1 //===- Symbols.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Symbols.h" 10 #include "Driver.h" 11 #include "InputFiles.h" 12 #include "InputSection.h" 13 #include "OutputSections.h" 14 #include "SyntheticSections.h" 15 #include "Target.h" 16 #include "Writer.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "llvm/Demangle/Demangle.h" 19 #include "llvm/Support/Compiler.h" 20 #include <cstring> 21 22 using namespace llvm; 23 using namespace llvm::object; 24 using namespace llvm::ELF; 25 using namespace lld; 26 using namespace lld::elf; 27 28 static_assert(sizeof(SymbolUnion) <= 64, "SymbolUnion too large"); 29 30 template <typename T> struct AssertSymbol { 31 static_assert(std::is_trivially_destructible<T>(), 32 "Symbol types must be trivially destructible"); 33 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); 34 static_assert(alignof(T) <= alignof(SymbolUnion), 35 "SymbolUnion not aligned enough"); 36 }; 37 38 LLVM_ATTRIBUTE_UNUSED static inline void assertSymbols() { 39 AssertSymbol<Defined>(); 40 AssertSymbol<CommonSymbol>(); 41 AssertSymbol<Undefined>(); 42 AssertSymbol<SharedSymbol>(); 43 AssertSymbol<LazySymbol>(); 44 } 45 46 // Returns a symbol for an error message. 47 static std::string maybeDemangleSymbol(StringRef symName) { 48 return elf::config->demangle ? demangle(symName.str()) : symName.str(); 49 } 50 51 std::string lld::toString(const elf::Symbol &sym) { 52 StringRef name = sym.getName(); 53 std::string ret = maybeDemangleSymbol(name); 54 55 const char *suffix = sym.getVersionSuffix(); 56 if (*suffix == '@') 57 ret += suffix; 58 return ret; 59 } 60 61 Defined *ElfSym::bss; 62 Defined *ElfSym::etext1; 63 Defined *ElfSym::etext2; 64 Defined *ElfSym::edata1; 65 Defined *ElfSym::edata2; 66 Defined *ElfSym::end1; 67 Defined *ElfSym::end2; 68 Defined *ElfSym::globalOffsetTable; 69 Defined *ElfSym::mipsGp; 70 Defined *ElfSym::mipsGpDisp; 71 Defined *ElfSym::mipsLocalGp; 72 Defined *ElfSym::riscvGlobalPointer; 73 Defined *ElfSym::relaIpltStart; 74 Defined *ElfSym::relaIpltEnd; 75 Defined *ElfSym::tlsModuleBase; 76 SmallVector<SymbolAux, 0> elf::symAux; 77 78 static uint64_t getSymVA(const Symbol &sym, int64_t addend) { 79 switch (sym.kind()) { 80 case Symbol::DefinedKind: { 81 auto &d = cast<Defined>(sym); 82 SectionBase *isec = d.section; 83 84 // This is an absolute symbol. 85 if (!isec) 86 return d.value; 87 88 assert(isec != &InputSection::discarded); 89 90 uint64_t offset = d.value; 91 92 // An object in an SHF_MERGE section might be referenced via a 93 // section symbol (as a hack for reducing the number of local 94 // symbols). 95 // Depending on the addend, the reference via a section symbol 96 // refers to a different object in the merge section. 97 // Since the objects in the merge section are not necessarily 98 // contiguous in the output, the addend can thus affect the final 99 // VA in a non-linear way. 100 // To make this work, we incorporate the addend into the section 101 // offset (and zero out the addend for later processing) so that 102 // we find the right object in the section. 103 if (d.isSection()) 104 offset += addend; 105 106 // In the typical case, this is actually very simple and boils 107 // down to adding together 3 numbers: 108 // 1. The address of the output section. 109 // 2. The offset of the input section within the output section. 110 // 3. The offset within the input section (this addition happens 111 // inside InputSection::getOffset). 112 // 113 // If you understand the data structures involved with this next 114 // line (and how they get built), then you have a pretty good 115 // understanding of the linker. 116 uint64_t va = isec->getVA(offset); 117 if (d.isSection()) 118 va -= addend; 119 120 // MIPS relocatable files can mix regular and microMIPS code. 121 // Linker needs to distinguish such code. To do so microMIPS 122 // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other` 123 // field. Unfortunately, the `MIPS::relocate()` method has 124 // a symbol value only. To pass type of the symbol (regular/microMIPS) 125 // to that routine as well as other places where we write 126 // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry` 127 // field etc) do the same trick as compiler uses to mark microMIPS 128 // for CPU - set the less-significant bit. 129 if (config->emachine == EM_MIPS && isMicroMips() && 130 ((sym.stOther & STO_MIPS_MICROMIPS) || sym.hasFlag(NEEDS_COPY))) 131 va |= 1; 132 133 if (d.isTls() && !config->relocatable) { 134 // Use the address of the TLS segment's first section rather than the 135 // segment's address, because segment addresses aren't initialized until 136 // after sections are finalized. (e.g. Measuring the size of .rela.dyn 137 // for Android relocation packing requires knowing TLS symbol addresses 138 // during section finalization.) 139 if (!Out::tlsPhdr || !Out::tlsPhdr->firstSec) 140 fatal(toString(d.file) + 141 " has an STT_TLS symbol but doesn't have an SHF_TLS section"); 142 return va - Out::tlsPhdr->firstSec->addr; 143 } 144 return va; 145 } 146 case Symbol::SharedKind: 147 case Symbol::UndefinedKind: 148 return 0; 149 case Symbol::LazyKind: 150 llvm_unreachable("lazy symbol reached writer"); 151 case Symbol::CommonKind: 152 llvm_unreachable("common symbol reached writer"); 153 case Symbol::PlaceholderKind: 154 llvm_unreachable("placeholder symbol reached writer"); 155 } 156 llvm_unreachable("invalid symbol kind"); 157 } 158 159 uint64_t Symbol::getVA(int64_t addend) const { 160 return getSymVA(*this, addend) + addend; 161 } 162 163 uint64_t Symbol::getGotVA() const { 164 if (gotInIgot) 165 return in.igotPlt->getVA() + getGotPltOffset(); 166 return in.got->getVA() + getGotOffset(); 167 } 168 169 uint64_t Symbol::getGotOffset() const { 170 return getGotIdx() * target->gotEntrySize; 171 } 172 173 uint64_t Symbol::getGotPltVA() const { 174 if (isInIplt) 175 return in.igotPlt->getVA() + getGotPltOffset(); 176 return in.gotPlt->getVA() + getGotPltOffset(); 177 } 178 179 uint64_t Symbol::getGotPltOffset() const { 180 if (isInIplt) 181 return getPltIdx() * target->gotEntrySize; 182 return (getPltIdx() + target->gotPltHeaderEntriesNum) * target->gotEntrySize; 183 } 184 185 uint64_t Symbol::getPltVA() const { 186 uint64_t outVA = isInIplt 187 ? in.iplt->getVA() + getPltIdx() * target->ipltEntrySize 188 : in.plt->getVA() + in.plt->headerSize + 189 getPltIdx() * target->pltEntrySize; 190 191 // While linking microMIPS code PLT code are always microMIPS 192 // code. Set the less-significant bit to track that fact. 193 // See detailed comment in the `getSymVA` function. 194 if (config->emachine == EM_MIPS && isMicroMips()) 195 outVA |= 1; 196 return outVA; 197 } 198 199 uint64_t Symbol::getSize() const { 200 if (const auto *dr = dyn_cast<Defined>(this)) 201 return dr->size; 202 return cast<SharedSymbol>(this)->size; 203 } 204 205 OutputSection *Symbol::getOutputSection() const { 206 if (auto *s = dyn_cast<Defined>(this)) { 207 if (auto *sec = s->section) 208 return sec->getOutputSection(); 209 return nullptr; 210 } 211 return nullptr; 212 } 213 214 // If a symbol name contains '@', the characters after that is 215 // a symbol version name. This function parses that. 216 void Symbol::parseSymbolVersion() { 217 // Return if localized by a local: pattern in a version script. 218 if (versionId == VER_NDX_LOCAL) 219 return; 220 StringRef s = getName(); 221 size_t pos = s.find('@'); 222 if (pos == StringRef::npos) 223 return; 224 StringRef verstr = s.substr(pos + 1); 225 226 // Truncate the symbol name so that it doesn't include the version string. 227 nameSize = pos; 228 229 if (verstr.empty()) 230 return; 231 232 // If this is not in this DSO, it is not a definition. 233 if (!isDefined()) 234 return; 235 236 // '@@' in a symbol name means the default version. 237 // It is usually the most recent one. 238 bool isDefault = (verstr[0] == '@'); 239 if (isDefault) 240 verstr = verstr.substr(1); 241 242 for (const VersionDefinition &ver : namedVersionDefs()) { 243 if (ver.name != verstr) 244 continue; 245 246 if (isDefault) 247 versionId = ver.id; 248 else 249 versionId = ver.id | VERSYM_HIDDEN; 250 return; 251 } 252 253 // It is an error if the specified version is not defined. 254 // Usually version script is not provided when linking executable, 255 // but we may still want to override a versioned symbol from DSO, 256 // so we do not report error in this case. We also do not error 257 // if the symbol has a local version as it won't be in the dynamic 258 // symbol table. 259 if (config->shared && versionId != VER_NDX_LOCAL) 260 error(toString(file) + ": symbol " + s + " has undefined version " + 261 verstr); 262 } 263 264 void Symbol::extract() const { 265 if (file->lazy) { 266 file->lazy = false; 267 parseFile(file); 268 } 269 } 270 271 uint8_t Symbol::computeBinding() const { 272 auto v = visibility(); 273 if ((v != STV_DEFAULT && v != STV_PROTECTED) || versionId == VER_NDX_LOCAL) 274 return STB_LOCAL; 275 if (binding == STB_GNU_UNIQUE && !config->gnuUnique) 276 return STB_GLOBAL; 277 return binding; 278 } 279 280 bool Symbol::includeInDynsym() const { 281 if (computeBinding() == STB_LOCAL) 282 return false; 283 if (!isDefined() && !isCommon()) 284 // This should unconditionally return true, unfortunately glibc -static-pie 285 // expects undefined weak symbols not to exist in .dynsym, e.g. 286 // __pthread_mutex_lock reference in _dl_add_to_namespace_list, 287 // __pthread_initialize_minimal reference in csu/libc-start.c. 288 return !(isUndefWeak() && config->noDynamicLinker); 289 290 return exportDynamic || inDynamicList; 291 } 292 293 // Print out a log message for --trace-symbol. 294 void elf::printTraceSymbol(const Symbol &sym, StringRef name) { 295 std::string s; 296 if (sym.isUndefined()) 297 s = ": reference to "; 298 else if (sym.isLazy()) 299 s = ": lazy definition of "; 300 else if (sym.isShared()) 301 s = ": shared definition of "; 302 else if (sym.isCommon()) 303 s = ": common definition of "; 304 else 305 s = ": definition of "; 306 307 message(toString(sym.file) + s + name); 308 } 309 310 static void recordWhyExtract(const InputFile *reference, 311 const InputFile &extracted, const Symbol &sym) { 312 ctx.whyExtractRecords.emplace_back(toString(reference), &extracted, sym); 313 } 314 315 void elf::maybeWarnUnorderableSymbol(const Symbol *sym) { 316 if (!config->warnSymbolOrdering) 317 return; 318 319 // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning is 320 // emitted. It makes sense to not warn on undefined symbols (excluding those 321 // demoted by demoteSymbols). 322 // 323 // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols, 324 // but we don't have to be compatible here. 325 if (sym->isUndefined() && !cast<Undefined>(sym)->discardedSecIdx && 326 config->unresolvedSymbols == UnresolvedPolicy::Ignore) 327 return; 328 329 const InputFile *file = sym->file; 330 auto *d = dyn_cast<Defined>(sym); 331 332 auto report = [&](StringRef s) { warn(toString(file) + s + sym->getName()); }; 333 334 if (sym->isUndefined()) { 335 if (cast<Undefined>(sym)->discardedSecIdx) 336 report(": unable to order discarded symbol: "); 337 else 338 report(": unable to order undefined symbol: "); 339 } else if (sym->isShared()) 340 report(": unable to order shared symbol: "); 341 else if (d && !d->section) 342 report(": unable to order absolute symbol: "); 343 else if (d && isa<OutputSection>(d->section)) 344 report(": unable to order synthetic symbol: "); 345 else if (d && !d->section->isLive()) 346 report(": unable to order discarded symbol: "); 347 } 348 349 // Returns true if a symbol can be replaced at load-time by a symbol 350 // with the same name defined in other ELF executable or DSO. 351 bool elf::computeIsPreemptible(const Symbol &sym) { 352 assert(!sym.isLocal() || sym.isPlaceholder()); 353 354 // Only symbols with default visibility that appear in dynsym can be 355 // preempted. Symbols with protected visibility cannot be preempted. 356 if (!sym.includeInDynsym() || sym.visibility() != STV_DEFAULT) 357 return false; 358 359 // At this point copy relocations have not been created yet, so any 360 // symbol that is not defined locally is preemptible. 361 if (!sym.isDefined()) 362 return true; 363 364 if (!config->shared) 365 return false; 366 367 // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is 368 // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is 369 // in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of 370 // -Bsymbolic-functions. 371 if (config->symbolic || 372 (config->bsymbolic == BsymbolicKind::NonWeak && 373 sym.binding != STB_WEAK) || 374 (config->bsymbolic == BsymbolicKind::Functions && sym.isFunc()) || 375 (config->bsymbolic == BsymbolicKind::NonWeakFunctions && sym.isFunc() && 376 sym.binding != STB_WEAK)) 377 return sym.inDynamicList; 378 return true; 379 } 380 381 // Merge symbol properties. 382 // 383 // When we have many symbols of the same name, we choose one of them, 384 // and that's the result of symbol resolution. However, symbols that 385 // were not chosen still affect some symbol properties. 386 void Symbol::mergeProperties(const Symbol &other) { 387 if (other.exportDynamic) 388 exportDynamic = true; 389 390 // DSO symbols do not affect visibility in the output. 391 if (!other.isShared() && other.visibility() != STV_DEFAULT) { 392 uint8_t v = visibility(), ov = other.visibility(); 393 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 394 } 395 } 396 397 void Symbol::resolve(const Undefined &other) { 398 if (other.visibility() != STV_DEFAULT) { 399 uint8_t v = visibility(), ov = other.visibility(); 400 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 401 } 402 // An undefined symbol with non default visibility must be satisfied 403 // in the same DSO. 404 // 405 // If this is a non-weak defined symbol in a discarded section, override the 406 // existing undefined symbol for better error message later. 407 if (isPlaceholder() || (isShared() && other.visibility() != STV_DEFAULT) || 408 (isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) { 409 other.overwrite(*this); 410 return; 411 } 412 413 if (traced) 414 printTraceSymbol(other, getName()); 415 416 if (isLazy()) { 417 // An undefined weak will not extract archive members. See comment on Lazy 418 // in Symbols.h for the details. 419 if (other.binding == STB_WEAK) { 420 binding = STB_WEAK; 421 type = other.type; 422 return; 423 } 424 425 // Do extra check for --warn-backrefs. 426 // 427 // --warn-backrefs is an option to prevent an undefined reference from 428 // extracting an archive member written earlier in the command line. It can 429 // be used to keep compatibility with GNU linkers to some degree. I'll 430 // explain the feature and why you may find it useful in this comment. 431 // 432 // lld's symbol resolution semantics is more relaxed than traditional Unix 433 // linkers. For example, 434 // 435 // ld.lld foo.a bar.o 436 // 437 // succeeds even if bar.o contains an undefined symbol that has to be 438 // resolved by some object file in foo.a. Traditional Unix linkers don't 439 // allow this kind of backward reference, as they visit each file only once 440 // from left to right in the command line while resolving all undefined 441 // symbols at the moment of visiting. 442 // 443 // In the above case, since there's no undefined symbol when a linker visits 444 // foo.a, no files are pulled out from foo.a, and because the linker forgets 445 // about foo.a after visiting, it can't resolve undefined symbols in bar.o 446 // that could have been resolved otherwise. 447 // 448 // That lld accepts more relaxed form means that (besides it'd make more 449 // sense) you can accidentally write a command line or a build file that 450 // works only with lld, even if you have a plan to distribute it to wider 451 // users who may be using GNU linkers. With --warn-backrefs, you can detect 452 // a library order that doesn't work with other Unix linkers. 453 // 454 // The option is also useful to detect cyclic dependencies between static 455 // archives. Again, lld accepts 456 // 457 // ld.lld foo.a bar.a 458 // 459 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is 460 // handled as an error. 461 // 462 // Here is how the option works. We assign a group ID to each file. A file 463 // with a smaller group ID can pull out object files from an archive file 464 // with an equal or greater group ID. Otherwise, it is a reverse dependency 465 // and an error. 466 // 467 // A file outside --{start,end}-group gets a fresh ID when instantiated. All 468 // files within the same --{start,end}-group get the same group ID. E.g. 469 // 470 // ld.lld A B --start-group C D --end-group E 471 // 472 // A forms group 0. B form group 1. C and D (including their member object 473 // files) form group 2. E forms group 3. I think that you can see how this 474 // group assignment rule simulates the traditional linker's semantics. 475 bool backref = config->warnBackrefs && other.file && 476 file->groupId < other.file->groupId; 477 extract(); 478 479 if (!config->whyExtract.empty()) 480 recordWhyExtract(other.file, *file, *this); 481 482 // We don't report backward references to weak symbols as they can be 483 // overridden later. 484 // 485 // A traditional linker does not error for -ldef1 -lref -ldef2 (linking 486 // sandwich), where def2 may or may not be the same as def1. We don't want 487 // to warn for this case, so dismiss the warning if we see a subsequent lazy 488 // definition. this->file needs to be saved because in the case of LTO it 489 // may be reset to nullptr or be replaced with a file named lto.tmp. 490 if (backref && !isWeak()) 491 ctx.backwardReferences.try_emplace(this, 492 std::make_pair(other.file, file)); 493 return; 494 } 495 496 // Undefined symbols in a SharedFile do not change the binding. 497 if (isa_and_nonnull<SharedFile>(other.file)) 498 return; 499 500 if (isUndefined() || isShared()) { 501 // The binding will be weak if there is at least one reference and all are 502 // weak. The binding has one opportunity to change to weak: if the first 503 // reference is weak. 504 if (other.binding != STB_WEAK || !referenced) 505 binding = other.binding; 506 } 507 } 508 509 // Compare two symbols. Return true if the new symbol should win. 510 bool Symbol::shouldReplace(const Defined &other) const { 511 if (LLVM_UNLIKELY(isCommon())) { 512 if (config->warnCommon) 513 warn("common " + getName() + " is overridden"); 514 return !other.isWeak(); 515 } 516 if (!isDefined()) 517 return true; 518 519 // Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes 520 // some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat 521 // STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all 522 // STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to 523 // an existing STB_WEAK, there may be discarded section errors because the 524 // selected copy may be in a non-prevailing COMDAT. 525 return !isGlobal() && other.isGlobal(); 526 } 527 528 void elf::reportDuplicate(const Symbol &sym, const InputFile *newFile, 529 InputSectionBase *errSec, uint64_t errOffset) { 530 if (config->allowMultipleDefinition) 531 return; 532 // In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which 533 // is sort of proto-comdat. There is actually no duplicate if we have 534 // full support for .gnu.linkonce. 535 const Defined *d = dyn_cast<Defined>(&sym); 536 if (!d || d->getName() == "__x86.get_pc_thunk.bx") 537 return; 538 // Allow absolute symbols with the same value for GNU ld compatibility. 539 if (!d->section && !errSec && errOffset && d->value == errOffset) 540 return; 541 if (!d->section || !errSec) { 542 errorOrWarn("duplicate symbol: " + toString(sym) + "\n>>> defined in " + 543 toString(sym.file) + "\n>>> defined in " + toString(newFile)); 544 return; 545 } 546 547 // Construct and print an error message in the form of: 548 // 549 // ld.lld: error: duplicate symbol: foo 550 // >>> defined at bar.c:30 551 // >>> bar.o (/home/alice/src/bar.o) 552 // >>> defined at baz.c:563 553 // >>> baz.o in archive libbaz.a 554 auto *sec1 = cast<InputSectionBase>(d->section); 555 std::string src1 = sec1->getSrcMsg(sym, d->value); 556 std::string obj1 = sec1->getObjMsg(d->value); 557 std::string src2 = errSec->getSrcMsg(sym, errOffset); 558 std::string obj2 = errSec->getObjMsg(errOffset); 559 560 std::string msg = "duplicate symbol: " + toString(sym) + "\n>>> defined at "; 561 if (!src1.empty()) 562 msg += src1 + "\n>>> "; 563 msg += obj1 + "\n>>> defined at "; 564 if (!src2.empty()) 565 msg += src2 + "\n>>> "; 566 msg += obj2; 567 errorOrWarn(msg); 568 } 569 570 void Symbol::checkDuplicate(const Defined &other) const { 571 if (isDefined() && !isWeak() && !other.isWeak()) 572 reportDuplicate(*this, other.file, 573 dyn_cast_or_null<InputSectionBase>(other.section), 574 other.value); 575 } 576 577 void Symbol::resolve(const CommonSymbol &other) { 578 if (other.exportDynamic) 579 exportDynamic = true; 580 if (other.visibility() != STV_DEFAULT) { 581 uint8_t v = visibility(), ov = other.visibility(); 582 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 583 } 584 if (isDefined() && !isWeak()) { 585 if (config->warnCommon) 586 warn("common " + getName() + " is overridden"); 587 return; 588 } 589 590 if (CommonSymbol *oldSym = dyn_cast<CommonSymbol>(this)) { 591 if (config->warnCommon) 592 warn("multiple common of " + getName()); 593 oldSym->alignment = std::max(oldSym->alignment, other.alignment); 594 if (oldSym->size < other.size) { 595 oldSym->file = other.file; 596 oldSym->size = other.size; 597 } 598 return; 599 } 600 601 if (auto *s = dyn_cast<SharedSymbol>(this)) { 602 // Increase st_size if the shared symbol has a larger st_size. The shared 603 // symbol may be created from common symbols. The fact that some object 604 // files were linked into a shared object first should not change the 605 // regular rule that picks the largest st_size. 606 uint64_t size = s->size; 607 other.overwrite(*this); 608 if (size > cast<CommonSymbol>(this)->size) 609 cast<CommonSymbol>(this)->size = size; 610 } else { 611 other.overwrite(*this); 612 } 613 } 614 615 void Symbol::resolve(const Defined &other) { 616 if (other.exportDynamic) 617 exportDynamic = true; 618 if (other.visibility() != STV_DEFAULT) { 619 uint8_t v = visibility(), ov = other.visibility(); 620 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 621 } 622 if (shouldReplace(other)) 623 other.overwrite(*this); 624 } 625 626 void Symbol::resolve(const LazySymbol &other) { 627 if (isPlaceholder()) { 628 other.overwrite(*this); 629 return; 630 } 631 632 // For common objects, we want to look for global or weak definitions that 633 // should be extracted as the canonical definition instead. 634 if (LLVM_UNLIKELY(isCommon()) && elf::config->fortranCommon && 635 other.file->shouldExtractForCommon(getName())) { 636 ctx.backwardReferences.erase(this); 637 other.overwrite(*this); 638 other.extract(); 639 return; 640 } 641 642 if (!isUndefined()) { 643 // See the comment in resolveUndefined(). 644 if (isDefined()) 645 ctx.backwardReferences.erase(this); 646 return; 647 } 648 649 // An undefined weak will not extract archive members. See comment on Lazy in 650 // Symbols.h for the details. 651 if (isWeak()) { 652 uint8_t ty = type; 653 other.overwrite(*this); 654 type = ty; 655 binding = STB_WEAK; 656 return; 657 } 658 659 const InputFile *oldFile = file; 660 other.extract(); 661 if (!config->whyExtract.empty()) 662 recordWhyExtract(oldFile, *file, *this); 663 } 664 665 void Symbol::resolve(const SharedSymbol &other) { 666 exportDynamic = true; 667 if (isPlaceholder()) { 668 other.overwrite(*this); 669 return; 670 } 671 if (isCommon()) { 672 // See the comment in resolveCommon() above. 673 if (other.size > cast<CommonSymbol>(this)->size) 674 cast<CommonSymbol>(this)->size = other.size; 675 return; 676 } 677 if (visibility() == STV_DEFAULT && (isUndefined() || isLazy())) { 678 // An undefined symbol with non default visibility must be satisfied 679 // in the same DSO. 680 uint8_t bind = binding; 681 other.overwrite(*this); 682 binding = bind; 683 } else if (traced) 684 printTraceSymbol(other, getName()); 685 } 686 687 void Defined::overwrite(Symbol &sym) const { 688 if (isa_and_nonnull<SharedFile>(sym.file)) 689 sym.versionId = VER_NDX_GLOBAL; 690 Symbol::overwrite(sym, DefinedKind); 691 auto &s = static_cast<Defined &>(sym); 692 s.value = value; 693 s.size = size; 694 s.section = section; 695 } 696