1 //===- Symbols.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Symbols.h" 10 #include "Driver.h" 11 #include "InputFiles.h" 12 #include "InputSection.h" 13 #include "OutputSections.h" 14 #include "SyntheticSections.h" 15 #include "Target.h" 16 #include "Writer.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "llvm/Demangle/Demangle.h" 19 #include "llvm/Support/Compiler.h" 20 #include <cstring> 21 22 using namespace llvm; 23 using namespace llvm::object; 24 using namespace llvm::ELF; 25 using namespace lld; 26 using namespace lld::elf; 27 28 static_assert(sizeof(SymbolUnion) <= 64, "SymbolUnion too large"); 29 30 template <typename T> struct AssertSymbol { 31 static_assert(std::is_trivially_destructible<T>(), 32 "Symbol types must be trivially destructible"); 33 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); 34 static_assert(alignof(T) <= alignof(SymbolUnion), 35 "SymbolUnion not aligned enough"); 36 }; 37 38 LLVM_ATTRIBUTE_UNUSED static inline void assertSymbols() { 39 AssertSymbol<Defined>(); 40 AssertSymbol<CommonSymbol>(); 41 AssertSymbol<Undefined>(); 42 AssertSymbol<SharedSymbol>(); 43 AssertSymbol<LazyObject>(); 44 } 45 46 // Returns a symbol for an error message. 47 static std::string maybeDemangleSymbol(StringRef symName) { 48 return elf::config->demangle ? demangle(symName.str()) : symName.str(); 49 } 50 51 std::string lld::toString(const elf::Symbol &sym) { 52 StringRef name = sym.getName(); 53 std::string ret = maybeDemangleSymbol(name); 54 55 const char *suffix = sym.getVersionSuffix(); 56 if (*suffix == '@') 57 ret += suffix; 58 return ret; 59 } 60 61 Defined *ElfSym::bss; 62 Defined *ElfSym::etext1; 63 Defined *ElfSym::etext2; 64 Defined *ElfSym::edata1; 65 Defined *ElfSym::edata2; 66 Defined *ElfSym::end1; 67 Defined *ElfSym::end2; 68 Defined *ElfSym::globalOffsetTable; 69 Defined *ElfSym::mipsGp; 70 Defined *ElfSym::mipsGpDisp; 71 Defined *ElfSym::mipsLocalGp; 72 Defined *ElfSym::riscvGlobalPointer; 73 Defined *ElfSym::relaIpltStart; 74 Defined *ElfSym::relaIpltEnd; 75 Defined *ElfSym::tlsModuleBase; 76 SmallVector<SymbolAux, 0> elf::symAux; 77 78 static uint64_t getSymVA(const Symbol &sym, int64_t addend) { 79 switch (sym.kind()) { 80 case Symbol::DefinedKind: { 81 auto &d = cast<Defined>(sym); 82 SectionBase *isec = d.section; 83 84 // This is an absolute symbol. 85 if (!isec) 86 return d.value; 87 88 assert(isec != &InputSection::discarded); 89 90 uint64_t offset = d.value; 91 92 // An object in an SHF_MERGE section might be referenced via a 93 // section symbol (as a hack for reducing the number of local 94 // symbols). 95 // Depending on the addend, the reference via a section symbol 96 // refers to a different object in the merge section. 97 // Since the objects in the merge section are not necessarily 98 // contiguous in the output, the addend can thus affect the final 99 // VA in a non-linear way. 100 // To make this work, we incorporate the addend into the section 101 // offset (and zero out the addend for later processing) so that 102 // we find the right object in the section. 103 if (d.isSection()) 104 offset += addend; 105 106 // In the typical case, this is actually very simple and boils 107 // down to adding together 3 numbers: 108 // 1. The address of the output section. 109 // 2. The offset of the input section within the output section. 110 // 3. The offset within the input section (this addition happens 111 // inside InputSection::getOffset). 112 // 113 // If you understand the data structures involved with this next 114 // line (and how they get built), then you have a pretty good 115 // understanding of the linker. 116 uint64_t va = isec->getVA(offset); 117 if (d.isSection()) 118 va -= addend; 119 120 // MIPS relocatable files can mix regular and microMIPS code. 121 // Linker needs to distinguish such code. To do so microMIPS 122 // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other` 123 // field. Unfortunately, the `MIPS::relocate()` method has 124 // a symbol value only. To pass type of the symbol (regular/microMIPS) 125 // to that routine as well as other places where we write 126 // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry` 127 // field etc) do the same trick as compiler uses to mark microMIPS 128 // for CPU - set the less-significant bit. 129 if (config->emachine == EM_MIPS && isMicroMips() && 130 ((sym.stOther & STO_MIPS_MICROMIPS) || sym.hasFlag(NEEDS_COPY))) 131 va |= 1; 132 133 if (d.isTls() && !config->relocatable) { 134 // Use the address of the TLS segment's first section rather than the 135 // segment's address, because segment addresses aren't initialized until 136 // after sections are finalized. (e.g. Measuring the size of .rela.dyn 137 // for Android relocation packing requires knowing TLS symbol addresses 138 // during section finalization.) 139 if (!Out::tlsPhdr || !Out::tlsPhdr->firstSec) 140 fatal(toString(d.file) + 141 " has an STT_TLS symbol but doesn't have an SHF_TLS section"); 142 return va - Out::tlsPhdr->firstSec->addr; 143 } 144 return va; 145 } 146 case Symbol::SharedKind: 147 case Symbol::UndefinedKind: 148 return 0; 149 case Symbol::LazyObjectKind: 150 llvm_unreachable("lazy symbol reached writer"); 151 case Symbol::CommonKind: 152 llvm_unreachable("common symbol reached writer"); 153 case Symbol::PlaceholderKind: 154 llvm_unreachable("placeholder symbol reached writer"); 155 } 156 llvm_unreachable("invalid symbol kind"); 157 } 158 159 uint64_t Symbol::getVA(int64_t addend) const { 160 return getSymVA(*this, addend) + addend; 161 } 162 163 uint64_t Symbol::getGotVA() const { 164 if (gotInIgot) 165 return in.igotPlt->getVA() + getGotPltOffset(); 166 return in.got->getVA() + getGotOffset(); 167 } 168 169 uint64_t Symbol::getGotOffset() const { 170 return getGotIdx() * target->gotEntrySize; 171 } 172 173 uint64_t Symbol::getGotPltVA() const { 174 if (isInIplt) 175 return in.igotPlt->getVA() + getGotPltOffset(); 176 return in.gotPlt->getVA() + getGotPltOffset(); 177 } 178 179 uint64_t Symbol::getGotPltOffset() const { 180 if (isInIplt) 181 return getPltIdx() * target->gotEntrySize; 182 return (getPltIdx() + target->gotPltHeaderEntriesNum) * target->gotEntrySize; 183 } 184 185 uint64_t Symbol::getPltVA() const { 186 uint64_t outVA = isInIplt 187 ? in.iplt->getVA() + getPltIdx() * target->ipltEntrySize 188 : in.plt->getVA() + in.plt->headerSize + 189 getPltIdx() * target->pltEntrySize; 190 191 // While linking microMIPS code PLT code are always microMIPS 192 // code. Set the less-significant bit to track that fact. 193 // See detailed comment in the `getSymVA` function. 194 if (config->emachine == EM_MIPS && isMicroMips()) 195 outVA |= 1; 196 return outVA; 197 } 198 199 uint64_t Symbol::getSize() const { 200 if (const auto *dr = dyn_cast<Defined>(this)) 201 return dr->size; 202 return cast<SharedSymbol>(this)->size; 203 } 204 205 OutputSection *Symbol::getOutputSection() const { 206 if (auto *s = dyn_cast<Defined>(this)) { 207 if (auto *sec = s->section) 208 return sec->getOutputSection(); 209 return nullptr; 210 } 211 return nullptr; 212 } 213 214 // If a symbol name contains '@', the characters after that is 215 // a symbol version name. This function parses that. 216 void Symbol::parseSymbolVersion() { 217 // Return if localized by a local: pattern in a version script. 218 if (versionId == VER_NDX_LOCAL) 219 return; 220 StringRef s = getName(); 221 size_t pos = s.find('@'); 222 if (pos == StringRef::npos) 223 return; 224 StringRef verstr = s.substr(pos + 1); 225 226 // Truncate the symbol name so that it doesn't include the version string. 227 nameSize = pos; 228 229 if (verstr.empty()) 230 return; 231 232 // If this is not in this DSO, it is not a definition. 233 if (!isDefined()) 234 return; 235 236 // '@@' in a symbol name means the default version. 237 // It is usually the most recent one. 238 bool isDefault = (verstr[0] == '@'); 239 if (isDefault) 240 verstr = verstr.substr(1); 241 242 for (const VersionDefinition &ver : namedVersionDefs()) { 243 if (ver.name != verstr) 244 continue; 245 246 if (isDefault) 247 versionId = ver.id; 248 else 249 versionId = ver.id | VERSYM_HIDDEN; 250 return; 251 } 252 253 // It is an error if the specified version is not defined. 254 // Usually version script is not provided when linking executable, 255 // but we may still want to override a versioned symbol from DSO, 256 // so we do not report error in this case. We also do not error 257 // if the symbol has a local version as it won't be in the dynamic 258 // symbol table. 259 if (config->shared && versionId != VER_NDX_LOCAL) 260 error(toString(file) + ": symbol " + s + " has undefined version " + 261 verstr); 262 } 263 264 void Symbol::extract() const { 265 if (file->lazy) { 266 file->lazy = false; 267 parseFile(file); 268 } 269 } 270 271 uint8_t Symbol::computeBinding() const { 272 auto v = visibility(); 273 if ((v != STV_DEFAULT && v != STV_PROTECTED) || versionId == VER_NDX_LOCAL) 274 return STB_LOCAL; 275 if (binding == STB_GNU_UNIQUE && !config->gnuUnique) 276 return STB_GLOBAL; 277 return binding; 278 } 279 280 bool Symbol::includeInDynsym() const { 281 if (computeBinding() == STB_LOCAL) 282 return false; 283 if (!isDefined() && !isCommon()) 284 // This should unconditionally return true, unfortunately glibc -static-pie 285 // expects undefined weak symbols not to exist in .dynsym, e.g. 286 // __pthread_mutex_lock reference in _dl_add_to_namespace_list, 287 // __pthread_initialize_minimal reference in csu/libc-start.c. 288 return !(isUndefWeak() && config->noDynamicLinker); 289 290 return exportDynamic || inDynamicList; 291 } 292 293 // Print out a log message for --trace-symbol. 294 void elf::printTraceSymbol(const Symbol &sym, StringRef name) { 295 std::string s; 296 if (sym.isUndefined()) 297 s = ": reference to "; 298 else if (sym.isLazy()) 299 s = ": lazy definition of "; 300 else if (sym.isShared()) 301 s = ": shared definition of "; 302 else if (sym.isCommon()) 303 s = ": common definition of "; 304 else 305 s = ": definition of "; 306 307 message(toString(sym.file) + s + name); 308 } 309 310 static void recordWhyExtract(const InputFile *reference, 311 const InputFile &extracted, const Symbol &sym) { 312 ctx.whyExtractRecords.emplace_back(toString(reference), &extracted, sym); 313 } 314 315 void elf::maybeWarnUnorderableSymbol(const Symbol *sym) { 316 if (!config->warnSymbolOrdering) 317 return; 318 319 // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning 320 // is emitted. It makes sense to not warn on undefined symbols. 321 // 322 // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols, 323 // but we don't have to be compatible here. 324 if (sym->isUndefined() && 325 config->unresolvedSymbols == UnresolvedPolicy::Ignore) 326 return; 327 328 const InputFile *file = sym->file; 329 auto *d = dyn_cast<Defined>(sym); 330 331 auto report = [&](StringRef s) { warn(toString(file) + s + sym->getName()); }; 332 333 if (sym->isUndefined()) 334 report(": unable to order undefined symbol: "); 335 else if (sym->isShared()) 336 report(": unable to order shared symbol: "); 337 else if (d && !d->section) 338 report(": unable to order absolute symbol: "); 339 else if (d && isa<OutputSection>(d->section)) 340 report(": unable to order synthetic symbol: "); 341 else if (d && !d->section->isLive()) 342 report(": unable to order discarded symbol: "); 343 } 344 345 // Returns true if a symbol can be replaced at load-time by a symbol 346 // with the same name defined in other ELF executable or DSO. 347 bool elf::computeIsPreemptible(const Symbol &sym) { 348 assert(!sym.isLocal() || sym.isPlaceholder()); 349 350 // Only symbols with default visibility that appear in dynsym can be 351 // preempted. Symbols with protected visibility cannot be preempted. 352 if (!sym.includeInDynsym() || sym.visibility() != STV_DEFAULT) 353 return false; 354 355 // At this point copy relocations have not been created yet, so any 356 // symbol that is not defined locally is preemptible. 357 if (!sym.isDefined()) 358 return true; 359 360 if (!config->shared) 361 return false; 362 363 // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is 364 // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is 365 // in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of 366 // -Bsymbolic-functions. 367 if (config->symbolic || 368 (config->bsymbolic == BsymbolicKind::Functions && sym.isFunc()) || 369 (config->bsymbolic == BsymbolicKind::NonWeakFunctions && sym.isFunc() && 370 sym.binding != STB_WEAK)) 371 return sym.inDynamicList; 372 return true; 373 } 374 375 // Merge symbol properties. 376 // 377 // When we have many symbols of the same name, we choose one of them, 378 // and that's the result of symbol resolution. However, symbols that 379 // were not chosen still affect some symbol properties. 380 void Symbol::mergeProperties(const Symbol &other) { 381 if (other.exportDynamic) 382 exportDynamic = true; 383 384 // DSO symbols do not affect visibility in the output. 385 if (!other.isShared() && other.visibility() != STV_DEFAULT) { 386 uint8_t v = visibility(), ov = other.visibility(); 387 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 388 } 389 } 390 391 void Symbol::resolve(const Undefined &other) { 392 if (other.visibility() != STV_DEFAULT) { 393 uint8_t v = visibility(), ov = other.visibility(); 394 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 395 } 396 // An undefined symbol with non default visibility must be satisfied 397 // in the same DSO. 398 // 399 // If this is a non-weak defined symbol in a discarded section, override the 400 // existing undefined symbol for better error message later. 401 if (isPlaceholder() || (isShared() && other.visibility() != STV_DEFAULT) || 402 (isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) { 403 other.overwrite(*this); 404 return; 405 } 406 407 if (traced) 408 printTraceSymbol(other, getName()); 409 410 if (isLazy()) { 411 // An undefined weak will not extract archive members. See comment on Lazy 412 // in Symbols.h for the details. 413 if (other.binding == STB_WEAK) { 414 binding = STB_WEAK; 415 type = other.type; 416 return; 417 } 418 419 // Do extra check for --warn-backrefs. 420 // 421 // --warn-backrefs is an option to prevent an undefined reference from 422 // extracting an archive member written earlier in the command line. It can 423 // be used to keep compatibility with GNU linkers to some degree. I'll 424 // explain the feature and why you may find it useful in this comment. 425 // 426 // lld's symbol resolution semantics is more relaxed than traditional Unix 427 // linkers. For example, 428 // 429 // ld.lld foo.a bar.o 430 // 431 // succeeds even if bar.o contains an undefined symbol that has to be 432 // resolved by some object file in foo.a. Traditional Unix linkers don't 433 // allow this kind of backward reference, as they visit each file only once 434 // from left to right in the command line while resolving all undefined 435 // symbols at the moment of visiting. 436 // 437 // In the above case, since there's no undefined symbol when a linker visits 438 // foo.a, no files are pulled out from foo.a, and because the linker forgets 439 // about foo.a after visiting, it can't resolve undefined symbols in bar.o 440 // that could have been resolved otherwise. 441 // 442 // That lld accepts more relaxed form means that (besides it'd make more 443 // sense) you can accidentally write a command line or a build file that 444 // works only with lld, even if you have a plan to distribute it to wider 445 // users who may be using GNU linkers. With --warn-backrefs, you can detect 446 // a library order that doesn't work with other Unix linkers. 447 // 448 // The option is also useful to detect cyclic dependencies between static 449 // archives. Again, lld accepts 450 // 451 // ld.lld foo.a bar.a 452 // 453 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is 454 // handled as an error. 455 // 456 // Here is how the option works. We assign a group ID to each file. A file 457 // with a smaller group ID can pull out object files from an archive file 458 // with an equal or greater group ID. Otherwise, it is a reverse dependency 459 // and an error. 460 // 461 // A file outside --{start,end}-group gets a fresh ID when instantiated. All 462 // files within the same --{start,end}-group get the same group ID. E.g. 463 // 464 // ld.lld A B --start-group C D --end-group E 465 // 466 // A forms group 0. B form group 1. C and D (including their member object 467 // files) form group 2. E forms group 3. I think that you can see how this 468 // group assignment rule simulates the traditional linker's semantics. 469 bool backref = config->warnBackrefs && other.file && 470 file->groupId < other.file->groupId; 471 extract(); 472 473 if (!config->whyExtract.empty()) 474 recordWhyExtract(other.file, *file, *this); 475 476 // We don't report backward references to weak symbols as they can be 477 // overridden later. 478 // 479 // A traditional linker does not error for -ldef1 -lref -ldef2 (linking 480 // sandwich), where def2 may or may not be the same as def1. We don't want 481 // to warn for this case, so dismiss the warning if we see a subsequent lazy 482 // definition. this->file needs to be saved because in the case of LTO it 483 // may be reset to nullptr or be replaced with a file named lto.tmp. 484 if (backref && !isWeak()) 485 ctx.backwardReferences.try_emplace(this, 486 std::make_pair(other.file, file)); 487 return; 488 } 489 490 // Undefined symbols in a SharedFile do not change the binding. 491 if (isa_and_nonnull<SharedFile>(other.file)) 492 return; 493 494 if (isUndefined() || isShared()) { 495 // The binding will be weak if there is at least one reference and all are 496 // weak. The binding has one opportunity to change to weak: if the first 497 // reference is weak. 498 if (other.binding != STB_WEAK || !referenced) 499 binding = other.binding; 500 } 501 } 502 503 // Compare two symbols. Return true if the new symbol should win. 504 bool Symbol::shouldReplace(const Defined &other) const { 505 if (LLVM_UNLIKELY(isCommon())) { 506 if (config->warnCommon) 507 warn("common " + getName() + " is overridden"); 508 return !other.isWeak(); 509 } 510 if (!isDefined()) 511 return true; 512 513 // Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes 514 // some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat 515 // STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all 516 // STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to 517 // an existing STB_WEAK, there may be discarded section errors because the 518 // selected copy may be in a non-prevailing COMDAT. 519 return !isGlobal() && other.isGlobal(); 520 } 521 522 void elf::reportDuplicate(const Symbol &sym, const InputFile *newFile, 523 InputSectionBase *errSec, uint64_t errOffset) { 524 if (config->allowMultipleDefinition) 525 return; 526 // In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which 527 // is sort of proto-comdat. There is actually no duplicate if we have 528 // full support for .gnu.linkonce. 529 const Defined *d = dyn_cast<Defined>(&sym); 530 if (!d || d->getName() == "__x86.get_pc_thunk.bx") 531 return; 532 // Allow absolute symbols with the same value for GNU ld compatibility. 533 if (!d->section && !errSec && errOffset && d->value == errOffset) 534 return; 535 if (!d->section || !errSec) { 536 error("duplicate symbol: " + toString(sym) + "\n>>> defined in " + 537 toString(sym.file) + "\n>>> defined in " + toString(newFile)); 538 return; 539 } 540 541 // Construct and print an error message in the form of: 542 // 543 // ld.lld: error: duplicate symbol: foo 544 // >>> defined at bar.c:30 545 // >>> bar.o (/home/alice/src/bar.o) 546 // >>> defined at baz.c:563 547 // >>> baz.o in archive libbaz.a 548 auto *sec1 = cast<InputSectionBase>(d->section); 549 std::string src1 = sec1->getSrcMsg(sym, d->value); 550 std::string obj1 = sec1->getObjMsg(d->value); 551 std::string src2 = errSec->getSrcMsg(sym, errOffset); 552 std::string obj2 = errSec->getObjMsg(errOffset); 553 554 std::string msg = "duplicate symbol: " + toString(sym) + "\n>>> defined at "; 555 if (!src1.empty()) 556 msg += src1 + "\n>>> "; 557 msg += obj1 + "\n>>> defined at "; 558 if (!src2.empty()) 559 msg += src2 + "\n>>> "; 560 msg += obj2; 561 error(msg); 562 } 563 564 void Symbol::checkDuplicate(const Defined &other) const { 565 if (isDefined() && !isWeak() && !other.isWeak()) 566 reportDuplicate(*this, other.file, 567 dyn_cast_or_null<InputSectionBase>(other.section), 568 other.value); 569 } 570 571 void Symbol::resolve(const CommonSymbol &other) { 572 if (other.exportDynamic) 573 exportDynamic = true; 574 if (other.visibility() != STV_DEFAULT) { 575 uint8_t v = visibility(), ov = other.visibility(); 576 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 577 } 578 if (isDefined() && !isWeak()) { 579 if (config->warnCommon) 580 warn("common " + getName() + " is overridden"); 581 return; 582 } 583 584 if (CommonSymbol *oldSym = dyn_cast<CommonSymbol>(this)) { 585 if (config->warnCommon) 586 warn("multiple common of " + getName()); 587 oldSym->alignment = std::max(oldSym->alignment, other.alignment); 588 if (oldSym->size < other.size) { 589 oldSym->file = other.file; 590 oldSym->size = other.size; 591 } 592 return; 593 } 594 595 if (auto *s = dyn_cast<SharedSymbol>(this)) { 596 // Increase st_size if the shared symbol has a larger st_size. The shared 597 // symbol may be created from common symbols. The fact that some object 598 // files were linked into a shared object first should not change the 599 // regular rule that picks the largest st_size. 600 uint64_t size = s->size; 601 other.overwrite(*this); 602 if (size > cast<CommonSymbol>(this)->size) 603 cast<CommonSymbol>(this)->size = size; 604 } else { 605 other.overwrite(*this); 606 } 607 } 608 609 void Symbol::resolve(const Defined &other) { 610 if (other.exportDynamic) 611 exportDynamic = true; 612 if (other.visibility() != STV_DEFAULT) { 613 uint8_t v = visibility(), ov = other.visibility(); 614 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 615 } 616 if (shouldReplace(other)) 617 other.overwrite(*this); 618 } 619 620 void Symbol::resolve(const LazyObject &other) { 621 if (isPlaceholder()) { 622 other.overwrite(*this); 623 return; 624 } 625 626 // For common objects, we want to look for global or weak definitions that 627 // should be extracted as the canonical definition instead. 628 if (LLVM_UNLIKELY(isCommon()) && elf::config->fortranCommon && 629 other.file->shouldExtractForCommon(getName())) { 630 ctx.backwardReferences.erase(this); 631 other.overwrite(*this); 632 other.extract(); 633 return; 634 } 635 636 if (!isUndefined()) { 637 // See the comment in resolveUndefined(). 638 if (isDefined()) 639 ctx.backwardReferences.erase(this); 640 return; 641 } 642 643 // An undefined weak will not extract archive members. See comment on Lazy in 644 // Symbols.h for the details. 645 if (isWeak()) { 646 uint8_t ty = type; 647 other.overwrite(*this); 648 type = ty; 649 binding = STB_WEAK; 650 return; 651 } 652 653 const InputFile *oldFile = file; 654 other.extract(); 655 if (!config->whyExtract.empty()) 656 recordWhyExtract(oldFile, *file, *this); 657 } 658 659 void Symbol::resolve(const SharedSymbol &other) { 660 exportDynamic = true; 661 if (isPlaceholder()) { 662 other.overwrite(*this); 663 return; 664 } 665 if (isCommon()) { 666 // See the comment in resolveCommon() above. 667 if (other.size > cast<CommonSymbol>(this)->size) 668 cast<CommonSymbol>(this)->size = other.size; 669 return; 670 } 671 if (visibility() == STV_DEFAULT && (isUndefined() || isLazy())) { 672 // An undefined symbol with non default visibility must be satisfied 673 // in the same DSO. 674 uint8_t bind = binding; 675 other.overwrite(*this); 676 binding = bind; 677 } else if (traced) 678 printTraceSymbol(other, getName()); 679 } 680