols after name resolution is 384 // complete, they are converted to regular defined symbols in a .bss 385 // section. (Therefore, the later passes don't see any CommonSymbols.) 386 class CommonSymbol : public Symbol { 387 public: 388 CommonSymbol(InputFile *file, StringRef name, uint8_t binding, 389 uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size) 390 : Symbol(CommonKind, file, name, binding, stOther, type), 391 alignment(alignment), size(size) { 392 exportDynamic = config->exportDynamic; 393 } 394 void overwrite(Symbol &sym) const { 395 Symbol::overwrite(sym, CommonKind); 396 auto &s = static_cast<CommonSymbol &>(sym); 397 s.alignment = alignment; 398 s.size = size; 399 } 400 401 static bool classof(const Symbol *s) { return s->isCommon(); } 402 403 uint32_t alignment; 404 uint64_t size; 405 }; 406 407 class Undefined : public Symbol { 408 public: 409 Undefined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther, 410 uint8_t type, uint32_t discardedSecIdx = 0) 411 : Symbol(UndefinedKind, file, name, binding, stOther, type), 412 discardedSecIdx(discardedSecIdx) {} 413 void overwrite(Symbol &sym) const { 414 Symbol::overwrite(sym, UndefinedKind); 415 auto &s = static_cast<Undefined &>(sym); 416 s.discardedSecIdx = discardedSecIdx; 417 s.nonPrevailing = nonPrevailing; 418 } 419 420 static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } 421 422 // The section index if in a discarded section, 0 otherwise. 423 uint32_t discardedSecIdx; 424 bool nonPrevailing = false; 425 }; 426 427 class SharedSymbol : public Symbol { 428 public: 429 static bool classof(const Symbol *s) { return s->kind() == SharedKind; } 430 431 SharedSymbol(InputFile &file, StringRef name, uint8_t binding, 432 uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, 433 uint32_t alignment) 434 : Symbol(SharedKind, &file, name, binding, stOther, type), value(value), 435 size(size), alignment(alignment) { 436 exportDynamic = true; 437 dsoProtected = visibility() == llvm::ELF::STV_PROTECTED; 438 // GNU ifunc is a mechanism to allow user-supplied functions to 439 // resolve PLT slot values at load-time. This is contrary to the 440 // regular symbol resolution scheme in which symbols are resolved just 441 // by name. Using this hook, you can program how symbols are solved 442 // for you program. For example, you can make "memcpy" to be resolved 443 // to a SSE-enabled version of memcpy only when a machine running the 444 // program supports the SSE instruction set. 445 // 446 // Naturally, such symbols should always be called through their PLT 447 // slots. What GNU ifunc symbols point to are resolver functions, and 448 // calling them directly doesn't make sense (unless you are writing a 449 // loader). 450 // 451 // For DSO symbols, we always call them through PLT slots anyway. 452 // So there's no difference between GNU ifunc and regular function 453 // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. 454 if (this->type == llvm::ELF::STT_GNU_IFUNC) 455 this->type = llvm::ELF::STT_FUNC; 456 } 457 void overwrite(Symbol &sym) const { 458 Symbol::overwrite(sym, SharedKind); 459 auto &s = static_cast<SharedSymbol &>(sym); 460 s.dsoProtected = dsoProtected; 461 s.value = value; 462 s.size = size; 463 s.alignment = alignment; 464 } 465 466 uint64_t value; // st_value 467 uint64_t size; // st_size 468 uint32_t alignment; 469 }; 470 471 // LazyObject symbols represent symbols in object files between --start-lib and 472 // --end-lib options. LLD also handles traditional archives as if all the files 473 // in the archive are surrounded by --start-lib and --end-lib. 474 // 475 // A special complication is the handling of weak undefined symbols. They should 476 // not load a file, but we have to remember we have seen both the weak undefined 477 // and the lazy. We represent that with a lazy symbol with a weak binding. This 478 // means that code looking for undefined symbols normally also has to take lazy 479 // symbols into consideration. 480 class LazyObject : public Symbol { 481 public: 482 LazyObject(InputFile &file) 483 : Symbol(LazyObjectKind, &file, {}, llvm::ELF::STB_GLOBAL, 484 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {} 485 void overwrite(Symbol &sym) const { Symbol::overwrite(sym, LazyObjectKind); } 486 487 static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; } 488 }; 489 490 // Some linker-generated symbols need to be created as 491 // Defined symbols. 492 struct ElfSym { 493 // __bss_start 494 static Defined *bss; 495 496 // etext and _etext 497 static Defined *etext1; 498 static Defined *etext2; 499 500 // edata and _edata 501 static Defined *edata1; 502 static Defined *edata2; 503 504 // end and _end 505 static Defined *end1; 506 static Defined *end2; 507 508 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to 509 // be at some offset from the base of the .got section, usually 0 or 510 // the end of the .got. 511 static Defined *globalOffsetTable; 512 513 // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. 514 static Defined *mipsGp; 515 static Defined *mipsGpDisp; 516 static Defined *mipsLocalGp; 517 518 // __global_pointer$ for RISC-V. 519 static Defined *riscvGlobalPointer; 520 521 // __rel{,a}_iplt_{start,end} symbols. 522 static Defined *relaIpltStart; 523 static Defined *relaIpltEnd; 524 525 // _TLS_MODULE_BASE_ on targets that support TLSDESC. 526 static Defined *tlsModuleBase; 527 }; 528 529 // A buffer class that is large enough to hold any Symbol-derived 530 // object. We allocate memory using this class and instantiate a symbol 531 // using the placement new. 532 533 // It is important to keep the size of SymbolUnion small for performance and 534 // memory usage reasons. 64 bytes is a soft limit based on the size of Defined 535 // on a 64-bit system. This is enforced by a static_assert in Symbols.cpp. 536 union SymbolUnion { 537 alignas(Defined) char a[sizeof(Defined)]; 538 alignas(CommonSymbol) char b[sizeof(CommonSymbol)]; 539 alignas(Undefined) char c[sizeof(Undefined)]; 540 alignas(SharedSymbol) char d[sizeof(SharedSymbol)]; 541 alignas(LazyObject) char e[sizeof(LazyObject)]; 542 }; 543 544 template <typename... T> Defined *makeDefined(T &&...args) { 545 auto *sym = getSpecificAllocSingleton<SymbolUnion>().Allocate(); 546 memset(sym, 0, sizeof(Symbol)); 547 auto &s = *new (reinterpret_cast<Defined *>(sym)) Defined(std::forward<T>(args)...); 548 return &s; 549 } 550 551 void reportDuplicate(const Symbol &sym, const InputFile *newFile, 552 InputSectionBase *errSec, uint64_t errOffset); 553 void maybeWarnUnorderableSymbol(const Symbol *sym); 554 bool computeIsPreemptible(const Symbol &sym); 555 556 } // namespace elf 557 } // namespace lld 558 559 #endif 560