xref: /freebsd/contrib/llvm-project/lld/ELF/Symbols.cpp (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 //===- Symbols.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Symbols.h"
10 #include "Driver.h"
11 #include "InputFiles.h"
12 #include "InputSection.h"
13 #include "OutputSections.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "Writer.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "llvm/Demangle/Demangle.h"
19 #include "llvm/Support/Compiler.h"
20 #include <cstring>
21 
22 using namespace llvm;
23 using namespace llvm::object;
24 using namespace llvm::ELF;
25 using namespace lld;
26 using namespace lld::elf;
27 
28 static_assert(sizeof(SymbolUnion) <= 64, "SymbolUnion too large");
29 
30 template <typename T> struct AssertSymbol {
31   static_assert(std::is_trivially_destructible<T>(),
32                 "Symbol types must be trivially destructible");
33   static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
34   static_assert(alignof(T) <= alignof(SymbolUnion),
35                 "SymbolUnion not aligned enough");
36 };
37 
38 LLVM_ATTRIBUTE_UNUSED static inline void assertSymbols() {
39   AssertSymbol<Defined>();
40   AssertSymbol<CommonSymbol>();
41   AssertSymbol<Undefined>();
42   AssertSymbol<SharedSymbol>();
43   AssertSymbol<LazyObject>();
44 }
45 
46 // Returns a symbol for an error message.
47 static std::string maybeDemangleSymbol(StringRef symName) {
48   if (elf::config->demangle)
49     return demangle(symName.str());
50   return symName.str();
51 }
52 
53 std::string lld::toString(const elf::Symbol &sym) {
54   StringRef name = sym.getName();
55   std::string ret = maybeDemangleSymbol(name);
56 
57   const char *suffix = sym.getVersionSuffix();
58   if (*suffix == '@')
59     ret += suffix;
60   return ret;
61 }
62 
63 Defined *ElfSym::bss;
64 Defined *ElfSym::etext1;
65 Defined *ElfSym::etext2;
66 Defined *ElfSym::edata1;
67 Defined *ElfSym::edata2;
68 Defined *ElfSym::end1;
69 Defined *ElfSym::end2;
70 Defined *ElfSym::globalOffsetTable;
71 Defined *ElfSym::mipsGp;
72 Defined *ElfSym::mipsGpDisp;
73 Defined *ElfSym::mipsLocalGp;
74 Defined *ElfSym::relaIpltStart;
75 Defined *ElfSym::relaIpltEnd;
76 Defined *ElfSym::tlsModuleBase;
77 SmallVector<SymbolAux, 0> elf::symAux;
78 
79 static uint64_t getSymVA(const Symbol &sym, int64_t addend) {
80   switch (sym.kind()) {
81   case Symbol::DefinedKind: {
82     auto &d = cast<Defined>(sym);
83     SectionBase *isec = d.section;
84 
85     // This is an absolute symbol.
86     if (!isec)
87       return d.value;
88 
89     assert(isec != &InputSection::discarded);
90 
91     uint64_t offset = d.value;
92 
93     // An object in an SHF_MERGE section might be referenced via a
94     // section symbol (as a hack for reducing the number of local
95     // symbols).
96     // Depending on the addend, the reference via a section symbol
97     // refers to a different object in the merge section.
98     // Since the objects in the merge section are not necessarily
99     // contiguous in the output, the addend can thus affect the final
100     // VA in a non-linear way.
101     // To make this work, we incorporate the addend into the section
102     // offset (and zero out the addend for later processing) so that
103     // we find the right object in the section.
104     if (d.isSection())
105       offset += addend;
106 
107     // In the typical case, this is actually very simple and boils
108     // down to adding together 3 numbers:
109     // 1. The address of the output section.
110     // 2. The offset of the input section within the output section.
111     // 3. The offset within the input section (this addition happens
112     //    inside InputSection::getOffset).
113     //
114     // If you understand the data structures involved with this next
115     // line (and how they get built), then you have a pretty good
116     // understanding of the linker.
117     uint64_t va = isec->getVA(offset);
118     if (d.isSection())
119       va -= addend;
120 
121     // MIPS relocatable files can mix regular and microMIPS code.
122     // Linker needs to distinguish such code. To do so microMIPS
123     // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other`
124     // field. Unfortunately, the `MIPS::relocate()` method has
125     // a symbol value only. To pass type of the symbol (regular/microMIPS)
126     // to that routine as well as other places where we write
127     // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry`
128     // field etc) do the same trick as compiler uses to mark microMIPS
129     // for CPU - set the less-significant bit.
130     if (config->emachine == EM_MIPS && isMicroMips() &&
131         ((sym.stOther & STO_MIPS_MICROMIPS) || sym.hasFlag(NEEDS_COPY)))
132       va |= 1;
133 
134     if (d.isTls() && !config->relocatable) {
135       // Use the address of the TLS segment's first section rather than the
136       // segment's address, because segment addresses aren't initialized until
137       // after sections are finalized. (e.g. Measuring the size of .rela.dyn
138       // for Android relocation packing requires knowing TLS symbol addresses
139       // during section finalization.)
140       if (!Out::tlsPhdr || !Out::tlsPhdr->firstSec)
141         fatal(toString(d.file) +
142               " has an STT_TLS symbol but doesn't have an SHF_TLS section");
143       return va - Out::tlsPhdr->firstSec->addr;
144     }
145     return va;
146   }
147   case Symbol::SharedKind:
148   case Symbol::UndefinedKind:
149     return 0;
150   case Symbol::LazyObjectKind:
151     llvm_unreachable("lazy symbol reached writer");
152   case Symbol::CommonKind:
153     llvm_unreachable("common symbol reached writer");
154   case Symbol::PlaceholderKind:
155     llvm_unreachable("placeholder symbol reached writer");
156   }
157   llvm_unreachable("invalid symbol kind");
158 }
159 
160 uint64_t Symbol::getVA(int64_t addend) const {
161   return getSymVA(*this, addend) + addend;
162 }
163 
164 uint64_t Symbol::getGotVA() const {
165   if (gotInIgot)
166     return in.igotPlt->getVA() + getGotPltOffset();
167   return in.got->getVA() + getGotOffset();
168 }
169 
170 uint64_t Symbol::getGotOffset() const {
171   return getGotIdx() * target->gotEntrySize;
172 }
173 
174 uint64_t Symbol::getGotPltVA() const {
175   if (isInIplt)
176     return in.igotPlt->getVA() + getGotPltOffset();
177   return in.gotPlt->getVA() + getGotPltOffset();
178 }
179 
180 uint64_t Symbol::getGotPltOffset() const {
181   if (isInIplt)
182     return getPltIdx() * target->gotEntrySize;
183   return (getPltIdx() + target->gotPltHeaderEntriesNum) * target->gotEntrySize;
184 }
185 
186 uint64_t Symbol::getPltVA() const {
187   uint64_t outVA = isInIplt
188                        ? in.iplt->getVA() + getPltIdx() * target->ipltEntrySize
189                        : in.plt->getVA() + in.plt->headerSize +
190                              getPltIdx() * target->pltEntrySize;
191 
192   // While linking microMIPS code PLT code are always microMIPS
193   // code. Set the less-significant bit to track that fact.
194   // See detailed comment in the `getSymVA` function.
195   if (config->emachine == EM_MIPS && isMicroMips())
196     outVA |= 1;
197   return outVA;
198 }
199 
200 uint64_t Symbol::getSize() const {
201   if (const auto *dr = dyn_cast<Defined>(this))
202     return dr->size;
203   return cast<SharedSymbol>(this)->size;
204 }
205 
206 OutputSection *Symbol::getOutputSection() const {
207   if (auto *s = dyn_cast<Defined>(this)) {
208     if (auto *sec = s->section)
209       return sec->getOutputSection();
210     return nullptr;
211   }
212   return nullptr;
213 }
214 
215 // If a symbol name contains '@', the characters after that is
216 // a symbol version name. This function parses that.
217 void Symbol::parseSymbolVersion() {
218   // Return if localized by a local: pattern in a version script.
219   if (versionId == VER_NDX_LOCAL)
220     return;
221   StringRef s = getName();
222   size_t pos = s.find('@');
223   if (pos == StringRef::npos)
224     return;
225   StringRef verstr = s.substr(pos + 1);
226 
227   // Truncate the symbol name so that it doesn't include the version string.
228   nameSize = pos;
229 
230   if (verstr.empty())
231     return;
232 
233   // If this is not in this DSO, it is not a definition.
234   if (!isDefined())
235     return;
236 
237   // '@@' in a symbol name means the default version.
238   // It is usually the most recent one.
239   bool isDefault = (verstr[0] == '@');
240   if (isDefault)
241     verstr = verstr.substr(1);
242 
243   for (const VersionDefinition &ver : namedVersionDefs()) {
244     if (ver.name != verstr)
245       continue;
246 
247     if (isDefault)
248       versionId = ver.id;
249     else
250       versionId = ver.id | VERSYM_HIDDEN;
251     return;
252   }
253 
254   // It is an error if the specified version is not defined.
255   // Usually version script is not provided when linking executable,
256   // but we may still want to override a versioned symbol from DSO,
257   // so we do not report error in this case. We also do not error
258   // if the symbol has a local version as it won't be in the dynamic
259   // symbol table.
260   if (config->shared && versionId != VER_NDX_LOCAL)
261     error(toString(file) + ": symbol " + s + " has undefined version " +
262           verstr);
263 }
264 
265 void Symbol::extract() const {
266   if (file->lazy) {
267     file->lazy = false;
268     parseFile(file);
269   }
270 }
271 
272 uint8_t Symbol::computeBinding() const {
273   auto v = visibility();
274   if ((v != STV_DEFAULT && v != STV_PROTECTED) || versionId == VER_NDX_LOCAL)
275     return STB_LOCAL;
276   if (binding == STB_GNU_UNIQUE && !config->gnuUnique)
277     return STB_GLOBAL;
278   return binding;
279 }
280 
281 bool Symbol::includeInDynsym() const {
282   if (computeBinding() == STB_LOCAL)
283     return false;
284   if (!isDefined() && !isCommon())
285     // This should unconditionally return true, unfortunately glibc -static-pie
286     // expects undefined weak symbols not to exist in .dynsym, e.g.
287     // __pthread_mutex_lock reference in _dl_add_to_namespace_list,
288     // __pthread_initialize_minimal reference in csu/libc-start.c.
289     return !(isUndefWeak() && config->noDynamicLinker);
290 
291   return exportDynamic || inDynamicList;
292 }
293 
294 // Print out a log message for --trace-symbol.
295 void elf::printTraceSymbol(const Symbol &sym, StringRef name) {
296   std::string s;
297   if (sym.isUndefined())
298     s = ": reference to ";
299   else if (sym.isLazy())
300     s = ": lazy definition of ";
301   else if (sym.isShared())
302     s = ": shared definition of ";
303   else if (sym.isCommon())
304     s = ": common definition of ";
305   else
306     s = ": definition of ";
307 
308   message(toString(sym.file) + s + name);
309 }
310 
311 static void recordWhyExtract(const InputFile *reference,
312                              const InputFile &extracted, const Symbol &sym) {
313   ctx.whyExtractRecords.emplace_back(toString(reference), &extracted, sym);
314 }
315 
316 void elf::maybeWarnUnorderableSymbol(const Symbol *sym) {
317   if (!config->warnSymbolOrdering)
318     return;
319 
320   // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning
321   // is emitted. It makes sense to not warn on undefined symbols.
322   //
323   // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols,
324   // but we don't have to be compatible here.
325   if (sym->isUndefined() &&
326       config->unresolvedSymbols == UnresolvedPolicy::Ignore)
327     return;
328 
329   const InputFile *file = sym->file;
330   auto *d = dyn_cast<Defined>(sym);
331 
332   auto report = [&](StringRef s) { warn(toString(file) + s + sym->getName()); };
333 
334   if (sym->isUndefined())
335     report(": unable to order undefined symbol: ");
336   else if (sym->isShared())
337     report(": unable to order shared symbol: ");
338   else if (d && !d->section)
339     report(": unable to order absolute symbol: ");
340   else if (d && isa<OutputSection>(d->section))
341     report(": unable to order synthetic symbol: ");
342   else if (d && !d->section->isLive())
343     report(": unable to order discarded symbol: ");
344 }
345 
346 // Returns true if a symbol can be replaced at load-time by a symbol
347 // with the same name defined in other ELF executable or DSO.
348 bool elf::computeIsPreemptible(const Symbol &sym) {
349   assert(!sym.isLocal() || sym.isPlaceholder());
350 
351   // Only symbols with default visibility that appear in dynsym can be
352   // preempted. Symbols with protected visibility cannot be preempted.
353   if (!sym.includeInDynsym() || sym.visibility() != STV_DEFAULT)
354     return false;
355 
356   // At this point copy relocations have not been created yet, so any
357   // symbol that is not defined locally is preemptible.
358   if (!sym.isDefined())
359     return true;
360 
361   if (!config->shared)
362     return false;
363 
364   // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is
365   // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is
366   // in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of
367   // -Bsymbolic-functions.
368   if (config->symbolic ||
369       (config->bsymbolic == BsymbolicKind::Functions && sym.isFunc()) ||
370       (config->bsymbolic == BsymbolicKind::NonWeakFunctions && sym.isFunc() &&
371        sym.binding != STB_WEAK))
372     return sym.inDynamicList;
373   return true;
374 }
375 
376 // Merge symbol properties.
377 //
378 // When we have many symbols of the same name, we choose one of them,
379 // and that's the result of symbol resolution. However, symbols that
380 // were not chosen still affect some symbol properties.
381 void Symbol::mergeProperties(const Symbol &other) {
382   if (other.exportDynamic)
383     exportDynamic = true;
384 
385   // DSO symbols do not affect visibility in the output.
386   if (!other.isShared() && other.visibility() != STV_DEFAULT) {
387     uint8_t v = visibility(), ov = other.visibility();
388     setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
389   }
390 }
391 
392 void Symbol::resolve(const Undefined &other) {
393   if (other.visibility() != STV_DEFAULT) {
394     uint8_t v = visibility(), ov = other.visibility();
395     setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
396   }
397   // An undefined symbol with non default visibility must be satisfied
398   // in the same DSO.
399   //
400   // If this is a non-weak defined symbol in a discarded section, override the
401   // existing undefined symbol for better error message later.
402   if (isPlaceholder() || (isShared() && other.visibility() != STV_DEFAULT) ||
403       (isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) {
404     other.overwrite(*this);
405     return;
406   }
407 
408   if (traced)
409     printTraceSymbol(other, getName());
410 
411   if (isLazy()) {
412     // An undefined weak will not extract archive members. See comment on Lazy
413     // in Symbols.h for the details.
414     if (other.binding == STB_WEAK) {
415       binding = STB_WEAK;
416       type = other.type;
417       return;
418     }
419 
420     // Do extra check for --warn-backrefs.
421     //
422     // --warn-backrefs is an option to prevent an undefined reference from
423     // extracting an archive member written earlier in the command line. It can
424     // be used to keep compatibility with GNU linkers to some degree. I'll
425     // explain the feature and why you may find it useful in this comment.
426     //
427     // lld's symbol resolution semantics is more relaxed than traditional Unix
428     // linkers. For example,
429     //
430     //   ld.lld foo.a bar.o
431     //
432     // succeeds even if bar.o contains an undefined symbol that has to be
433     // resolved by some object file in foo.a. Traditional Unix linkers don't
434     // allow this kind of backward reference, as they visit each file only once
435     // from left to right in the command line while resolving all undefined
436     // symbols at the moment of visiting.
437     //
438     // In the above case, since there's no undefined symbol when a linker visits
439     // foo.a, no files are pulled out from foo.a, and because the linker forgets
440     // about foo.a after visiting, it can't resolve undefined symbols in bar.o
441     // that could have been resolved otherwise.
442     //
443     // That lld accepts more relaxed form means that (besides it'd make more
444     // sense) you can accidentally write a command line or a build file that
445     // works only with lld, even if you have a plan to distribute it to wider
446     // users who may be using GNU linkers. With --warn-backrefs, you can detect
447     // a library order that doesn't work with other Unix linkers.
448     //
449     // The option is also useful to detect cyclic dependencies between static
450     // archives. Again, lld accepts
451     //
452     //   ld.lld foo.a bar.a
453     //
454     // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
455     // handled as an error.
456     //
457     // Here is how the option works. We assign a group ID to each file. A file
458     // with a smaller group ID can pull out object files from an archive file
459     // with an equal or greater group ID. Otherwise, it is a reverse dependency
460     // and an error.
461     //
462     // A file outside --{start,end}-group gets a fresh ID when instantiated. All
463     // files within the same --{start,end}-group get the same group ID. E.g.
464     //
465     //   ld.lld A B --start-group C D --end-group E
466     //
467     // A forms group 0. B form group 1. C and D (including their member object
468     // files) form group 2. E forms group 3. I think that you can see how this
469     // group assignment rule simulates the traditional linker's semantics.
470     bool backref = config->warnBackrefs && other.file &&
471                    file->groupId < other.file->groupId;
472     extract();
473 
474     if (!config->whyExtract.empty())
475       recordWhyExtract(other.file, *file, *this);
476 
477     // We don't report backward references to weak symbols as they can be
478     // overridden later.
479     //
480     // A traditional linker does not error for -ldef1 -lref -ldef2 (linking
481     // sandwich), where def2 may or may not be the same as def1. We don't want
482     // to warn for this case, so dismiss the warning if we see a subsequent lazy
483     // definition. this->file needs to be saved because in the case of LTO it
484     // may be reset to nullptr or be replaced with a file named lto.tmp.
485     if (backref && !isWeak())
486       ctx.backwardReferences.try_emplace(this,
487                                          std::make_pair(other.file, file));
488     return;
489   }
490 
491   // Undefined symbols in a SharedFile do not change the binding.
492   if (isa_and_nonnull<SharedFile>(other.file))
493     return;
494 
495   if (isUndefined() || isShared()) {
496     // The binding will be weak if there is at least one reference and all are
497     // weak. The binding has one opportunity to change to weak: if the first
498     // reference is weak.
499     if (other.binding != STB_WEAK || !referenced)
500       binding = other.binding;
501   }
502 }
503 
504 // Compare two symbols. Return true if the new symbol should win.
505 bool Symbol::shouldReplace(const Defined &other) const {
506   if (LLVM_UNLIKELY(isCommon())) {
507     if (config->warnCommon)
508       warn("common " + getName() + " is overridden");
509     return !other.isWeak();
510   }
511   if (!isDefined())
512     return true;
513 
514   // Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes
515   // some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat
516   // STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all
517   // STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to
518   // an existing STB_WEAK, there may be discarded section errors because the
519   // selected copy may be in a non-prevailing COMDAT.
520   return !isGlobal() && other.isGlobal();
521 }
522 
523 void elf::reportDuplicate(const Symbol &sym, const InputFile *newFile,
524                           InputSectionBase *errSec, uint64_t errOffset) {
525   if (config->allowMultipleDefinition)
526     return;
527   // In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which
528   // is sort of proto-comdat. There is actually no duplicate if we have
529   // full support for .gnu.linkonce.
530   const Defined *d = dyn_cast<Defined>(&sym);
531   if (!d || d->getName() == "__x86.get_pc_thunk.bx")
532     return;
533   // Allow absolute symbols with the same value for GNU ld compatibility.
534   if (!d->section && !errSec && errOffset && d->value == errOffset)
535     return;
536   if (!d->section || !errSec) {
537     error("duplicate symbol: " + toString(sym) + "\n>>> defined in " +
538           toString(sym.file) + "\n>>> defined in " + toString(newFile));
539     return;
540   }
541 
542   // Construct and print an error message in the form of:
543   //
544   //   ld.lld: error: duplicate symbol: foo
545   //   >>> defined at bar.c:30
546   //   >>>            bar.o (/home/alice/src/bar.o)
547   //   >>> defined at baz.c:563
548   //   >>>            baz.o in archive libbaz.a
549   auto *sec1 = cast<InputSectionBase>(d->section);
550   std::string src1 = sec1->getSrcMsg(sym, d->value);
551   std::string obj1 = sec1->getObjMsg(d->value);
552   std::string src2 = errSec->getSrcMsg(sym, errOffset);
553   std::string obj2 = errSec->getObjMsg(errOffset);
554 
555   std::string msg = "duplicate symbol: " + toString(sym) + "\n>>> defined at ";
556   if (!src1.empty())
557     msg += src1 + "\n>>>            ";
558   msg += obj1 + "\n>>> defined at ";
559   if (!src2.empty())
560     msg += src2 + "\n>>>            ";
561   msg += obj2;
562   error(msg);
563 }
564 
565 void Symbol::checkDuplicate(const Defined &other) const {
566   if (isDefined() && !isWeak() && !other.isWeak())
567     reportDuplicate(*this, other.file,
568                     dyn_cast_or_null<InputSectionBase>(other.section),
569                     other.value);
570 }
571 
572 void Symbol::resolve(const CommonSymbol &other) {
573   if (other.exportDynamic)
574     exportDynamic = true;
575   if (other.visibility() != STV_DEFAULT) {
576     uint8_t v = visibility(), ov = other.visibility();
577     setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
578   }
579   if (isDefined() && !isWeak()) {
580     if (config->warnCommon)
581       warn("common " + getName() + " is overridden");
582     return;
583   }
584 
585   if (CommonSymbol *oldSym = dyn_cast<CommonSymbol>(this)) {
586     if (config->warnCommon)
587       warn("multiple common of " + getName());
588     oldSym->alignment = std::max(oldSym->alignment, other.alignment);
589     if (oldSym->size < other.size) {
590       oldSym->file = other.file;
591       oldSym->size = other.size;
592     }
593     return;
594   }
595 
596   if (auto *s = dyn_cast<SharedSymbol>(this)) {
597     // Increase st_size if the shared symbol has a larger st_size. The shared
598     // symbol may be created from common symbols. The fact that some object
599     // files were linked into a shared object first should not change the
600     // regular rule that picks the largest st_size.
601     uint64_t size = s->size;
602     other.overwrite(*this);
603     if (size > cast<CommonSymbol>(this)->size)
604       cast<CommonSymbol>(this)->size = size;
605   } else {
606     other.overwrite(*this);
607   }
608 }
609 
610 void Symbol::resolve(const Defined &other) {
611   if (other.exportDynamic)
612     exportDynamic = true;
613   if (other.visibility() != STV_DEFAULT) {
614     uint8_t v = visibility(), ov = other.visibility();
615     setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
616   }
617   if (shouldReplace(other))
618     other.overwrite(*this);
619 }
620 
621 void Symbol::resolve(const LazyObject &other) {
622   if (isPlaceholder()) {
623     other.overwrite(*this);
624     return;
625   }
626 
627   // For common objects, we want to look for global or weak definitions that
628   // should be extracted as the canonical definition instead.
629   if (LLVM_UNLIKELY(isCommon()) && elf::config->fortranCommon &&
630       other.file->shouldExtractForCommon(getName())) {
631     ctx.backwardReferences.erase(this);
632     other.overwrite(*this);
633     other.extract();
634     return;
635   }
636 
637   if (!isUndefined()) {
638     // See the comment in resolveUndefined().
639     if (isDefined())
640       ctx.backwardReferences.erase(this);
641     return;
642   }
643 
644   // An undefined weak will not extract archive members. See comment on Lazy in
645   // Symbols.h for the details.
646   if (isWeak()) {
647     uint8_t ty = type;
648     other.overwrite(*this);
649     type = ty;
650     binding = STB_WEAK;
651     return;
652   }
653 
654   const InputFile *oldFile = file;
655   other.extract();
656   if (!config->whyExtract.empty())
657     recordWhyExtract(oldFile, *file, *this);
658 }
659 
660 void Symbol::resolve(const SharedSymbol &other) {
661   exportDynamic = true;
662   if (isPlaceholder()) {
663     other.overwrite(*this);
664     return;
665   }
666   if (isCommon()) {
667     // See the comment in resolveCommon() above.
668     if (other.size > cast<CommonSymbol>(this)->size)
669       cast<CommonSymbol>(this)->size = other.size;
670     return;
671   }
672   if (visibility() == STV_DEFAULT && (isUndefined() || isLazy())) {
673     // An undefined symbol with non default visibility must be satisfied
674     // in the same DSO.
675     uint8_t bind = binding;
676     other.overwrite(*this);
677     binding = bind;
678   } else if (traced)
679     printTraceSymbol(other, getName());
680 }
681