1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "LinkerScript.h" 46 #include "OutputSections.h" 47 #include "SymbolTable.h" 48 #include "Symbols.h" 49 #include "SyntheticSections.h" 50 #include "Target.h" 51 #include "Thunks.h" 52 #include "lld/Common/ErrorHandler.h" 53 #include "lld/Common/Memory.h" 54 #include "lld/Common/Strings.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 61 using namespace llvm; 62 using namespace llvm::ELF; 63 using namespace llvm::object; 64 using namespace llvm::support::endian; 65 66 namespace lld { 67 namespace elf { 68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 69 for (BaseCommand *base : script->sectionCommands) 70 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 71 if (cmd->sym == &sym) 72 return cmd->location; 73 return None; 74 } 75 76 // Construct a message in the following format. 77 // 78 // >>> defined in /home/alice/src/foo.o 79 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 80 // >>> /home/alice/src/bar.o:(.text+0x1) 81 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 82 uint64_t off) { 83 std::string msg = "\n>>> defined in "; 84 if (sym.file) 85 msg += toString(sym.file); 86 else if (Optional<std::string> loc = getLinkerScriptLocation(sym)) 87 msg += *loc; 88 89 msg += "\n>>> referenced by "; 90 std::string src = s.getSrcMsg(sym, off); 91 if (!src.empty()) 92 msg += src + "\n>>> "; 93 return msg + s.getObjMsg(off); 94 } 95 96 namespace { 97 // Build a bitmask with one bit set for each RelExpr. 98 // 99 // Constexpr function arguments can't be used in static asserts, so we 100 // use template arguments to build the mask. 101 // But function template partial specializations don't exist (needed 102 // for base case of the recursion), so we need a dummy struct. 103 template <RelExpr... Exprs> struct RelExprMaskBuilder { 104 static inline uint64_t build() { return 0; } 105 }; 106 107 // Specialization for recursive case. 108 template <RelExpr Head, RelExpr... Tail> 109 struct RelExprMaskBuilder<Head, Tail...> { 110 static inline uint64_t build() { 111 static_assert(0 <= Head && Head < 64, 112 "RelExpr is too large for 64-bit mask!"); 113 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); 114 } 115 }; 116 } // namespace 117 118 // Return true if `Expr` is one of `Exprs`. 119 // There are fewer than 64 RelExpr's, so we can represent any set of 120 // RelExpr's as a constant bit mask and test for membership with a 121 // couple cheap bitwise operations. 122 template <RelExpr... Exprs> bool oneof(RelExpr expr) { 123 assert(0 <= expr && (int)expr < 64 && 124 "RelExpr is too large for 64-bit mask!"); 125 return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build(); 126 } 127 128 // This function is similar to the `handleTlsRelocation`. MIPS does not 129 // support any relaxations for TLS relocations so by factoring out MIPS 130 // handling in to the separate function we can simplify the code and do not 131 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 132 // Mips has a custom MipsGotSection that handles the writing of GOT entries 133 // without dynamic relocations. 134 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 135 InputSectionBase &c, uint64_t offset, 136 int64_t addend, RelExpr expr) { 137 if (expr == R_MIPS_TLSLD) { 138 in.mipsGot->addTlsIndex(*c.file); 139 c.relocations.push_back({expr, type, offset, addend, &sym}); 140 return 1; 141 } 142 if (expr == R_MIPS_TLSGD) { 143 in.mipsGot->addDynTlsEntry(*c.file, sym); 144 c.relocations.push_back({expr, type, offset, addend, &sym}); 145 return 1; 146 } 147 return 0; 148 } 149 150 // Notes about General Dynamic and Local Dynamic TLS models below. They may 151 // require the generation of a pair of GOT entries that have associated dynamic 152 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 153 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 154 // symbol in TLS block. 155 // 156 // Returns the number of relocations processed. 157 template <class ELFT> 158 static unsigned 159 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, 160 typename ELFT::uint offset, int64_t addend, RelExpr expr) { 161 if (!sym.isTls()) 162 return 0; 163 164 if (config->emachine == EM_MIPS) 165 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 166 167 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>( 168 expr) && 169 config->shared) { 170 if (in.got->addDynTlsEntry(sym)) { 171 uint64_t off = in.got->getGlobalDynOffset(sym); 172 mainPart->relaDyn->addReloc( 173 {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0}); 174 } 175 if (expr != R_TLSDESC_CALL) 176 c.relocations.push_back({expr, type, offset, addend, &sym}); 177 return 1; 178 } 179 180 bool canRelax = config->emachine != EM_ARM && 181 config->emachine != EM_HEXAGON && 182 config->emachine != EM_RISCV; 183 184 // If we are producing an executable and the symbol is non-preemptable, it 185 // must be defined and the code sequence can be relaxed to use Local-Exec. 186 // 187 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 188 // we can omit the DTPMOD dynamic relocations and resolve them at link time 189 // because them are always 1. This may be necessary for static linking as 190 // DTPMOD may not be expected at load time. 191 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 192 193 // Local Dynamic is for access to module local TLS variables, while still 194 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 195 // module index, with a special value of 0 for the current module. GOT[e1] is 196 // unused. There only needs to be one module index entry. 197 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 198 expr)) { 199 // Local-Dynamic relocs can be relaxed to Local-Exec. 200 if (canRelax && !config->shared) { 201 c.relocations.push_back( 202 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, 203 offset, addend, &sym}); 204 return target->getTlsGdRelaxSkip(type); 205 } 206 if (expr == R_TLSLD_HINT) 207 return 1; 208 if (in.got->addTlsIndex()) { 209 if (isLocalInExecutable) 210 in.got->relocations.push_back( 211 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); 212 else 213 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, 214 in.got->getTlsIndexOff(), nullptr); 215 } 216 c.relocations.push_back({expr, type, offset, addend, &sym}); 217 return 1; 218 } 219 220 // Local-Dynamic relocs can be relaxed to Local-Exec. 221 if (expr == R_DTPREL && !config->shared) { 222 c.relocations.push_back( 223 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, 224 offset, addend, &sym}); 225 return 1; 226 } 227 228 // Local-Dynamic sequence where offset of tls variable relative to dynamic 229 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 230 if (expr == R_TLSLD_GOT_OFF) { 231 if (!sym.isInGot()) { 232 in.got->addEntry(sym); 233 uint64_t off = sym.getGotOffset(); 234 in.got->relocations.push_back( 235 {R_ABS, target->tlsOffsetRel, off, 0, &sym}); 236 } 237 c.relocations.push_back({expr, type, offset, addend, &sym}); 238 return 1; 239 } 240 241 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 242 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 243 if (!canRelax || config->shared) { 244 if (in.got->addDynTlsEntry(sym)) { 245 uint64_t off = in.got->getGlobalDynOffset(sym); 246 247 if (isLocalInExecutable) 248 // Write one to the GOT slot. 249 in.got->relocations.push_back( 250 {R_ADDEND, target->symbolicRel, off, 1, &sym}); 251 else 252 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym); 253 254 // If the symbol is preemptible we need the dynamic linker to write 255 // the offset too. 256 uint64_t offsetOff = off + config->wordsize; 257 if (sym.isPreemptible) 258 mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff, 259 &sym); 260 else 261 in.got->relocations.push_back( 262 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 263 } 264 c.relocations.push_back({expr, type, offset, addend, &sym}); 265 return 1; 266 } 267 268 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 269 // depending on the symbol being locally defined or not. 270 if (sym.isPreemptible) { 271 c.relocations.push_back( 272 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type, 273 offset, addend, &sym}); 274 if (!sym.isInGot()) { 275 in.got->addEntry(sym); 276 mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(), 277 &sym); 278 } 279 } else { 280 c.relocations.push_back( 281 {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type, 282 offset, addend, &sym}); 283 } 284 return target->getTlsGdRelaxSkip(type); 285 } 286 287 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 288 // defined. 289 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 290 R_TLSIE_HINT>(expr) && 291 canRelax && isLocalInExecutable) { 292 c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 293 return 1; 294 } 295 296 if (expr == R_TLSIE_HINT) 297 return 1; 298 return 0; 299 } 300 301 static RelType getMipsPairType(RelType type, bool isLocal) { 302 switch (type) { 303 case R_MIPS_HI16: 304 return R_MIPS_LO16; 305 case R_MIPS_GOT16: 306 // In case of global symbol, the R_MIPS_GOT16 relocation does not 307 // have a pair. Each global symbol has a unique entry in the GOT 308 // and a corresponding instruction with help of the R_MIPS_GOT16 309 // relocation loads an address of the symbol. In case of local 310 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 311 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 312 // relocations handle low 16 bits of the address. That allows 313 // to allocate only one GOT entry for every 64 KBytes of local data. 314 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 315 case R_MICROMIPS_GOT16: 316 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 317 case R_MIPS_PCHI16: 318 return R_MIPS_PCLO16; 319 case R_MICROMIPS_HI16: 320 return R_MICROMIPS_LO16; 321 default: 322 return R_MIPS_NONE; 323 } 324 } 325 326 // True if non-preemptable symbol always has the same value regardless of where 327 // the DSO is loaded. 328 static bool isAbsolute(const Symbol &sym) { 329 if (sym.isUndefWeak()) 330 return true; 331 if (const auto *dr = dyn_cast<Defined>(&sym)) 332 return dr->section == nullptr; // Absolute symbol. 333 return false; 334 } 335 336 static bool isAbsoluteValue(const Symbol &sym) { 337 return isAbsolute(sym) || sym.isTls(); 338 } 339 340 // Returns true if Expr refers a PLT entry. 341 static bool needsPlt(RelExpr expr) { 342 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr); 343 } 344 345 // Returns true if Expr refers a GOT entry. Note that this function 346 // returns false for TLS variables even though they need GOT, because 347 // TLS variables uses GOT differently than the regular variables. 348 static bool needsGot(RelExpr expr) { 349 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 350 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>( 351 expr); 352 } 353 354 // True if this expression is of the form Sym - X, where X is a position in the 355 // file (PC, or GOT for example). 356 static bool isRelExpr(RelExpr expr) { 357 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 358 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 359 R_RISCV_PC_INDIRECT>(expr); 360 } 361 362 // Returns true if a given relocation can be computed at link-time. 363 // 364 // For instance, we know the offset from a relocation to its target at 365 // link-time if the relocation is PC-relative and refers a 366 // non-interposable function in the same executable. This function 367 // will return true for such relocation. 368 // 369 // If this function returns false, that means we need to emit a 370 // dynamic relocation so that the relocation will be fixed at load-time. 371 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 372 InputSectionBase &s, uint64_t relOff) { 373 // These expressions always compute a constant 374 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF, 375 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, 376 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, 377 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 378 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL, 379 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL, 380 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT>( 381 e)) 382 return true; 383 384 // These never do, except if the entire file is position dependent or if 385 // only the low bits are used. 386 if (e == R_GOT || e == R_PLT || e == R_TLSDESC) 387 return target->usesOnlyLowPageBits(type) || !config->isPic; 388 389 if (sym.isPreemptible) 390 return false; 391 if (!config->isPic) 392 return true; 393 394 // The size of a non preemptible symbol is a constant. 395 if (e == R_SIZE) 396 return true; 397 398 // For the target and the relocation, we want to know if they are 399 // absolute or relative. 400 bool absVal = isAbsoluteValue(sym); 401 bool relE = isRelExpr(e); 402 if (absVal && !relE) 403 return true; 404 if (!absVal && relE) 405 return true; 406 if (!absVal && !relE) 407 return target->usesOnlyLowPageBits(type); 408 409 assert(absVal && relE); 410 411 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 412 // in PIC mode. This is a little strange, but it allows us to link function 413 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 414 // Normally such a call will be guarded with a comparison, which will load a 415 // zero from the GOT. 416 if (sym.isUndefWeak()) 417 return true; 418 419 // We set the final symbols values for linker script defined symbols later. 420 // They always can be computed as a link time constant. 421 if (sym.scriptDefined) 422 return true; 423 424 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 425 toString(sym) + getLocation(s, sym, relOff)); 426 return true; 427 } 428 429 static RelExpr toPlt(RelExpr expr) { 430 switch (expr) { 431 case R_PPC64_CALL: 432 return R_PPC64_CALL_PLT; 433 case R_PC: 434 return R_PLT_PC; 435 case R_ABS: 436 return R_PLT; 437 default: 438 return expr; 439 } 440 } 441 442 static RelExpr fromPlt(RelExpr expr) { 443 // We decided not to use a plt. Optimize a reference to the plt to a 444 // reference to the symbol itself. 445 switch (expr) { 446 case R_PLT_PC: 447 case R_PPC32_PLTREL: 448 return R_PC; 449 case R_PPC64_CALL_PLT: 450 return R_PPC64_CALL; 451 case R_PLT: 452 return R_ABS; 453 default: 454 return expr; 455 } 456 } 457 458 // Returns true if a given shared symbol is in a read-only segment in a DSO. 459 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 460 using Elf_Phdr = typename ELFT::Phdr; 461 462 // Determine if the symbol is read-only by scanning the DSO's program headers. 463 const SharedFile &file = ss.getFile(); 464 for (const Elf_Phdr &phdr : 465 check(file.template getObj<ELFT>().program_headers())) 466 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 467 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 468 ss.value < phdr.p_vaddr + phdr.p_memsz) 469 return true; 470 return false; 471 } 472 473 // Returns symbols at the same offset as a given symbol, including SS itself. 474 // 475 // If two or more symbols are at the same offset, and at least one of 476 // them are copied by a copy relocation, all of them need to be copied. 477 // Otherwise, they would refer to different places at runtime. 478 template <class ELFT> 479 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 480 using Elf_Sym = typename ELFT::Sym; 481 482 SharedFile &file = ss.getFile(); 483 484 SmallSet<SharedSymbol *, 4> ret; 485 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 486 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 487 s.getType() == STT_TLS || s.st_value != ss.value) 488 continue; 489 StringRef name = check(s.getName(file.getStringTable())); 490 Symbol *sym = symtab->find(name); 491 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 492 ret.insert(alias); 493 } 494 return ret; 495 } 496 497 // When a symbol is copy relocated or we create a canonical plt entry, it is 498 // effectively a defined symbol. In the case of copy relocation the symbol is 499 // in .bss and in the case of a canonical plt entry it is in .plt. This function 500 // replaces the existing symbol with a Defined pointing to the appropriate 501 // location. 502 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, 503 uint64_t size) { 504 Symbol old = sym; 505 506 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, 507 sym.type, value, size, sec}); 508 509 sym.pltIndex = old.pltIndex; 510 sym.gotIndex = old.gotIndex; 511 sym.verdefIndex = old.verdefIndex; 512 sym.exportDynamic = true; 513 sym.isUsedInRegularObj = true; 514 } 515 516 // Reserve space in .bss or .bss.rel.ro for copy relocation. 517 // 518 // The copy relocation is pretty much a hack. If you use a copy relocation 519 // in your program, not only the symbol name but the symbol's size, RW/RO 520 // bit and alignment become part of the ABI. In addition to that, if the 521 // symbol has aliases, the aliases become part of the ABI. That's subtle, 522 // but if you violate that implicit ABI, that can cause very counter- 523 // intuitive consequences. 524 // 525 // So, what is the copy relocation? It's for linking non-position 526 // independent code to DSOs. In an ideal world, all references to data 527 // exported by DSOs should go indirectly through GOT. But if object files 528 // are compiled as non-PIC, all data references are direct. There is no 529 // way for the linker to transform the code to use GOT, as machine 530 // instructions are already set in stone in object files. This is where 531 // the copy relocation takes a role. 532 // 533 // A copy relocation instructs the dynamic linker to copy data from a DSO 534 // to a specified address (which is usually in .bss) at load-time. If the 535 // static linker (that's us) finds a direct data reference to a DSO 536 // symbol, it creates a copy relocation, so that the symbol can be 537 // resolved as if it were in .bss rather than in a DSO. 538 // 539 // As you can see in this function, we create a copy relocation for the 540 // dynamic linker, and the relocation contains not only symbol name but 541 // various other information about the symbol. So, such attributes become a 542 // part of the ABI. 543 // 544 // Note for application developers: I can give you a piece of advice if 545 // you are writing a shared library. You probably should export only 546 // functions from your library. You shouldn't export variables. 547 // 548 // As an example what can happen when you export variables without knowing 549 // the semantics of copy relocations, assume that you have an exported 550 // variable of type T. It is an ABI-breaking change to add new members at 551 // end of T even though doing that doesn't change the layout of the 552 // existing members. That's because the space for the new members are not 553 // reserved in .bss unless you recompile the main program. That means they 554 // are likely to overlap with other data that happens to be laid out next 555 // to the variable in .bss. This kind of issue is sometimes very hard to 556 // debug. What's a solution? Instead of exporting a variable V from a DSO, 557 // define an accessor getV(). 558 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 559 // Copy relocation against zero-sized symbol doesn't make sense. 560 uint64_t symSize = ss.getSize(); 561 if (symSize == 0 || ss.alignment == 0) 562 fatal("cannot create a copy relocation for symbol " + toString(ss)); 563 564 // See if this symbol is in a read-only segment. If so, preserve the symbol's 565 // memory protection by reserving space in the .bss.rel.ro section. 566 bool isRO = isReadOnly<ELFT>(ss); 567 BssSection *sec = 568 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 569 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 570 571 // At this point, sectionBases has been migrated to sections. Append sec to 572 // sections. 573 if (osec->sectionCommands.empty() || 574 !isa<InputSectionDescription>(osec->sectionCommands.back())) 575 osec->sectionCommands.push_back(make<InputSectionDescription>("")); 576 auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back()); 577 isd->sections.push_back(sec); 578 osec->commitSection(sec); 579 580 // Look through the DSO's dynamic symbol table for aliases and create a 581 // dynamic symbol for each one. This causes the copy relocation to correctly 582 // interpose any aliases. 583 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 584 replaceWithDefined(*sym, sec, 0, sym->size); 585 586 mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss); 587 } 588 589 // MIPS has an odd notion of "paired" relocations to calculate addends. 590 // For example, if a relocation is of R_MIPS_HI16, there must be a 591 // R_MIPS_LO16 relocation after that, and an addend is calculated using 592 // the two relocations. 593 template <class ELFT, class RelTy> 594 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, 595 InputSectionBase &sec, RelExpr expr, 596 bool isLocal) { 597 if (expr == R_MIPS_GOTREL && isLocal) 598 return sec.getFile<ELFT>()->mipsGp0; 599 600 // The ABI says that the paired relocation is used only for REL. 601 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 602 if (RelTy::IsRela) 603 return 0; 604 605 RelType type = rel.getType(config->isMips64EL); 606 uint32_t pairTy = getMipsPairType(type, isLocal); 607 if (pairTy == R_MIPS_NONE) 608 return 0; 609 610 const uint8_t *buf = sec.data().data(); 611 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 612 613 // To make things worse, paired relocations might not be contiguous in 614 // the relocation table, so we need to do linear search. *sigh* 615 for (const RelTy *ri = &rel; ri != end; ++ri) 616 if (ri->getType(config->isMips64EL) == pairTy && 617 ri->getSymbol(config->isMips64EL) == symIndex) 618 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 619 620 warn("can't find matching " + toString(pairTy) + " relocation for " + 621 toString(type)); 622 return 0; 623 } 624 625 // Returns an addend of a given relocation. If it is RELA, an addend 626 // is in a relocation itself. If it is REL, we need to read it from an 627 // input section. 628 template <class ELFT, class RelTy> 629 static int64_t computeAddend(const RelTy &rel, const RelTy *end, 630 InputSectionBase &sec, RelExpr expr, 631 bool isLocal) { 632 int64_t addend; 633 RelType type = rel.getType(config->isMips64EL); 634 635 if (RelTy::IsRela) { 636 addend = getAddend<ELFT>(rel); 637 } else { 638 const uint8_t *buf = sec.data().data(); 639 addend = target->getImplicitAddend(buf + rel.r_offset, type); 640 } 641 642 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 643 addend += getPPC64TocBase(); 644 if (config->emachine == EM_MIPS) 645 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); 646 647 return addend; 648 } 649 650 // Custom error message if Sym is defined in a discarded section. 651 template <class ELFT> 652 static std::string maybeReportDiscarded(Undefined &sym) { 653 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 654 if (!file || !sym.discardedSecIdx || 655 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 656 return ""; 657 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = 658 CHECK(file->getObj().sections(), file); 659 660 std::string msg; 661 if (sym.type == ELF::STT_SECTION) { 662 msg = "relocation refers to a discarded section: "; 663 msg += CHECK( 664 file->getObj().getSectionName(&objSections[sym.discardedSecIdx]), file); 665 } else { 666 msg = "relocation refers to a symbol in a discarded section: " + 667 toString(sym); 668 } 669 msg += "\n>>> defined in " + toString(file); 670 671 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 672 if (elfSec.sh_type != SHT_GROUP) 673 return msg; 674 675 // If the discarded section is a COMDAT. 676 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 677 if (const InputFile *prevailing = 678 symtab->comdatGroups.lookup(CachedHashStringRef(signature))) 679 msg += "\n>>> section group signature: " + signature.str() + 680 "\n>>> prevailing definition is in " + toString(prevailing); 681 return msg; 682 } 683 684 // Undefined diagnostics are collected in a vector and emitted once all of 685 // them are known, so that some postprocessing on the list of undefined symbols 686 // can happen before lld emits diagnostics. 687 struct UndefinedDiag { 688 Symbol *sym; 689 struct Loc { 690 InputSectionBase *sec; 691 uint64_t offset; 692 }; 693 std::vector<Loc> locs; 694 bool isWarning; 695 }; 696 697 static std::vector<UndefinedDiag> undefs; 698 699 // Check whether the definition name def is a mangled function name that matches 700 // the reference name ref. 701 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 702 llvm::ItaniumPartialDemangler d; 703 std::string name = def.str(); 704 if (d.partialDemangle(name.c_str())) 705 return false; 706 char *buf = d.getFunctionName(nullptr, nullptr); 707 if (!buf) 708 return false; 709 bool ret = ref == buf; 710 free(buf); 711 return ret; 712 } 713 714 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 715 // the suggested symbol, which is either in the symbol table, or in the same 716 // file of sym. 717 template <class ELFT> 718 static const Symbol *getAlternativeSpelling(const Undefined &sym, 719 std::string &pre_hint, 720 std::string &post_hint) { 721 DenseMap<StringRef, const Symbol *> map; 722 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) { 723 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 724 // will give an error. Don't suggest an alternative spelling. 725 if (file && sym.discardedSecIdx != 0 && 726 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 727 return nullptr; 728 729 // Build a map of local defined symbols. 730 for (const Symbol *s : sym.file->getSymbols()) 731 if (s->isLocal() && s->isDefined()) 732 map.try_emplace(s->getName(), s); 733 } 734 735 auto suggest = [&](StringRef newName) -> const Symbol * { 736 // If defined locally. 737 if (const Symbol *s = map.lookup(newName)) 738 return s; 739 740 // If in the symbol table and not undefined. 741 if (const Symbol *s = symtab->find(newName)) 742 if (!s->isUndefined()) 743 return s; 744 745 return nullptr; 746 }; 747 748 // This loop enumerates all strings of Levenshtein distance 1 as typo 749 // correction candidates and suggests the one that exists as a non-undefined 750 // symbol. 751 StringRef name = sym.getName(); 752 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 753 // Insert a character before name[i]. 754 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 755 for (char c = '0'; c <= 'z'; ++c) { 756 newName[i] = c; 757 if (const Symbol *s = suggest(newName)) 758 return s; 759 } 760 if (i == e) 761 break; 762 763 // Substitute name[i]. 764 newName = name; 765 for (char c = '0'; c <= 'z'; ++c) { 766 newName[i] = c; 767 if (const Symbol *s = suggest(newName)) 768 return s; 769 } 770 771 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 772 // common. 773 if (i + 1 < e) { 774 newName[i] = name[i + 1]; 775 newName[i + 1] = name[i]; 776 if (const Symbol *s = suggest(newName)) 777 return s; 778 } 779 780 // Delete name[i]. 781 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 782 if (const Symbol *s = suggest(newName)) 783 return s; 784 } 785 786 // Case mismatch, e.g. Foo vs FOO. 787 for (auto &it : map) 788 if (name.equals_lower(it.first)) 789 return it.second; 790 for (Symbol *sym : symtab->symbols()) 791 if (!sym->isUndefined() && name.equals_lower(sym->getName())) 792 return sym; 793 794 // The reference may be a mangled name while the definition is not. Suggest a 795 // missing extern "C". 796 if (name.startswith("_Z")) { 797 std::string buf = name.str(); 798 llvm::ItaniumPartialDemangler d; 799 if (!d.partialDemangle(buf.c_str())) 800 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 801 const Symbol *s = suggest(buf); 802 free(buf); 803 if (s) { 804 pre_hint = ": extern \"C\" "; 805 return s; 806 } 807 } 808 } else { 809 const Symbol *s = nullptr; 810 for (auto &it : map) 811 if (canSuggestExternCForCXX(name, it.first)) { 812 s = it.second; 813 break; 814 } 815 if (!s) 816 for (Symbol *sym : symtab->symbols()) 817 if (canSuggestExternCForCXX(name, sym->getName())) { 818 s = sym; 819 break; 820 } 821 if (s) { 822 pre_hint = " to declare "; 823 post_hint = " as extern \"C\"?"; 824 return s; 825 } 826 } 827 828 return nullptr; 829 } 830 831 template <class ELFT> 832 static void reportUndefinedSymbol(const UndefinedDiag &undef, 833 bool correctSpelling) { 834 Symbol &sym = *undef.sym; 835 836 auto visibility = [&]() -> std::string { 837 switch (sym.visibility) { 838 case STV_INTERNAL: 839 return "internal "; 840 case STV_HIDDEN: 841 return "hidden "; 842 case STV_PROTECTED: 843 return "protected "; 844 default: 845 return ""; 846 } 847 }; 848 849 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); 850 if (msg.empty()) 851 msg = "undefined " + visibility() + "symbol: " + toString(sym); 852 853 const size_t maxUndefReferences = 10; 854 size_t i = 0; 855 for (UndefinedDiag::Loc l : undef.locs) { 856 if (i >= maxUndefReferences) 857 break; 858 InputSectionBase &sec = *l.sec; 859 uint64_t offset = l.offset; 860 861 msg += "\n>>> referenced by "; 862 std::string src = sec.getSrcMsg(sym, offset); 863 if (!src.empty()) 864 msg += src + "\n>>> "; 865 msg += sec.getObjMsg(offset); 866 i++; 867 } 868 869 if (i < undef.locs.size()) 870 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 871 .str(); 872 873 if (correctSpelling) { 874 std::string pre_hint = ": ", post_hint; 875 if (const Symbol *corrected = getAlternativeSpelling<ELFT>( 876 cast<Undefined>(sym), pre_hint, post_hint)) { 877 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 878 if (corrected->file) 879 msg += "\n>>> defined in: " + toString(corrected->file); 880 } 881 } 882 883 if (sym.getName().startswith("_ZTV")) 884 msg += "\nthe vtable symbol may be undefined because the class is missing " 885 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 886 887 if (undef.isWarning) 888 warn(msg); 889 else 890 error(msg); 891 } 892 893 template <class ELFT> void reportUndefinedSymbols() { 894 // Find the first "undefined symbol" diagnostic for each diagnostic, and 895 // collect all "referenced from" lines at the first diagnostic. 896 DenseMap<Symbol *, UndefinedDiag *> firstRef; 897 for (UndefinedDiag &undef : undefs) { 898 assert(undef.locs.size() == 1); 899 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 900 canon->locs.push_back(undef.locs[0]); 901 undef.locs.clear(); 902 } else 903 firstRef[undef.sym] = &undef; 904 } 905 906 // Enable spell corrector for the first 2 diagnostics. 907 for (auto it : enumerate(undefs)) 908 if (!it.value().locs.empty()) 909 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); 910 undefs.clear(); 911 } 912 913 // Report an undefined symbol if necessary. 914 // Returns true if the undefined symbol will produce an error message. 915 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, 916 uint64_t offset) { 917 if (!sym.isUndefined() || sym.isWeak()) 918 return false; 919 920 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; 921 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 922 return false; 923 924 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 925 // which references a switch table in a discarded .rodata/.text section. The 926 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 927 // spec says references from outside the group to a STB_LOCAL symbol are not 928 // allowed. Work around the bug. 929 // 930 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 931 // because .LC0-.LTOC is not representable if the two labels are in different 932 // .got2 933 if (cast<Undefined>(sym).discardedSecIdx != 0 && 934 (sec.name == ".got2" || sec.name == ".toc")) 935 return false; 936 937 bool isWarning = 938 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 939 config->noinhibitExec; 940 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 941 return !isWarning; 942 } 943 944 // MIPS N32 ABI treats series of successive relocations with the same offset 945 // as a single relocation. The similar approach used by N64 ABI, but this ABI 946 // packs all relocations into the single relocation record. Here we emulate 947 // this for the N32 ABI. Iterate over relocation with the same offset and put 948 // theirs types into the single bit-set. 949 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { 950 RelType type = 0; 951 uint64_t offset = rel->r_offset; 952 953 int n = 0; 954 while (rel != end && rel->r_offset == offset) 955 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 956 return type; 957 } 958 959 // .eh_frame sections are mergeable input sections, so their input 960 // offsets are not linearly mapped to output section. For each input 961 // offset, we need to find a section piece containing the offset and 962 // add the piece's base address to the input offset to compute the 963 // output offset. That isn't cheap. 964 // 965 // This class is to speed up the offset computation. When we process 966 // relocations, we access offsets in the monotonically increasing 967 // order. So we can optimize for that access pattern. 968 // 969 // For sections other than .eh_frame, this class doesn't do anything. 970 namespace { 971 class OffsetGetter { 972 public: 973 explicit OffsetGetter(InputSectionBase &sec) { 974 if (auto *eh = dyn_cast<EhInputSection>(&sec)) 975 pieces = eh->pieces; 976 } 977 978 // Translates offsets in input sections to offsets in output sections. 979 // Given offset must increase monotonically. We assume that Piece is 980 // sorted by inputOff. 981 uint64_t get(uint64_t off) { 982 if (pieces.empty()) 983 return off; 984 985 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) 986 ++i; 987 if (i == pieces.size()) 988 fatal(".eh_frame: relocation is not in any piece"); 989 990 // Pieces must be contiguous, so there must be no holes in between. 991 assert(pieces[i].inputOff <= off && "Relocation not in any piece"); 992 993 // Offset -1 means that the piece is dead (i.e. garbage collected). 994 if (pieces[i].outputOff == -1) 995 return -1; 996 return pieces[i].outputOff + off - pieces[i].inputOff; 997 } 998 999 private: 1000 ArrayRef<EhSectionPiece> pieces; 1001 size_t i = 0; 1002 }; 1003 } // namespace 1004 1005 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, 1006 Symbol *sym, int64_t addend, RelExpr expr, 1007 RelType type) { 1008 Partition &part = isec->getPartition(); 1009 1010 // Add a relative relocation. If relrDyn section is enabled, and the 1011 // relocation offset is guaranteed to be even, add the relocation to 1012 // the relrDyn section, otherwise add it to the relaDyn section. 1013 // relrDyn sections don't support odd offsets. Also, relrDyn sections 1014 // don't store the addend values, so we must write it to the relocated 1015 // address. 1016 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { 1017 isec->relocations.push_back({expr, type, offsetInSec, addend, sym}); 1018 part.relrDyn->relocs.push_back({isec, offsetInSec}); 1019 return; 1020 } 1021 part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend, 1022 expr, type); 1023 } 1024 1025 template <class PltSection, class GotPltSection> 1026 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, 1027 RelocationBaseSection *rel, RelType type, Symbol &sym) { 1028 plt->addEntry(sym); 1029 gotPlt->addEntry(sym); 1030 rel->addReloc( 1031 {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0}); 1032 } 1033 1034 static void addGotEntry(Symbol &sym) { 1035 in.got->addEntry(sym); 1036 1037 RelExpr expr = sym.isTls() ? R_TLS : R_ABS; 1038 uint64_t off = sym.getGotOffset(); 1039 1040 // If a GOT slot value can be calculated at link-time, which is now, 1041 // we can just fill that out. 1042 // 1043 // (We don't actually write a value to a GOT slot right now, but we 1044 // add a static relocation to a Relocations vector so that 1045 // InputSection::relocate will do the work for us. We may be able 1046 // to just write a value now, but it is a TODO.) 1047 bool isLinkTimeConstant = 1048 !sym.isPreemptible && (!config->isPic || isAbsolute(sym)); 1049 if (isLinkTimeConstant) { 1050 in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym}); 1051 return; 1052 } 1053 1054 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that 1055 // the GOT slot will be fixed at load-time. 1056 if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) { 1057 addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel); 1058 return; 1059 } 1060 mainPart->relaDyn->addReloc( 1061 sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0, 1062 sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel); 1063 } 1064 1065 // Return true if we can define a symbol in the executable that 1066 // contains the value/function of a symbol defined in a shared 1067 // library. 1068 static bool canDefineSymbolInExecutable(Symbol &sym) { 1069 // If the symbol has default visibility the symbol defined in the 1070 // executable will preempt it. 1071 // Note that we want the visibility of the shared symbol itself, not 1072 // the visibility of the symbol in the output file we are producing. That is 1073 // why we use Sym.stOther. 1074 if ((sym.stOther & 0x3) == STV_DEFAULT) 1075 return true; 1076 1077 // If we are allowed to break address equality of functions, defining 1078 // a plt entry will allow the program to call the function in the 1079 // .so, but the .so and the executable will no agree on the address 1080 // of the function. Similar logic for objects. 1081 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 1082 (sym.isObject() && config->ignoreDataAddressEquality)); 1083 } 1084 1085 // The reason we have to do this early scan is as follows 1086 // * To mmap the output file, we need to know the size 1087 // * For that, we need to know how many dynamic relocs we will have. 1088 // It might be possible to avoid this by outputting the file with write: 1089 // * Write the allocated output sections, computing addresses. 1090 // * Apply relocations, recording which ones require a dynamic reloc. 1091 // * Write the dynamic relocations. 1092 // * Write the rest of the file. 1093 // This would have some drawbacks. For example, we would only know if .rela.dyn 1094 // is needed after applying relocations. If it is, it will go after rw and rx 1095 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1096 // complicates things for the dynamic linker and means we would have to reserve 1097 // space for the extra PT_LOAD even if we end up not using it. 1098 template <class ELFT, class RelTy> 1099 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, 1100 uint64_t offset, Symbol &sym, const RelTy &rel, 1101 int64_t addend) { 1102 // If the relocation is known to be a link-time constant, we know no dynamic 1103 // relocation will be created, pass the control to relocateAlloc() or 1104 // relocateNonAlloc() to resolve it. 1105 // 1106 // The behavior of an undefined weak reference is implementation defined. If 1107 // the relocation is to a weak undef, and we are producing an executable, let 1108 // relocate{,Non}Alloc() resolve it. 1109 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || 1110 (!config->shared && sym.isUndefWeak())) { 1111 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1112 return; 1113 } 1114 1115 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; 1116 if (canWrite) { 1117 RelType rel = target->getDynRel(type); 1118 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 1119 addRelativeReloc(&sec, offset, &sym, addend, expr, type); 1120 return; 1121 } else if (rel != 0) { 1122 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1123 rel = target->relativeRel; 1124 sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend, 1125 R_ADDEND, type); 1126 1127 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1128 // While regular ABI uses dynamic relocations to fill up GOT entries 1129 // MIPS ABI requires dynamic linker to fills up GOT entries using 1130 // specially sorted dynamic symbol table. This affects even dynamic 1131 // relocations against symbols which do not require GOT entries 1132 // creation explicitly, i.e. do not have any GOT-relocations. So if 1133 // a preemptible symbol has a dynamic relocation we anyway have 1134 // to create a GOT entry for it. 1135 // If a non-preemptible symbol has a dynamic relocation against it, 1136 // dynamic linker takes it st_value, adds offset and writes down 1137 // result of the dynamic relocation. In case of preemptible symbol 1138 // dynamic linker performs symbol resolution, writes the symbol value 1139 // to the GOT entry and reads the GOT entry when it needs to perform 1140 // a dynamic relocation. 1141 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1142 if (config->emachine == EM_MIPS) 1143 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1144 return; 1145 } 1146 } 1147 1148 // When producing an executable, we can perform copy relocations (for 1149 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1150 if (!config->shared) { 1151 if (!canDefineSymbolInExecutable(sym)) { 1152 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1153 getLocation(sec, sym, offset)); 1154 return; 1155 } 1156 1157 if (sym.isObject()) { 1158 // Produce a copy relocation. 1159 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1160 if (!config->zCopyreloc) 1161 error("unresolvable relocation " + toString(type) + 1162 " against symbol '" + toString(*ss) + 1163 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1164 getLocation(sec, sym, offset)); 1165 addCopyRelSymbol<ELFT>(*ss); 1166 } 1167 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1168 return; 1169 } 1170 1171 // This handles a non PIC program call to function in a shared library. In 1172 // an ideal world, we could just report an error saying the relocation can 1173 // overflow at runtime. In the real world with glibc, crt1.o has a 1174 // R_X86_64_PC32 pointing to libc.so. 1175 // 1176 // The general idea on how to handle such cases is to create a PLT entry and 1177 // use that as the function value. 1178 // 1179 // For the static linking part, we just return a plt expr and everything 1180 // else will use the PLT entry as the address. 1181 // 1182 // The remaining problem is making sure pointer equality still works. We 1183 // need the help of the dynamic linker for that. We let it know that we have 1184 // a direct reference to a so symbol by creating an undefined symbol with a 1185 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1186 // the value of the symbol we created. This is true even for got entries, so 1187 // pointer equality is maintained. To avoid an infinite loop, the only entry 1188 // that points to the real function is a dedicated got entry used by the 1189 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1190 // R_386_JMP_SLOT, etc). 1191 1192 // For position independent executable on i386, the plt entry requires ebx 1193 // to be set. This causes two problems: 1194 // * If some code has a direct reference to a function, it was probably 1195 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1196 // * If a library definition gets preempted to the executable, it will have 1197 // the wrong ebx value. 1198 if (sym.isFunc()) { 1199 if (config->pie && config->emachine == EM_386) 1200 errorOrWarn("symbol '" + toString(sym) + 1201 "' cannot be preempted; recompile with -fPIE" + 1202 getLocation(sec, sym, offset)); 1203 if (!sym.isInPlt()) 1204 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1205 if (!sym.isDefined()) { 1206 replaceWithDefined( 1207 sym, in.plt, 1208 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); 1209 if (config->emachine == EM_PPC) { 1210 // PPC32 canonical PLT entries are at the beginning of .glink 1211 cast<Defined>(sym).value = in.plt->headerSize; 1212 in.plt->headerSize += 16; 1213 cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym); 1214 } 1215 } 1216 sym.needsPltAddr = true; 1217 sec.relocations.push_back({expr, type, offset, addend, &sym}); 1218 return; 1219 } 1220 } 1221 1222 if (config->isPic) { 1223 if (!canWrite && !isRelExpr(expr)) 1224 errorOrWarn( 1225 "can't create dynamic relocation " + toString(type) + " against " + 1226 (sym.getName().empty() ? "local symbol" 1227 : "symbol: " + toString(sym)) + 1228 " in readonly segment; recompile object files with -fPIC " 1229 "or pass '-Wl,-z,notext' to allow text relocations in the output" + 1230 getLocation(sec, sym, offset)); 1231 else 1232 errorOrWarn( 1233 "relocation " + toString(type) + " cannot be used against " + 1234 (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) + 1235 "; recompile with -fPIC" + getLocation(sec, sym, offset)); 1236 return; 1237 } 1238 1239 errorOrWarn("symbol '" + toString(sym) + "' has no type" + 1240 getLocation(sec, sym, offset)); 1241 } 1242 1243 template <class ELFT, class RelTy> 1244 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, 1245 RelTy *end) { 1246 const RelTy &rel = *i; 1247 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1248 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); 1249 RelType type; 1250 1251 // Deal with MIPS oddity. 1252 if (config->mipsN32Abi) { 1253 type = getMipsN32RelType(i, end); 1254 } else { 1255 type = rel.getType(config->isMips64EL); 1256 ++i; 1257 } 1258 1259 // Get an offset in an output section this relocation is applied to. 1260 uint64_t offset = getOffset.get(rel.r_offset); 1261 if (offset == uint64_t(-1)) 1262 return; 1263 1264 // Error if the target symbol is undefined. Symbol index 0 may be used by 1265 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1266 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) 1267 return; 1268 1269 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; 1270 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); 1271 1272 // Ignore R_*_NONE and other marker relocations. 1273 if (expr == R_NONE) 1274 return; 1275 1276 // We can separate the small code model relocations into 2 categories: 1277 // 1) Those that access the compiler generated .toc sections. 1278 // 2) Those that access the linker allocated got entries. 1279 // lld allocates got entries to symbols on demand. Since we don't try to sort 1280 // the got entries in any way, we don't have to track which objects have 1281 // got-based small code model relocs. The .toc sections get placed after the 1282 // end of the linker allocated .got section and we do sort those so sections 1283 // addressed with small code model relocations come first. 1284 if (config->emachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(type)) 1285 sec.file->ppc64SmallCodeModelTocRelocs = true; 1286 1287 if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) { 1288 warn("using ifunc symbols when text relocations are allowed may produce " 1289 "a binary that will segfault, if the object file is linked with " 1290 "old version of glibc (glibc 2.28 and earlier). If this applies to " 1291 "you, consider recompiling the object files without -fPIC and " 1292 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " 1293 "turn off this warning." + 1294 getLocation(sec, sym, offset)); 1295 } 1296 1297 // Read an addend. 1298 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); 1299 1300 // Relax relocations. 1301 // 1302 // If we know that a PLT entry will be resolved within the same ELF module, we 1303 // can skip PLT access and directly jump to the destination function. For 1304 // example, if we are linking a main executable, all dynamic symbols that can 1305 // be resolved within the executable will actually be resolved that way at 1306 // runtime, because the main executable is always at the beginning of a search 1307 // list. We can leverage that fact. 1308 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { 1309 if (expr == R_GOT_PC && !isAbsoluteValue(sym)) { 1310 expr = target->adjustRelaxExpr(type, relocatedAddr, expr); 1311 } else { 1312 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1313 // stub type. It should be ignored if optimized to R_PC. 1314 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1315 addend &= ~0x8000; 1316 expr = fromPlt(expr); 1317 } 1318 } 1319 1320 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1321 // uses their addresses, we need GOT or GOTPLT to be created. 1322 // 1323 // The 4 types that relative GOTPLT are all x86 and x86-64 specific. 1324 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1325 in.gotPlt->hasGotPltOffRel = true; 1326 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( 1327 expr)) { 1328 in.got->hasGotOffRel = true; 1329 } 1330 1331 // Process some TLS relocations, including relaxing TLS relocations. 1332 // Note that this function does not handle all TLS relocations. 1333 if (unsigned processed = 1334 handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) { 1335 i += (processed - 1); 1336 return; 1337 } 1338 1339 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1340 // direct relocation on through. 1341 if (sym.isGnuIFunc() && config->zIfuncNoplt) { 1342 sym.exportDynamic = true; 1343 mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type); 1344 return; 1345 } 1346 1347 // Non-preemptible ifuncs require special handling. First, handle the usual 1348 // case where the symbol isn't one of these. 1349 if (!sym.isGnuIFunc() || sym.isPreemptible) { 1350 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. 1351 if (needsPlt(expr) && !sym.isInPlt()) 1352 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); 1353 1354 // Create a GOT slot if a relocation needs GOT. 1355 if (needsGot(expr)) { 1356 if (config->emachine == EM_MIPS) { 1357 // MIPS ABI has special rules to process GOT entries and doesn't 1358 // require relocation entries for them. A special case is TLS 1359 // relocations. In that case dynamic loader applies dynamic 1360 // relocations to initialize TLS GOT entries. 1361 // See "Global Offset Table" in Chapter 5 in the following document 1362 // for detailed description: 1363 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1364 in.mipsGot->addEntry(*sec.file, sym, addend, expr); 1365 } else if (!sym.isInGot()) { 1366 addGotEntry(sym); 1367 } 1368 } 1369 } else { 1370 // Handle a reference to a non-preemptible ifunc. These are special in a 1371 // few ways: 1372 // 1373 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1374 // a fixed value. But assuming that all references to the ifunc are 1375 // GOT-generating or PLT-generating, the handling of an ifunc is 1376 // relatively straightforward. We create a PLT entry in Iplt, which is 1377 // usually at the end of .plt, which makes an indirect call using a 1378 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1379 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1380 // which is usually at the end of .rela.plt. Unlike most relocations in 1381 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1382 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1383 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1384 // .got.plt without requiring a separate GOT entry. 1385 // 1386 // - Despite the fact that an ifunc does not have a fixed value, compilers 1387 // that are not passed -fPIC will assume that they do, and will emit 1388 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1389 // symbol. This means that if a direct relocation to the symbol is 1390 // seen, the linker must set a value for the symbol, and this value must 1391 // be consistent no matter what type of reference is made to the symbol. 1392 // This can be done by creating a PLT entry for the symbol in the way 1393 // described above and making it canonical, that is, making all references 1394 // point to the PLT entry instead of the resolver. In lld we also store 1395 // the address of the PLT entry in the dynamic symbol table, which means 1396 // that the symbol will also have the same value in other modules. 1397 // Because the value loaded from the GOT needs to be consistent with 1398 // the value computed using a direct relocation, a non-preemptible ifunc 1399 // may end up with two GOT entries, one in .got.plt that points to the 1400 // address returned by the resolver and is used only by the PLT entry, 1401 // and another in .got that points to the PLT entry and is used by 1402 // GOT-generating relocations. 1403 // 1404 // - The fact that these symbols do not have a fixed value makes them an 1405 // exception to the general rule that a statically linked executable does 1406 // not require any form of dynamic relocation. To handle these relocations 1407 // correctly, the IRELATIVE relocations are stored in an array which a 1408 // statically linked executable's startup code must enumerate using the 1409 // linker-defined symbols __rela?_iplt_{start,end}. 1410 if (!sym.isInPlt()) { 1411 // Create PLT and GOTPLT slots for the symbol. 1412 sym.isInIplt = true; 1413 1414 // Create a copy of the symbol to use as the target of the IRELATIVE 1415 // relocation in the igotPlt. This is in case we make the PLT canonical 1416 // later, which would overwrite the original symbol. 1417 // 1418 // FIXME: Creating a copy of the symbol here is a bit of a hack. All 1419 // that's really needed to create the IRELATIVE is the section and value, 1420 // so ideally we should just need to copy those. 1421 auto *directSym = make<Defined>(cast<Defined>(sym)); 1422 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, 1423 *directSym); 1424 sym.pltIndex = directSym->pltIndex; 1425 } 1426 if (needsGot(expr)) { 1427 // Redirect GOT accesses to point to the Igot. 1428 // 1429 // This field is also used to keep track of whether we ever needed a GOT 1430 // entry. If we did and we make the PLT canonical later, we'll need to 1431 // create a GOT entry pointing to the PLT entry for Sym. 1432 sym.gotInIgot = true; 1433 } else if (!needsPlt(expr)) { 1434 // Make the ifunc's PLT entry canonical by changing the value of its 1435 // symbol to redirect all references to point to it. 1436 auto &d = cast<Defined>(sym); 1437 d.section = in.iplt; 1438 d.value = sym.pltIndex * target->ipltEntrySize; 1439 d.size = 0; 1440 // It's important to set the symbol type here so that dynamic loaders 1441 // don't try to call the PLT as if it were an ifunc resolver. 1442 d.type = STT_FUNC; 1443 1444 if (sym.gotInIgot) { 1445 // We previously encountered a GOT generating reference that we 1446 // redirected to the Igot. Now that the PLT entry is canonical we must 1447 // clear the redirection to the Igot and add a GOT entry. As we've 1448 // changed the symbol type to STT_FUNC future GOT generating references 1449 // will naturally use this GOT entry. 1450 // 1451 // We don't need to worry about creating a MIPS GOT here because ifuncs 1452 // aren't a thing on MIPS. 1453 sym.gotInIgot = false; 1454 addGotEntry(sym); 1455 } 1456 } 1457 } 1458 1459 processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend); 1460 } 1461 1462 template <class ELFT, class RelTy> 1463 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1464 OffsetGetter getOffset(sec); 1465 1466 // Not all relocations end up in Sec.Relocations, but a lot do. 1467 sec.relocations.reserve(rels.size()); 1468 1469 for (auto i = rels.begin(), end = rels.end(); i != end;) 1470 scanReloc<ELFT>(sec, getOffset, i, end); 1471 1472 // Sort relocations by offset for more efficient searching for 1473 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1474 if (config->emachine == EM_RISCV || 1475 (config->emachine == EM_PPC64 && sec.name == ".toc")) 1476 llvm::stable_sort(sec.relocations, 1477 [](const Relocation &lhs, const Relocation &rhs) { 1478 return lhs.offset < rhs.offset; 1479 }); 1480 } 1481 1482 template <class ELFT> void scanRelocations(InputSectionBase &s) { 1483 if (s.areRelocsRela) 1484 scanRelocs<ELFT>(s, s.relas<ELFT>()); 1485 else 1486 scanRelocs<ELFT>(s, s.rels<ELFT>()); 1487 } 1488 1489 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1490 // std::merge requires a strict weak ordering. 1491 if (a->outSecOff < b->outSecOff) 1492 return true; 1493 1494 if (a->outSecOff == b->outSecOff) { 1495 auto *ta = dyn_cast<ThunkSection>(a); 1496 auto *tb = dyn_cast<ThunkSection>(b); 1497 1498 // Check if Thunk is immediately before any specific Target 1499 // InputSection for example Mips LA25 Thunks. 1500 if (ta && ta->getTargetInputSection() == b) 1501 return true; 1502 1503 // Place Thunk Sections without specific targets before 1504 // non-Thunk Sections. 1505 if (ta && !tb && !ta->getTargetInputSection()) 1506 return true; 1507 } 1508 1509 return false; 1510 } 1511 1512 // Call Fn on every executable InputSection accessed via the linker script 1513 // InputSectionDescription::Sections. 1514 static void forEachInputSectionDescription( 1515 ArrayRef<OutputSection *> outputSections, 1516 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1517 for (OutputSection *os : outputSections) { 1518 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1519 continue; 1520 for (BaseCommand *bc : os->sectionCommands) 1521 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1522 fn(os, isd); 1523 } 1524 } 1525 1526 // Thunk Implementation 1527 // 1528 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1529 // of code that the linker inserts inbetween a caller and a callee. The thunks 1530 // are added at link time rather than compile time as the decision on whether 1531 // a thunk is needed, such as the caller and callee being out of range, can only 1532 // be made at link time. 1533 // 1534 // It is straightforward to tell given the current state of the program when a 1535 // thunk is needed for a particular call. The more difficult part is that 1536 // the thunk needs to be placed in the program such that the caller can reach 1537 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1538 // the program alters addresses, which can mean more thunks etc. 1539 // 1540 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1541 // The decision to have a ThunkSection act as a container means that we can 1542 // more easily handle the most common case of a single block of contiguous 1543 // Thunks by inserting just a single ThunkSection. 1544 // 1545 // The implementation of Thunks in lld is split across these areas 1546 // Relocations.cpp : Framework for creating and placing thunks 1547 // Thunks.cpp : The code generated for each supported thunk 1548 // Target.cpp : Target specific hooks that the framework uses to decide when 1549 // a thunk is used 1550 // Synthetic.cpp : Implementation of ThunkSection 1551 // Writer.cpp : Iteratively call framework until no more Thunks added 1552 // 1553 // Thunk placement requirements: 1554 // Mips LA25 thunks. These must be placed immediately before the callee section 1555 // We can assume that the caller is in range of the Thunk. These are modelled 1556 // by Thunks that return the section they must precede with 1557 // getTargetInputSection(). 1558 // 1559 // ARM interworking and range extension thunks. These thunks must be placed 1560 // within range of the caller. All implemented ARM thunks can always reach the 1561 // callee as they use an indirect jump via a register that has no range 1562 // restrictions. 1563 // 1564 // Thunk placement algorithm: 1565 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1566 // getTargetInputSection(). 1567 // 1568 // For thunks that must be placed within range of the caller there are many 1569 // possible choices given that the maximum range from the caller is usually 1570 // much larger than the average InputSection size. Desirable properties include: 1571 // - Maximize reuse of thunks by multiple callers 1572 // - Minimize number of ThunkSections to simplify insertion 1573 // - Handle impact of already added Thunks on addresses 1574 // - Simple to understand and implement 1575 // 1576 // In lld for the first pass, we pre-create one or more ThunkSections per 1577 // InputSectionDescription at Target specific intervals. A ThunkSection is 1578 // placed so that the estimated end of the ThunkSection is within range of the 1579 // start of the InputSectionDescription or the previous ThunkSection. For 1580 // example: 1581 // InputSectionDescription 1582 // Section 0 1583 // ... 1584 // Section N 1585 // ThunkSection 0 1586 // Section N + 1 1587 // ... 1588 // Section N + K 1589 // Thunk Section 1 1590 // 1591 // The intention is that we can add a Thunk to a ThunkSection that is well 1592 // spaced enough to service a number of callers without having to do a lot 1593 // of work. An important principle is that it is not an error if a Thunk cannot 1594 // be placed in a pre-created ThunkSection; when this happens we create a new 1595 // ThunkSection placed next to the caller. This allows us to handle the vast 1596 // majority of thunks simply, but also handle rare cases where the branch range 1597 // is smaller than the target specific spacing. 1598 // 1599 // The algorithm is expected to create all the thunks that are needed in a 1600 // single pass, with a small number of programs needing a second pass due to 1601 // the insertion of thunks in the first pass increasing the offset between 1602 // callers and callees that were only just in range. 1603 // 1604 // A consequence of allowing new ThunkSections to be created outside of the 1605 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1606 // range in pass K, are out of range in some pass > K due to the insertion of 1607 // more Thunks in between the caller and callee. When this happens we retarget 1608 // the relocation back to the original target and create another Thunk. 1609 1610 // Remove ThunkSections that are empty, this should only be the initial set 1611 // precreated on pass 0. 1612 1613 // Insert the Thunks for OutputSection OS into their designated place 1614 // in the Sections vector, and recalculate the InputSection output section 1615 // offsets. 1616 // This may invalidate any output section offsets stored outside of InputSection 1617 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1618 forEachInputSectionDescription( 1619 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1620 if (isd->thunkSections.empty()) 1621 return; 1622 1623 // Remove any zero sized precreated Thunks. 1624 llvm::erase_if(isd->thunkSections, 1625 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1626 return ts.first->getSize() == 0; 1627 }); 1628 1629 // ISD->ThunkSections contains all created ThunkSections, including 1630 // those inserted in previous passes. Extract the Thunks created this 1631 // pass and order them in ascending outSecOff. 1632 std::vector<ThunkSection *> newThunks; 1633 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1634 if (ts.second == pass) 1635 newThunks.push_back(ts.first); 1636 llvm::stable_sort(newThunks, 1637 [](const ThunkSection *a, const ThunkSection *b) { 1638 return a->outSecOff < b->outSecOff; 1639 }); 1640 1641 // Merge sorted vectors of Thunks and InputSections by outSecOff 1642 std::vector<InputSection *> tmp; 1643 tmp.reserve(isd->sections.size() + newThunks.size()); 1644 1645 std::merge(isd->sections.begin(), isd->sections.end(), 1646 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1647 mergeCmp); 1648 1649 isd->sections = std::move(tmp); 1650 }); 1651 } 1652 1653 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1654 // is in range of Src. An ISD maps to a range of InputSections described by a 1655 // linker script section pattern such as { .text .text.* }. 1656 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec, 1657 InputSectionDescription *isd, 1658 uint32_t type, uint64_t src) { 1659 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1660 ThunkSection *ts = tp.first; 1661 uint64_t tsBase = os->addr + ts->outSecOff; 1662 uint64_t tsLimit = tsBase + ts->getSize(); 1663 if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit)) 1664 return ts; 1665 } 1666 1667 // No suitable ThunkSection exists. This can happen when there is a branch 1668 // with lower range than the ThunkSection spacing or when there are too 1669 // many Thunks. Create a new ThunkSection as close to the InputSection as 1670 // possible. Error if InputSection is so large we cannot place ThunkSection 1671 // anywhere in Range. 1672 uint64_t thunkSecOff = isec->outSecOff; 1673 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) { 1674 thunkSecOff = isec->outSecOff + isec->getSize(); 1675 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) 1676 fatal("InputSection too large for range extension thunk " + 1677 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1678 } 1679 return addThunkSection(os, isd, thunkSecOff); 1680 } 1681 1682 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1683 // precedes its Target. 1684 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1685 ThunkSection *ts = thunkedSections.lookup(isec); 1686 if (ts) 1687 return ts; 1688 1689 // Find InputSectionRange within Target Output Section (TOS) that the 1690 // InputSection (IS) that we need to precede is in. 1691 OutputSection *tos = isec->getParent(); 1692 for (BaseCommand *bc : tos->sectionCommands) { 1693 auto *isd = dyn_cast<InputSectionDescription>(bc); 1694 if (!isd || isd->sections.empty()) 1695 continue; 1696 1697 InputSection *first = isd->sections.front(); 1698 InputSection *last = isd->sections.back(); 1699 1700 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1701 continue; 1702 1703 ts = addThunkSection(tos, isd, isec->outSecOff); 1704 thunkedSections[isec] = ts; 1705 return ts; 1706 } 1707 1708 return nullptr; 1709 } 1710 1711 // Create one or more ThunkSections per OS that can be used to place Thunks. 1712 // We attempt to place the ThunkSections using the following desirable 1713 // properties: 1714 // - Within range of the maximum number of callers 1715 // - Minimise the number of ThunkSections 1716 // 1717 // We follow a simple but conservative heuristic to place ThunkSections at 1718 // offsets that are multiples of a Target specific branch range. 1719 // For an InputSectionDescription that is smaller than the range, a single 1720 // ThunkSection at the end of the range will do. 1721 // 1722 // For an InputSectionDescription that is more than twice the size of the range, 1723 // we place the last ThunkSection at range bytes from the end of the 1724 // InputSectionDescription in order to increase the likelihood that the 1725 // distance from a thunk to its target will be sufficiently small to 1726 // allow for the creation of a short thunk. 1727 void ThunkCreator::createInitialThunkSections( 1728 ArrayRef<OutputSection *> outputSections) { 1729 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 1730 1731 forEachInputSectionDescription( 1732 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1733 if (isd->sections.empty()) 1734 return; 1735 1736 uint32_t isdBegin = isd->sections.front()->outSecOff; 1737 uint32_t isdEnd = 1738 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 1739 uint32_t lastThunkLowerBound = -1; 1740 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 1741 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 1742 1743 uint32_t isecLimit; 1744 uint32_t prevIsecLimit = isdBegin; 1745 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 1746 1747 for (const InputSection *isec : isd->sections) { 1748 isecLimit = isec->outSecOff + isec->getSize(); 1749 if (isecLimit > thunkUpperBound) { 1750 addThunkSection(os, isd, prevIsecLimit); 1751 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 1752 } 1753 if (isecLimit > lastThunkLowerBound) 1754 break; 1755 prevIsecLimit = isecLimit; 1756 } 1757 addThunkSection(os, isd, isecLimit); 1758 }); 1759 } 1760 1761 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 1762 InputSectionDescription *isd, 1763 uint64_t off) { 1764 auto *ts = make<ThunkSection>(os, off); 1765 ts->partition = os->partition; 1766 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 1767 !isd->sections.empty()) { 1768 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 1769 // thunks we disturb the base addresses of sections placed after the thunks 1770 // this makes patches we have generated redundant, and may cause us to 1771 // generate more patches as different instructions are now in sensitive 1772 // locations. When we generate more patches we may force more branches to 1773 // go out of range, causing more thunks to be generated. In pathological 1774 // cases this can cause the address dependent content pass not to converge. 1775 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 1776 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 1777 // which means that adding Thunks to the section does not invalidate 1778 // errata patches for following code. 1779 // Rounding up the size to 4KiB has consequences for code-size and can 1780 // trip up linker script defined assertions. For example the linux kernel 1781 // has an assertion that what LLD represents as an InputSectionDescription 1782 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 1783 // We use the heuristic of rounding up the size when both of the following 1784 // conditions are true: 1785 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 1786 // accounts for the case where no single InputSectionDescription is 1787 // larger than the OutputSection size. This is conservative but simple. 1788 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 1789 // any assertion failures that an InputSectionDescription is < 4 KiB 1790 // in size. 1791 uint64_t isdSize = isd->sections.back()->outSecOff + 1792 isd->sections.back()->getSize() - 1793 isd->sections.front()->outSecOff; 1794 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 1795 ts->roundUpSizeForErrata = true; 1796 } 1797 isd->thunkSections.push_back({ts, pass}); 1798 return ts; 1799 } 1800 1801 static bool isThunkSectionCompatible(InputSection *source, 1802 SectionBase *target) { 1803 // We can't reuse thunks in different loadable partitions because they might 1804 // not be loaded. But partition 1 (the main partition) will always be loaded. 1805 if (source->partition != target->partition) 1806 return target->partition == 1; 1807 return true; 1808 } 1809 1810 static int64_t getPCBias(RelType type) { 1811 if (config->emachine != EM_ARM) 1812 return 0; 1813 switch (type) { 1814 case R_ARM_THM_JUMP19: 1815 case R_ARM_THM_JUMP24: 1816 case R_ARM_THM_CALL: 1817 return 4; 1818 default: 1819 return 8; 1820 } 1821 } 1822 1823 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 1824 Relocation &rel, uint64_t src) { 1825 std::vector<Thunk *> *thunkVec = nullptr; 1826 int64_t addend = rel.addend + getPCBias(rel.type); 1827 1828 // We use a ((section, offset), addend) pair to find the thunk position if 1829 // possible so that we create only one thunk for aliased symbols or ICFed 1830 // sections. There may be multiple relocations sharing the same (section, 1831 // offset + addend) pair. We may revert the relocation back to its original 1832 // non-Thunk target, so we cannot fold offset + addend. 1833 if (auto *d = dyn_cast<Defined>(rel.sym)) 1834 if (!d->isInPlt() && d->section) 1835 thunkVec = &thunkedSymbolsBySectionAndAddend[{ 1836 {d->section->repl, d->value}, addend}]; 1837 if (!thunkVec) 1838 thunkVec = &thunkedSymbols[{rel.sym, addend}]; 1839 1840 // Check existing Thunks for Sym to see if they can be reused 1841 for (Thunk *t : *thunkVec) 1842 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 1843 t->isCompatibleWith(*isec, rel) && 1844 target->inBranchRange(rel.type, src, 1845 t->getThunkTargetSym()->getVA(rel.addend) + 1846 getPCBias(rel.type))) 1847 return std::make_pair(t, false); 1848 1849 // No existing compatible Thunk in range, create a new one 1850 Thunk *t = addThunk(*isec, rel); 1851 thunkVec->push_back(t); 1852 return std::make_pair(t, true); 1853 } 1854 1855 // Return true if the relocation target is an in range Thunk. 1856 // Return false if the relocation is not to a Thunk. If the relocation target 1857 // was originally to a Thunk, but is no longer in range we revert the 1858 // relocation back to its original non-Thunk target. 1859 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 1860 if (Thunk *t = thunks.lookup(rel.sym)) { 1861 if (target->inBranchRange(rel.type, src, 1862 rel.sym->getVA(rel.addend) + getPCBias(rel.type))) 1863 return true; 1864 rel.sym = &t->destination; 1865 rel.addend = t->addend; 1866 if (rel.sym->isInPlt()) 1867 rel.expr = toPlt(rel.expr); 1868 } 1869 return false; 1870 } 1871 1872 // Process all relocations from the InputSections that have been assigned 1873 // to InputSectionDescriptions and redirect through Thunks if needed. The 1874 // function should be called iteratively until it returns false. 1875 // 1876 // PreConditions: 1877 // All InputSections that may need a Thunk are reachable from 1878 // OutputSectionCommands. 1879 // 1880 // All OutputSections have an address and all InputSections have an offset 1881 // within the OutputSection. 1882 // 1883 // The offsets between caller (relocation place) and callee 1884 // (relocation target) will not be modified outside of createThunks(). 1885 // 1886 // PostConditions: 1887 // If return value is true then ThunkSections have been inserted into 1888 // OutputSections. All relocations that needed a Thunk based on the information 1889 // available to createThunks() on entry have been redirected to a Thunk. Note 1890 // that adding Thunks changes offsets between caller and callee so more Thunks 1891 // may be required. 1892 // 1893 // If return value is false then no more Thunks are needed, and createThunks has 1894 // made no changes. If the target requires range extension thunks, currently 1895 // ARM, then any future change in offset between caller and callee risks a 1896 // relocation out of range error. 1897 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { 1898 bool addressesChanged = false; 1899 1900 if (pass == 0 && target->getThunkSectionSpacing()) 1901 createInitialThunkSections(outputSections); 1902 1903 // Create all the Thunks and insert them into synthetic ThunkSections. The 1904 // ThunkSections are later inserted back into InputSectionDescriptions. 1905 // We separate the creation of ThunkSections from the insertion of the 1906 // ThunkSections as ThunkSections are not always inserted into the same 1907 // InputSectionDescription as the caller. 1908 forEachInputSectionDescription( 1909 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1910 for (InputSection *isec : isd->sections) 1911 for (Relocation &rel : isec->relocations) { 1912 uint64_t src = isec->getVA(rel.offset); 1913 1914 // If we are a relocation to an existing Thunk, check if it is 1915 // still in range. If not then Rel will be altered to point to its 1916 // original target so another Thunk can be generated. 1917 if (pass > 0 && normalizeExistingThunk(rel, src)) 1918 continue; 1919 1920 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 1921 *rel.sym, rel.addend)) 1922 continue; 1923 1924 Thunk *t; 1925 bool isNew; 1926 std::tie(t, isNew) = getThunk(isec, rel, src); 1927 1928 if (isNew) { 1929 // Find or create a ThunkSection for the new Thunk 1930 ThunkSection *ts; 1931 if (auto *tis = t->getTargetInputSection()) 1932 ts = getISThunkSec(tis); 1933 else 1934 ts = getISDThunkSec(os, isec, isd, rel.type, src); 1935 ts->addThunk(t); 1936 thunks[t->getThunkTargetSym()] = t; 1937 } 1938 1939 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 1940 rel.sym = t->getThunkTargetSym(); 1941 rel.expr = fromPlt(rel.expr); 1942 1943 // On AArch64 and PPC, a jump/call relocation may be encoded as 1944 // STT_SECTION + non-zero addend, clear the addend after 1945 // redirection. 1946 if (config->emachine != EM_MIPS) 1947 rel.addend = -getPCBias(rel.type); 1948 } 1949 1950 for (auto &p : isd->thunkSections) 1951 addressesChanged |= p.first->assignOffsets(); 1952 }); 1953 1954 for (auto &p : thunkedSections) 1955 addressesChanged |= p.second->assignOffsets(); 1956 1957 // Merge all created synthetic ThunkSections back into OutputSection 1958 mergeThunks(outputSections); 1959 ++pass; 1960 return addressesChanged; 1961 } 1962 1963 template void scanRelocations<ELF32LE>(InputSectionBase &); 1964 template void scanRelocations<ELF32BE>(InputSectionBase &); 1965 template void scanRelocations<ELF64LE>(InputSectionBase &); 1966 template void scanRelocations<ELF64BE>(InputSectionBase &); 1967 template void reportUndefinedSymbols<ELF32LE>(); 1968 template void reportUndefinedSymbols<ELF32BE>(); 1969 template void reportUndefinedSymbols<ELF64LE>(); 1970 template void reportUndefinedSymbols<ELF64BE>(); 1971 1972 } // namespace elf 1973 } // namespace lld 1974